
THEORY OF COMPUTING, Volume 11 (13), 2015, pp. 339–355
www.theoryofcomputing.org

Computing the Partition Function
for Cliques in a Graph
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Abstract: We present a deterministic algorithm which, given a graph G with n vertices
and an integer 1 < m ≤ n, computes in nO(lnm) time the sum of weights w(S) over all m-
subsets S of the set of vertices of G, where w(S) = exp{γmσ(S)+O(1/m)} provided exactly
(

m
2

)

σ(S) pairs of vertices of S span an edge of G for some 0 ≤ σ(S) ≤ 1, and γ > 0 is an
absolute constant. This allows us to tell apart the graphs that do not have m-subsets of high
density from the graphs that have sufficiently many m-subsets of high density, even when the
probability to hit such a subset at random is exponentially small in m.
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1 Introduction and main results

1.1 Density of a subset in a graph

Let G = (V,E) be an undirected graph with set V of vertices and set E of edges, without loops or multiple
edges. Let S ⊂V be a subset of the set of vertices of G. We define the density σ(S) of S as the ratio of the
number of the edges of G with both endpoints in S to the maximum possible number of edges spanned by
vertices in S:

σ(S) =
|{u,v} ∈ E : u,v ∈ S|

(

|S|
2

)
.
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Hence
0 ≤ σ(S) ≤ 1 for all S ⊂V.

In particular, σ(S) = 0 if and only if S is an independent set, that is, no two vertices of S span an edge of
G and σ(S) = 1 if and only if S is a clique, that is, every two vertices of S span an edge of G.

In this paper, we suggest a new approach to testing the existence of subsets S of a given size m = |S|
with high density σ(S). Namely, we present a deterministic algorithm, which, given a graph G with n

vertices and an integer 1 < m ≤ n computes in nO(lnm) time (within a relative error of 0.1, say) the sum

Densitym(G) = ∑
S⊂V
|S|=m

exp{γmσ(S)− ε(m)}

where 0 ≤ ε(m) ≤
0.1

m−1

(1.1)

and γ > 0 is an absolute constant: we can choose γ = 0.07 and if n ≥ 8m and m ≥ 10 then we can choose
γ = 0.27.

Let us fix two real numbers 0 ≤ σ < σ ′ ≤ 1. If there are no m-subsets S with density σ or higher then

Densitym(G) ≤

(

n

m

)

exp{γmσ − ε(m)} .

If, however, there are sufficiently many m-subsets S with density σ ′ or higher, that is, if the probability to
hit such a subset at random is at least 2exp{−γ(σ ′−σ)m}, then

Densitym(G) ≥ 2
(

n

m

)

exp{γmσ − ε(m)}

and we can distinguish between these two cases in nO(lnm) time. Note that “many subsets" still allows for
the probability to hit such a subset at random to be exponentially small in m.

It turns out that we can compute in nO(lnm) time an m-subset S, which is almost as dense as the average
under the exponential weighting of the formula (1.1), that is, an m-subset S satisfying

exp
{

γmσ(S)
}

≥
1
2

(

n

m

)−1

Densitym(G) , (1.2)

cf. Remark 3.7.
We compute the expression (1.1) using partition functions.

1.2 The partition function of cliques

Let W = (wi j) be a set of real or complex numbers indexed by unordered pairs {i, j} where 1 ≤ i 6= j ≤ n

and interpreted as a set of weights on the edges of the complete graph with vertices 1, . . . ,n. We write wi j

instead of w{i, j} and often refer to W as an n×n symmetric matrix, which should not lead to a confusion
as we never attempt to access the diagonal entries wii.
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For an integer 1 < m ≤ n, we define a polynomial

Pm(W ) = ∑
S⊂{1,...,n}

|S|=m

∏
{i, j}⊂S

i6= j

wi j ,

which we call the partition function of cliques (note that it is different from what is known as the partition
function of independent sets, see [20] and [2]). Thus if W is the adjacency matrix of a graph G with set
V = {1, . . . ,n} of vertices and set E of edges, so that

wi j =

{

1 if {i, j} ∈ E,

0 otherwise,

then Pm(W ) is the number of cliques in G of size m. Hence computing Pm(W ) is at least as hard as
counting cliques. Let us choose an 0 < α < 1 and modify the weights W as follows:

wi j =

{

1 if {i, j} ∈ E,

α otherwise.

Then Pm(W ) counts all subsets of m vertices in the complete graph on n vertices, only that a subset
spanning exactly k non-edges of G is weighted down by a factor of αk. In other words, an m-subset S ⊂V

is counted with weight

exp
{

(

1−σ(S)
)

(

m

2

)

lnα

}

.

In this paper, we present a deterministic algorithm, which, given an n×n symmetric matrix W = (w j)
such that

∣

∣wi j −1
∣

∣ ≤
γ

m−1
for all 1 ≤ i 6= j ≤ n (1.3)

computes the value of Pm(W ) within relative error ε in nO(lnm−lnε) time. Here γ > 0 is an absolute
constant; we can choose γ = 0.07 and if n ≥ 8m and m ≥ 10, we can choose γ = 0.27.

1.3 The idea of the algorithm

Let J denote the n× n matrix filled with 1s. Given an n× n symmetric matrix W , we consider the
univariate function

f (t) = lnPm

(

J+ t(W − J)
)

. (1.4)

Clearly,

f (0) = lnPm(J) = ln
(

n

m

)

and f (1) = lnPm(W ) .

Hence our goal is to approximate f (1) and we do it by using the Taylor polynomial expansion of f at
t = 0:

f (1)≈ f (0)+
ℓ

∑
k=1

1
k!

dk

dtk
f (t)
∣

∣

∣

t=0
. (1.5)

THEORY OF COMPUTING, Volume 11 (13), 2015, pp. 339–355 341

http://dx.doi.org/10.4086/toc


ALEXANDER BARVINOK

It turns out that the right hand side of the approximation (1.5) can be computed in nO(ℓ) time. We
present the algorithm in Section 2. The quality of the approximation (1.5) depends on the location of
complex zeros of Pm.

Lemma 1.1. Suppose that there exists a real β > 1 such that

Pm

(

J+ z(W − J)
)

6= 0 for all z ∈ C satisfying |z| ≤ β .

Then the right hand side of the formula (1.5) approximates f (1) within an additive error of

m(m−1)
2(ℓ+1)β ℓ(β −1)

.

In particular, for a fixed β > 1, to ensure an additive error of 0 < ε < 1, we can choose ℓ =
O(lnm− lnε), which results in the algorithm for approximating Pm(W ) within relative error ε in
nO(lnm−lnε) time. We prove Lemma 1.1 in Section 2.

Thus we have to identify a class of weights W for which the number β > 1 of Lemma 1.1 exists. We
prove the following result.

Theorem 1.2. There is an absolute constant ω > 0 (one can choose ω = 0.071, and if m≥ 10 and n≥ 8m,

one can choose ω = 0.271) such that for any positive integers 1 < m ≤ n, for any n×n symmetric complex

matrix Z = (zi j), we have

Pm(Z) 6= 0

as long as
∣

∣zi j −1
∣

∣ ≤
ω

m−1
for all 1 ≤ i 6= j ≤ n.

We prove Theorem 1.2 in Section 3. Theorem 1.2 implies that if the inequality (1.3) holds, where
0 < γ < ω is an absolute constant, we can choose β = ω/γ in Lemma 1.1 and obtain an algorithm which
computes Pm(W ) within a given relative error ε in nO(lnm−lnε) time. Thus we can choose γ = 0.07 and
β = 71/70 and if m ≥ 10 and n ≥ 8m, we can choose γ = 0.27 and β = 271/270.

1.4 Weighted enumeration of subsets

Given a graph G with set of vertices V = {1, . . . ,n} and set E of edges, we define weights W by

wi j =

{

1+ γ
m−1 if {i, j} ∈ E,

1− γ
m−1 otherwise,

(1.6)

where γ > 0 is the absolute constant in the inequality (1.3). Thus we can choose γ = 0.07 and if m ≥ 10
and n ≥ 8m, we can choose γ = 0.27. We define the functional (1.1) by

Densitym(G) = eγm

(

1+
γ

m−1

)−(m
2)

Pm(W ) .
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Then we have
Densitym(G) = ∑

S⊂V
|S|=m

w(S) ,

where

w(S) = eγm

(

1+
γ

m−1

)(σ(S)−1)(m
2)(

1−
γ

m−1

)(1−σ(S))(m
2)

= exp{γmσ(S)− ε(m)} where 0 ≤ ε(m) ≤
0.1

m−1

(in the upper bound for ε(m) we use that γ < 0.3). Thus we are in the situation described in Section 1.1.

1.5 Comparison with results in the literature

The topic of this paper touches upon some very active research areas, such as finding dense subgraphs
in a given graph (see, for example, [7] and references therein), computational complexity of partition
functions (see, for example, [10] and references therein) and complex zeros of partition functions (see,
for example, [20] and references therein). Detecting dense subsets is notoriously hard. It is an NP-hard
problem to approximate the size |S| of the largest clique S within a factor of |V |1−ε for any fixed 0 < ε ≤ 1
[14], [23]. In [11], a polynomial time algorithm for approximating the highest density of an m-subset
within a factor of O(n1/3−ε) for some small ε > 0 was constructed. The paper [8] presents an algorithm
of nO(1/ε) complexity which approximates the highest density of an m-subset within a factor of n1/4+ε

and an algorithm of O
(

nlnn
)

complexity which approximates the density within a factor of O(n1/4),
the current record (note that [11], [7] and [8] normalize density slightly differently than we do). It has
also been established that modulo some plausible complexity assumptions, it is hard to approximate the
highest density of an m-subset within a constant factor, fixed in advance, see [7].

We note that while searching for a dense m-subset in a graph on n vertices, the most interesting case
to consider is that of a growing m such that m = o(n), since for any fixed ε > 0 one can compute in
polynomial time the maximum number of edges of G spanned by an m-subset S of vertices of G within
an additive error of εn2 [12] (the complexity of the algorithm is exponential in 1/ε). Of course, for any
constant m, fixed in advance, all subsets of size m can be found in polynomial time by an exhaustive
search.

The appearance of partition functions in combinatorics can be traced back to the work of Kaste-
leyn [17] on the statistics of dimers (perfect matchings), see also Section 8.7 of [19]. A randomized
polynomial time approximation algorithm (based on the Markov Chain Monte Carlo approach) for com-
puting the partition function of the classical Ising model was constructed by Jerrum and Sinclair in [16].
A lot of work has recently been done on understanding the computational complexity of the partition
function of graph homomorphisms [10], where a certain “dichotomy” of instances has been established:
it is either #P-hard to compute exactly (in most interesting cases) or it is computable in polynomial
time exactly (in few cases). Recently, an approach inspired by the “correlation decay" phenomenon in
statistical physics was used to construct deterministic approximation algorithms for partition functions in
combinatorial problems [21], [2], [6]. To the best of author’s knowledge, the partition function Pm(W )
introduced in Section 1.2 of this paper has not been studied before and the idea of our algorithm sketched
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in Section 1.3 is also new. On the other hand, one can view our method as inspired by the intuition
from statistical physics. Essentially, the algorithm computes the partition function similar to the one
used in the “simulated annealing" method, see [1], for the temperature that is provably higher than the
phase transition threshold (the role of the “temperature" is played by 1/γm, where γ is the constant in
the density functional (1.1)). The algorithm uses the fact that the partition function has nice analytic
properties at temperatures above the phase transition temperature.

The corollary asserting that graphs without dense m-subsets can be efficiently separated from graphs
with many dense m-subsets is vaguely similar in spirit to the property testing approach [13].

The result requiring most work is Theorem 1.2 bounding the complex roots of the partition function
away from the matrix of all 1s. Studying complex roots of partition functions was initiated by Lee and
Yang [22], [18], continued by Heilmann and Lieb [15], and it is a classical topic by now, because of its
importance to locating the phase transition, see, for example, [20] and Section 8.5 of [19].

The general approach of this paper was first applied by the author [3] to approximate permanents of
matrices that are sufficiently close to the matrix of all 1s (and related expressions, such as hafnians of
symmetric matrices and multidimensional analogues of permanents of tensors). After the first version
of this paper was written, P. Soberón and the author applied this approach to computing the partition
function of graph homomorphisms [5] and its refinement [4]. In each case, the main work consists in
obtaining a version of Theorem 1.2, which bounds the complex roots of the polynomial in question. It is
the easiest in the case of permanents [3] and the most cumbersome in the case of graph homomorphisms
with multiplicities [4]. The most general framework under which the method of this paper works is still
at large.

Open Question 1.3. Is it true that for any γ > 0, fixed in advance, the density functional (1.1) can be
computed (within a relative error of 0.1, say, and some ε(m) = O(1/m)) in nO(lnm) time?

2 The algorithm

2.1 The algorithm for approximating the partition function

Given an n×n symmetric matrix W = (wi j), we present an algorithm that computes the right hand side
of the approximation (1.5) for the function f (t) defined by formula (1.4).

Let
g(t) = Pm

(

J+ t(W − J)
)

= ∑
S⊂{1,...,n}

|S|=m

∏
{i, j}⊂S

i 6= j

(

1+ t(wi j −1)
)

, (2.1)

so f (t) = lng(t). Hence

f ′(t) =
g′(t)

g(t)
and g′(t) = g(t) f ′(t) .

Therefore, for k ≥ 1 we have

dk

dtk
g(t)

∣

∣

∣

t=0
=

k−1

∑
j=0

(

k−1
j

)(

d j

dt j
g(t)

∣

∣

∣

t=0

)(

dk− j

dtk− j
f (t)
∣

∣

∣

t=0

)

(2.2)
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(we agree that the 0-th derivative of g is g).
We note that g(0) =

(

n
m

)

. If we compute the values of

dk

dtk
g(t)

∣

∣

∣

t=0
for k = 1, . . . , ℓ , (2.3)

then the formulas (2.2) for k = 1, . . . , ℓ provide a non-degenerate triangular system of linear equations
that allows us to compute

dk

dtk
f (t)
∣

∣

∣

t=0
for k = 1, . . . , ℓ .

Hence our goal is to compute the values (2.3).
We have

dk

dtk
g(t)

∣

∣

∣

t=0
= ∑

S⊂{1,...,n}
|S|=m

∑
I=({i1, j1},...,{ik, jk})
{i1, j1},...,{ik, jk}⊂S

(wi1 j1 −1) · · ·(wik jk −1)

where the inner sum is taken over all ordered sets I of k distinct pairs {i1, j1}, . . ., {ik, jk} of points from
S.

For an ordered set
I = ({i1, j1}, . . . ,{ik, jk})

of k pairs of points from the set {1, . . . ,n}, let

ρ(I) =

∣

∣

∣

∣

∣

k
⋃

s=1

{is, js}

∣

∣

∣

∣

∣

be the total number of distinct points among i1, j1, . . . , ik, jk. Since there are exactly
(

n−ρ(I)

m−ρ(I)

)

m-subsets S ⊂ {1, . . . ,n} containing the pairs {i1, j1}, . . ., {ik, jk}, we can further rewrite

dk

dtk
g(t)

∣

∣

∣

t=0
= ∑

I=({i1, j1},...,{ik, jk})
{i1, j1},...,{ik, jk}⊂{1,...,n}

(

n−ρ(I)

m−ρ(I)

)

(wi1 j1 −1) · · ·(wik jk −1) ,

where the sum is taken over all ordered sets I of k distinct pairs {i1, j1}, . . . ,{ik, jk} of points from the set
{1, . . . ,n}. The algorithm consists in computing the latter sum. Since the sum contains not more than
n2k = nO(ℓ) terms, the complexity of the algorithm is indeed nO(ℓ), as claimed.

2.2 Proof of Lemma 1.1

The function g(z) defined by the equation (2.1) is a polynomial in z of degree d ≤
(

m
2

)

with g(0) =
(

n
m

)

6= 0,
so we factor

g(z) = g(0)
d

∏
i=1

(

1−
z

αi

)

,
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where α1, . . . ,αd are the roots of g(z). By the condition of Lemma 1.1, we have

|αi| ≥ β > 1 for i = 1, . . . ,d .

Therefore,

f (z) = lng(z) = lng(0)+
d

∑
i=1

ln
(

1−
z

αi

)

provided |z| ≤ 1 , (2.4)

where we choose the branch of lng(z) that is real at z = 0. Using the standard Taylor expansion, we
obtain

ln
(

1−
1
αi

)

=−
ℓ

∑
k=1

1
k

(

1
αi

)k

+ζℓ ,

where

|ζℓ|=

∣

∣

∣

∣

∣

+∞

∑
k=ℓ+1

1
k

(

1
αi

)k
∣

∣

∣

∣

∣

≤
1

(ℓ+1)β ℓ(β −1)
.

Therefore, from the equation (2.4) we obtain

f (1) = f (0)+
ℓ

∑
k=1

(

−
1
k

d

∑
i=1

(

1
αi

)k
)

+ηℓ ,

where

|ηℓ| ≤
m(m−1)

2(ℓ+1)β ℓ(β −1)
.

It remains to notice that

−
1
k

d

∑
i=1

(

1
αi

)k

=
1
k!

dk

dtk
f (t)
∣

∣

∣

t=0
.

3 Proof of Theorem 1.2

3.1 Definitions

For δ > 0, we denote by U(δ )⊂ C
n(n−1)/2 the closed polydisc of weights

U(δ ) =
{

Z = (zi j) :
∣

∣zi j −1
∣

∣≤ δ for all 1 ≤ i 6= j ≤ n
}

.

For a subset Ω ⊂ {1, . . . ,n} where 0 ≤ |Ω| ≤ m, we define

PΩ(Z) = ∑
S⊂{1,...,n}

|S|=m
S⊃Ω

∏
{i, j}⊂S

i6= j

zi j .

In words: PΩ(Z) is the restriction of the sum defining the clique partition function to the subsets S that
contain a given set Ω. In particular,

P/0(Z) = Pm(Z) ,
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and if |Ω|< m then

PΩ(Z) =
1

m−|Ω| ∑
i: i/∈Ω

PΩ∪{i}(Z) . (3.1)

We note that the natural action of the symmetric group Sn on {1, . . . ,n} induces the natural action of Sn

on the space of polynomials in Z which permutes the polynomials PΩ(Z).
First, we establish a simple geometric lemma.

Lemma 3.1. Let u1, . . . ,un ∈R
2 be non-zero vectors such that for some 0 ≤ α < 2π/3 the angle between

any two vectors ui and u j does not exceed α . Let u = u1 + · · ·+un. Then

‖u‖ ≥
(

cos
α

2

) n

∑
i=1

‖ui‖ .

Proof. We observe that the origin does not lie in the convex hull of any three vectors ui,u j,uk since
otherwise the angle between some two of these three vectors is at least 2π/3. The Carathéodory
Theorem then implies that the convex hull of the whole set of vectors u1, . . . ,un does not contain the
origin and hence the vectors lie in an angle at most α with vertex at the origin. The length of the
orthogonal projection of each vector ui onto the bisector of the angle is at least ‖ui‖cos(α/2) and hence
the length of the orthogonal projection of u = u1 + · · ·+ un onto the bisector of the angle is at least
(‖u1‖+ · · ·+‖un‖)cos(α/2). Since the length of the vector u is at least as large as the length of its
orthogonal projection, the proof follows.

Lemma 3.1 and its proof was suggested by B. Bukh [9]. It replaces an earlier weaker bound used by
the author, see Lemma 3.1 of [3].

We prove Theorem 1.2 by reverse induction on |Ω|, using Lemma 3.1 and the following two lemmas.

Lemma 3.2. Let us fix real 0 < τ < 1, real δ > 0 and an integer 1 ≤ r ≤ m. Suppose that for all

Ω ⊂ {1, . . . ,n} such that |Ω| = r, for all Z ∈ U(δ ), we have PΩ(Z) 6= 0 and that for all i = 1, . . . ,n we

have

|PΩ(Z)| ≥
τ

m−1 ∑
j: j 6=i

∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

.

Then, for any pair of subsets

Ω1,Ω2 ⊂ {1, . . . ,n} such that |Ω1|= |Ω2|= r and |Ω1 △Ω2|= 2,

and for any Z ∈U(δ ), the angle between the complex numbers PΩ1(Z) and PΩ2(Z), interpreted as vectors

in R
2 = C, does not exceed

θ =
4δ (m−1)
τ(1−δ )

and the ratio of |PΩ1(Z)| and |PΩ2(Z)| does not exceed

λ = exp
{

4δ (m−1)
τ(1−δ )

}

.
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Proof. Let us choose an Ω ∈ {1, . . . ,n} such that |Ω| = r. Since PΩ(Z) 6= 0 for all Z ∈ U(δ ), we can
choose a branch of lnPΩ(Z) that is a real number when Z = J. Then

∂

∂ zi j

lnPΩ(Z) =

(

∂

∂ zi j

PΩ(Z)

)

/

PΩ(Z) .

Since
∣

∣zi j

∣

∣≥ 1−δ for all Z ∈ U(δ ), we have

∑
j: j 6=i

∣

∣

∣

∣

∂

∂ zi j

lnPΩ(Z)

∣

∣

∣

∣

≤
m−1

τ(1−δ )
for i = 1, . . . ,n . (3.2)

Without loss of generality, we assume that 1 ∈ Ω1, 2 /∈ Ω1 and Ω2 = Ω1 \{1}∪{2}.
Given A ∈ U(δ ), let B ∈ U(δ ) be the weights defined by

b1 j = a2 j and b2 j = a j1 for all j 6= 1,2

and
bi j = ai j for all other i, j .

Then
PΩ2(A) = PΩ1(B)

and

|lnPΩ1(A)− lnPΩ2(A)|= |lnPΩ1(A)− lnPΩ1(B)|

≤

(

sup
Z∈U(δ )

∑
j: j 6=1,2

∣

∣

∣

∣

∂

∂ z1 j

lnPΩ1(Z)

∣

∣

∣

∣

+ ∑
j: j 6=1,2

∣

∣

∣

∣

∂

∂ z2 j

lnPΩ1(Z)

∣

∣

∣

∣

)

× max
j: j 6=1,2

{

∣

∣a1 j −b1 j

∣

∣ ,
∣

∣a2 j −b2 j

∣

∣

}

.

Since
∣

∣ai j −bi j

∣

∣≤ 2δ for all A,B ∈ U(δ ), by the inequality (3.2) we conclude that the angle between the
complex numbers PΩ1(A) and PΩ2(A) does not exceed θ and that the ratio of their absolute values does
not exceed λ .

Lemma 3.3. Let us fix real δ > 0, real 0 ≤ θ < 2π/3, real λ > 1 and an integer 1 < r ≤ m. Suppose

that for all Ω ⊂ {1, . . . ,n} such that m ≥ |Ω| ≥ r and for all Z ∈ U(δ ), we have PΩ(Z) 6= 0 and that for

any pair of subsets

Ω1,Ω2 ⊂ {1, . . . ,n} such that m ≥ |Ω1|= |Ω2| ≥ r and |Ω1 △Ω2|= 2 ,

and for any Z ∈ U(δ ), the angle between two complex numbers PΩ1(Z) and PΩ2(Z) considered as vectors

in R
2 = C does not exceed θ while the ratio of |PΩ1(Z)| and |PΩ2(Z)| does not exceed λ . Let

τ =
cos2(θ/2)

λ
.
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Then, for any subset Ω ⊂ {1, . . . ,n} such that |Ω|= r−1, all Z ∈ U(δ ) and all i = 1, . . . ,n, we have

|PΩ(Z)| ≥
τ

m−1 ∑
j: j 6=i

∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

. (3.3)

In addition,

if
n

m
≥

λ

cos(θ/2)
,

the inequality (3.3) holds with

τ = cos(θ/2) .

Proof. Let us choose a subset Ω ⊂ {1, . . . ,n} such that |Ω|= r−1. Let us define

Ω j = Ω∪{ j} for j /∈ Ω .

Suppose first that i ∈ Ω. Then, for j ∈ Ω\{i} we have

∂

∂ zi j

PΩ(Z) = z−1
i j PΩ(Z)

and hence
∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

= |PΩ(Z)| provided i, j ∈ Ω, i 6= j .

For j /∈ Ω, we have
∂

∂ zi j

PΩ(Z) =
∂

∂ zi j

PΩ j
(Z) = z−1

i j PΩ j
(Z)

and hence
∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

=
∣

∣PΩ j
(Z)
∣

∣ provided i ∈ Ω and j /∈ Ω .

Summarizing,

∑
j: j 6=i

∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

= (r−2) |PΩ(Z)|+ ∑
j/∈Ω

∣

∣PΩ j
(Z)
∣

∣ . (3.4)

On the other hand, by the equation (3.1), we have

PΩ(Z) =
1

m− r+1 ∑
j: j/∈Ω

PΩ j
(Z) .

By Lemma 3.1, we have

|PΩ(Z)| ≥
cos(θ/2)
m− r+1 ∑

j: j/∈Ω

∣

∣PΩ j
(Z)
∣

∣ (3.5)

and

(m−1) |PΩ(Z)| ≥ (r−2) |PΩ(Z)|+

(

cos
θ

2

)

∑
j: j/∈Ω

∣

∣PΩ j
(Z)
∣

∣
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and the inequality (3.3) with τ = cos(θ/2) follows by the formula (3.4).
Suppose now that i /∈ Ω. Then, for j ∈ Ω, we have

∂

∂ zi j

PΩ(Z) =
∂

∂ zi j

PΩi
(Z) = z−1

i j PΩi
(Z)

and hence
∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

= |PΩi
(Z)| provided i /∈ Ω and j ∈ Ω . (3.6)

If r = m then
∂

∂ zi j

PΩ(Z) = 0 for any j /∈ Ω

and

∑
j: j 6=i

∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

= (m−1) |PΩi
| .

By the equation (3.1), we have
PΩ(Z) = ∑

j/∈Ω

PΩ j
(Z)

and hence by Lemma 3.1

|PΩ(Z)| ≥

(

cos
θ

2

)

∑
j/∈Ω

∣

∣PΩ j
(Z)
∣

∣ ≥

(

cos
θ

2

)

|PΩi
(Z)| ,

which proves the inequality (3.3) in the case of r = m with τ = cos(θ/2).
If r < m, then for j /∈ Ωi, let Ωi j = Ω∪{i, j}. Then, for j /∈ Ωi, we have

∂

∂ zi j

PΩ(Z) =
∂

∂ zi j

PΩi j
(Z) = z−1

i j PΩi j
(Z)

and hence
∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

=
∣

∣PΩi j
(Z)
∣

∣ provided i /∈ Ω and j /∈ Ωi .

From the formula (3.6),

∑
j: j 6=i

∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

= (r−1) |PΩi
(Z)|+ ∑

j/∈Ωi

∣

∣PΩi j
(Z)
∣

∣ if r < m . (3.7)

By the equation (3.1), we have

PΩi
(Z) =

1
m− r

∑
j: j/∈Ωi

PΩi j
(Z)

and hence by Lemma 3.1, we have

|PΩi
(Z)| ≥

cos(θ/2)
m− r

∑
j: j/∈Ωi

∣

∣PΩi j
(Z)
∣

∣ .
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Comparing this with the equation (3.7), we conclude as above that

|PΩi
(Z)| ≥

cos(θ/2)
m−1 ∑

j: j 6=i

∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

. (3.8)

It remains to compare |PΩi
(Z)| and |PΩ(Z)|. Since the ratio of any two

∣

∣PΩ j1
(Z)
∣

∣,
∣

∣PΩ j2
(Z)
∣

∣ does not
exceed λ , from the inequality (3.5) we conclude that

|PΩ(Z)| ≥
cos(θ/2)

λ

n− r+1
m− r+1

|PΩi
(Z)| (3.9)

≥
cos(θ/2)

λ
|PΩi

(Z)| for all i /∈ Ω . (3.10)

The proof of the inequality (3.3) with τ =
cos2(θ/2)

λ
follows by the inequality (3.8) and inequality (3.10).

In addition, if
n

m
≥

λ

cos(θ/2)

then
n− r+1
m− r+1

≥
λ

cos(θ/2)

and the proof of the inequality (3.3) with τ = cos(θ/2) follows by the inequality (3.8) and the inequal-
ity (3.9).

3.2 Proof of Theorem 1.2

One can see that for a sufficiently small ω > 0, the equation

θ =
4ω exp{θ}

(1−ω)cos2(θ/2)

has a solution 0 < θ < 2π/3. Numerical computations show that one can choose ω = 0.071, in which
case

θ ≈ 0.6681776075 .

Let

λ = exp{θ} ≈ 1.950679176 and τ =
cos2(θ/2)

exp{θ}
≈ 0.4575206588 .

Let
δ =

ω

m−1
.

For r = m, . . . ,1 we prove the following Statement 3.4, Statement 3.5 and Statement 3.6:

Statement 3.4. Let Ω ⊂ {1, . . . ,n} be a set such that |Ω|= r. Then for any Z ∈ U(δ ) we have

PΩ(Z) 6= 0 .
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Statement 3.5. Let Ω ⊂ {1, . . . ,n} be a set such that |Ω|= r. Then for any Z ∈U(δ ), Z = (zi j), and any

i = 1, . . . ,n, we have

|PΩ(Z)| ≥
τ

m−1 ∑
j: j 6=i

∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

.

Statement 3.6. Let Ω1,Ω2 ⊂ {1, . . . ,n} be sets such that |Ω1|= |Ω2|= r and |Ω1 △Ω2|= 2. Then the

angle between the complex numbers PΩ1(Z) and PΩ2(Z), considered as vectors in R
2 = C, does not

exceed θ , whereas the ratio of |PΩ1(Z)| and |PΩ2(Z)| does not exceed λ .

Suppose that r = m and let Ω ⊂ {1, . . . ,n} be a subset such that |Ω|= m. Then

PΩ(Z) = ∏
{i, j}⊂Ω

i6= j

zi j ,

so Statement 3.4 clearly holds for r = m. Moreover, for i ∈ Ω, we have

∑
j: j 6=i

∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

= (m−1) |PΩ(Z)| ,

while for i /∈ Ω, we have

∑
j: j 6=i

∣

∣zi j

∣

∣

∣

∣

∣

∣

∂

∂ zi j

PΩ(Z)

∣

∣

∣

∣

= 0 ,

so Statement 3.5 holds for r = m as well.
Lemma 3.2 implies that if Statement 3.4 and Statement 3.5 hold for sets Ω of cardinality r then for

any two subsets Ω1,Ω2 ⊂ {1, . . . ,n} such that |Ω1|= |Ω2|= r and |Ω1 △Ω2|= 2 the angle between the
two (necessarily non-zero) complex numbers PΩ1(Z) and PΩ2(Z) does not exceed

4δ (m−1)
τ(1−δ )

=
4ω

(

1− ω
m−1

)

τ
=

4ω exp{θ}
(

1− ω
m−1

)

cos2(θ/2)
≤

4ω exp{θ}

(1−ω)cos2(θ/2)
= θ

while the ratio of |PΩ1(Z)| and |PΩ2(Z)| does not exceed

exp
{

4δ (m−1)
τ(1−δ )

}

= exp

{

4ω exp{θ}
(

1− ω
m−1

)

cos2(θ/2)

}

≤ exp
{

4ω exp{θ}

(1−ω)cos2(θ/2)

}

= exp{θ} = λ

and hence Statement 3.6 holds for sets Ω of cardinality r.
Lemma 3.3 implies that if Statement 3.4 and Statement 3.6 hold for sets Ω of cardinality r then

Statement 3.5 holds for sets Ω of cardinality r − 1. Formula (3.1), Lemma 3.1, Statement 3.4 and
Statement 3.6 for sets Ω of cardinality r imply Statement 3.4 for sets Ω of cardinality r−1. Therefore,
we conclude that Statement 3.4 and Statement 3.6 hold for sets Ω such that |Ω|= 1. Formula (3.1) and
Lemma 3.1 imply then that

P/0(Z) = Pm(Z) 6= 0 ,
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as desired.
A more careful analysis establishes that if m ≥ 10 then for ω = 0.271 the equation

θ =
4ω

(

1− ω
m−1

)

cos(θ/2)

has a solution
0 < θ < 1.626699443

with

λ = exp{θ}< 5.1 and cos(θ/2)> 0.68 so that
λ

cos(θ/2)
< 7.5 .

Then, if n ≥ 8m, we let
δ =

ω

m−1
, τ = cos(θ/2)

and the proof proceeds as above.

Remark 3.7. As follows from Statement 3.4, we have PΩ(Z) 6= 0 for any complex weights Z = (zi j)
satisfying the conditions of Theorem 1.2. The algorithm of Section 2 extends in a straightforward way
to computing PΩ(W ) for every weights W = (wi j) satisfying the inequality (1.3). This allows us to
compute in nO(lnm) time by successive conditioning an m-subset S which satisfies the inequality (1.2).
Namely, we define weights W by the formula (1.6) and construct subsets S0, . . . ,Sm ⊂ {1, . . . ,n}, where
S0 = /0 and |Si|= i as follows. Assuming that Si−1 is constructed, for each j ∈ {1, . . . ,n}\Si−1, we let
Ω j = Si−1 ∪{ j} and compute PΩ j

(W ) within a relative error of 1/10m. We then select j with the largest
computed value of PΩ j

(W ) and let Si = Ω j. The set S = Sm satisfies the inequality (1.2).
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