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Abstract 

Motivation. Novel carbon allotropes, with finite molecular structure, including spherical fullerenes are 
nowadays currently produced and investigated. These compounds have beautiful architectures and show unusual 
properties that are very promising for the development of nanotechnologies. The Kekulé structure count and 
permanent of the adjacency matrix are computed for these molecules. 
Method. A method for computation of the permanent of the adjacency matrix is herein optimized for fullerenes. 
The method finds exact values for permanents of adjacency matrices up to 60 60. 
Results. The results provide linear and non–linear correlations between different structural parameters involving 
the presence of contiguous pentagons, ln[per(A)]/ln K, ln K and ln[per(A)]. 
Conclusions. A method for computing the permanent of the adjacency matrix is optimized for fullerenes. As 
ln[per(A)]/ln K can be related with thermodynamic stability, this aspect of chemistry could be useful for 
designing or predicting unknown fullerenes and their structure. The non–linear correlation for ln[per(A)]/ln K is 
improved. The variance decreases 49% and the risk of co–linearity diminishes. 
Availability. The software programs are available on request from the author (Francisco.Torrens@uv.es) and are 
free for academics. 
Keywords. Kekulé structure count; permanent of a matrix; adjacency matrix; graph theory; fullerene. 

1 INTRODUCTION 

Much chemical graph–theory work revolved around the adjacency matrices of the compounds 
under investigation. Many studies involving the determinants, characteristic polynomials and 
eigenvalues were published [1]. With the last few years dramatic improvements in computer power, 
the previously unapproachable matching polynomials have come under scrutiny [2]. Still relatively 
neglected because of their computational inaccessibility, however, are the permanents of these 
matrices [3]. The determinant of the 3 3 matrix [a b c, d e f, g h i] is aei – ahf – dbi + dhc + gbf –
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gec. This computation is far too cumbersome for larger matrices, and many shortcuts are available. 
The permanent of this matrix is the sum of the same six terms. Thus, computing the permanent of 
an n n matrix involves adding n! terms, each of which is the product of n matrix elements. Since 
20!  2.4·1018, computing the permanent of any matrix of reasonable size by brute force is out of 
the question. There are some approximate methods, but computer time tends to increase with the 
quality of the approximation. 

Cash published an algorithm that brings permanents of sparse matrices such as adjacency 
matrices within the reach of a desktop computer [4–6]. This algorithm takes advantage of the facts 
that zero times anything is zero, that the elements of an adjacency matrix are mostly zeroes, and that 
the non–zero elements are all ones. Acting on this basis, the algorithm counts the non–zero terms in 
the summation and provides an exact answer for the permanent. The time required for this 
computation is highly dependent on the number of non–zero elements in the matrix. Thus, of all 
polycyclic aromatic hydrocarbons (PAH), fullerenes take the longest because their adjacency 
matrices have 3n non–zero elements, the maximum number possible. For example, computing the 
permanent of a C44 fullerene took approximately 150 times as long as the computation for a C44H22

PAH on the same machine. There is, however, no straightforward relationship between matrix size, 
number of non–zero matrix elements and computation time. Computation times for distinct 
fullerenes of the same size can easily differ by a factor of two. 

Cash computed the permanents of the adjacency matrices for representative smaller fullerenes 
and determined whether this parameter has any obvious use in quantitative structure–property 
relationships [7]. For all–polyhex hydrocarbons, the permanent is equal to the square of the Kekulé 
structure count, K, but this is not the case for fullerenes. In any instance, K for fullerenes is easily 
computed by the signed adjacency matrix method invented by Kasteleyn [8,9] and illustrated by 
Klein and Liu [10] and this method was used by Cash to determine K. He examined the 
relationships between structural parameters for 28 fullerenes and per(A). In particular, he related the 
examined structural parameters to the adjoining of pentagons [11–13]. Cash introduced a new 
parameter, r, which counts contiguous pentagon triplets that have no single vertex in common. The 
quantity well correlated with structure was not per(A) itself, but ln[per(A)]/ln K. For all 28 
fullerenes, ln[per(A)]/ln K > 2, contrary to expectations. 

Diudea et al. devised a novel way in constructing toroidal fullerenes from square tiled tori [14]. 
Aihara and Hirama concluded that anti–aromatic species are scarcely formed in interstellar space 
[15]. Aihara studied the spherical aromaticity in charged fullerenes and the 2(N + 1)2 rule [16]. 
Ivanciuc et al. presented a qualitative resonance–theoretic view for the description of a variety of 
conjugated –network species identified with subgraphs of the graphite network [17]. 

In a previous paper, Cash’s program for computing the permanent of adjacency matrices was 
applied to alternant hydrocarbons [18]. This paper uses our version of this program, which finds 
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exact values for permanents of sparse matrices, with examples of chemical adjacency matrices up to 
60 60. Section 2 presents the computer algorithm. In Section 3, the calculation results for fullerenes 
are discussed. Section 4 summarizes the conclusions. 

2 COMPUTER ALGORITHM

For an adjacency matrix, the permanent computation reduces to finding the number of different 
products of matrix elements Ai1, Aj2, Ak3… such that the elements are all equal to one and the first 
subscripts are all different, i.e., no two elements are in the same row. For each such combination 
that exists, the permanent increases by 1. 

Cash reported a computer algorithm that finds these combinations [4–6]. This algorithm first 
examines all Ai1 until it finds an Ai1 = 1. Then, after storing the active i, it examines all Aj2 until it 
finds an Aj2 = 1. Next, it checks to see that i j. If i = j, it proceeds to the next Aj2 = 1; if not, it 
begins searching for an Ak3 = 1, keeping track of the active i and j so it can verify that i k and 
j k. Whenever the tree thus grown reaches all the way to the last column in the matrix, the 
algorithm increments a counter. If the non–zero elements were other than one, it could compute a 
product and update a running total. The key to examining all possible combinations in a reasonable 
number of CPU cycles is timely pruning of the tree. Once the algorithm finds an Ai1 = 0, it never 
examines another tree beginning with that Ai1. Similarly, if Ai1 = 1 but Aj2 = 0, it never examines 
another tree beginning with that Ai1, Aj2. Thus, the tree with n! potential branches is quickly pruned 
to a manageable size. 

The only restriction in the method is that all the vertices should be divalent or trivalent. Thus, the 
method can be applied to tori. For instance, it has been applied to toroidal polyhex [5] and double–
toroid, almost polyhex fulerenes [19]. Cash reported implementations of the algorithm in the C and 
Fortran 77 programming languages. In this work, a version of this algorithm has been optimised for 
Fortran 77. The program is available from the author (Francisco.Torrens@uv.es). 

3 RESULTS AND DISCUSSION 

One might intuitively assign the greater stability to the more symmetrical fullerene structures. 
However, neither ln K nor ln[per(A)] values support this idea, but, as discussed in some detail by 
Klein et al. ln K is not necessarily a reliable predictor of stability for fullerenes, as it is for all–
polyhex systems [20]. In seeking possible quantitative structure–property relationship parameters, it 
became obvious that the ratio ln[per(A)]/ln K for these fullerenes was almost constant, but not quite, 
ranging in value from 2.0199 for C20, the unique smallest fullerene, to 2.2034 for a C30 structure 
with C2v symmetry. The values for K, per(A) and ln[per(A)]/ln K, along with values for the 
structural parameters involving the presence of contiguous pentagons, are listed in Table 1. It was 
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stated that per(A) = K2 (and thus ln[per(A)]/ln K = 2) generally for conjugated systems [21,22]. 
However, per(A) was not equal to K2 for any of the compounds studied in this paper. Indeed, per(A)
was generally not the square of any integer. At the present time, the general relationships among 
structure, per(A) and K are unclear at best, at least for non–alternants. 

Table 1. Values of Kekulé Structure Count for Fullerenes
Fullerene K per(A) ln[per(A)]/ln K p q r 
C20 (Ih) 36 1392 2.0199 30 20 30 
C24 (D6d) 54 4692 2.1192 24 12 36 
C26 (D3h) 63 8553 2.1853 21 8 30 
C28 (Td) 75 15705 2.2378 18 4 24 
C28 (D2) 90 16196 2.1540 20 8 24 
C30 (C2v) 107 29621 2.2034 17 4 20 
C30 (C2v) 117 30053 2.1651 18 6 20 
C30 (D5h) 151 31945 2.0672 20 10 20 
C32 (D3) 144 55140 2.1968 15 2 18 
C32 (C2) 151 55705 2.1780 16 4 16 
C32 (C2) 168 57092 2.1375 17 6 16 
C32 (D2) 184 58384 2.1045 18 8 15 
C34 (C3v) 195 103665 2.1902 15 3 15 
C34 (Cs) 196 104484 2.1896 15 3 16 
C34 (C2) 204 103544 2.1714 14 2 14 
C34 (C2) 212 107720 2.1632 17 6 16 
C36 (D6h) 272 192528 2.1706 12 0 12 
C36 (D2d) 288 192720 2.1489 12 0 12 
C36 (C2v) 312 197340 2.1231 13 2 10 
C36 (D3h) 364 207924 2.0764 15 6 6 
C38 (C2v) 360 366820 2.1768 14 2 14 
C38 (C3v) 378 363300 2.1572 12 1 9 
C38 (D3h) 456 411768 2.1116 18 8 18 
C40 (D5d) 562 515781 2.0775 10 0 10 
C40 (Td) 576 704640 2.1185 12 4 0 
C40 (D5d) 701 803177 2.0750 20 10 20 
C44 (T) 864 2478744 2.1775 12 4 0 
C44 (D3h) 960 2436480 2.1416 9 2 0 
C60 (Ih) 12500 395974320 2.0986 0 0 0 

p q r
Figure 1. Substructures that contribute to the p, q and r counts. 

The structural features involving adjacent pentagons are encoded by the p, q and r parameters as 
illustrated in Figure 1. The p and q parameters were introduced by Liu et al. for classifying 
fullerenes [23]. These enumerate, respectively, the number of edges common to two pentagons and 
the number of vertices common to three pentagons. The r parameter was introduced by Cash [7]. 
This parameter enumerates the number of pairs of non–adjacent pentagon edges shared with two 
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other pentagons, i.e., the number of ways of choosing from the structure three contiguous pentagons 
that do not share a common vertex. Thus, q and r complement each other by counting both possible 
arrangements of three contiguous pentagons. 

Cash selected a group of 27 fullerenes (included in Table 1) to correlate ln[per(A)]/ln K, ln K and 
ln[per(A)] with the structural parameters p, q and r. After removing the outliers, he obtained the 
following fits with 25 points (Equation 1) or 27 points (Equations 2 and 3). 

ln[per(A)]/ln K = 1.6895 + (0.0430±0.0039)p – (0.0402±0.0028)q – (0.0028±0.0008)r
n = 25  R = 0.962 s = 0.015 (1)

ln K = 9.3422 – (0.2946±0.0773)p + (0.2224±0.0511)q – (0.0210±0.0178)r
n = 27  R = 0.904 s = 0.368 (2)

ln[per(A)] = 18.8884 – (0.5183±0.1572)p + (0.3482±0.1039)q – (0.0482±0.0361)r
n = 27  R = 0.909 s = 0.748 (3)

Despite the good results obtained by Cash, three important remarks should be made. First, the 
parameters p, q and r include some redundant information. There is a close relationship between 
each pair p–q and p–r. For instance, the minimum structure with q = 1 (Figure 1, q) needs p = 3, and 
the minimum structure with r = 1 (Figure 1, r) requires p = 2. Second, the error of some parameters 
is large, e.g., the relative error of r is 85% in Equation (2) and 75% in Equation (3). Third, non–
linear effects of p, q and r could affect ln[per(A)]/ln K, ln K or ln[per(A)]. 

Therefore, a different strategy has been assayed in this paper: (a) smaller superpositions of the 
p–q and p–r pairs are sought, (b) not all the three structural parameters are necessarily retained in 
the fits, and (c) non–linear correlations are allowed. 

The best linear correlation of ln[per(A)]/ln K with the structural parameters is: 

ln[per(A)]/ln K = 2.14 – 0.0108q + 0.00364r
n = 29  R = 0.721 s = 0.036 F = 14.1 (4)

The mean absolute percentage error (MAPE) is 1.21% and the approximation error variance 
(AEV) is 0.4803. All other models with greater MAPE and AEV have been discarded. Notice that 
there are several fullerenes with the same set of p, q and r parameters. If the different repetitions of 
ln[per(A)]/ln K are substituted by their mean, a maximum correlation coefficient of 0.757 is 
obtained. Therefore, Equation (4) with R = 0.721 explains 95% of the correlation coefficient of the 
means. On the other hand, the best non–linear correlation of ln[per(A)]/ln K with the structural 
parameters results: 

ln[per(A)]/ln K = 2.13 + 0.0515z41
z41 = 0.225z31 + 1.20z32

z31 = –1.16 + 0.232q
z32 = 1.05z22 – 0.875z21z22 (5)

z21 = 1.22 – 0.0983r + 0.00277qr
z22 = –0.726z11 – 0.921z12
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z11 = –1.16 + 0.232q
z12 = 1.22 – 0.0983r + 0.00277qr

MAPE = 0.87% AEV = 0.2432 

and AEV decreases 49%. Due to the complexity of Equation (5), a Fortran program has been 
written to calculate ln[per(A)]/ln K.

For ln K alone, the best linear correlation for these parameters is 

ln K = 9.68 – 0.337p + 0.220q
n = 29 R = 0.949 s = 0.366 F = 117.5  MAPE = 3.87% AEV = 0.0996 (6)

Equation (6) explains 97% of the correlation coefficient of the means (0.976). On the other hand, 
the best non–linear correlation results are obtained with: 

ln K = 9.57 – 0.339p + 0.324q – 0.00379pq
MAPE = 4.00% AEV = 0.0896 (7)

and AEV decreases 10% with respect to the linear fit. 

For ln[per(A)] alone, the best linear correlation is 

ln[per(A)] = 20.2 – 0.660p + 0.383q
n = 29 R = 0.949 s = 0.757 F = 118.5  MAPE = 4.05% AEV = 0.0988 (8)

Equation (8) explains 97% of the correlation coefficient of the means (0.977). On the other hand, 
the best non–linear correlation results are obtained with: 

ln[per(A)] = 20.0 – 0.666p + 0.616q – 0.00850pq
MAPE = 3.91% AEV = 0.0871 (9)

and AEV decreases 12% with respect to the linear fit. 

The signs and magnitudes of the coefficients in Equations (1)–(9) are of some interest. One 
would intuitively expect that, for some property determined in part by the presence of abutting 
pentagons (Figure 1, p), an arrangement such as Figure 1, q would make less of a contribution than 
would three isolated p–type pairs of pentagons. If this is true, then the sign of the q coefficient 
would be opposite that of the p coefficient, as is the case in Equations (1)–(3) and (6)–(9). By the 
same type of argument, one would expect the sign of the r coefficient to be opposite that of p, as is 
the case in Equation (1). One also would expect the magnitude of the r coefficient to be smaller 
than that of the q coefficient on the assumption that an r–type cluster is intermediate in properties 
between a q–type cluster and two isolated p–type pairs, as is the case in Equations (1)–(5). Indeed, 
Kroto proposed a similar ordering [13]. 

When comparing Equations (4)–(9) with (1)–(3), smaller superpositions of the p–q and p–r pairs 
are observed in Equations (4)–(9). This diminishes the risk of co–linearity [24] in the fits given the 
close relationship between each pair p–q and p–r.

The estimation of properties has been carried out from the fits for two fullerenes out of the 
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calibration domain. Isolated–pentagon fullerenes (p = q = r = 0) have been selected because of the 
following reasons: (1) Maximal thermodynamic stability is expected for these isomers [25]. (2) 
Isolated–pentagon isomers were computed as the most stable forms for C60, C70 [11] and C82 [26]. 
(3) Isolated–pentagon C60 and C82 were used as models of endohedral fullerenes [27–30]. The 
calculation of the Kekulé structure count ln K from Equations (6)–(7) is given in Table 2. In 
particular, for C70(D5h) both linear and non–linear fitting results are inside the range of the reference 
results (9.3–10.9). The relative errors for the linear (–11%) and non–linear (–12%) fits are smaller 
than that obtained from Equation (2) taken as reference 1 (–14%). However, the results of the non–
linear fit should be taken with care. The correction from the linear to the non–linear fit goes in the 
wrong direction. On the other hand, the correction in ln[per(A)] from the linear to the non–linear fit 
goes in the correct direction for both fullerenes with respect to Equation (3) taken as reference 1. 
The correction in ln[per(A)]/ln K from the linear to the non–linear fit goes in the correct direction 
for both fullerenes with respect to Equation (1) taken as reference 1 and to references 2 to 4. Notice 
that MAPE and AEV do not refer to the consideration of examples inside or outside the calibration 
domain, but to the variance of the original data and that introduced by the fit. For examples inside 
the calibration domain, the expected value for the relative error should be equal to MAPE. 
However, for examples outside the calibration domain, the expected value for the relative error may 
be greater than MAPE. On the other hand, for a structure with p, q, r  0, K is expected to be lower, 
according to Equations (6)–(7). For instance, for p = 20 and q = 10, ln K = 5.14 in Equation (6) or 
5.272 in Equation (7). Of course, this is what was expected from thermodynamic arguments 
because p, q and r tend to destabilize the fullerene structures, while K and ln K are likely inclined to 
increase the stability [18,31]. Consequently, ln[per(A)]/ln K tends to decrease the stability. 

Table 2. Estimation values of Kekulé structure count from fits for fullerenes 
 ln K ln[per(A)] 

Fullerenea Linear fit Non–lin. fit Exact Ref. 1.b Linear fit Non–lin. fit Ref. 1.b

C70 (D5h) 9.6800 9.5700 10.8622f 9.3422 20.2000 20.0000 18.8884 
C82 (Cs) 9.6800 9.5700 – 9.3422 20.2000 20.0000 18.8884 

 ln[per(A)]/ln K
Fullerenea Linear fit Non–linear fit Ref. 1b Ref. 2c Ref. 3d Ref. 4e

C70 (D5h) 2.1400 2.1169 1.6895 2.0218 2.0868 2.0899 
C82 (Cs) 2.1400 2.1169 1.6895 2.0218 2.0868 2.0899 

a Structural parameters p = q = r = 0. 
b Reference 1: estimation carried out with Equations (1)–(3) taken from Cash 
c Reference 2: estimation carried out with quotient ln[per(A)]/ln K from Equations (2) and (3) taken from Cash 
d Reference 3: estimation carried out with quotient from independent linear fits from Equations (6) and (8) 
e Reference 4: estimation carried out with quotient from independent non–linear fits from Equations (7) and (9) 
f The exact value of K for C70(D5h) is 52 168. 

4 CONCLUSIONS 

A method for determining the permanent of the adjacency matrix of fullerenes is optimised. The 
results are given for a series of structures up to C60. The algorithm allows rapid computation of 
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per(A) for adjacency matrices of molecules large enough to be theoretically interesting. Within the 
limits imposed by available computer time, this method should be applicable to any fullerene. The 
algorithm should be readily adaptable to other types of sparse matrices, including those with 
elements other than zero and one, thus permitting wider exploration of the significance and uses of 
permanents. This is also true for the signed–adjacency–matrix method. With the permanent now 
open to computation, a great deal of work remains to be done to characterize the relationship of the 
permanent to chemical structure and properties. Much future work remains to be done in elucidating 
the extent to which the permanent encodes structural features in a quantitative way as well as in 
exploring the relationship of the permanent to structure in fullerenes. 

The reproduction of ln[per(A)]/ln K, ln K and ln[per(A)] for fullerenes with structural parameters 
p = q = r = 0 as C60(Ih), C70(D5h) and C82(Cs) is far from trivial with linear fitting methods, as can be 
seen from Equations (1)–(3). 

Linear and non–linear correlation models have been obtained for ln[per(A)]/ln K, ln K and 
ln[per(A)] of fullerenes as functions of structural parameters involving the presence of contiguous 
pentagons. The multivariable non–linear regression equation for ln[per(A)]/ln K has been improved. 
The variance of the fit has decreased 49%. It has also diminished the risk of co–linearity in the fit. 

Even with the greater number of fitted parameters, the predictions of this model are far from 
trivial with both linear and non–linear fitting methods from Equations (4)–(9) for fullerenes with 
p = q = r = 0. 
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