in Proceedings of the Scalable High Performance Computiogf€ence, Knoxville, TN, IEEE, May, 1994, pp. 462-469

Computing the Pipelined Phase-Rotation FFT

David R. O’'Hallaron, Peter J. Lieu
School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

L.P. Withers, Jr., JohMhelchel

E-Systems, Inc., Melpar Div.
44983 Knoll Square
Ashburn, Virginia 22011

The phase-rotation approach extends easily to higheraadic
reducing memory and latency while preserving the high thheu

The phase-rotation FFT is a new form of the FFT that replaces put and parallel shuffling simplicity of lower radix versmnThe

data movement with multiplications by constant phasor ipliHt
ers. The result is an FFT that is simple to pipeline. This pape
completes the pipelined design of the the original phatstiom
FFT, provides a fundamental new description of the algoritti-
rectly in terms of the parallel pipeline, and describes axrad
implementation on the iWarp computer system that balanao®s ¢
putation and communication to run at the full-bandwidth toé t
communications links, regardless of the input data set size

1

The Fast Fourier Transform (FFT) is an important algorithithw
applications in signal processing and scientific computingy
typical real-time signal processing application perfofffS's on
a continuous stream of sensor inputs arriving at fixed iaderv

Introduction

A pipeline of FFT stages is a natural approach for processing

such an input stream. Unfortunately, conventional FFTritlgms
are difficult to pipeline because the input streams are petnu
between each pipeline stage. The Whelchel phase-rotaFEo{8f

phase-rotation FFT has also been extended to a vector-radix
tidimensional parallel-pipeline FFT with the same quatitof the
one-dimensional algorithm, and without transposes [9].

This paper reports the results of a project to implement the
phase-rotation FFT on a parallel computer system. Afterief br
overview of the phase-rotation concept in Section 2, theepap
introduces a parallel-pipeline digit-reversing step tt@anpletes
the pipelined design of the original phase-rotation FFTri&ec-
tion 3. Section 4 provides, for the first time, a set of recipes
that generate the twiddles and shuffle addresses necessary t
plement the algorithm directly in a parallel pipeline. Hipa
Section 5 describes fine-grained mapping strategies tammght
the N-point radix-2 phase-rotation FFT on the iWarp system, that
balance computation and communication to run at the full 40
Mbytes/sec rate of the iWarp physical links for input datis é
any sizeN.

2 The basic idea

is anewform of the FFT that replaces data movement at runtime Thijs section introduces the concept of the phase-rotatief F

with multiplications by precomputed constants. The resu#tn
FFT that is simple to pipeline.

Starting with the Pease constant-geometry FFT, we infdyrdat
rive the pipelined phase-rotation FFT, identifying the kesights

The Whelchel phase-rotation FFT [8] derives from the Peasealong the way.

constant-geometry FFT [6], which itself derives from thigimal
Cooley-Tukey FFT [3] expressed in terms of Kronecker presluc
The phase-rotation FFT of radixis designed for a pipeline of

2.1 Constant-geometry FFT

r parallel data channels. At each time step, in each stage, the

pipeline carries the next data points, one from each channel,
into a Discrete Fourier Transform (DFT) kernel. Unlike ésarl
pipelined FFTs[4, 5], the phase-rotation FFT has the kegenty
that no data is switched across channels, except within i D
kernel and at the input and output. Thus, if the phase-mt&FT

is implemented in hardware, no commutator switches or putti
memories are needed.

Supported in part by the Air Force Office of Scientific Reshammder con-
tract F49620-92-J-0131, in part by the Advanced Researofed® Agency
under contract MDA972-90-C-0035, and in part by an E-SystéR&D pro-
gram. Authors’ email addresses: ohallaron@cs.cmu.ed@gsjcmu.edu, lwith-
ers@melpar.esys.com, jwhelchel@melpar.esys.com.

Figure 1(a) shows the flowgraph for a radix¥ -point decimation-
in-frequency (DIF) constant-geometry FFT, with= 2 andN =
r™ = 8. There aren stages. Each stage compuf€gr kernels
Each kernel is an operator that performs mapoint DFT. For
radix 2, each kernel inputs two complex numbers and outpuds t
complex numbers. (For simplicity, twiddles and the finalidig
reversing shuffle are not explicitly shown in the flowgraph.)
Each stage in the constant-geometry FFT performs an idgntic
perfect stride-bys shuffle of its data vector, where= N/r. An
easy way to define the perfect shuffle is as follows: If the data
vector is regarded as anx r array, stored in column-major order,
then the perfect shuffle simply transposes it inte ars array. For

inputs stage 0 stage 1 stage 2 outputs
kernels kernels kernels
1 e
3 p< :C): p:\.
4
O O- }}<
5
6 hol ol O,
stride-by-4 stride-by-4
shuffle shuffle
@
pipeline
segment stream frame

6420 6420 3210 3210
i
. -

7531 7531 7654 7654

twiddles shuffle — kernel

v

a i =
Cs low Cfast F2
i s o
twiddles varying parallel varying kernel
frame-wise pipeline frame-wise
cyclic rotations shuffle cyclic rotations

——of—» —
- F2
el
twiddles parallel kernel
pipeline
shuffle

()

Figure 1: Derivation of the phase-rotation FFT. (a) Initiahstant-
geometry FFT. (b) Pipelined constant geometry FFT. (c)IPipe
FFT based on cyclic rotations. (d) Pipelined phase-ratfieT.

example, the following transpose is a stride-by-4 perfadffte,
for N = 8 points and radix = 2:

W NPEFE O
~N o o b
1=
—
» O
(G20
DN
~N W
[I

The data items in this example, labeled by their indices & th
original column vector, are regarded as equivalent toxa 2
array composed by a stride-by-4 unstacking of the 8-poitutron
vector. After the transpose, thex24 array is equivalent to a new
8-point column vector composed by a stride-by-2 stackingwa
shall see, this transpose creates difficulties when we wipiline
the constant-geometry FFT. And it is precisely these difiies!
that the phase-rotation FFT addresses.

2.2 Pipelining the FFT

Each stage of the constant-geometry FFT can be computed on a
single processor by pipelining the data. For example, Eidqb)
shows the pipeline for a single stage with radix= 2. The
pipeline consists of a sequence of operators connectpipbiine
segmentsEach pipeline segment consistsrgbarallelchannels
Each channel carries streamof N/r data points, which are
labeled in this example by their indices from the origindlioan
vectors in Figure 1(a). For each pipeline segment, rttdata
points, each in the same position within its stream, are knasv
anr-frame or simply, aframe For example, in Figure 1(b), the
first frame in the pipeline segment betwe®mndF is (0,4), the
second frame is (1,5), and so on.

At each time step, thetwiddle operatorsT) collectively read
a frame (one complex number per operator), perform an elemen
wise complex multiplication, and write the resulting franiotice
that each stream is operated on independently. Simildnly, t
kernel operatorl{) reads a frame, computes the radikernel,
and writes the resulting frame. In this case, the streamsatre
independent; each data item in the output frame is a functfon
every data point in the input frame.

The twiddle and kernel operators pipeline nicely because du
ing each time step they independently read and write a single
number from each stream. However, the pipelined shuffle-oper
ator (8) is less well behaved. To produce one output frame, the
shuffle operator must read and store théata points from each
stream. ThusS requiresr memory cycles to produce each frame.
(Notice thatS transposes the data directly intoarx s pipeline
segment; but even starting with data already inans pipeline,

S still performs “row-to-column” motions.) This is an exareuf
thememory-bank conflidiscussed in [7, pp.31-32]. The conflict
is clear in Figure 1(b). To assemble its first output fraBienust
read both 0 and 4 from the upper stream to its left. Then it must
read 1 and 5 from the lower stream, and so on.

We would like to replace the troublesome perfect shuffle@per
tion with aparallel-pipeline shufflewhere each stream is read and
written independently and in parallel. The next sectiorcdbes
the insights that make this possible.

s [o123
4 5 6 7
chast

025 7] S [o05 27

13 4 6 416 3

Figure 2: Replacing the perfect shuffle with three simpleiffibs.

2.3 The phase-rotation concept

This section describes how to replace the perfect shuffle by a 1

parallel-pipeline shuffle, so that we can access the datarss

in parallel. The basic idea is to rotate the data within frame
and then compensate for these motions by phase rotatiohe of t
twiddle factors.

We begin with a “detour” around the perfect shuffle. That is,
we find a sequence of three simpler shuffles that is equividene
perfect shuffle. This idea is shown graphically in Figure 2&o
radix-2 example. Each radix-2 pipeline segment is reptesess
matrix. Each row in the matrix corresponds to a stream, aol ea

1
A B+A A A+B vy B+A
X el = e
F, F
- — 2
B B-A B A—BTB—A
-1

Figure 3: Interpretation oF ,C, = D, F,

whereD,. = diag(1,w,w?, ...,w" %) is a set of twiddles, and the
DFT matrix of sizer is

F.
\/Fw

jkyr—1
(¢);,k:o:

wherew = exp—%. For the pipelined FFT, (1) says that phasor
multipliers after a DFT kernel give the same effect as a maysi
data rotation before the DFT kernel. Likewise, a physictdtion
after the kernel is equivalent to phasor multipliers befar& he
meaning of (1) is shown graphically in Figure 3 for a pipetine
radix-2 kernel. The shift theorem implies that the datatiote in
Figure 1(c) can be replaced by constant phasor multiplignese

column corresponds to a frame. Frames (columns) are agtange phasors can then be absorbed by the twiddle factors on sitheer

left-to-right in reverse-time order in the matrix.
The first step in Figure 2 is a set of cyclic rotations, called

of the kernel, leaving only a parallel-pipeline shuffle. Thsultis
the pipelined phase-rotation FFT, which is shown in Figyi$.1

C:10w, Which rotates each frame. These rotations are frame-wiseThis completes the informal derivation of the phase-rotafFT.
in the sense that only data points contained in the same frame

are rotated across the streams. Notice that in the radi>s@, ca
half of the rotations leave the corresponding frame uncédng

The next step is a parallel-pipeline shuffle which permutes

The structure of the phase-rotation FFT in Figure 1(d) is sim
ilar to the original pipelined FFT in Figure 1(b), excepttttize
phase-rotation FFT'’s shuffle is simpler. Though the twiddie

the data in each stream. Notice that no data points need to beaies have been modified, the arithmetic steps for twiddle antek

transferred between streams in this step. The last stepthem
set of frame-wise cyclic rotations in the opposite diracticalled

operators are unchanged. The important difference istibaier-
fect shuffle operator has now been replaced by a parallelipg

Cast, Which leave the data in the same order that the perfectshuffle that requires no communication across the streahexeT

shuffle would. Note tha€,;,., andC ¢,s: change the number of
rotations per frame at different paces, one slow and one fast

If we apply the idea in Figure 2 to each stage of the pipelined

FFT in Figure 1(b), replacing each perfect shuffle with tisiee-
pler shuffles, we get a pipelined FFT based on cyclic rotation
which is shown in Figure 1(c).

The kind of basic frame-wise rotations in Figure 1(c) that is
applied at slow-varying, and then fast-varying rates, fisesented
in general by the: x r cyclic (circular) shift permutation matrix
C.,., made by permuting the rows of the identity maikixdown by
one row, and moving the bottom row up to the top. For example,

Cs

oOor o
(ol e Ne]
= O OO
[cNeNeN

The key insight of the phase-rotation FFT is that the cydticts
theorem for the DFT can be applied to the cyclic shift opesito
Figure 1(c). In matrix form, the cyclic shift theorem for a D5

the relation

F.C, =D.F,, @

is, however, an additional set of twiddles during the finajitdi
reversing step.

3 Improved phase-rotation FFT

Inthis section we define an improved version of the origimalge-
rotation FFT described in [8]. The new version replaces ti-d
reversing permutation at the end of the original phaseioot&FT
with a parallel-pipeline shuffle followed by frame-wise tigao-
tations. This last substitution completes the task of il the
constant-geometry FFT, so that in every stage, all comratioit
between streams is limited to data points within a singlmé&a

For radixr and N = r™ points (@ > 1), the 1-dimensional
phase-rotation FFT is a matrix factorization of tNepoint DFT
matrix F' . Starting with the Pease constant-geometry factoriza-

tion, we replace its perfect shufflé& by S = CfaSSCslow.
Similarly, at the left end we replace the radixindex-digit-
reversing permutatio = Qu,, of N data points byQ =

C7..,QC...., whereQ is another parallel-pipeline shuffle that
will be defined formally in Section 4. The phase-rotation R§T

then defined by:

vigorous
algebraic
shuffling

Fyn

Q-ﬁ(FSTj) -...

Jj=1

‘ Cslow- (2)

i

I (F§D;)

j=t

! Qleast

T
Cslow

Let s = N/r as before, and’ = N/rz. F is a direct (tensor,
Kronecker) producl; ® F, = diagF,,F,,...,F,). We inter-
pret this as a kernel DFF,. operating ons successive frames of
r points placed in the pipeline. Fgr= 1 : n, the other parts of
(2) are defined by

r—1
Cslow = @ (Ir/ ® Cf)
k=0
r—1
Croe = In® (@(C? >k>
k=0
2w
= (-2
D, = diag(l,wi,w?,...,w; Y
D,jsx = diag(l,wjﬂ,wfﬂ,...,w;izl)
r—1
D, = I =D
k=0
’slow = C?astD;liwaGSt
=T =
’s’low = S D’slows
r—1
DJ:fiLst = Ir’ ® (@ Drk>
k=0
/fast = C‘Z;owD;:stCslow
r—1
5 k
o= gy @ (x@oDNH>
T, = 7,9
T; = CslowTjC:nggw
=T =
D - (§'D.LF) DL,
D, = DJ,,T;D;.,, , j=2:n-1
D;’L = ‘/sllowTIn = glow . (3)

The direct sums are of the form

r—1
@ A)c = diano, Al, ey Arfl),

k=0

and AT denotes the transpose &. See [9] for more on the
basic definitions and relations used to derive (2), as wethas
generalization to higher dimension FFTSs.

The stages in (2) are counted in reverse time order by th&inde
j. This is in keeping with the fact that (2) is a decimation-in-
frequency (DIF) version of the FFT. The transpose of (2) hwit

the producﬂjl.:n, is the decimation-in-time (DIT) version of the
phase-rotation FFT. Also note the extra twiddle§,,, before
digit-reversal in (2). They are alwaysh roots of unity, so that
for radicesr = 2 and 4 they can be applied without complex
multiplication.

A C,,, shuffle and its inverse remain at the input and output
ends of the pipeline, respectively. As we have sd€p;.. IS
a completely frame-wise rotation. It rotates (commutates)
data within each successive frame (coluravector) of ther x s
pipeline segment for a stage. There is also an implicit fravize
broadcast within each FFT kernel engine, whenrgwoint DFT
is somehow computed. So in the phase-rotation FFT, datamoti
is all parallel, except for frame-wise motions at I/O and\arg
FFT kernel. The simplicity of the phase-rotation FFT is that
data point ever moves both down and across the pipeline in one
time-step.

4 Pipeline recipes

While the structure of the pipelined phase-rotation FFTXs e
tremely simple, experience has taught us that generatmgyh
propriate twiddles and shuffle indices from the matrix folau
tions of (2) and (3) is difficult and confusing. To address thi
problem, we have developed a collection of recipes for ganer
ing the phase-rotation twiddles and shuffle indices ofliThe
recipes are defined for any 1D phase-rotation FFTNoE= r™
points. Following [7], they are written in a MLAB -like format.

As we saw in (2), the pipelined phase-rotation FFT performs
a typical “twiddle, shuffle, kernel” cycle at each stage. Ythle
twiddles vary from stage to stage, and there is a digit-siagr
shuffle equivalent at the end. To implement this FFT usinglfer
r X s pipeline segments (one per stage), we insert’{heector
of input datax into the pipeline as an x s array X: the first
r points ofx go into the first frame (columnX, the second
points go into the second frame, and so on. We must also have
a shuffle address and a twiddle factor ready for each poiriten t
pipeline. In other words, we would like to fill onex s copy A
of the pipeline segment with addresses, and another Eopyjth
twiddles.

Then the processors in each stage of the pipeline will know
what to do at each time-step= 0:s — 1. Using the current
frame of addresses, they will fetch the curredrame of data
X(0r — 1, A(0O:r — 1,¢)) and the current-frame of twiddles
D(0:r — 1, A(O:r — 1,t)) (pointwise in parallel), multiply these
two frames pointwise, then do arpoint DFTF,. of the twiddled
data frame. That is how each st@gD;- is implemented in the
parallel pipeline.

The twiddle and shuffle recipes in this section are “in place”
in the sense that they work inside thex s pipeline segments
that will contain the desired addresses and twiddles. (Erey
not “in place” in the usual sense, since we will freely use an
input and an output copy of a pipeline segment.) This approac
avoids constructing and operating with ladge< N matrices (each
containing only N non-zero elements). Each parallel-pipeline
function recipe is given a name similar to that of thex N
matrix factor in the FFT (2) that it effectively implements.

4.1 Shuffle recipes

As a convention, pipeline addresses (pipeline array rowcahd
umn indices) run @ — 1 and 0s — 1, respectively. To do
parallel-pipeline shuffles, we only need the horizontaly(om)
addresses, since the data inside each pipe will only jumipirwit
that stream (row). The cross-stream shuffles, Cslow andt,Cfas
are implemented using, and its inverse, respectivelyr, is a
cyclic rotation of a frame (a vertical slice of the parallgeline)
that has the effect of, = C,x,. =, takes a columm-vector

X, = (2o, €1, %2, ..., :L‘r—l)T = Yr = (Tr-1,20, 21, ..., wr—z)T-

function Y = Cslow(X)

col =0
fork=1:r
forj=1:r
Y (;,col) = wF(X(:, col))
col = col +1
end
end

function Y = Cfas{ X)

col =0
forj=1:r
fork=1:r
Y (:,col) = w7 F(X(:, col))
col = col +1
end
end

The inverses of Cslow and Cfast are formed simply by revgrsin
m, in the recipes above. Next, we define some perfect shuffles.

function Y = S(X) !Istride bys
col =0
forrow=0:r—-1
forkl=0:r:s—r
kK2=kl4+r—-1
Y (row, k1 :k2) = X(:,col)
col = col +1
end
end

function Y = S™}(X) Istride byr
col =0
forrow=0:r—-1
forkl=0:r:s—r
k2=kl+r-1
Y (:,col) = X(row, k1:k2)
col = col +1
end
end

= =1 =
To implement the parallel-pipeline shuffleS, S , andQ, we
will use the parallel-pipeline addresséswhich are computed by
the following function:

function A = E.addresse(@, s)
a=(0,r,.., (r—1r)T

col =0
forj=1:r
fork=1:r
A(ycol) = a
col =col +1
a=m,(a)
end
a=a+1,

end

function Y = §(X)
A =S_addressds, s)
forrow=0:r—-1

Y (row,:) = X(row, A(row,:))
end

=-1
functionY =S (X)
A =S addressds, s)

[AA, I] = sort(4)
forrow=0:r—-1
Y (row,:) = X(row, I(row,:))

end

In the above functions, sor(sorts each row of an array in
ascending order. It returns the row-sorted arlay and the corre-
sponding array of addressésvhere the successive row elements

were found inA. After we have sorted the addrességor §, I

has the addresses f%?l. _
The pipeline addresses fQrare obtained by blockwise perfect
shuffles (along the length of the pipeline) of the addresseS:f

function Y = E(X, n)
A =S_addressds, s)

ifn>2
forns =(n—2):
stride =r"s
block = rm—27 "¢
col2=0
forky = 1: stride
coll = (k1 — 1) * block
fork=1:r
for j = 1: block
B(:, col2) = A(:,coll)
coll =coll+1
col2 = col2 + 1
end
coll = coll + (stride — 1) * block
end
end
A=B
end
end

-1:1

! block length

forrow=0:r—-1
Y (row,:) = X(row, A(row,:))
end

4.2 Twiddle recipes

Every twiddle matrixD is diagonal, so it operates on a data vec-
tor as a point-to-point vector multiply. Given some perntiota
matrix P, a new twiddle matriP DP7 is equivalent to a rediago-
nalizing of the vector shuffle of the diagonalf, thatis, PDP*

= diag P«diag(D)). (This is a MATLAB notation: diag() puts the
diagonal of a matrix in a vector, and puts a vector in the diagjo
of a matrix.) Since we want to perform shuffles within pipelin
arrays, we reshape the twiddlé-vector diagD) as anr x s

pipeline arrayD, just as we originally reshaped the data vector.

Then we shuffle the pipelined twiddles, to effect the eqeintabf
the vector shuffl@diag/D). So we interpret th®DP” oper-
ator as an in-pipeline shuffle of the pipelined twiddIl2swhich
are then in position to operate on the pipelined d&talirectly
by point-to-point multiplicationy” = D. % X. (As mentioned,
the data will actually be twiddled frame-by-frame in thegdiped
implementation.)

We will interpret the twiddles expressed in (3) this way. lEac
twiddle function below returns anx s array D of twiddle factors
(the actual twiddling of the data is not included):

function Dg;,,, = Dslow_twiddler, s)
wj = exp(—2mi/r)
t=0
forj=0:(r—1)
fork=0:(r"—1)
Dslow(:7 t) = (la L‘):‘c: wfka sy W
t=t+1

’Er—l)k)T

end
end

function Dy,,; = Dfasttwiddleqr, s)
wj = exp(—2mi/r)
t=0
fork=0:(r'"-1)
forj=0:(r—1)
Dyast(5,1) = (Lwl,w?, ...
t=t+1

wﬁr—l)j)T

end
end

The inverses ofD;;,., and Dy, are just their complex conju-
gates, and are generated simply by replacingoy w].’l. For
stagesj = 1:n (counted down fromn), we generate pipelined
twiddlesT; by

function T = T_twiddleg(r, s, 5)
wj = exp(2mi/rith)
Wi = w41
=0:(r—1)
t1=k- ri—t
forp=0:(r—1)

I direct sum loop

T} (p,ta) = wjl?p
end
t1=t1+1
ta=ti+ri7?

fort =ty :t2 ! fill next column from last
Ti(:,t) = wit - T (,t — 1)

end
end
ifj<n
t2=7"j
fork =0:(N/riTh
t1 =12
to=k- rd
t=0

fOI’éo =11 t2~
T; (s, to) = T (2, 1)
t=t+1
end
end
end

I copy columns

The rest of the twiddle arrays can now be defined in terms of the
shuffles:
;low = Sﬁl(D_l)

slow

;,low = CSlom(D;low)

D,y =CslowD7),,)
T; =sNT))
T; = Cslow(T})
D=S(D3},).+ T{.* D%,
fl<j<n

D, = ’S’low.*T]{.*D;;St
end
D;‘L: slow

5

Inthis section we describe issues that arise when the plotestion

FFT is implemented on a real parallel system. In particular,
we describe implementation approaches for the radix-2 R¥T o
the iWarp system. The main result is a scalable implementa-
tion of the pipelined phase-rotation FFT that runs at the4Ql
Mbytes/second rate of the iWarp physical links.

Implementation issues

5.1

The iWarp is a private-memory multicomputer developedtjgin
by Intel and Carnegie Mellon [1]. iWarp systems are 2-
dimensional tori ohodes ranging in size from 4 to 1024 nodes.
Each node consists of an iWacpmponentup to 16 Mbytes of
off-chip local memory, and a set of 8 unidirectional communi
cationlinks that physically connect the node to four neighboring
nodes. Each component is a VLSI chip that contaipsogess-
ing agentand acommunication agentThe processing agent is
a general-purpose load-store microprocessor that runsnaixi
mum rate of 20 MFLOPs. Thus,dock or cycle time, is 50 ns.
The local memory is accessed at a rate of 160 Mbytes/sec. Each
link runs at 40 Mbytes/sec, for a maximum aggregate bandwidt
of 320 Mbytes/sec per node.

iWarp

node node node node 0 node 1 node 2 node 3 node 4

! g 53 >] — =
I | R R RN
[H—> — |
pathway T A pathway (@
node 0 node 1 node 2

queue b N — —
ink D' s D' S F

node node node — = L] > |

(b)
Figure 4: iWarp communication concepts.

Figure 5: Strategies for mapping one stage of the FFT onteeati

The key feature of iwarp is its communication system, which array. (a) PHASES mapping. (b) PHASE3 mapping.
is summarized in Figure 4. Each communication agent cahitain
a set of 20 hardware FIFGueues Each queue can hold up to 8
32-bit words, and can be accessed by user programs at thef eost
register access. iWarp hodes communicate with other nczieg u
unidirectional point-to-point structures callgzithways Each the flowgraph. o) _)
pathway is a sequence of queues. Pathways can be created and Figure 6 shows aworkingimplementation of a 16K-pointradix
destroyed dynamically at runtime. Data traveling alongtayway 2 phase-rotation FFT on a 64-node iWarp array at Carnegie Mel
passes from queue to queaitomatically without disturbing the ~ 1on- The implementation is based on the PHASE3 mapping from
computations on intermediate nodes. Multiple pathwaysbane ~ Figure S(b). The large squares are iWarp nodes, labeled with
the same link by multiplexing in a round-robin fashion, oregat ~ the corresponding operator and stage number, wheigea twid-
atime. Every pathway on a link that has data to send is guzednt dle/shuffle pair a_ndf is a kernel. The small squares are queues.
a proportional fraction of the link bandwidth. Of coursepifly The arrows are iWarp pathways. As an artifact of our display

one pathway has data to send, then it gets all of the link bitidw program intermediate queues are not drawn. Each of the 14 FFT
stages uses 3 nodes, with an additional 3 nodes for the g@arall

pipeline digit-reversing step at the end.

the PHASES mapping. The advantage of the PHASES mapping
is its simplicity. Each node is assigned exactly one opefabmn

5.2 Mapping strategies on iWarp 53 Performance
The problem is to develop a mapping of the flowgraph in Fig- gach iteration of each node program in the PHASE3 and PHASES
ure 1(d) to an iWarp array. The simplest mapping strategy is t mappings runs in at most 8 clocks. At the peak rate of 40
assign each flowgraph node to a unique processor node ofa line Mbytes/sec, each link can produce and consume a 32-bitrftpati
array, route the flowgraph arcs through this array, and theveel 5int number every 2 clocks. Further, each data point in the
the resulting linear array in the iWarp torus. This approastied ipeline is a complex number consisting of a pair of 32-biiilog-
the PHASES mapping because it uses 5 iWarp nodes for each FFoint words, As a result, each pathway consumes exactlyohalf
stage, is shown in Figure 5(a). the available link bandwidth. Since each link is shared by tw
Each iwarp node in PHASES executes a smalfie program pathways, and since the iWarp communication agent givels eac
that implements its flowgraph operator. Each twiddle ndd (pathway an equal share of the link bandwidth, without dishg
repeatedly reads a complex number from its input pathwayimul - the computations on intermediate nodes, each link is fiilized.
plies it by the appropriate twiddle (precomputed off-li@ng the The result is a radix-2 FFT that runs at the full 40 Mbytes/see
recipes in Section 4.2), and sends the result to its outphiag. of an iWarp link, regardless of the number of points in the FFT
Each shuffle operatorS) repeatedly reads a complex data item Since each sample consists of 8 bytes, the FFT runs at a nbnsta
from its input pathway, stores it in memory, and uses the@ppr rate of 5 Msamples/se&Given a sufficient number of nodes, the
priate shuffle index (again precomputed off-line using #epes iWarp phase-rotation FFT will produce arbitrarily largeTsrat
in Section 4.1) to send an appropriate double-buffered [olaitet this rate. Perhaps even more important, the performandeeis t
to the output pathway. The kernel nod€)(repeatedly reads two same on smaller FFTs.

complex numbers from its input pathways, performs the r&dix Another way to characterize performance is by computationa
DFT kernel operation, and outputs two complex numbers to its throughput, expressed in millions of floating-point opienas per
output pathways. second (MFLOPS). However, there is a subtlety involved ingis

Another approach, the PHASE3 mapping, combines the twid- MFLOPS as a performance measure. The iWarp phase-rotation
dle and shuffle operators on a single node, as shown in Fighye 5 FFT performs 16 floating-point operations (2 adds and 4 multi
so that each stage requires 3 nodes instead of 5 nodes. Asllve sh plies by each of the two twiddle operators, and 4 adds by timeke
see, the communication and computation throughputs oftbe t operator). These 16 floating-point operations per itenatialuce
mappings are identical. The advantage of the PHASE3 majgping to 10, when one of the twiddles is always 1 and can be omited, a
that it is more node-efficient, requiring fewer nodes pegsthan in the radix-2 Pease and Cooley-Tukey FFTs. This reduced fig-

Figure 6: 16K-point pipelined phase-rotation FFT running@
Mbytes/sec (350 MFLOPS) on iWarp

ure results in the standard formula for computing FFT MFLOPS
5N log, N floating-point operations per N-point FFT [2]. While
one of the two twiddles is always1 in every iteration of the
radix-2 phase-rotation FFT, we have not yet discovered fin ef
cient, load-balanced pipeline mapping that takes advardathis
fact. Therefore, to compare the phase rotation FFT fairtyh wi
other FFTs, we count its 16 FLOPs per iteration as equivatent
only 10 FLOPs.

Since each node program executes its computation in at mos

8 clocks, and since each clock is 50 ns, each stage of the iWargd3]

phase-rotation FFT runs at a rate of 25 MFLOPS for an aggeegat
performance over all loyy stages of 25lo@v MFLOPS. For
example, the 16K-point FFT in Figure 6 achieves a measured
performance of 2% 14 = 350 MFLOPS (single precision) on the
iWarp systems at CMU. By comparison, a highly optimized 16K-

point FFT has been measured at 237 MFLOPS (double precision)®!

on a single-processor Cray Y-MP [2, p.114]. The numbers are
not directly comparable because of the different floatingyp
precisions, but they do suggest that the absolute perfaenah

the phase-rotation FFT is quite good.

6 Concluding remarks

We have described an improved version of the Whelchel pipdli
phase-rotation FFT, developed recipes for generating fipeoa
priate twiddles and shuffle indices off-line and directlyénms of

the parallel pipeline, outlined mapping approaches for#ux-

2 case on the iWarp parallel computer, and presented measure
performance results of an implementation on iWarp.

The improvement on the original phase-rotation FFT is igni
icantin that it eliminates a potential pipeline bottlenécking the
digit reversing step at the end. The twiddle and shuffle escip
should be helpful to the programmer who wants to implement th
pipelined phase rotation FFT. The iWarp implementatioideaés
a simple and realistic approach for building scalable pieel
FFTs on a programmable parallel system. Further, the imple-
mentation demonstrates that, given a balanced parallgbetan

architecture with word-level access to the communicatitks| it
is possible to build FFTs that run at the full link bandwidtttize
links, even when the FFTs are relatively small.

Other parallel systems are being considered as targethdor t
multidimensional phase-rotation FFT. For example, the pdas
MP?2 provides indirect addressing and routing capabilitidgch
would facilitate fetching data into and out of the kernel BFT
and performing data communication with large kernels. As an
other example, the Cray T3D multicomputer, like iWarp, jides
direct, low-latency, word-level access to the communicatys-
tem, which would support the fine grained parallelism foumd i
the phase-rotation FFT.

Acknowledgements

We would like to thank Tom Warfel, LeeAnn Tzeng, Doug Noll,
and Doug Smith for their help and suggestions.

References

[1] BORKAR, S., @HN, R., QXx, G., Q.EASON, S., QRosS, T., KUNG,
H. T., LAM, M., MOORE, B., PETERSON, C., REPER, J., RANKIN, L.,
TSENG, P. S., ®TTON, J., URBANSKI, J.,AND WEBB, J. iWarp: An
integrated solution to high-speed parallel computing.Supercom-
puting '88(Nov. 1988), pp. 330-339.

CARLSON, D. Ultrahigh-performance FFTs for the CRAY-2 and
CRAY Y-MP supercomputersJournal of Supercomputing @992),
107-115.

COOLEY, J.,AND TUKEY, J. An algorithm for the machine computation
of complex Fourier seriesMathematics of Computation 1@\pr.
1965), 297-301.

CORINTHIOS, M. The design of a class of Fast Fourier Transform
computers|EEE Transactions on Computers C-@une 1971), 617—
623.

MCcCLELLAN, J.,AND PURDY, R. Radar signal processing. Applica-
tions of Digital Signal Processind\. Oppenheim, Ed. Prentice-Hall,
Englewood Cliffs, NJ, 1978.

PEASE, M. An adaptation of the Fast Fourier Transform for parallel
processingJournal of the Association for Computing Machinery 15
(1968), 252—-264.

VAN LoAN, C. Computational Frameworks for the Fast Fourier
Transform SIAM, Philadelphia, PA, 1992.

WHELCHEL, J., O'MALLEY, J., RNARD, W., AND MCARTHUR, J. The
systolic phase rotation FFT - a new algorithm and paralletgssor
architecture. IrProceedings of ICASSP ‘9@pr. 1990), pp. 1021-
1024.

WITHERS, JR., L., AND WHELCHEL, J. The multidimensional phase-
rotation FFT - a new parallel architecture. Pmoceedings of ICASSP
‘91 (May 1991), pp. 2889-2892.

(2]

t

[4]

(6]

[7]

(8]

9]

