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Abstract

The phase-rotation FFT is a new form of the FFT that replaces
data movement with multiplications by constant phasor multipli-
ers. The result is an FFT that is simple to pipeline. This paper
completes the pipelined design of the the original phase-rotation
FFT, provides a fundamental new description of the algorithm di-
rectly in terms of the parallel pipeline, and describes a radix-2
implementation on the iWarp computer system that balances com-
putation and communication to run at the full-bandwidth of the
communications links, regardless of the input data set size.

1 Introduction

The Fast Fourier Transform (FFT) is an important algorithm with
applications in signal processing and scientific computing. A
typical real-time signal processing application performsFFTs on
a continuous stream of sensor inputs arriving at fixed intervals.
A pipeline of FFT stages is a natural approach for processing
such an input stream. Unfortunately, conventional FFT algorithms
are difficult to pipeline because the input streams are permuted
between each pipeline stage. The Whelchel phase-rotation FFT [8]
is anewform of the FFT that replaces data movement at runtime
with multiplications by precomputed constants. The resultis an
FFT that is simple to pipeline.

The Whelchel phase-rotation FFT [8] derives from the Pease
constant-geometry FFT [6], which itself derives from the original
Cooley-Tukey FFT [3] expressed in terms of Kronecker products.
The phase-rotation FFT of radixr is designed for a pipeline ofr parallel data channels. At each time step, in each stage, the
pipeline carries the nextr data points, one from each channel,
into a Discrete Fourier Transform (DFT) kernel. Unlike earlier
pipelined FFTs [4, 5], the phase-rotation FFT has the key property
that no data is switched across channels, except within the DFT
kernel and at the input and output. Thus, if the phase-rotation FFT
is implemented in hardware, no commutator switches or multiport
memories are needed.
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The phase-rotation approach extends easily to higher radices,
reducing memory and latency while preserving the high through-
put and parallel shuffling simplicity of lower radix versions. The
phase-rotation FFT has also been extended to a vector-radix, mul-
tidimensional parallel-pipeline FFT with the same qualities of the
one-dimensional algorithm, and without transposes [9].

This paper reports the results of a project to implement the
phase-rotation FFT on a parallel computer system. After a brief
overview of the phase-rotation concept in Section 2, the paper
introduces a parallel-pipeline digit-reversing step thatcompletes
the pipelined design of the original phase-rotation FFT [8]in Sec-
tion 3. Section 4 provides, for the first time, a set of recipes
that generate the twiddles and shuffle addresses necessary to im-
plement the algorithm directly in a parallel pipeline. Finally,
Section 5 describes fine-grained mapping strategies to implement
theN -point radix-2 phase-rotation FFT on the iWarp system, that
balance computation and communication to run at the full 40
Mbytes/sec rate of the iWarp physical links for input data sets of
any sizeN .

2 The basic idea

This section introduces the concept of the phase-rotation FFT.
Starting with the Pease constant-geometry FFT, we informally de-
rive the pipelined phase-rotation FFT, identifying the keyinsights
along the way.

2.1 Constant-geometry FFT

Figure 1(a) shows the flowgraph for a radix-r N -point decimation-
in-frequency (DIF) constant-geometry FFT, withr = 2 andN =rn = 8. There aren stages. Each stage computesN=r kernels.
Each kernel is an operator that performs anr-point DFT. For
radix 2, each kernel inputs two complex numbers and outputs two
complex numbers. (For simplicity, twiddles and the final digit-
reversing shuffle are not explicitly shown in the flowgraph.)

Each stage in the constant-geometry FFT performs an identical
perfect stride-by-s shuffle of its data vector, wheres = N=r. An
easy way to define the perfect shuffle is as follows: If the data
vector is regarded as ans� r array, stored in column-major order,
then the perfect shuffle simply transposes it into anr�s array. For
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Figure 1: Derivation of the phase-rotation FFT. (a) Initialconstant-
geometry FFT. (b) Pipelined constant geometry FFT. (c) Pipelined
FFT based on cyclic rotations. (d) Pipelined phase-rotation FFT.

example, the following transpose is a stride-by-4 perfect shuffle,
for N = 8 points and radixr = 2:264 0 4

1 5
2 6
3 7

375 T�! �
0 1 2 3
4 5 6 7

�
The data items in this example, labeled by their indices in the
original column vector, are regarded as equivalent to a 4� 2
array composed by a stride-by-4 unstacking of the 8-point column
vector. After the transpose, the 2� 4 array is equivalent to a new
8-point column vector composed by a stride-by-2 stacking. As we
shall see, this transpose creates difficulties when we try topipeline
the constant-geometry FFT. And it is precisely these difficulties
that the phase-rotation FFT addresses.

2.2 Pipelining the FFT

Each stage of the constant-geometry FFT can be computed on a
single processor by pipelining the data. For example, Figure 1(b)
shows the pipeline for a single stage with radixr = 2. The
pipeline consists of a sequence of operators connected bypipeline
segments. Each pipeline segment consists ofr parallelchannels.
Each channel carries astreamof N=r data points, which are
labeled in this example by their indices from the original column
vectors in Figure 1(a). For each pipeline segment, ther data
points, each in the same position within its stream, are known as
anr-frame, or simply, aframe. For example, in Figure 1(b), the
first frame in the pipeline segment betweenS andF is (0,4), the
second frame is (1,5), and so on.

At each time step, ther twiddle operators (T) collectively read
a frame (one complex number per operator), perform an element-
wise complex multiplication, and write the resulting frame. Notice
that each stream is operated on independently. Similarly, the
kernel operator (F) reads a frame, computes the radix-r kernel,
and writes the resulting frame. In this case, the streams arenot
independent; each data item in the output frame is a functionof
every data point in the input frame.

The twiddle and kernel operators pipeline nicely because dur-
ing each time step they independently read and write a single
number from each stream. However, the pipelined shuffle oper-
ator (S) is less well behaved. To produce one output frame, the
shuffle operator must read and store ther data points from each
stream. Thus,S requiresr memory cycles to produce each frame.
(Notice thatS transposes the data directly into anr � s pipeline
segment; but even starting with data already in anr � s pipeline,S still performs “row-to-column” motions.) This is an example of
thememory-bank conflictdiscussed in [7, pp.31-32]. The conflict
is clear in Figure 1(b). To assemble its first output frame,S must
read both 0 and 4 from the upper stream to its left. Then it must
read 1 and 5 from the lower stream, and so on.

We would like to replace the troublesome perfect shuffle opera-
tion with aparallel-pipeline shuffle, where each stream is read and
written independently and in parallel. The next section describes
the insights that make this possible.
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Figure 2: Replacing the perfect shuffle with three simpler shuffles.

2.3 The phase-rotation concept

This section describes how to replace the perfect shuffle by a
parallel-pipeline shuffle, so that we can access the data streams
in parallel. The basic idea is to rotate the data within frames,
and then compensate for these motions by phase rotations of the
twiddle factors.

We begin with a “detour” around the perfect shuffle. That is,
we find a sequence of three simpler shuffles that is equivalentto the
perfect shuffle. This idea is shown graphically in Figure 2 for an
radix-2 example. Each radix-2 pipeline segment is represented as
matrix. Each row in the matrix corresponds to a stream, and each
column corresponds to a frame. Frames (columns) are arranged
left-to-right in reverse-time order in the matrix.

The first step in Figure 2 is a set of cyclic rotations, calledCslow, which rotates each frame. These rotations are frame-wise
in the sense that only data points contained in the same frame
are rotated across the streams. Notice that in the radix-2 case,
half of the rotations leave the corresponding frame unchanged.

The next step is a parallel-pipeline shuffleS, which permutes
the data in each stream. Notice that no data points need to be
transferred between streams in this step. The last step is another
set of frame-wise cyclic rotations in the opposite direction, calledCfast, which leave the data in the same order that the perfect
shuffle would. Note thatCslow andCfast change the number of
rotations per frame at different paces, one slow and one fast.

If we apply the idea in Figure 2 to each stage of the pipelined
FFT in Figure 1(b), replacing each perfect shuffle with threesim-
pler shuffles, we get a pipelined FFT based on cyclic rotations,
which is shown in Figure 1(c).

The kind of basic frame-wise rotations in Figure 1(c) that is
applied at slow-varying, and then fast-varying rates, is represented
in general by ther � r cyclic (circular) shift permutation matrixCr, made by permuting the rows of the identity matrixIr down by
one row, and moving the bottom row up to the top. For example,C4 = 0B@ 0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

1CA :
The key insight of the phase-rotation FFT is that the cyclic shift
theorem for the DFT can be applied to the cyclic shift operators in
Figure 1(c). In matrix form, the cyclic shift theorem for a DFT is
the relation FrCr =DrFr; (1)
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Figure 3: Interpretation ofFrCr =DrFr
whereDr = diag(1; !; !2; :::; !r�1) is a set of twiddles, and the
DFT matrix of sizer isFr = 1pr (!jk)r�1j;k=0;
where! = exp� 2�ir . For the pipelined FFT, (1) says that phasor
multipliers after a DFT kernel give the same effect as a physical
data rotation before the DFT kernel. Likewise, a physical rotation
after the kernel is equivalent to phasor multipliers beforeit. The
meaning of (1) is shown graphically in Figure 3 for a pipelined
radix-2 kernel. The shift theorem implies that the data rotations in
Figure 1(c) can be replaced by constant phasor multipliers.These
phasors can then be absorbed by the twiddle factors on eitherside
of the kernel, leaving only a parallel-pipeline shuffle. Theresult is
the pipelined phase-rotation FFT, which is shown in Figure 1(d).
This completes the informal derivation of the phase-rotation FFT.

The structure of the phase-rotation FFT in Figure 1(d) is sim-
ilar to the original pipelined FFT in Figure 1(b), except that the
phase-rotation FFT’s shuffle is simpler. Though the twiddleval-
ues have been modified, the arithmetic steps for twiddle and kernel
operators are unchanged. The important difference is that the per-
fect shuffle operator has now been replaced by a parallel-pipeline
shuffle that requires no communication across the streams. There
is, however, an additional set of twiddles during the final digit-
reversing step.

3 Improved phase-rotation FFT

In this section we define an improved version of the original phase-
rotation FFT described in [8]. The new version replaces the digit-
reversing permutation at the end of the original phase-rotation FFT
with a parallel-pipeline shuffle followed by frame-wise cyclic ro-
tations. This last substitution completes the task of pipelining the
constant-geometry FFT, so that in every stage, all communication
between streams is limited to data points within a single frame.

For radixr andN = rn points (n > 1), the 1-dimensional
phase-rotation FFT is a matrix factorization of theN -point DFT
matrixFN . Starting with the Pease constant-geometry factoriza-

tion, we replace its perfect shufflesS by S = CfastSCslow.
Similarly, at the left end we replace the radix-r index-digit-
reversing permutationQ = QN;r of N data points byQ =CTslowQCslow, whereQ is another parallel-pipeline shuffle that
will be defined formally in Section 4. The phase-rotation FFTis



then defined by:FN = Q � nYj=1

�FSTj� = � � � vigorous
algebraic
shuffling

! � � �= CTslow �QD0fast " nYj=1

�FSD0j�# �Cslow: (2)

Let s = N=r as before, andr0 = N=r2. F is a direct (tensor,
Kronecker) productIs 
Fr = diag(Fr;Fr; :::;Fr). We inter-
pret this as a kernel DFTFr operating ons successive frames ofr points placed in the pipeline. Forj = 1 : n, the other parts of
(2) are defined byCslow = r�1Mk=0

�Ir0 
Ckr�Cfast = Ir0 
 r�1Mk=0

(CTr )k!!j = exp��2�irj �Dr = diag(1; !1; !2
1; :::; !r�1

1 )Drj+1 = diag(1; !j+1; !2j+1; :::; !rj�1j+1 )D�1slow = r�1Mk=0

�Ir0 
D�kr �D0slow = CTfastD�1slowCfastD00slow = STD0slowSD�1fast = Ir0 
 r�1Mk=0

D�kr !D0fast = CTslowD�1fastCslowT̃j = I Nr(j+1) 
 r�1Mk=0

Dkrj+1

!Tj = Sj T T̃jSjT0j = CslowTjCTslowD0
1 = �STD�1slowS� �T0

1D�1fastD0j = D00slowT0jD�1fast ; j = 2 : n� 1D0n = D00slowT0n =D00slow : (3)

The direct sums are of the formr�1Mk=0

Ak = diag(A0;A1; :::;Ar�1);
andAT denotes the transpose ofA. See [9] for more on the
basic definitions and relations used to derive (2), as well asthe
generalization to higher dimension FFTs.

The stages in (2) are counted in reverse time order by the indexj. This is in keeping with the fact that (2) is a decimation-in-
frequency (DIF) version of the FFT. The transpose of (2), with

the product
Q1j=n, is the decimation-in-time (DIT) version of the

phase-rotation FFT. Also note the extra twiddlesD0fast before
digit-reversal in (2). They are alwaysrth roots of unity, so that
for radicesr = 2 and 4 they can be applied without complex
multiplication.

A Cslow shuffle and its inverse remain at the input and output
ends of the pipeline, respectively. As we have seen,Cslow is
a completely frame-wise rotation. It rotates (commutates)the
data within each successive frame (columnr-vector) of ther � s
pipeline segment for a stage. There is also an implicit frame-wise
broadcast within each FFT kernel engine, when anr-point DFT
is somehow computed. So in the phase-rotation FFT, data motion
is all parallel, except for frame-wise motions at I/O and at every
FFT kernel. The simplicity of the phase-rotation FFT is thatno
data point ever moves both down and across the pipeline in one
time-step.

4 Pipeline recipes

While the structure of the pipelined phase-rotation FFT is ex-
tremely simple, experience has taught us that generating the ap-
propriate twiddles and shuffle indices from the matrix formula-
tions of (2) and (3) is difficult and confusing. To address this
problem, we have developed a collection of recipes for generat-
ing the phase-rotation twiddles and shuffle indices off-line. The
recipes are defined for any 1D phase-rotation FFT ofN = rn
points. Following [7], they are written in a MATLAB -like format.

As we saw in (2), the pipelined phase-rotation FFT performs
a typical “twiddle, shuffle, kernel” cycle at each stage. Only the
twiddles vary from stage to stage, and there is a digit-reversing
shuffle equivalent at the end. To implement this FFT using parallelr � s pipeline segments (one per stage), we insert theN -vector
of input datax into the pipeline as anr � s arrayX: the firstr points ofx go into the first frame (column)X, the secondr
points go into the second frame, and so on. We must also have
a shuffle address and a twiddle factor ready for each point in the
pipeline. In other words, we would like to fill oner � s copyA
of the pipeline segment with addresses, and another copyD with
twiddles.

Then the processors in each stage of the pipeline will know
what to do at each time-stept = 0:s � 1. Using the current
frame of addresses, they will fetch the currentr-frame of dataX(0:r � 1; A(0:r � 1; t)) and the currentr-frame of twiddlesD(0:r � 1; A(0:r � 1; t)) (pointwise in parallel), multiply these
two frames pointwise, then do anr-point DFTFr of the twiddled

data frame. That is how each stageFSD0j is implemented in the
parallel pipeline.

The twiddle and shuffle recipes in this section are “in place”
in the sense that they work inside ther � s pipeline segments
that will contain the desired addresses and twiddles. (Theyare
not “in place” in the usual sense, since we will freely use an
input and an output copy of a pipeline segment.) This approach
avoids constructing and operating with largeN�N matrices (each
containing onlyN non-zero elements). Each parallel-pipeline
function recipe is given a name similar to that of theN � N
matrix factor in the FFT (2) that it effectively implements.



4.1 Shuffle recipes

As a convention, pipeline addresses (pipeline array row andcol-
umn indices) run 0:r � 1 and 0:s � 1, respectively. To do
parallel-pipeline shuffles, we only need the horizontal (column)
addresses, since the data inside each pipe will only jump within
that stream (row). The cross-stream shuffles, Cslow and Cfast,
are implemented using�r and its inverse, respectively.�r is a
cyclic rotation of a frame (a vertical slice of the parallel pipeline)
that has the effect ofyr = Crxr. �r takes a columnr-vectorxr = (x0; x1; x2; :::; xr�1)T 7! yr = (xr�1; x0; x1; :::; xr�2)T .

function Y = Cslow(X)col = 0
for k = 1 : r

for j = 1 : r0Y (:; col) = �kr (X(:; col))col = col + 1
end

end

function Y = Cfast(X)col = 0
for j = 1 : r

for k = 1 : r0Y (:; col) = ��kr (X(:; col))col = col + 1
end

end

The inverses of Cslow and Cfast are formed simply by reversing�r in the recipes above. Next, we define some perfect shuffles.

function Y = S(X) !stride byscol = 0
for row = 0 : r � 1

for k1 = 0 : r : s� rk2 = k1+ r � 1Y (row; k1 : k2) = X(:; col)col = col + 1
end

end

function Y = S�1(X) !stride byrcol = 0
for row = 0 : r � 1

for k1 = 0 : r : s� rk2 = k1+ r � 1Y (:; col) = X(row; k1 : k2)col = col + 1
end

end

To implement the parallel-pipeline shuffles,S, S
�1

, andQ, we
will use the parallel-pipeline addressesA, which are computed by
the following function:

function A = S addresses(r; s)a = (0; r0; :::; (r� 1)r0)T

col = 0
for j = 1 : r0

for k = 1 : rA(:; col) = acol = col+ 1a = �r(a)
enda = a+ 1r

end

function Y = S(X)A = S addresses(r; s)
for row = 0 : r � 1Y (row; :) = X(row;A(row; :))
end

function Y = S
�1(X)A = S addresses(r; s)[AA; I] = sort(A)

for row = 0 : r � 1Y (row; :) = X(row; I(row; :))
end

In the above functions, sort(A) sorts each row of an arrayA in
ascending order. It returns the row-sorted arrayAA and the corre-
sponding array of addressesI where the successive row elements

were found inA. After we have sorted the addressesA for S, I
has the addresses forS

�1
.

The pipeline addresses forQ are obtained by blockwise perfect
shuffles (along the length of the pipeline) of the addresses for S:

function Y = Q(X;n)A = S addresses(r; s)
if n > 2

for ns = (n� 2) : �1 : 1stride = rnsblock = rn�2�ns ! block lengthcol2 = 0
for k1 = 1 : stridecol1 = (k1 � 1) � block

for k = 1 : r
for j = 1 : blockB(:; col2) = A(:; col1)col1 = col1+ 1col2 = col2+ 1
endcol1 = col1+ (stride� 1) � block

end
endA = B

end
end

for row = 0 : r � 1Y (row; :) = X(row;A(row; :))
end



4.2 Twiddle recipes

Every twiddle matrixD is diagonal, so it operates on a data vec-
tor as a point-to-point vector multiply. Given some permutation
matrixP, a new twiddle matrixPDPT is equivalent to a rediago-
nalizing of the vector shuffle of the diagonal ofD, that is,PDPT
= diag(P�diag(D)). (This is a MATLAB notation: diag() puts the
diagonal of a matrix in a vector, and puts a vector in the diagonal
of a matrix.) Since we want to perform shuffles within pipeline
arrays, we reshape the twiddleN -vector diag(D) as anr � s
pipeline arrayD, just as we originally reshaped the data vector.
Then we shuffle the pipelined twiddles, to effect the equivalent of
the vector shuffleP�diag(D). So we interpret thePDPT oper-
ator as an in-pipeline shuffle of the pipelined twiddlesD, which
are then in position to operate on the pipelined dataX directly
by point-to-point multiplication,Y = D: � X. (As mentioned,
the data will actually be twiddled frame-by-frame in the pipelined
implementation.)

We will interpret the twiddles expressed in (3) this way. Each
twiddle function below returns anr�s arrayD of twiddle factors
(the actual twiddling of the data is not included):

function Dslow = Dslow twiddles(r; s)!j = exp(�2�i=r)t = 0
for j = 0 : (r� 1)

for k = 0 : (r0 � 1)Dslow(:; t) = (1; !kr ; !2kr ; :::; !(r�1)kr )Tt = t+ 1
end

end

function Dfast = Dfast twiddles(r; s)!j = exp(�2�i=r)t = 0
for k = 0 : (r0 � 1)

for j = 0 : (r � 1)Dfast(:; t) = (1; !jr; !2jr ; :::; !(r�1)jr )Tt = t+ 1
end

end

The inverses ofDslow andDfast are just their complex conju-
gates, and are generated simply by replacing!j by !�1j . For
stagesj = 1:n (counted down fromn), we generate pipelined
twiddlesT̃j by

function T̃j = T̃ twiddles(r; s; j)!j = exp(2�i=rj+1)!0j = !rrj+1

for k = 0 : (r � 1) ! direct sum loopt1 = k � rj�1

for p = 0 : (r � 1)T̃j(p; t1) = !kpj
endt1 = t1 + 1t2 = t1 + rj�1

for t = t1 : t2 ! fill next column from lastT̃j(:; t) = !0kj � T̃j(:; t� 1)

end
end

if j < nt2 = rj
for k = 0 : (N=rj+1)t1 = t2t2 = k � rjt = 0

for t0 = t1 : t2T̃j(:; t0) = T̃j(:; t) ! copy columnst = t+ 1
end

end
end

The rest of the twiddle arrays can now be defined in terms of the
shuffles:D0slow = S�1(D�1slow)D00slow = Cslow(D0slow)D0fast = Cslow(D�1fast)Tj = S�1(T̃j)T 0j = Cslow(Tj)D0

1= S(D�1slow): � T 0
1: �D�1fast

if 1 < j < nD0j = D00slow: � T 0j : �D�1fast
endD0n= D00slow

5 Implementation issues

In this section we describe issues that arise when the phase-rotation
FFT is implemented on a real parallel system. In particular,
we describe implementation approaches for the radix-2 FFT on
the iWarp system. The main result is a scalable implementa-
tion of the pipelined phase-rotation FFT that runs at the full 40
Mbytes/second rate of the iWarp physical links.

5.1 iWarp

The iWarp is a private-memory multicomputer developed jointly
by Intel and Carnegie Mellon [1]. iWarp systems are 2-
dimensional tori ofnodes, ranging in size from 4 to 1024 nodes.
Each node consists of an iWarpcomponent, up to 16 Mbytes of
off-chip local memory, and a set of 8 unidirectional communi-
cationlinks that physically connect the node to four neighboring
nodes. Each component is a VLSI chip that contains aprocess-
ing agentand acommunication agent. The processing agent is
a general-purpose load-store microprocessor that runs at amaxi-
mum rate of 20 MFLOPs. Thus, aclock, or cycle time, is 50 ns.
The local memory is accessed at a rate of 160 Mbytes/sec. Each
link runs at 40 Mbytes/sec, for a maximum aggregate bandwidth
of 320 Mbytes/sec per node.
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The key feature of iWarp is its communication system, which
is summarized in Figure 4. Each communication agent contains
a set of 20 hardware FIFOqueues. Each queue can hold up to 8
32-bit words, and can be accessed by user programs at the costof a
register access. iWarp nodes communicate with other nodes using
unidirectional point-to-point structures calledpathways. Each
pathway is a sequence of queues. Pathways can be created and
destroyed dynamically at runtime. Data traveling along a pathway
passes from queue to queueautomatically, without disturbing the
computations on intermediate nodes. Multiple pathways canshare
the same link by multiplexing in a round-robin fashion, one word at
a time. Every pathway on a link that has data to send is guaranteed
a proportional fraction of the link bandwidth. Of course, ifonly
one pathway has data to send, then it gets all of the link bandwidth.

5.2 Mapping strategies on iWarp

The problem is to develop a mapping of the flowgraph in Fig-
ure 1(d) to an iWarp array. The simplest mapping strategy is to
assign each flowgraph node to a unique processor node of a linear
array, route the flowgraph arcs through this array, and then embed
the resulting linear array in the iWarp torus. This approach, called
the PHASE5 mapping because it uses 5 iWarp nodes for each FFT
stage, is shown in Figure 5(a).

Each iWarp node in PHASE5 executes a smallnode program
that implements its flowgraph operator. Each twiddle node (D0)
repeatedly reads a complex number from its input pathway multi-
plies it by the appropriate twiddle (precomputed off-line using the
recipes in Section 4.2), and sends the result to its output pathway.

Each shuffle operator (S) repeatedly reads a complex data item
from its input pathway, stores it in memory, and uses the appro-
priate shuffle index (again precomputed off-line using the recipes
in Section 4.1) to send an appropriate double-buffered datapoint
to the output pathway. The kernel node (F ) repeatedly reads two
complex numbers from its input pathways, performs the radix-2
DFT kernel operation, and outputs two complex numbers to its
output pathways.

Another approach, the PHASE3 mapping, combines the twid-
dle and shuffle operators on a single node, as shown in Figure 5(b),
so that each stage requires 3 nodes instead of 5 nodes. As we shall
see, the communication and computation throughputs of the two
mappings are identical. The advantage of the PHASE3 mappingis
that it is more node-efficient, requiring fewer nodes per stage than

node 0 node 1 node 2 node 3 node 4

FD' S D' S

node 0 node 1 node 2

FD' S D' S

(a)

(b)

Figure 5: Strategies for mapping one stage of the FFT onto a linear
array. (a) PHASE5 mapping. (b) PHASE3 mapping.

the PHASE5 mapping. The advantage of the PHASE5 mapping
is its simplicity. Each node is assigned exactly one operator from
the flowgraph.

Figure 6 shows a working implementation of a 16K-point radix-
2 phase-rotation FFT on a 64-node iWarp array at Carnegie Mel-
lon. The implementation is based on the PHASE3 mapping from
Figure 5(b). The large squares are iWarp nodes, labeled with
the corresponding operator and stage number, whereD is a twid-
dle/shuffle pair andF is a kernel. The small squares are queues.
The arrows are iWarp pathways. As an artifact of our display
program intermediate queues are not drawn. Each of the 14 FFT
stages uses 3 nodes, with an additional 3 nodes for the parallel-
pipeline digit-reversing step at the end.

5.3 Performance

Each iteration of each node program in the PHASE3 and PHASE5
mappings runs in at most 8 clocks. At the peak rate of 40
Mbytes/sec, each link can produce and consume a 32-bit floating-
point number every 2 clocks. Further, each data point in the
pipeline is a complex number consisting of a pair of 32-bit floating-
point words. As a result, each pathway consumes exactly halfof
the available link bandwidth. Since each link is shared by two
pathways, and since the iWarp communication agent gives each
pathway an equal share of the link bandwidth, without disturbing
the computations on intermediate nodes, each link is fully utilized.
The result is a radix-2 FFT that runs at the full 40 Mbytes/secrate
of an iWarp link, regardless of the number of points in the FFT!
Since each sample consists of 8 bytes, the FFT runs at a constant
rate of 5 Msamples/sec: Given a sufficient number of nodes, the
iWarp phase-rotation FFT will produce arbitrarily large FFTs at
this rate. Perhaps even more important, the performance is the
same on smaller FFTs.

Another way to characterize performance is by computational
throughput, expressed in millions of floating-point operations per
second (MFLOPS). However, there is a subtlety involved in using
MFLOPS as a performance measure. The iWarp phase-rotation
FFT performs 16 floating-point operations (2 adds and 4 multi-
plies by each of the two twiddle operators, and 4 adds by the kernel
operator). These 16 floating-point operations per iteration reduce
to 10, when one of the twiddles is always 1 and can be omitted, as
in the radix-2 Pease and Cooley-Tukey FFTs. This reduced fig-
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Figure 6: 16K-point pipelined phase-rotation FFT running at 40
Mbytes/sec (350 MFLOPS) on iWarp

ure results in the standard formula for computing FFT MFLOPS,
5N log2 N floating-point operations per N-point FFT [2]. While
one of the two twiddles is always�1 in every iteration of the
radix-2 phase-rotation FFT, we have not yet discovered an effi-
cient, load-balanced pipeline mapping that takes advantage of this
fact. Therefore, to compare the phase rotation FFT fairly with
other FFTs, we count its 16 FLOPs per iteration as equivalentto
only 10 FLOPs.

Since each node program executes its computation in at most
8 clocks, and since each clock is 50 ns, each stage of the iWarp
phase-rotation FFT runs at a rate of 25 MFLOPS for an aggregate
performance over all logN stages of 25 logN MFLOPS. For
example, the 16K-point FFT in Figure 6 achieves a measured
performance of 25�14= 350 MFLOPS (single precision) on the
iWarp systems at CMU. By comparison, a highly optimized 16K-
point FFT has been measured at 237 MFLOPS (double precision)
on a single-processor Cray Y-MP [2, p.114]. The numbers are
not directly comparable because of the different floating-point
precisions, but they do suggest that the absolute performance of
the phase-rotation FFT is quite good.

6 Concluding remarks

We have described an improved version of the Whelchel pipelined
phase-rotation FFT, developed recipes for generating the appro-
priate twiddles and shuffle indices off-line and directly interms of
the parallel pipeline, outlined mapping approaches for theradix-
2 case on the iWarp parallel computer, and presented measured
performance results of an implementation on iWarp.

The improvement on the original phase-rotation FFT is signif-
icant in that it eliminates a potential pipeline bottleneckduring the
digit reversing step at the end. The twiddle and shuffle recipes
should be helpful to the programmer who wants to implement the
pipelined phase rotation FFT. The iWarp implementation validates
a simple and realistic approach for building scalable pipelined
FFTs on a programmable parallel system. Further, the imple-
mentation demonstrates that, given a balanced parallel computer

architecture with word-level access to the communication links, it
is possible to build FFTs that run at the full link bandwidth of the
links, even when the FFTs are relatively small.

Other parallel systems are being considered as targets for the
multidimensional phase-rotation FFT. For example, the Maspar
MP2 provides indirect addressing and routing capabilities, which
would facilitate fetching data into and out of the kernel FFTs
and performing data communication with large kernels. As an-
other example, the Cray T3D multicomputer, like iWarp, provides
direct, low-latency, word-level access to the communication sys-
tem, which would support the fine grained parallelism found in
the phase-rotation FFT.
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