
Vol:.(1234567890)

Algorithmica (2021) 83:1786–1828

https://doi.org/10.1007/s00453-021-00802-1

1 3

Computing the Rooted Triplet Distance Between
Phylogenetic Networks

Jesper Jansson1 · Konstantinos Mampentzidis2 · Ramesh Rajaby3 ·

Wing‑Kin Sung3,4

Received: 29 June 2020 / Accepted: 13 January 2021 / Published online: 16 March 2021

© The Author(s) 2021

Abstract

The rooted triplet distance measures the structural dissimilarity of two phylogenetic

trees or phylogenetic networks by counting the number of rooted phylogenetic trees

with exactly three leaf labels (called rooted triplets, or triplets for short) that occur

as embedded subtrees in one, but not both, of them. Suppose that N1 = (V1, E1) and

N2 = (V2, E2) are phylogenetic networks over a common leaf label set of size n,

that N
i
 has level k

i
 and maximum in-degree d

i
 for i ∈ {1, 2} , and that the networks’

out-degrees are unbounded. Write N = max(|V1|, |V2|) , M = max(|E1|, |E2|) ,

k = max(k1, k2) , and d = max(d1, d2) . Previous work has shown how to compute the

rooted triplet distance between N
1
 and N

2
 in O(n log n) time in the special case k ≤ 1 .

For k > 1 , no efficient algorithms are known; applying a classic method from 1980

by Fortune et al. in a direct way leads to a running time of Ω(N6
n

3) and the only

existing non-trivial algorithm imposes restrictions on the networks’ in- and out-

degrees (in particular, it does not work when non-binary vertices are allowed). In

this article, we develop two new algorithms with no such restrictions. Their run-

ning times are O(N2
M + n

3) and O(M + Nk
2
d

2 + n
3) , respectively. We also provide

implementations of our algorithms, evaluate their performance on simulated and

real datasets, and make some observations on the limitations of the current defini-

tion of the rooted triplet distance in practice. Our prototype implementations have

been packaged into the first publicly available software for computing the rooted

triplet distance between unrestricted networks of arbitrary levels.

Keywords Phylogenetic network comparison · Rooted triplet distance · Fan graph ·

Resolved graph · Block tree · Contracted block network · Implementation

A preliminary version of this article appeared in Proceedings of the Thirtieth International

Workshop on Combinatorial Algorithms (IWOCA 2019), Lecture Notes in Computer Science,

Vol. 11638, pp. 290–303, Springer Nature Switzerland AG, 2019.

 * Jesper Jansson

 jesper.jansson@polyu.edu.hk

Extended author information available on the last page of the article

http://orcid.org/0000-0001-6859-8932
http://orcid.org/0000-0001-7806-7086
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00802-1&domain=pdf

1787

1 3

Algorithmica (2021) 83:1786–1828

1 Introduction

1.1 Background

Phylogenetic trees are commonly used in biology to represent evolutionary rela-

tionships, with the leaves corresponding to species that exist today and internal

vertices to ancestor species that existed in the past [1]. When studying the evo-

lution of a fixed set of species, different available data and tree reconstruction

methods can lead to trees that look structurally different. Quantifying this differ-

ence is essential to make better evolutionary inferences, which has led to the pro-

posal of several phylogenetic tree distance measures in the literature. For exam-

ple, to evaluate the accuracy of a tree reconstruction method M , one can perform

the following steps a number of times [2]: First generate a random phylogenetic

tree T and let a sequence evolve down the edges of T according to some chosen

model of sequence evolution, then apply the method M to reconstruct a tree T ′ ,

and finally measure the distance between T and T ′ . Some phylogenetic tree dis-

tance measures that are based on counting how many times certain features dif-

fer in the two trees are the Robinson-Foulds distance [3], the rooted triplet dis-

tance [4] for rooted trees, and the unrooted quartet distance [5] for unrooted trees.

Other distance measures are the nearest-neighbor interchange distance (intro-

duced independently in [6] and [7]), the path-length-difference distance [8], the

subtree prune-and-regraft distance [9], the maximum agreement subtree [10], and

the subtree moving tree edit distance [11].

The rooted phylogenetic network model is an extension of the rooted phylo-

genetic tree model that allows internal vertices to have more than just one par-

ent [12]. Such networks can describe more complex evolutionary relationships

involving reticulation events such as horizontal gene transfer and hybridization.

As in the case of phylogenetic trees, it is useful to have distance measures for

comparing phylogenetic networks. Therefore, in this article, we study a natural

generalization [13] of the rooted triplet distance for phylogenetic trees to rooted

phylogenetic networks and present two new algorithms for computing it.

1.2 Problem Definitions

For any vertex u in a directed acyclic graph, let in(u) and out(u) be the in-degree

and out-degree of u. The vertex u is called a leaf if out(u) = 0 , and an internal

vertex if out(u) ≥ 1 . Formally, a rooted phylogenetic network N′ is a directed acy-

clic graph with one vertex of in-degree 0 (from here on called the root of N′ and

denoted by r(N�)), distinctly labeled leaves, and no vertices with both in-degree 1

and out-degree 1. A vertex u in N
′ is called a reticulation vertex if in(u) ≥ 2

holds. If N′ has no reticulation vertices, i.e., if all vertices in N′ have in-degree at

most 1, then N′ is a rooted phylogenetic tree. Below, when referring to a “tree”,

we imply a “rooted phylogenetic tree”, and when referring to a “network”, we

imply a “rooted phylogenetic network”.

1788 Algorithmica (2021) 83:1786–1828

1 3

For the rest of this subsection, suppose that N′ is a network. A directed edge

from a vertex u to a vertex v in N′ is denoted by u → v . A path from u to v in N′ is

denoted by u ⇝ v . Let the height of u, written as h(u), be the number of edges in

a longest path from u to a leaf in N′ . By definition, if v is a parent of u in N′ then

h(v) > h(u) . We will use L(N�) to refer to both the set of leaves in N′ as well as to

the set of leaf labels in N′ since they are in one-to-one correspondence.

The level of a network was introduced by Choy et al. [14] as a parameter to

measure the treelikeness of a network, with the special case of a level-0 network

being a tree and a level-1 network a so-called galled tree [15] in which all under-

lying cycles are disjoint. The level is defined as follows. Let U(N�) be the undi-

rected graph created by replacing every directed edge in N
′ with an undirected

edge. An undirected, connected graph H is called biconnected if it has no ver-

tex whose removal makes H disconnected. A maximal subgraph of U(N�) that is

biconnected is called a biconnected component of U(N�) . (Observe that the bicon-

nected components of U(N�) are edge-disjoint but not necessarily vertex-disjoint.)

For any biconnected component of U(N�), its corresponding subgraph in N′ will

be referred to as a block of N
′ . We say that N

′ is a level-k network, or equiva-

lently N′ has level k, if every block of N′ contains at most k reticulation vertices.

Figure 1 shows a level-2 and a level-3 network.

If B is a block of N′ consisting of more than two vertices and one edge and B

contains at most one vertex that has one or more outgoing edges to vertices not

belonging to B then B is called uninformative. See Fig. 2 for an illustration.

Next, a rooted triplet � is a tree with three leaves. If it is binary we say that �

is a rooted resolved triplet, and if it is non-binary we say that � is a rooted fan

triplet. We say that the rooted fan triplet x|y|z is consistent with N′ if and only if

there exists a vertex u in N′ such that there are three directed paths of non-zero

length from u to x, from u to y, and from u to z that are vertex-disjoint except for

in u. Similarly, we say that the rooted resolved triplet xy|z is consistent with N′ if

and only if N′ contains two vertices u and v such that there are four directed paths

of non-zero length from u to v, from v to x, from v to y, and from u to z that are

vertex-disjoint except for in u and v, and furthermore, the path from u to z does

not pass through v. See Fig. 1 for an example. From here on, by “disjoint paths”

a3

a1

a4

a2

N1

a2

a3

a1

a4

N2

Fig. 1 N
1
 is a level-2 network and N

2
 is a level-3 network with L(N1) = L(N2) = {a1, a2, a3, a4} . In this

example, D(N1, N2) = 6 . Some shared triplets are: a
1
|a

2
|a

4
, a

3
a

4
|a

2
, a

1
a

3
|a

2
 . Some triplets consistent

with only one network are: a
1
|a

3
|a

4
, a

2
a

3
|a

1

1789

1 3

Algorithmica (2021) 83:1786–1828

we imply “vertex-disjoint paths of non-zero length”. Moreover, when referring to

a “triplet”, we imply a “rooted triplet”.

Given two networks N1 = (V1, E1) and N2 = (V2, E2) built on the same leaf label

set Λ , the rooted triplet distance D(N1, N2) , or triplet distance for short, is the num-

ber of triplets over Λ that are consistent with exactly one of N
1
 and N

2
 . Let S(N1, N2)

be the total number of shared triplets, i.e., triplets that are consistent with both N
1

and N
2
 . Then:

Note that a shared triplet contributes a +1 to S(N1, N1) , S(N2, N2) , and S(N1, N2) ,

e.g., the triplet a
1
|a

2
|a

4
 in Fig. 1. On the other hand, a triplet from either net-

work that is not shared contributes a +1 to either S(N1, N1) or S(N2, N2) , and a 0

to S(N1, N2) . As an example, a
1
|a

3
|a

4
 in Fig. 1 contributes a +1 to S(N1, N1) and a 0

to S(N2, N2) and S(N1, N2).

Let S
r
(N1, N2) and Sf (N1, N2) be the number of shared resolved and shared fan

triplets, respectively. Then S(N1, N2) = Sr(N1, N2) + Sf (N1, N2) , which implies that

D(N1, N2) can be obtained by considering shared resolved triplets and shared fan

triplets separately.

The rest of this article is focused on how to compute D(N1, N2) efficiently. We

shall use the following notation to express the time complexities of various algo-

rithms. For i ∈ {1, 2} , the network N
i
 has vertex set V

i
 and edge set E

i
 . The level of N

i

is k
i
 and the maximum in-degree taken over all vertices in N

i
 is d

i
 . We assume that

the two given networks N
1
 and N

2
 have the same leaf label set Λ , and write n = |Λ| ,

N = max(|V1|, |V2|) , M = max(|E1|, |E2|) , k = max(k1, k2) , and d = max(d1, d2).

To simplify the descriptions of the algorithms, we will also assume that: (i) there

is no vertex u satisfying both in(u) > 1 and out(u) = 0 , i.e., all leaves have in-degree

at most 1; and (ii) there are no uninformative blocks in N
1
 and N

2
 . Assumption (i)

(1.1)D(N1, N2) = S(N1, N1) + S(N2, N2) − 2S(N1, N2)

Fig. 2 The block drawn with

solid edges is an uninformative

block because it only has one

vertex u with outgoing edges to

vertices not in the block

u

1790 Algorithmica (2021) 83:1786–1828

1 3

is justified because every leaf u with in-degree larger than 1 can be replaced by an

internal vertex to which a leaf with the same leaf label as u is attached, and the

resulting network will be consistent with exactly the same triplets as before.

Assumption (ii) is justified because first each uninformative block can be replaced

by an edge, and then each vertex with in-degree 1 and out-degree 1 can be elimi-

nated by contracting its outgoing edge; the resulting network will be consistent

with the same triplets as the original network. If necessary, checking the input net-

works N
1
 and N

2
 and modifying them to ensure that they comply with (i) and (ii)

before running the algorithms takes O(M) time, e.g., by using Hopcroft-Tarjan’s

algorithm [16] to identify the biconnected components of U(N
1
) and U(N

2
).

1.3 Previous Work

The rooted triplet distance was introduced by Dobson [4] in 1975 for trees, and gen-

eralized to networks by Gambette and Huber [13] in 2012. See also [17, Section 3.2]

for a short discussion about the definition.

Table 1 lists the time complexities of some previously known algorithms and

our new ones for computing D(N1, N2) . When k = 0 , both N
1
 and N

2
 are trees.

This case has been extensively studied in the literature [4, 18–24], with the most

efficient algorithms in theory and practice [19, 20, 24] running in O(n log n) time.

For k = 1 , an O(n2.687)-time algorithm based on counting 3-cycles in an auxiliary

graph was given in [17], and a faster, O(n log n)-time algorithm that transforms

the input to a constant number of instances with k = 0 was given in [25]. All

of these algorithms allow the vertices in the input networks to have arbitrary

Table 1 Previous and new results for computing D(N1, N2) , where N
1
 and N

2
 are two phylogenetic net-

works built on the same leaf label set Λ

Notation: n = |Λ| is the number of leaf labels, N = max(|V1|, |V2|) is the maximum number of verti-

ces, M = max(|E1|, |E2|) is the maximum number of edges, k = max(k1, k2) is the maximum level, and

d = max(d1, d2) is the maximum in-degree of the two networks

Year Reference k In- and out-degrees Time complexity

1980 Fortune et al. [26] Arbitrary Arbitrary Ω(N6
n

3)

2010 Byrka et al. [27] Arbitrary Binary O(N + Nk
2 + n

3)

2013 Brodal et al. [19] 0 Arbitrary O(n log n)

2019 Jansson et al. [25] 1 Arbitrary O(n log n)

2020 New Arbitrary Arbitrary O(N2
M + n

3)

2020 New Arbitrary Arbitrary O(M + Nk
2
d

2 + n
3)

1791

1 3

Algorithmica (2021) 83:1786–1828

degrees. Moreover, software implementations of the fast algorithms for k = 0 and

k = 1 are available [20, 23–25].

For k > 1 , much less is known. In a special “binary degree” case where the

phylogenetic networks’ roots have out-degree 2 and all other internal vertices

have either in-degree 2 and out-degree 1, or in-degree 1 and out-degree 2, one

can adapt a technique developed by Byrka et al. [27] for a problem related to

finding a network consistent with as many resolved triplets as possible from a

given set. They showed how to preprocess any fixed network N� = (V , E) satisfy-

ing the binary degree constraints so that checking if a resolved triplet is consist-

ent with N
′ can be done efficiently. Below, we shall refer to this preprocessing

as constructing a data structure D such that D can be used to determine whether

any specified resolved triplet is consistent with N
′ in O(1) time. The proof of

Lemma 2 in [27] showed how to build D in O(|V|3) time. According to Remark 1

in [27], this can be further improved to O(|V| + |V|k2) , where k is the level of N′ .

The rooted triplet distance can thus be computed in O(N + Nk
2 + n

3) time in a

straightforward way when N
1
 and N

2
 obey the special binary degree constraints. A

limitation of D is that it can only support consistency queries for resolved triplets,

while a network with no restrictions on the vertices’ degrees may also contain fan

triplets.

In the general case, when N
1
 and N

2
 have unbounded degrees and unbounded

levels, it is possible to compute D(N1, N2) by iterating over all 4

(

n

3

)

 triplets, and

for each such triplet applying the classic directed acyclic graph pattern matching

algorithm in [26] to determine its consistency with N
1
 and N

2
 . However, this leads

to a time complexity of Ω(N6
n

3) . To see this, let P in Theorem 3 in [26] be a

resolved triplet and G a phylogenetic network N
i
 with |V

i
| vertices. P has two

internal nodes and four edges, so the algorithm will consider

(
|V

i
|

2

)
 ways of

mapping the two internal nodes of P to vertices in N
i
 , and for each one, construct

a configuration graph G′ with Ω((|V
i
| + 1)4) vertices and look for a path in G′ .

Hence, the algorithm will use Ω(|V
i
|6) time for each resolved triplet to check if it

occurs in N
i
 , i.e., Ω(N6

n
3) time in total.

1.4 New Results

Here, we develop two algorithms that significantly improve upon the time com-

plexity of computing the rooted triplet distance in the general, unbounded case.

The running time of our first algorithm is O(N2
M + n

3) . One key insight is that

a technique of Perl and Shiloach for identifying two disjoint paths between two

pairs of vertices in a directed acyclic graph [28] can be extended to check if a fan

triplet or a resolved triplet is embedded in a phylogenetic network, leading to the

useful concepts of a fan graph and a resolved graph. Our second algorithm then

augments these ideas with so-called block trees and contracted block networks

to obtain a running time of O(M + Nk
2
d

2 + n
3) . Neither algorithm has a strictly

1792 Algorithmica (2021) 83:1786–1828

1 3

better time complexity than the other one for all possible inputs. In the special

case where N
1
 and N

2
 follow the binary degree constraints of Byrka et al. [27],

the time complexity reduces to O(N + Nk
2 + n

3) , matching the bound in [27].

We also provide implementations of our algorithms, evaluate their performance

on simulated and real datasets, and make some observations on the limitations of the

current definition of the rooted triplet distance in practice. Our prototype implemen-

tations have been packaged into the first publicly available software for computing

the triplet distance between two unrestricted networks of arbitrary levels.

1.5 Organization of the Article

Section 2 describes our first new algorithm and Sect. 3 the second one. Section 4

presents an implementation of both our algorithms and experiments illustrating their

practical performance. Finally, Sect. 5 gives some concluding remarks.

2 A First Approach

This section presents an algorithm that computes D(N1, N2) in O(N2
M + n

3) time.

Overview. The algorithm consists of a preprocessing step and a triplet distance

computation step. For the preprocessing step, we extend a technique introduced by

Perl and Shiloach [28] to construct suitably defined auxiliary graphs that compactly

encode disjoint paths within N
1
 and N

2
 . Two graphs, the fan graph and resolved

graph, are created that enable us to check the consistency of any fan triplet and any

resolved triplet, respectively, with N
1
 and N

2
 in O(1) time. In the triplet distance

computation step, we compute D(N1, N2) by iterating over all possible 4

(

n

3

)

 tri-

plets and using the fan and resolved graphs to check the consistency of each triplet

with N
1
 and N

2
 efficiently.

2.1 Preprocessing

Let G = (V , E) be a directed acyclic graph and s
1
 , t

1
 , s

2
 , and t

2
 four vertices in G.

Perl and Shiloach [28] gave an algorithm that can find two vertex-disjoint paths,

one from s
1
 to t

1
 and one from s

2
 to t

2
 , in O(|V||E|) time or determine that no such

pair of paths exists. They achieve this by creating a directed graph G� = (V �
, E

�) in

O(|V||E|) time, with the property that the existence of such a pair of vertex-disjoint

paths in G is equivalent to the existence of a directed path from ⟨s1, s2⟩ to ⟨t1, t2⟩

in G′ , where ⟨s1, s2⟩ and ⟨t1, t2⟩ are vertices in G′ . A fan triplet or resolved triplet

involves more than two vertex-disjoint paths, and below we show how to extend the

technique by Perl and Shiloach [28] to determine if a given network has the neces-

sary vertex-disjoint paths that would imply the consistency of a given triplet with

the network.

1793

1 3

Algorithmica (2021) 83:1786–1828

2.1.1 The Fan Graph

For any network N
i
= (V

i
, E

i
) , let its fan graph N

f

i
= (V

f

i
, E

f

i
) be a graph such that

V
f

i
= {s} ∪ {(u, v, w) ∣ u, v, w ∈ Vi, u ≠ v, u ≠ w, v ≠ w} and E

f

i
 includes the fol-

lowing directed edges:

1. {(u1, v1, w1) → (u2, v1, w1) ∣ u1 → u2 ∈ E
i
, h(u1) ≥ max(h(v1), h(w1))}

2. {(u1, v1, w1) → (u1, v2, w1) ∣ v1 → v2 ∈ E
i
, h(v1) ≥ max(h(u1), h(w1))}

3. {(u1, v1, w1) → (u1, v1, w2) ∣ w1 → w2 ∈ E
i
, h(w1) ≥ max(h(u1), h(v1))}

4. {s → (u, v, w) ∣ u → v ∈ E
i
, u → w ∈ E

i
}

Every 3-tuple of vertices from N
i
 with distinct entries is represented by a vertex

in N
f

i
 . Refer to Fig. 3 for an example. Note that N

f

i
 contains O(|V

i
|3) vertices and

O(|V
i
|2|E

i
|) edges, and can be constructed in O(|V

i
|2|E

i
|) time. It also has the prop-

erty described in the following lemma, which generalizes Theorem 3.1 in [28].

Lemma 2.1 Consider a network N
i
 and its fan graph N

f

i
= (V

f

i
, E

f

i
) . For any three

different leaves x, y, and z in N
i
 , vertex s can reach vertex (x, y, z) in N

f

i
 if and only if

the fan triplet x|y|z is consistent with N
i
.

Proof (←) Let x|y|z be any fan triplet consistent with N
i
 . By definition, there exists

an internal vertex q in N
i
 and three disjoint paths (except for in q), one from q to

x, one from q to y, and one from q to z. Denote these paths by (q, x0, x1,… , x
a
) ,

(q, y0, y1,… , yb) , and (q, z0, z1,… , z
c
) , where x

a
= x , yb = y , and z

c
= z . Then N

f

i

also contains the following three paths:

a5

a1 a3

a6

a2

a4

Ni

b, 4

c, 3

d, 2 f, 2

g, 1e, 1

h, 3

i, 2

(a)

(c, f, h)

(e, f, h)

(e, f, i)

(c, f, i)

(d, f, h)

(d, f, i)

N
f
i

(b)

Fig. 3 Illustrating the fan graph. a An example network N
i
 . Every internal vertex is labeled by a letter

and its height. b Consider the triplet a
3
|a

6
|a

4
 . Lemma 2.1 implies that it is consistent with N

i
 because

there is a path (s, (b, f , h), (c, f , h), (e, f , h), (e, f , i), (e, a6, i), (e, a6, a4), (a3, a6, a4)) in the fan graph N
f

i
 .

A small part of N
f

i
 is drawn here, with the two directed edges (c, f , h) → (e, f , h) and (e, f , h) → (e, f , i) in

the path from s to (a3, a6, a4) indicated

1794 Algorithmica (2021) 83:1786–1828

1 3

• (s, (q, y0, z0)) : This can be seen from q → y
0
∈ Ei and q → z

0
∈ Ei.

• ((q, y0, z0), (x0, y0, z0)) : This follows from the fact that q → x
0
∈ Ei and

h(q) > h(y0), h(z0).

• ((x0, y0, z0), … , (xa, yb, zc)) : This is because h(x
0
) > h(x

1
) > … > h(x

a
) ,

h(y
0
) > h(y

1
) > … > h(yb) , and h(z

0
) > h(z

1
) > … > h(zc) hold, and (x0,… , x

a
) ,

(y0,… , yb) , and (z0,… , z
c
) are paths in N

i
.

By concatenating the three paths above, we get a path in N
f

i
 from s to (x, y, z).

(→) Because s can reach (x, y, z) in N
f

i
 , there exists a path P in N

f

i
 of the form

P = (s, (x1, y1, z1), (x2, y2, z2), … , (xt, yt, zt)) , where x
t
= x , yt = y , and z

t
= z .

Let S1 = (x1, x2,… , x
t
) , S2 = (y1, y2,… , yt) , and S3 = (z1, z2,… , zt) , where x

t
= x ,

yt = y , and z
t
= z , be three sequences of vertices from N

i
 obtained from P.

We prove by induction that the three paths obtained by following the sequences S
1
,

S
2
 , and S

3
 are disjoint paths in N

i
 . Consider any j ∈ {1, 2,… , t} . When j = t ,

all three vertices x
t
 , yt , and z

t
 are different according to the definition of V

f

i
 .

For j < t , by the inductive hypothesis we have that (xj+1,… , xt) , (yj+1,… , yt) and

(zj+1,… , zt) yield disjoint paths. In addition, by the definition of the fan graph N
f

i
 ,

for every j ∈ {1, 2,… , t − 1} , one of the following three cases holds: (1) xj ≠ xj+1

only, (2) yj ≠ yj+1
 only, and (3) zj ≠ zj+1

 only. In case (1), note that yj = yj+1
 and

zj = zj+1
 , which means that (xj+1,… , xt) , (yj,… , yt) and (zj,… , zt) yield disjoint

paths. We now show that xj cannot appear in any of these three paths. It holds that

h(xj) ≥ max(h(yj), h(zj)) , so for � ≥ j + 1 and y
�
≠ yj , we have h(xj) > h(y𝜇) . Simi-

larly, for � ≥ j + 1 and z
�
≠ zj , we have h(xj) > h(z𝜇) . Together with the fact that xj

, yj , and zj are different according to the definition of N
f

i
 , we deduce that the three

paths obtained from (xj,… , xt) , (yj,… , yt) , and (zj,… , zt) are disjoint. Cases (2)

and (3) can be argued in the same way. Thus, following S
1
 , S

2
 , and S

3
 yields three

disjoint paths.

Finally, since P contains a directed edge from s to (x1, y1, z1) , Ni
 contains an edge

from x
1
 to y

1
 and an edge from x

1
 to z

1
 . Therefore, the three paths in N

i
 that start

at the internal vertex x
1
 and then follow the sequences S

1
 , S

2
 , and S

3
 , respectively,

are disjoint paths (except for in x
1
) to x, y, and z. By definition, x|y|z is consistent

with N
i
 . ◻

Corollary 2.2 Let N
i
 be a given network and r′ a dummy leaf attached to r(N

i
) . For

any two different leaves x and y in N
i
 that are not r′ , there are two paths from r(N

i
)

to x and y that are disjoint, except for in r(N
i
) , if and only if s can reach (r�, x, y)

in N
f

i
.

2.1.2 The Resolved Graph

For any network N
i
 , let its resolved graph N

r

i
= (Vr

i
, E

r

i
) be a graph such

that V
r

i
= {s} ∪ {(u, v) ∣ u, v ∈ V

i
, u ≠ v} ∪ {(u, v, w) ∣ u, v, w ∈ V

i
, u ≠ v, u ≠ w, v ≠ w}

and Er

i
 includes the following directed edges:

1795

1 3

Algorithmica (2021) 83:1786–1828

1. {s → (u, v) ∣ u → v ∈ E
i
}

2. {(u1, v1) → (u2, v1) ∣ u1 → u2 ∈ E
i
, h(u1) ≥ h(v1)}

3. {(u1, v1) → (u1, v2) ∣ v1 → v2 ∈ E
i
, h(v1) ≥ h(u1)}

4. {(u, v) → (u, v, w) ∣ v → w ∈ E
i
, h(v) ≥ h(u)}

5. {(u1, v1, w1) → (u2, v1, w1) ∣ u1 → u2 ∈ E
i
, h(u1) ≥ max(h(v1), h(w1))}

6. {(u1, v1, w1) → (u1, v2, w1) ∣ v1 → v2 ∈ E
i
, h(v1) ≥ max(h(u1), h(w1))}

7. {(u1, v1, w1) → (u1, v1, w2) ∣ w1 → w2 ∈ E
i
, h(w1) ≥ max(h(u1), h(v1))}

Note that Nr

i
 contains O(|V

i
|3) vertices and O(|V

i
|2|E

i
|) edges, can be constructed in

O(|V
i
|2|E

i
|) time, and has the property described in the following lemma:

Lemma 2.3 Consider a network N
i
 and its resolved graph N

r

i
= (Vr

i
, E

r

i
) . For any

three different leaves x, y, and z in N
i
 , vertex s can reach vertex (x, y, z) in Nr

i
 if and

only if the resolved triplet yz|x is consistent with N
i
.

Proof (←) If yz|x is consistent with N
i
 then N

i
 contains three paths of the following

form: (1) (x0, x1,… , x
a
) ; (2) (x0, y1,… , yj, yj+1,… , yb) ; and (3) (yj, z1,… , zc) ; such

that the three paths are vertex-disjoint except for in x
0
 and yj , the first path does not

pass through yj , and it holds that x
a
= x , yb = y , and z

c
= z.

Let x
�
 be a vertex on the first path satisfying h(x𝜇−1

) > h(yj) ≥ h(x𝜇) . Then

(s, (x0, y1), … , (x
�
, yj), (x�, yj, z1), … , (xa, yb, zc)) is a path in Nr

i
.

(→) If there is a path from s to (x, y, z) in N
r

i
 , it must be of the form

(s, (x1, y1), (x2, y2), … , (xq, yq), (xq+1, yq+1, zq+1), … , (xt, yt, zt)) , with x
t
= x ,

yt = y , and z
t
= z . By the definitions, we have x

1
→ y

1
∈ Ei , x

q
= x

q+1
 , y

q
= y

q+1
 ,

and yq → zq+1
∈ Ei . Define three sequences of vertices from N

i
 as follows:

S1 = (x1, x2,… , x
t
) , S2 = (y1, y2,… , yt) , and S3 = (zq+1, zq+2,… , zt).

We claim that following the sequences S
1
 , S

2
 , and S

3
 yields three disjoint paths

in N
i
 . (This claim is shown below.) The claim and the fact that Nr

i
 contains an edge

from s to (x1, y1) and an edge from (x
q
, y

q
) to (x

q+1, y
q+1, z

q+1) then imply that N
i
 con-

tains a path from x
1
 to x, a path from x

1
 to y

q
 , a path from y

q
 to y, and a path from y

q

to z that make yz|x consistent with N
i
.

To prove the claim, we show that the paths obtained by following the sequences

of vertices listed below are disjoint:

(a) (x1, x2,… , x
q
) and (y1, y2,… , y

q
)

(b) (xq+1, xq+2,… , xt) , (yq+1, yq+2,… , yt) , and (zq+1, zq+2,… , zt)

(c) (x1, x2,… , x
q
) and (yq+1, yq+2,… , yt)

(d) (x1, x2,… , x
q
) and (zq+1, zq+2,… , zt)

(e) (y1, y2,… , y
q
) and (zq+1, zq+2,… , zt)

(f) (y1, y2,… , y
q
) and (xq+1, xq+2,… , xt)

To prove that the paths obtained by following the sequences in (a) are disjoint

we use induction. By the definition of Nr

i
 , we know that x

q
≠ y

q
 . For the induc-

tive hypothesis, assume that the paths obtained from (xj+1,… , xq) and (yj+1,… , yq)

are disjoint. Again by definition, there are two cases: (1) xj ≠ xj+1
 only; and

1796 Algorithmica (2021) 83:1786–1828

1 3

(2) yj ≠ yj+1
 only. For (1), we have yj = yj+1

 and h(xj) ≥ h(yj) , thus for 𝜇 > j + 1

and y
�
≠ yj , we have h(xj) > h(y𝜇) . Together with xj ≠ yj , we can see that xj does

not appear in (yj,… , yq) . Case (2) can be handled in the same way. Thus, the paths

from (a) are disjoint.

For (b), the induction proof from the proof of Lemma 2.1 immediately implies

that the three paths are disjoint.

To show that the paths obtained from (c) are disjoint, let j ∈ {1,… , q} be

the largest index such that xj ≠ xq . We know from the paths in (b) that x
q
= x

q+1

does not appear in (yq+1,… , yt) , so we only need to prove that (x1,… , xj) is dis-

joint from (yq+1,… , yt) . Because xj ≠ xq , there exists some � ∈ {1,… , q} such

that (xj, y
�
) → (xq, y

�
) is in the path from s to (x, y, z). By definition xj ≠ y

�

and h(xj) ≥ h(y
�
) . We consider the following two cases: (1) h(xj) > h(y𝜇) and

(2) h(xj) = h(y
�
) . In case (1), because of h(x1),… , h(xj) > h(y𝜇),… , h(yt) , the

paths from (c) are disjoint. In case (2), let g ∈ {1,… , j} be the maximum index

such that xg ≠ xj . Since h(xg) > h(xj) = h(y𝜇) , using the same argument as in (1),

we have that (x1,… , x
g
) and (y

�
,… , yt) are disjoint. It only remains to show that xj

does not appear in (y
�
,… , yt) . If we assume that xj appears in (y

�
,… , yt) then

because y
�
≠ xj , we would have h(y𝜇) > h(xj) , which leads to a contradiction.

For the paths from (d), similar arguments as in (c) can be applied since

yq → zq+1
∈ Ei , xq

= x
q+1

 , and x
q+1

≠ z
q+1

.

To show that the paths from (e) are disjoint, because yq → zq+1
∈ Ei , we have

h(y1),… , h(yq) > h(zq+1),… , h(zt) , meaning that the paths from (e) are disjoint.

Finally, to show that the paths from (f) are disjoint, by definition we have x
q
= x

q+1

and h(yq) ≥ h(xq) . So for every 𝜇 > q + 1 and x
�
≠ x

q
 , it holds that h(yq) > h(x𝜇) .

Since we also have that x
q
≠ y

q
 , the paths from (f) are disjoint. ◻

Corollary 2.4 Let N
i
 be a given network and r′ a dummy leaf attached to r(N

i
) . For

any two different leaves x and y in N
i
 that are not r′ , there are two paths from some

internal vertex z ≠ r(Ni) in N
i
 to x and y that are disjoint, except for in z, if and only

if s can reach (r�, x, y) in Nr

i
.

2.1.3 The Fan Table and the Resolved Table

Given N
f

i
 and Nr

i
 , we define the n × n × n fan table A

f

i
 and the n × n × n resolved

table A
r

i
 as follows. For any three different leaves x, y, and z, A

f

i
[x][y][z] = 1

if the fan triplet x|y|z is consistent with N
i
 and A

f

i
[x][y][z] = 0 otherwise.

Similarly, Ar
i
[x][y][z] = 1 if the resolved triplet x|yz is consistent with N

i

and Ar
i
[x][y][z] = 0 otherwise.

With the help of Lemmas 2.1 and 2.3, both A
f

i
 and Ar

i
 can be precomputed by

depth-first traversals (starting from s) of N
f

i
 and Nr

i
 . More precisely, A

f

i
[x][y][z] = 1

if s can reach (x, y, z) in N
f

i
 and 0 otherwise, and Ar

i
[x][y][z] = 1 if s can

reach (x, y, z) in Nr

i
 and 0 otherwise.

1797

1 3

Algorithmica (2021) 83:1786–1828

Since N
f

i
 and Nr

i
 have O(|V

i
|3) vertices and O(|V

i
|2|E

i
|) edges, the time needed

to build A
f

i
 and Ar

i
 by depth-first traversals is O(|V

i
|3 + |V

i
|2|E

i
|) = O(|V

i
|2|E

i
|).

2.2 Triplet Distance Computation

Algorithm 1 summarizes the steps for computing the triplet distance between

two networks N
1
 and N

2
 . The main procedure, D(), uses Equation (1.1) to calcu-

late D(N1, N2) . It first builds the fan table A
f

i
 and the resolved table Ar

i
 for each N

i
 ,

i ∈ {1, 2} , in a preprocessing step, and then relies on the procedure S() for count-

ing shared triplets. The shared fan triplets and shared resolved triplets are counted

by iterating over all possible triplets and using the fan and resolved tables to deter-

mine the consistency of any triplet with each of the two networks. The correctness is

ensured by Lemmas 2.1 and 2.3.

To analyze the running time, building the data structures Nr

i
 and N

f

i
 for i ∈ {1, 2}

on line 3 takes O(|V
1
|2|E

1
| + |V

2
|2|E

2
|) time. Building the tables A

r

i
 and A

f

i
 on

1798 Algorithmica (2021) 83:1786–1828

1 3

lines 4’7 requires O(|V
1
|2|E

1
| + |V

2
|2|E

2
|) time as well. After the preprocessing is

finished, the procedures Sf () and S
r
() take O(n3) time because each of the

4

(

n

3

)

= O(n3) triplets can be checked in O(1) time by table lookups. Hence, the

total running time of the algorithm becomes O(|V
1
|2|E

1
| + |V

2
|2|E

2
| + n

3) . By the

definitions of N and M (see Sect. 1), the time complexity is O(N2
M + n

3) . We have

obtained the following theorem:

Theorem 2.5 The triplet distance between two networks N
1
 and N

2
 can be computed

in O(N2
M + n

3) time.

3 A Second Approach

In this section, we show how to compute D(N1, N2) in O(M + Nk
2
d

2 + n
3) time.

Overview. Algorithm 1 in the previous section computed D(N1, N2) by iterating

over all possible triplets and using the fan and resolved tables for N
1
 and N

2
 to iden-

tify which triplets were consistent with both networks. To refine this idea, for every

block of N
i
 , we will define a network of approximately the same size as the block,

which we call a contracted block network. For every such contracted block network,

we build a fan and resolved graph and the corresponding fan and resolved table. Fur-

thermore, by replacing the blocks of N
i
 by single vertices, we obtain a tree structure

called the block tree. The new algorithm in this section combines the block tree and

all the fan and resolved tables of the contracted block networks of N
i
 to efficiently

determine whether or not any specified triplet is consistent with N
i
.

3.1 Preprocessing

Let N
i
 be a network. Note that every block B of N

i
 contains one vertex whose height

is greater than the heights of all other vertices in B. This vertex will be called the

root of B and denoted by r(B). If B contains only one edge u → v and v ∈ L(N
i
)

then B is called a leaf block; otherwise, B is called a non − leafblock . Recall from

Sect. 1.2 that we assume without loss of generality that: (i) all leaves have in-degree

at most 1 (so that every leaf has a leaf block); and (ii) the input networks have no

uninformative blocks. Lemma 3.1 presents an important property of the blocks in N
i
.

Lemma 3.1 All blocks of a given network N
i
 are edge-disjoint.

Proof For the purpose of obtaining a contradiction, suppose that N
i
 has two

different blocks B1 = (V1, E1) and B2 = (V2, E2) that share an edge. Define

B = (V1 ∪ V2, E1 ∪ E2) . Let U(B
1
) , U(B

2
) , and U(B) be the subgraphs of U(N

i
) cor-

responding to B
1
 , B

2
 , and B. Since U(B

1
) and U(B

2
) are connected graphs that share

an edge, U(B) is also connected. Furthermore, if any vertex is removed from B,

1799

1 3

Algorithmica (2021) 83:1786–1828

U(B) will still be connected. Therefore, U(B
1
) and U(B

2
) are not maximal bicon-

nected subgraphs of U(N
i
) , which means B

1
 and B

2
 are not blocks of N

i
 . Hence, we

have reached a contradiction and the lemma follows. ◻

3.1.1 The Block Tree

From a high-level perspective, we will remove the cycles in U(N
i
) by replacing the

non-leaf blocks by internal nodes to obtain a rooted tree on the leaf label set L(N
i
) .

A similar idea was previously used by Choy et al. in the proof of Lemma 2 in [14] to

bound the number of reticulation vertices in a network, and later by Byrka et al. [27]

to efficiently check if a resolved triplet is consistent with a network. Below, we will

show that it is also useful for checking if a fan triplet is consistent with a network.

Formally, let T
i
= (V �

, E
�) be a rooted tree, from now on referred to as the block

tree, with vertex set V ′ and edge set E′ constructed as follows:

1. For every block Bj in N
i
 , create a vertex bj in T

i
.

2. Let B
1
 , B

2
 be two blocks in N

i
 with r(B

1
) ≠ r(B

2
) . If r(B

2
) is also a vertex in B

1

then create the edge b
1
→ b

2
 in T

i
.

3. Create a root vertex r in T
i
 . For every block Bj that has r(N

i
) as a root, create the

edge r → bj in T
i
.

4. If Bj is a leaf block, rename bj in T
i
 by the label of the leaf in Bj.

Figure 4 gives an example of a network N
i
 and its block tree T

i
 . The set of blocks

in N
i
 and the vertex set V � − r(T

i
) , i.e., the set of all vertices of T

i
 except the root, are

in one-to-one correspondence. An edge b
1
→ b

2
 in T

i
 means that the corresponding

blocks B
1
 and B

2
 in N

i
 do not have the same root and the root vertex r(B

2
) is a shared

vertex between B
1
 and B

2
 . Note that by the definition of a block, an edge connecting

two vertices can define a block of its own (for example, block B
9
 in Fig. 4).

The following lemma states some properties of T
i
.

Lemma 3.2 Let T
i
= (V �

, E
�) be the block tree of a given network N

i
 . The block tree

T
i
 is a rooted tree that has n leaves, |V �| = O(n) , and |E�| = O(n).

Proof We start by showing that T
i
 is a rooted tree. Since every edge of T

i
 is

directed, T
i
 is a directed graph. Let U(T

i
) be the undirected version of that graph.

Since U(N
i
) is connected, U(T

i
) is connected as well according to the construction.

Next, we prove that T
i
 is a tree by contradiction. Suppose that U(T

i
) has a cycle.

Then there exists a vertex b in T
i
 with in(b) > 1 . If B is the corresponding block

of b in N
i
 , this in turn implies the existence of two different blocks B

1
 and B

2
 in N

i

such that r(B) ≠ r(B
1
) and r(B) ≠ r(B

2
) , and with r(B) being a vertex in both B

1

and B
2
 . By the definition of N

i
 , the root r(N

i
) has a path to every vertex in N

i
 , so

r(B
1
) and r(B

2
) must have a common ancestor. This means that the two blocks B

1
 and

B
2
 could be merged to create an even larger block that contains both of them, contra-

dicting that B
1
 and B

2
 are blocks of N

i
 . Thus, T

i
 is a rooted tree.

1800 Algorithmica (2021) 83:1786–1828

1 3

Next, we count the number of vertices and edges in T
i
 . By assumption (i) men-

tioned above, there are no leaves with in-degree greater than 1 in N
i
 . Thus, N

i
 con-

tains n leaf blocks and there will be exactly n leaves in T
i
 . To count the internal

vertices in T
i
 , we distinguish between vertices having in-degree 1 and out-degree 1,

from now on referred to as extra vertices, and non-extra vertices. First, to count

the non-extra vertices in T
i
 , observe that if we were to contract its extra vertices,

i.e., add an edge from the parent of every such vertex u to the child of u and then

remove u, we would obtain a tree T ��
i
= (V ��

, E
��) with n leaves in which every inter-

nal vertex has in-degree 1 and out-degree at least 2. This means that |V ��| = O(n)

and |E��| = O(n) . Secondly, to count the extra vertices, observe that any extra vertex

(a)

r

b1

a12a11

b11

b12
b13

a10a9
a8a7

a6a5

b1

b6a4

a3
a2

b4

b3
a1

b2
b7 b8

a15 a16 a17 a18 a19 a20

b9

b10

a13 a14

a21a22

a23

a24 a25

a26

(b)

Fig. 4 a An example network N
i
 . The blocks containing leaves are highlighted in red. All other blocks

are colored gray. b The corresponding block tree T
i

1801

1 3

Algorithmica (2021) 83:1786–1828

corresponds to an uninformative block in N
i
 or a non-leaf block of N

i
 containing

a single edge. By assumption (ii) above, N
i
 has no uninformative blocks. By the

definition of a network, N
i
 has no vertex u with in(u) = out(u) = 1 , so every extra

vertex in T
i
 must be the parent of at least one non-extra vertex. Because T

i
 is a tree,

no two extra vertices are parents of the same non-extra vertex. If follows that there

are O(n) extra vertices in T
i
 . In total, the number of vertices and edges in T

i
 is given

by |V �| = O(n) and |E�| = O(n) . ◻

Since the set of blocks of N
i
 and the set V � − r(T

i
) are in one-to-one correspond-

ence, we also have:

Corollary 3.3 The network N
i
 contains O(n) blocks.

The following lemma shows that the block tree T
i
 can be built efficiently:

Lemma 3.4 The block tree T
i
= (V �

, E
�) of a given network N

i
 can be constructed in

O(|E
i
|) time.

Proof Constructing T
i
 when the blocks of N

i
 are given is performed by scanning the

vertices of N
i
 and the list of components that every vertex belongs to, while adding

edges to T
i
 according to the definition of V ′ and E′ . This requires O(|V

i
|) time. Find-

ing the blocks takes O(|E
i
|) time by applying the algorithm by Hopcroft and Tarjan

in [16]. Lastly, |V
i
| ≤ |E

i
| because N

i
 is a connected graph, so we can build T

i
 in

O(|E
i
|) time. ◻

3.1.2 Contracted Block Networks

Each block in N
i
 can be viewed as a network, to which we may apply the techniques

from Sect. 2 for detecting those triplets that are anchored within. To be able to do

so, we first take each block B, make some adjustments to it as described next, and

call the resulting network C
B
 the contracted block network of N

i
 corresponding to

block B. See Figs. 5 and 6 for an example of the construction.

For a given network N
i
 , a block B in N

i
 , and a vertex u in B, initialize Lu

B
 as the set

of leaves that can be reached from u without using edges in B. For example, for the

block B shown in Fig. 5, L
v3

B
= {a5, a6, a7, a19} and L

v10

B
= {a

15
} . Next, construct the

network C
B
= (V �

, E
�) with vertex set V ′ and edge set E′ and update the Lu

B
-sets by

applying the following operations:

1. Let C
B
 be a copy of N

i
.

2. Delete every edge and vertex from C
B
 that is not in B.

3. For every edge u
1
→ u

2
 in C

B
 , if in(u

1
) = out(u

1
) = in(u

2
) = out(u

2
) = 1 then con-

tract the edge as follows: Let u
2
→ u

3
 be the edge outgoing from u

2
 , create an edge

u
1
→ u

3
 , delete u

2
 and its two incident edges, and let L

u
1

B
= L

u
1

B
∪ L

u
2

B
.

1802 Algorithmica (2021) 83:1786–1828

1 3

4. For every vertex uj in C
B
 with L

uj

B
≠ ∅ , attach a child leaf sj representing the set of

leaves L
uj

B
 . Also attach another child leaf s′

j
 called a copy leaf, to be used later on

to count triplets.

5. Insert an artificial leaf r′ as a child of the root r(C
B
).

Observe that every edge between two internal vertices in C
B
 corresponds

to a path in B. For example, the edge v
8
→ v

14
 in Fig. 6 corresponds to the path

(v8, v9, v15, v14) in Fig. 5, while the edge v
13

→ v
14

 corresponds to the length-1 path

(v13, v14).

The following lemma bounds the size of C
B
:

Lemma 3.5 Let N
i
 be a network, B a block in N

i
 , and C

B
= (V �

, E
�) the contracted

block network of N
i
 that corresponds to block B. It holds that |V �| = O(k

i
d

i
+ 1) ,

|E�| = O(k
i
d

i
+ 1) , and |L(C

B
)| = O(k

i
d

i
+ 1).

v1

v2

v3

v4

v5

v6

v10

v7

v8

v9

v11

v12

v13

v14

a1 a2

a3

a4a5 a6 a7

a8 a9
a10

a11

a12

a13

a14

a15

a16

a17

a18

a19

v
′

a20

v15

Fig. 5 In this example, N
i
 is a level-3 network that contains a block B whose vertices are v2, v3,… , v15

and whose edges are drawn with solid lines. Here, r(B) = v
2

1803

1 3

Algorithmica (2021) 83:1786–1828

Proof If k
i
= 0 then B consists of a single edge of N

i
 , meaning that C

B
 is a binary

tree on three leaves (a leaf of the form sj , its copy leaf s′
j
 , and the artificial leaf r′). In

this case, |V �| = 5 , |E�| = 4 , and |L(C
B
)| = 3.

If k
i
≥ 1 , there are two possibilities. If B contains only one edge then C

B
 is a

binary tree on three leaves as in the case k
i
= 0 above. Otherwise, proceed as follows

to derive the bounds. Call a non-reticulation vertex of C
B
 that is the parent of at least

two internal vertices of C
B
 a branching vertex (e.g., v

2
 and v

7
 in Fig. 6), and a non-

reticulation vertex of C
B
 that is the parent of exactly one internal vertex a path vertex

(e.g., v
3
 , v

5
 , v

6
 , v

8
 , v

10
 , and v

13
 in Fig. 6). We apply a technique from [27] to count the

branching vertices and note that every branching vertex is the beginning of at least

one new directed path that has to end at a reticulation vertex. Since each reticulation

vertex can end at most d
i
 such paths and there are at most k

i
 reticulation vertices

in C
B
 , the number of branching vertices is at most k

i
d

i
 . Every path vertex is the par-

ent of either a branching vertex or a reticulation vertex, and every reticulation vertex

has at most d
i
 parents, so the number of path vertices is at most 2k

i
d

i
 . Therefore, the

total number of internal vertices is at most k
i
(3d

i
+ 1) . Next, at most two leaves are

v2

v3

v5

v6

v10

v7

v8
v11

v12

v13

v14

a5 a6

a10

a11
a12

a13 a14

a15

a16

a17

a18

a19

a7 a9a8

s3

s7

s8

s10

s5

s6

s12

s13

s14

r
′

s
′

3

s
′

7

s
′

8

s
′

10

s
′

6

s
′

14

s
′

13

s
′

12

a20

(a) CB

Fig. 6 The contracted block network C
B
 for the block B from Fig. 5. The internal vertices v

3

and v
4
 in B have been merged in C

B
 , and similarly for v

8
, v

9
 , and v

15
 . The set of leaves in C

B
 is

{s
i
, s

�
i
∶ i ∈ {3, 5, 6, 7, 8, 10, 12, 13, 14}}

1804 Algorithmica (2021) 83:1786–1828

1 3

attached to each internal vertex, so |L(C
B
)| ≤ 2k

i
(3d

i
+ 1) and |V �| ≤ 3k

i
(3d

i
+ 1) .

As for the edges, there are at most k
i
d

i
 edges ending at reticulation vertices, at most

k
i
d

i
 edges ending at branching vertices, at most 2k

i
d

i
 edges ending at path vertices,

and |L(C
B
)| edges ending at leaves. Adding them together gives |E�| ≤ 10k

i
d

i
+ 2k

i
.

Hence, the lemma statement holds for every k
i
≥ 0 . ◻

3.1.3 Constructing All Contracted Block Networks Efficiently

We first introduce some additional notation. For a given network N
i
 and a block B

in N
i
 , a leaf x in N

i
 is said to associate with B if there exists a vertex u in B such that

u ≠ r(B) and x ∈ L
u

B
 . As an example, in Fig. 5, the leaf a

16
 associates with B, but the

leaves a
2
 and a

3
 do not associate with B. For any leaf x associated with a block B

of N
i
 , define:

• qB(x) : The vertex in B from which there is a path to x that does not use any edges

in B. That is, x ∈ L
qB(x)

B
.

• pB(x) : The leaf in C
B
 representing x.

• p�
B
(x) : The copy leaf of pB(x).

For example, in Figs. 5 and 6, qB(a5
) = v

3
 , pB(a5

) = s
3
 , p�

B
(a

5
) = s�

3
 , qB(a8

) = v
4
 ,

and pB(a8
) = s

3
.

Lemma 3.1 yields an algorithm for constructing all block networks of N
i
 in

O(|E
i
|) time. As shown in the next lemma, by properly relabeling the leaves of N

i

and using an additional O(n2) time, it is possible to build the block networks so that

we can subsequently compute, for any block B and any leaf l ∈ L(N
i
) , the values

of qB(l) and pB(l) in O(1) time.

Lemma 3.6 For any network N
i
 , all the contracted block networks of N

i
 can be com-

puted in O(|E
i
| + n

2) time, after which qB(l) and pB(l) for any block B and any leaf

l ∈ L(N
i
) can be retrieved in O(1) time.

Proof Perform the following steps:

1. Identify all the blocks of N
i
 . Let B1 … , B

s
 be the blocks of N

i
 and let the cor-

responding vertex sets be V(B1),… , V(B
s
) . Note that for every j ∈ {1,… , s} , it

holds that V(Bj) ⊆ Vi.

2. The leaves of N
i
 are relabeled as follows. A leaf receives the label i, where

i ∈ {1, 2,… , n} , if it is the i − th leaf in order that is discovered by a depth-first

traversal of N
i
 . This traversal starts from r(N

i
) . Let u be a vertex in N

i
 and part of

the blocks B1,… , Bj . Let B′ be the block from B1,… , Bj , such that r(B�) has the

largest height among all roots of B1,… , Bj . During the traversal, every child u′

of u that is not part of B′ is visited first. This is to ensure that the labels in Lu

B′
 are

consecutive and defined by a range of numbers [uleft, uright].

1805

1 3

Algorithmica (2021) 83:1786–1828

3. For every j ∈ {1,… , s} the process of building CBj
= (Vj, Ej) is initialized as fol-

lows. Set Vj = V(Bj) . For every edge u → v in E
i
 , if both u and v are in Vj then add

that edge to Ej . Finally, for any vertex u
1
 in Vj , if L

u
1

Bj

≠ ∅ create the leaf s
1
 repre-

senting L
u

1

Bj

 , the copy leaf s′
1
 , add the edges u

1
→ s

1
 and u

1
→ s

′

1
 to Ej , and set

QBj
[l] = u

1
 for every l ∈ {uleft,… , uright}.

4. For every j ∈ {1,… , s} the edges of CBj
 are contracted, following the definition

of a contracted block network. While performing the contraction, for

every j ∈ {1,… , s} , we build the table PBj
[1,… , n] , defined so that for

every l ∈ {1,… , n} we have PBj
[l] = pBj

(l) . The value of PBj
[l] is updated once

the final set in which the leaf l will reside has been determined. After contracting

all the edges, we also add the artificial leaf r′
j
.

Step 1 is performed by using the algorithm from [16], which takes O(|E
i
|) time.

Step 2 is performed by a depth-first traversal of N
i
 , thus requiring O(|E

i
|)

time as well. Since the blocks of N
i
 are edge-disjoint (see Lemma 3.1), we

have
∑s

j=1
�Ej� ≤ �Ei� , thus the time spent on adding and contracting vertices and

edges in steps 3 and 4 is O(|E
i
|) . For every contracted block network C

B
 , we spend

O(n) time to update the Q- and P-tables. By Corollary 3.3, there are O(n) blocks, so

the time needed to update every Q- and P-table is O(n2) . Hence, the total time taken

is O(|E
i
| + n

2) . ◻

Finally, for any block B in N
i
 , we denote the fan graph of its contracted block

network C
B
 by C

f

B
 and the resolved graph of C

B
 by Cr

B
 . Moreover, we let A

f

B
 be the fan

table of C
B
 and Ar

B
 the resolved table of C

B
 . The following lemma bounds the time

required to build C
f

B
 , Cr

B
 , A

f

B
 , and Ar

B
 for all the blocks of a network N

i
.

Lemma 3.7 Given a network N
i
 and all of its contracted block networks, building C

f

B
 ,

C
r

B
 , A

f

B
 , and Ar

B
 for every block B of N

i
 takes O(|V

i
|(k2

i
d

2

i
+ 1)) time in total.

Proof We simply apply the method from Sect. 2 to each contracted block network.

To analyze the time that this will take, let {B1, B2,… , B
t
} be the blocks in N

i
 . For

each block B
x
 in N

i
 , let b(x) be the number of vertices in B

x
 , c(x) the number of

vertices in the contracted block network C
B

x
 , and e(x) the number of edges in the

contracted block network C
B

x
.

We first express the total size of the contracted block networks in terms of N.

When C
B

x
 is constructed from B

x
 , each vertex in B

x
 will either be deleted or remain

and introduce at most two leaves, so c(x) ≤ 3 ⋅ b(x) . Next, since the blocks decom-

pose N
i
 into edge-disjoint subgraphs by Lemma 3.1, and the total number of times

that blocks overlap each other is equal to the number of edges E′ in the block tree T
i
 ,

we have
t∑

x=1

b(x) ≤ �V
i
� + �E�� . By Lemma 3.2, |E�| = O(n) . Then, using n ≤ |V

i
|

gives
t∑

x=1

c(x) ≤ 3 ⋅

t∑
x=1

b(x) = O(�V
i
�).

Now, we analyze the total time for all the blocks. According to Sect. 2, building

each C
f

Bx
 , C

r

B
x

 , A
f

Bx
 , and A

r

B
x

 takes O(c(x)2e(x)) time. The total time is thus

1806 Algorithmica (2021) 83:1786–1828

1 3

t
∑

x=1

O(c(x)2e(x)) . Lemma 3.5 says that c(x) = O(k
i
d

i
+ 1) and e(x) = O(k

i
d

i
+ 1) , so

we can rewrite the total time needed as

O(
t∑

x=1

(k
i
d

i
+ 1)2c(x)) = O((k

i
d

i
+ 1)2

t∑
x=1

c(x)) = O(�V
i
�(k2

i
d

2

i
+ 1)) . ◻

3.2 Checking If a Triplet is Consistent with a Network

Sections 3.2.1 and 3.2.2 below describe how to determine if any given fan or

resolved triplet, respectively, is consistent with N
i
 in O(1) time, assuming that the

data structures from Sect. 3.1 have already been built.

A more precise definition of triplet consistency that can associate specific loca-

tions in the network to triplets that are consistent with it will be needed in this sec-

tion. Let B be a block of a network N
i
 . We say that x|y|z is a fan triplet consistent

with B if and only if there exists a vertex u in B such that there are three directed

paths in N
i
 from u to x, from u to y, and from u to z that are disjoint except for in u.

We also say that x|y|z is rooted at u in B. Since u belongs to N
i
 , this means that x|y|z

is rooted at u in N
i
 as well. Next, we say that xy|z is a resolved triplet consistent

with B if and only if there exist two vertices u and v (u ≠ v) in B such that there are

four directed paths in N
i
 from u to v, from v to x, from v to y, and from u to z that

are disjoint except for in u and v, and the path from u to z does not pass through v.

Moreover, we say that xy|z is rooted at u and v in B and in N
i
.

Observe that if x|y|z is a fan triplet consistent with a block B, then it is also con-

sistent with N
i
 . In the same way, if xy|z is a resolved triplet consistent with B, it is

also consistent with N
i
.

3.2.1 Checking a Fan Triplet

First, we show how to determine if a given fan triplet x|y|z is consistent with a given

block B (Lemma 3.8). The procedure, named ISFANINBLOCK, requires that the lowest

common ancestor (in the block tree T
i
) of x and y, the lowest common ancestor of x

and z, and the lowest common ancestor of y and z are the same, and that this node

corresponds to the block B being examined.

After that, the procedure ISFANINBLOCK is used as a subroutine in another proce-

dure, named ISFAN, to determine if a given fan triplet x|y|z is consistent with a net-

work (Lemma 3.9). Whenever ISFANINBLOCK’s requirement on the lowest common

ancestors cannot be met, ISFAN instead considers the different cases for the locations

of the lowest common ancestor of every pair (x, y), (x, z), and (y, z) in T
i
 . Since every

vertex in T
i
 except r(T

i
) corresponds to a block in N

i
 , it can then apply the available

data structures to determine if N
i
 has the necessary disjoint paths.

1807

1 3

Algorithmica (2021) 83:1786–1828

Lemma 3.8 Let N
i
 be a given network and T

i
 its block tree, and suppose that the

preprocessing from Lemma 3.7 has been performed on N
i
 . Consider any x, y, z ∈ Λ

such that the lowest common ancestor of every pair (x, y), (x, z), and (y, z) is a node

w in T
i
 . If w ≠ r(T

i
) , Algorithm 2 determines whether or not the fan triplet x|y|z is

consistent with the block B in N
i
 corresponding to w in O(1) time.

Proof For every l ∈ {x, y, z} , we let pl = pB(l) , p�
l
= p�

B
(l) , ql = qB(l) , and h

l
 be the

height of ql in N
i
 . By construction (see Lemmas 3.4 and 3.6), we know that p

x
 , p

y
 ,

and p
z
 are not the root of C

B
 . The algorithm uses the tables Q and P to check all the

possible cases for the values of p
x
 , p

y
 , p

z
 , q

x
 , q

y
 , and q

z
 , and return a true or false

value, indicating a positive and a negative answer respectively. We have the follow-

ing cases:

1. p
x
= p

y
= p

z
 :

1808 Algorithmica (2021) 83:1786–1828

1 3

(a) hx = hy = hz : We have q
x
= q

y
= q

z
 and x|y|z is rooted at q

x
 . Hence, x|y|z is

consistent with B (e.g., a
5
|a

6
|a

7
 in Fig. 5).

(b) ((hx = hy) ∧ (hx > hz)) ∨ ((hx = hz) ∧ (hx > hy)) ∨ ((hy = hz) ∧ (hy > hx)) .

W.l.o.g., assume true for ((hx = hy) ∧ (hx > hz)) : Then, we have

q
x
= q

y
∧ q

x
≠ q

z
 and x|y|z is rooted at q

x
 . Hence, x|y|z is consistent with B

(e.g., a
5
|a

6
|a

8
 in Fig. 5).

(c) hx ≠ hy ≠ hz : Then q
x
≠ q

y
≠ q

z
 , thus x|y|z is not consistent with B (e.g.,

a
13
|a

14
|a

20
 in Fig. 5).

2. ((p
x
= p

y
) ∧ (p

x
≠ p

z
)) ∨ ((p

x
= p

z
) ∧ (p

x
≠ p

y
)) ∨ ((p

y
= p

z
) ∧ (p

y
≠ p

x
)) . W.l.o.g.,

assume true for (p
x
= p

y
∧ p

x
≠ p

z
) :

(a) hx = hy : We have q
x
= q

y
 . If p′

x
|p

x
|p

z
 is a fan triplet in C

B
 , then x|y|z is rooted

at q
x
 , thus x|y|z is consistent with B (e.g., a

8
|a

9
|a

15
 in Fig. 5). If p′

x
|p

x
|p

z
 is

not a fan triplet in C
B
 , x|y|z is not rooted at any vertex in B, thus x|y|z is not

consistent with B (e.g., a
8
|a

9
|a

11
 in Fig. 5).

(b) hx ≠ hy : Then q
x
≠ q

y
 and either q

x
 or q

y
 was contracted when creating C

B
 .

Moreover, both x and y are now in the set of leaves defined by p
x
 . Since we

also have p
z
≠ p

x
 , the triplet x|y|z is not consistent with B (e.g., a

7
|a

8
|a

15
 in

Fig. 5).

3. p
x
≠ p

y
≠ p

z
 : If p

x
|p

y
|p

z
 is consistent with C

B
 , then there exists a vertex u in B

such that x|y|z is rooted at u. Hence, x|y|z is consistent with B (e.g., a
8
|a

11
|a

16
 in

Fig. 5). If p
x
|p

y
|p

z
 is not consistent with C

B
, x|y|z is not rooted at any vertex in B,

thus x|y|z is not consistent with B (e.g., a
14
|a

16
|a

17
 in Fig. 5).

In every case above, testing if a fan triplet is consistent with C
B
 translates to finding

a path that starts from s in C
f

B
 and ends in a vertex of C

f

B
 defined by the leaves of the

fan triplet. Hence, every case can be handled in O(1) time. In Algorithm 2, the above

cases are summarized in a procedure. ◻

1809

1 3

Algorithmica (2021) 83:1786–1828

Lemma 3.9 Let N
i
 be a given network and T

i
 its block tree, and suppose that the

preprocessing from Lemma 3.7 has been performed on N
i
 . For any x, y, z ∈ Λ , Algo-

rithm 3 determines whether or not the fan triplet x|y|z is consistent with N
i
 in O(1)

time.

Proof For a block B of N
i
 and a vertex u in B that can reach a leaf x of N

i
 , define h

B
(x)

to be the height of qB(x) in N
i
 . In Algorithm 3 we have the procedure for testing the

consistency of the fan triplet x|y|z. It considers the following cases:

1. x|y|z is consistent with T
i
 : Let w be the lowest common ancestor of x, y, and z in

T
i
 .

1810 Algorithmica (2021) 83:1786–1828

1 3

(a) w = r(T
i
) : x|y|z is rooted at r(N

i
) , thus x|y|z is consistent with N

i

(e.g., a
23
|a

9
|a

20
 in Fig. 4).

(b) w ≠ r(T
i
) : w corresponds to a block B in N

i
 , thus we use Lemma 3.8 to

determine if x|y|z is consistent with B. If x|y|z is consistent with B, then

it is also consistent with N
i
 . If x|y|z is not consistent with B, then it is not

consistent with N
i
 (e.g., a

3
|a

9
|a

12
 in Fig. 4).

2. xy|z ∨ xz|y ∨ yz|x is consistent with T
i
 . Assume w.l.o.g. that xy|z is consistent

with T
i
 . Let w = lca(x, y) in T

i
 and � = lca(x, z) in T

i
 , and let B be the block in N

i

corresponding to w and F the block in N
i
 corresponding to � :

(a) � is not the parent of w in T
i
 : then x|y|z is not rooted at any vertex in N

i
 , thus

x|y|z is not consistent with N
i
 (e.g., a

2
|a

4
|a

13
 in Fig. 4).

(b) � is the parent of w in T
i
 . By the definition of T

i
 , B is rooted at a vertex u of

F that is not r(F):

 i. (pB(x) = pB(y)) : then x|y|z is not rooted at any vertex in N
i
 , thus x|y|z

is not consistent with N
i
 (e.g., a

2
|a

3
|a

4
 in Fig. 4).

 ii. (pB(x) ≠ pB(y)) ∧ (� = r(Ti)) : If r
�|pB(x)|pB(y) is consistent with C

B
 ,

where r′ is the dummy leaf in C
B
 (see Corollary 2.2), then x|y|z is

rooted at r(N
i
) , thus x|y|z is consistent with N

i
 (e.g., a

1
|a

11
|a

15
 in

Fig. 4). Otherwise, x|y|z is not rooted at any vertex in N
i
 , thus x|y|z

is not consistent with N
i
 (e.g., a

12
|a

13
|a

15
 in Fig. 4).

 iii. (pB(x) ≠ pB(y)) ∧ (� ≠ r(Ti)) :

A. (pF(x) = pF(z)) ∧ (hF(z) ≤ hF(x)) : Since B is rooted at a vertex of F,

we have qF(x) = qF(y) , thus hF(x) = hF(y) . Using Corollary 2.2, if

r�|pB(x)|pB(y) is a fan triplet in C
B
 , where r′ is the dummy leaf in

C
B
 , then x|y|z is rooted at qF(x) , thus x|y|z is a fan triplet in N

i
 (e.g.,

a
1
|a

4
|a

8
 in Fig. 4). Otherwise, x|y|z is not rooted at any vertex in N

i
 ,

thus x|y|z is not consistent with N
i
 (e.g., a

1
|a

24
|a

8
 in Fig. 4).

B. (pF(x) = pF(z)) ∧ (hF(z) > hF(x)) : Since B is rooted at a vertex of F,

we have qF(x) = qF(y) and hF(x) = hF(y) . Hence, x|y|z is not consist-

ent with N
i
 (e.g., a

1
|a

4
|a

21
 in Fig. 4).

C. pF(x) ≠ pF(z) : Using Corollary 2.2, if r�|pB(x)|pB(y) is a fan triplet

in C
B
 , where r′ is the dummy leaf in C

B
 , and pF(x)|p

�
F
(x)|pF(z) is a

fan triplet in C
F
 , then x|y|z is rooted at qF(x) . Hence, x|y|z is consist-

ent with N
i
 (e.g., a

1
|a

4
|a

9
 in Fig. 4). Otherwise, x|y|z is not rooted at

any vertex of N
i
 , thus x|y|z is not consistent with N

i
 (e.g., a

1
|a

4
|a

12

in Fig. 4).

 ◻

1811

1 3

Algorithmica (2021) 83:1786–1828

3.2.2 Checking a Resolved Triplet

The strategy for determining if a given resolved triplet xy|z is consistent with a

network is analogous to the case of fan triplets just described. The procedure

ISRESOLVEDINBLOCK (see Lemma 3.10) first considers consistency with a block B

in the case where it holds in the block tree T
i
 that the lowest common ancestor

of x and y, the lowest common ancestor of x and z, and the lowest common ances-

tor of y and z are the same. Next, the procedure ISRESOLVED (see Lemma 3.11)

uses ISRESOLVEDINBLOCK and the available data structures to take care of the gen-

eral case.

Lemma 3.10 Let N
i
 be a given network and T

i
 its block tree, and suppose that the

preprocessing from Lemma 3.7 has been performed on N
i
 . Consider any x, y, z ∈ Λ

such that the lowest common ancestor of every pair (x, y), (x, z), and (y, z) is a node

w in T
i
 . If w ≠ r(T

i
) , Algorithm 4 determines whether or not the resolved triplet xy|z

is consistent with the block B in N
i
 corresponding to w in O(1) time.

Proof Like in the case of fan triplets in Lemma 3.8, for every l ∈ {x, y, z} , we

let pl = pB(l) , p
�
l
= p�

B
(l) , ql = qB(l) , and h

l
 be the height of ql in N

i
 . By construction

(see Lemmas 3.4 and 3.6), we know that p
x
 , p

y
 , and p

z
 are not the root of C

B
 . The

algorithm uses the tables Q and P to check all the possible cases for the values of

p
x
 , p

y
 , p

z
 , q

x
 , q

y
 , and q

z
 , and return a true or false value, indicating a positive and a

negative answer respectively. We have the following cases:

1812 Algorithmica (2021) 83:1786–1828

1 3

1. p
x
= p

y
= p

z
 :

1. (hz > hx) ∧ (hz > hy) . W.l.o.g., let hx ≥ hy : Then, xy|z is rooted at q
z
 and q

x
 ,

thus xy|z is a resolved triplet in B (e.g., a
8
a

9
|a

6
 in Fig. 5).

2. (hz ≤ hx) ∨ (hz ≤ hy) : Because p
x
= p

y
= p

z
 , xy|z is not rooted at any pair of

vertices in B, thus xy|z is not consistent with B (e.g., a
8
a

6
|a

9
 in Fig. 5).

3. (p
x
= p

y
) ∧ (p

x
≠ p

z
) . W.l.o.g., assume hx ≥ hy : If p

′

x
p

x
|p

z
 is consistent with C

B
 ,

there exists u ≠ q
x
 in B such that xy|z is rooted at u and q

x
 in B. Hence, xy|z is

consistent with B (e.g., a
5
a

8
|a

17
 in Fig. 5). If p′

x
p

x
|p

z
 is not consistent with C

B
 , xy|z

is not rooted at any pair of vertices in B, thus xy|z is not consistent with B (e.g.,

a
5
a

8
|a

15
 in Fig. 5).

4. ((p
x
= p

z
) ∧ (p

x
≠ p

y
)) ∨ ((p

y
= p

z
) ∧ (p

y
≠ p

x
)) . W.l.o.g., assume (p

x
= p

z
) ∧ (p

x
≠ p

y
) :

1. hz > hx : If p
′

x
|p

x
|p

y
 is a fan triplet in C

B
 , then xy|z is rooted at q

z
 and q

x
 ,

thus xy|z is consistent with B (e.g., a
14

a
17
|a

13
 in Fig. 5). If p

′

x
|p

x
|p

y
 is not

consistent with C
B
, xy|z is not rooted at any pair of vertices in B, thus xy|z is

not consistent with B (e.g., a
14

a
16
|a

13
 in Fig. 5.).

2. hz ≤ hx : Since p
x
= p

z
 , the resolved triplet xy|z cannot be consistent

with B (e.g., a
14

a
17
|a

20
 in Fig. 5).

3. p
x
≠ p

y
≠ p

z
 : If p

x
p

y
|p

z
 is consistent with C

B
 , then there exist two different verti-

ces u, v in B such that xy|z is rooted at u and v, thus xy|z is consistent with B (e.g.,

a
12

a
13
|a

18
 in Fig. 5). If p

x
p

y
|p

z
 is not consistent with C

B
 , xy|z is not rooted at any

pair of vertices in B, thus xy|z is not consistent with B (e.g., a
12

a
18
|a

13
 in Fig. 5).

Similarly to fan triplets, testing if a resolved triplet is consistent with C
B
 translates to

finding a path that starts from s in Cr

B
 and ends in a vertex of Cr

B
 defined by the leaves

of the resolved triplet. Hence, every case can be handled in O(1) time. Algorithm 4

summarizes the above cases in a procedure. ◻

1813

1 3

Algorithmica (2021) 83:1786–1828

Lemma 3.11 Let N
i
 be a given network and T

i
 its block tree, and suppose that the

preprocessing from Lemma 3.7 has been performed on N
i
 . For any x, y, z ∈ Λ , Algo-

rithm 5 determines whether or not the resolved triplet xy|z is consistent with N
i
 in

O(1) time.

Proof For a block B of N
i
 and a vertex u in B that can reach a leaf x of N

i
 ,

define h
B
(x) to be the height of qB(x) in N

i
 . In Algorithm 5 we have the procedure for

testing the consistency of the resolved triplet xy|z. We consider the following cases,

which are similar to the cases for fan triplets in Lemma 3.9:

1. x|y|z is consistent with T
i
 : Let w be the lowest common ancestor of x, y, and z in T

i
 .

1814 Algorithmica (2021) 83:1786–1828

1 3

(a) w = r(T
i
) : xy|z is not rooted at any pair of vertices in N

i
 , thus xy|z is not

consistent with N
i
 (e.g., a

23
a

9
|a

20
 in Fig. 4).

(b) w ≠ r(T
i
) : w corresponds to a block B in N

i
 , thus we use Lemma 3.10 to

determine if xy|z is consistent with B. If xy|z is consistent with B, then it is

also consistent with N
i
 . If xy|z is not consistent with B, then it is not consist-

ent with N
i
 (e.g., a

1
a

9
|a

12
 in Fig. 4).

2. xy|z ∨ xz|y ∨ yz|x is consistent with T
i
 . Assume w.l.o.g. that xy|z is consistent

with T
i
 . Let w = lca(x, y) in T

i
 and � = lca(x, z) in T

i
 , and let B be the block in N

i

corresponding to w and F the block in N
i
 corresponding to � :

(a) � is not the parent of w in T
i
 : then there exists a vertex u in B and a vertex v

in F such that xy|z is rooted at v and u, thus xy|z is consistent with N
i
 (e.g.,

a
2
a

4
|a

13
 in Fig. 4).

(b) � is the parent of w in T
i
 . By the definition of T

i
 , B is rooted at a vertex u of

F that is not r(F). We consider the following cases:

 i. pB(x) = pB(y) : W.l.o.g., assume hB(x) > hB(y) . Then, xy|z is root-

ed at either r(B) and qB(x) , or qF(z) and qB(x) , or r(F) and qB(x) .

Hence, xy|z is consistent with N
i
 (e.g., a

2
a

3
|a

4
 in Fig. 4).

 ii. (pB(x) ≠ pB(y)) ∧ (� = r(Ti)) : Using Corollary 2.4, if we have that

pB(x)pB(y)|r
� is consistent with C

B
 , where r′ is the dummy leaf in

C
B
 , then there exists a vertex u in B such that xy|z is rooted at r(N

i
)

and u. Hence, xy|z is consistent with N
i
 (e.g., a

11
a

13
|a

15
 in Fig. 4).

Otherwise, xy|z is not rooted at any pair of vertices in N
i
 , thus xy|z

is not consistent with N
i
 (e.g., a

1
a

13
|a

15
 in Fig. 4).

 iii. (pB(x) ≠ pB(y)) ∧ (� ≠ r(Ti)) :

A. (pF(x) = pF(z)) ∧ (hF(z) ≤ hF(x)) : Since B is rooted at a vertex of F,

we have qF(x) = qF(y) , thus hF(x) = hF(y) . Using Corollary 2.4, if

pB(x)pB(y)|r
� is consistent with C

B
 , where r′ is the dummy leaf in C

B
 ,

then there exists a vertex u in B such that xy|z is rooted at qF(x) and

u. Hence, xy|z is consistent with N
i
 (e.g., a

1
a

4
|a

8
 in Fig. 4). Other-

wise, xy|z is not rooted at any pair of vertices in N
i
 , thus xy|z is not

consistent with N
i
 (e.g., a

1
a

25
|a

22
 in Fig. 4).

B. (pF(x) = pF(z)) ∧ (hF(z) > hF(x)) : Since B is rooted at a vertex of F,

we have qF(x) = qF(y) and hF(x) = hF(y) . Then, there exists a vertex

u in B such that xy|z is rooted at qF(z) and u, thus xy|z is consistent

with N
i
 (e.g., a

1
a

4
|a

21
 in Fig. 4).

C. pF(x) ≠ pF(z) : Using Corollary 2.4, if pB(x)pB(y)|r
� is consistent with

C
B
 , where r′ is the dummy leaf in C

B
 , then there exists a vertex u

in B such that xy|z is rooted at either r(B) and u, or qF(z) and u, or

r(F) and u. If pF(x)p
�
F
(x)|pF(z) is consistent with C

F
 , then w.l.o.g. if

hF(x) > hF(y) we have that xy|z is rooted at some vertex u of F and

qF(x) . In both cases, xy|z is consistent with N
i
 (e.g., a

1
a

4
|a

12
 in Fig. 4).

1815

1 3

Algorithmica (2021) 83:1786–1828

If both cases are false, xy|z is not rooted at any pair of vertices in N
i
 ,

thus xy|z is not consistent with N
i
 (e.g., a

1
a

25
|a

26
 in Fig. 4).

 ◻

3.3 Triplet Distance Computation

Our second algorithm for computing the triplet distance between two given net-

works N
1
 and N

2
 is listed in Algorithm 6. It has the same basic structure as the algo-

rithm in Sect. 2.2, but it applies the procedures presented in Sect. 3.2.1 and 3.2.2 to

check triplet consistency. The main procedure is named D(). In the preprocessing

step, for i ∈ {1, 2} , the algorithm builds the block tree T
i
 , an n × n table for T

i
 in

order to later answer lowest common ancestor queries between pairs of leaves in T
i

in O(1) time, all the contracted block networks of N
i
 , and finally, for every block B,

the fan graph C
f

B
 and the resolved graph Cr

B
 as well as the corresponding A

f

B
 - and

A
r

B
-tables for the contracted block network C

B
 . The algorithm then calls the proce-

dure S() to count shared fan and resolved triplets, which is done by enumerating all

possible triplets and calling ISFAN and ISRESOLVED to see which of them are consist-

ent with both N
1
 and N

2
 . The final answer is calculated according to Equation (1.1).

1816 Algorithmica (2021) 83:1786–1828

1 3

From Lemma 3.4, computing T
1
 and T

2
 requires O(|E

1
| + |E

2
|) time. Building

the two tables for answering lowest common ancestor queries in T
1
 and T

2
 takes

O(n2) time by bottom-up traversals. From Lemma 3.6, constructing all the con-

tracted block networks requires O(|E
1
| + |E

2
| + n

2) time. From Lemma 3.7, the

total time required to build C
f

B
 , Cr

B
 , A

f

B
 , and A

r

B
 for every block B of N

1
 and N

2

is O(|V
1
|(k2

1
d

2

1
+ 1) + |V

2
|(k2

2
d

2

2
+ 1)) . Since |V

i
| = O(|E

i
|) , the preprocessing time

sums up to O(|E
1
| + |E

2
| + |V

1
|k2

1
d

2

1
+ |V

2
|k2

2
d

2

2
+ n2).

Using Lemmas 3.9 and 3.11, after the preprocessing step we can determine the

consistency of a triplet with N
1
 or N

2
 in O(1) time. Since the number of triplets

that need to be checked is exactly 4

(

n

3

)

 , the total running time of the algorithm

is O(|E
1
| + |E

2
| + |V

1
|k2

1
d

2

1
+ |V

2
|k2

2
d

2

2
+ n3) . Using the definitions of N, M, k,

and d from Sect. 1, the running time can be expressed as O(M + Nk
2
d

2 + n
3) .

Hence, we obtain the following theorem:

1817

1 3

Algorithmica (2021) 83:1786–1828

Theorem 3.12 The triplet distance between two networks N
1
 and N

2
 can be com-

puted in O(M + Nk
2
d

2 + n
3) time.

4 Implementation and Experiments

This section presents the implementations of the two algorithms from Sects. 2 and 3,

and experimental results demonstrating their practical performance. Both simulated

and real datasets were used in the experiments.

4.1 Algorithm Implementation

From here on, the algorithm from Sect. 2 will be referred to as NTDfirst and the

algorithm from Sect. 3 as NTDsecond. Both algorithms were implemented in the

C++ programming language and the source code is publicly available at:

https://github.com/kmampent/ntd
Since no other implementations for computing the rooted triplet distance between

two networks of arbitrary levels are available, the correctness of our program code

was verified by trying a large number of pairs of input networks under varying

parameters and making sure that the output of NTDfirst (which is simple to imple-

ment) was identical to the output of NTDsecond in all cases.

4.2 The Setup

The experiments were performed on a machine with 16GB RAM and Intel(R)

Core(TM) i5-3470 CPU @ 3.20GHz. The operating system was Ubuntu 16.04.2

LTS, and the compiler used was g++ 5.4 with cmake 3.11.0.

4.3 Experiment 1: Performance

The first set of experiments were designed to measure the running times and mem-

ory usage of our implementations of NTDfirst and NTDsecond. To do so system-

atically, we used simulated datasets. The Input. Given three parameters n, p, and e,

where n ≥ 1 is an integer, 0 ≤ p ≤ 1 , and e ≥ 0 is an integer, an input network N
′

was built according to the following method:

• Generate a random rooted binary tree T with n leaves in the uniform model [29].

• For each internal vertex w in T except r(T), contract the edge between the parent

of w and w with probability p.

• For each vertex w in T, let d(w) be the number of edges on the path from r(T)

to w. Let N�
= T .

1818 Algorithmica (2021) 83:1786–1828

1 3

• Until e edges have been added or it is impossible to add any more edges: Add

an edge between two vertices in N′ chosen uniformly at random, under the con-

straint that an edge u → v is created in N′ only if d(u) < d(v) . (In other words, if

the total number of edges that can be added is y and y < e , then only add those

y edges.)

Experimental Results. We applied NTDfirst and NTDsecond to pairs of net-

works generated with the method above for varying values of n, p, and e, and meas-

ured their running times and memory usage. In the graphs shown below, every data

point corresponds to the average taken over 30 runs with a set of fixed parameters.

Reticulation events are typically rare in nature [30], so we used relatively small val-

ues for e, i.e., e ≤ 50 when n ≤ 500 , to make the experiments more realistic.

The results of Experiment 1 are reported below.

1. The two algorithms’ running times and memory usage increase as n increases

according to the plots in Figs. 7 and 8. The first figure shows the CPU time in

seconds taken when p = 0 and e ∈ {10, 20, 30, 40, 50} . For NTDfirst we used

10 ≤ n ≤ 230 , and for NTDsecond we used 10 ≤ n ≤ 500 . Space is the reason

behind the restrictions on n. As can be seen in Fig. 8a, at n = 230 the memory

usage of NTDfirst is getting close to the limit of the available 16GB RAM.

When n ≥ 240 , the memory requirements exceed the limit, and the operating

system initiates highly time-consuming communication with the disk.

2. Both algorithms take more time as the parameter e increases due to the additional

edges in the generated networks, with NTDsecond suffering more than NTD-

first. Again, see Fig. 7. The explanation for this behavior is as follows. The main

purpose of extending the algorithm from Sect. 2 in Sect. 3 was to avoid having

NTDfirst, p=0

0

10

20

10 50 90 130 170 210

n

c
p

u
 t
im

e
 (

s
e
c
o
n
d

s
)

e 10 20 30 40 50

(a)

NTDsecond, p=0

0

10

20

30

40

50

0 100 200 300 400 500

n

c
p

u
 t
im

e
 (

s
e
c
o
n
d

s
)

e 10 20 30 40 50

(b)

Fig. 7 The running times of NTDfirst and NTDsecond for increasing values of n and with p = 0 and

e ∈ {10, 20, 30, 40, 50}

1819

1 3

Algorithmica (2021) 83:1786–1828

to build the highly time- and memory-consuming fan and resolved graph on the

entire input network, and instead build several such graphs on smaller blocks.

Figure 9 shows that a larger value of e implies a higher level k as well as fewer

non-leaf blocks in N′ , which in turn implies more time spent by NTDsecond

building the fan and resolved graphs. An extreme situation is when e is so large

that N′ has a really small number of non-leaf blocks, one of which is roughly as

large as N′ itself. Then, given that the preprocessing of NTDsecond is more

complex than that of NTDfirst, NTDsecond will be slower than NTDfirst.

NTDfirst, p=0

9

12

15

190 200 210 220 230

n

s
p

a
c
e
 (

G
B

)
e 10 20 30 40 50

(a)

NTDsecond, p=0

0

3

6

9

12

0 100 200 300 400 500

n

s
p

a
c
e
 (

G
B

)

e 10 20 30 40 50

(b)

Fig. 8 The memory usage of the two algorithms for increasing values of n and with p = 0 and

e ∈ {10, 20, 30, 40, 50} , as reported by the Maximum Resident Size parameter when calling the execut-

able of each algorithm with /usr/bin/time -v

p=0

10

20

30

40

50

0 100 200 300 400 500

n

k

e 10 20 30 40 50

(a)

p=0

50

100

150

200

10 20 30 40 50

e

n
u
m

b
e
r

o
f
n
o
n
-l
e
a
f
b

lo
c
k
s

n 150 230 310

(b)

Fig. 9 The effect of e and n on k (the generated network’s level) and the amount of non-leaf blocks

1820 Algorithmica (2021) 83:1786–1828

1 3

An example of where this happens can be found in Fig. 10a when the parameters

are n = 90 , p = 0 , and e = 50.

 In contrast, when p is large, e.g., p = 0.8 in Fig. 10b, the effect of e on the run-

ning times is small. This holds especially for NTDsecond. There will be fewer

internal vertices in the generated networks, which means that the number of edges

that can be added decreases as well.

3. The effect of the parameter p on the relative running times of the two algorithms

is shown in Fig. 11. In general, the difference in the two algorithms’ running

times becomes smaller as the value of p increases. For certain combinations of

the parameters such as n = 90 , p = 0 , and e = 50 in Fig. 11c, NTDfirst is faster

than NTDsecond, as observed earlier.

4.4 Experiment 2: Limitations of the Rooted Triplet Distance

The second set of experiments applied the algorithms to real datasets. The goal was

to see how informative the current definition of the rooted triplet distance is in prac-

tice when comparing phylogenetic networks, and to investigate any potential short-

comings. The Input. For the real datasets, we borrowed six networks from Table S4

in [31] that describe biologically motivated alternative ‘scenarios’ for the evolution-

ary history of the Viola genus. They are named N
A
 , N

B
 , N

C
 , N

D
 , N

E
 , and N

F
 below.

The first five networks correspond to the five scenarios A, B, C, D, and E in [31],

and N
F
 is “Scenario E, CHAM and MELVIO resolved”, which is actually the same

as scenario E but with two of the subclades (overlapping subtrees) expanded.

p=0

0

5

10

15

20

50 90 130 170 210

n

d
if
fe

re
n

c
e

 i
n

 c
p

u
 t

im
e

 (
s
e

c
o

n
d

s
)

e 10 20 30 40 50

(a)

p=0.8

0.0

2.5

5.0

7.5

50 90 130 170 210

n

d
if
fe

re
n

c
e

 i
n

 c
p

u
 t

im
e

 (
s
e

c
o

n
d

s
)

e 10 20 30 40 50

(b)

Fig. 10 The running time of NTDfirst minus the running time of NTDsecond for

e ∈ {10, 20, 30, 40, 50} and p ∈ {0, 0.8} . a Observe that when n = 90 , p = 0 , and e = 50 , the difference

is negative, which means NTDfirst is faster than NTDsecond. b When p is large (like the case p = 0.8

shown here), the number of edges that can be added to the generated networks is small and the differ-

ences in running times for varying values of e less significant

1821

1 3

Algorithmica (2021) 83:1786–1828

Only two of the six networks are shown here; the network N
B
 is displayed in

Fig. 12a, and N
D
 in Fig. 12b. For the other four networks’ branching structures, the

reader is referred to Table S4 in [31].

The networks in Table S4 in [31] were inferred from a set of multilabeled trees.

(A multilabeled tree is a generalization of a phylogenetic tree in which identical leaf

labels are allowed to occur more than once.) The method that was used to construct

the networks is explained in detail in Step 3 (“Inference of the Most Parsimonious

Network from Multilabeled Gene Trees”) in the MATERIALS AND METHODS-section

of [31]. Table S4 in [31] also provides these multilabeled trees. In order to repre-

sent the multilabeled trees as distinctly leaf-labeled trees as well, [31] replaced

any repeated leaf label x by unique leaf labels of the form x.1, x.2,… , x.i ; e.g., one

e=10

0

5

10

15

20

50 90 130 170 210

n

d
if
fe

re
n
c
e
 i
n
 c

p
u
 t
im

e
 (

s
e
c
o
n
d

s
)

p 0 0.2 0.5 0.8

(a)

e=30

0

5

10

15

20

50 90 130 170 210

n

d
if
fe

re
n
c
e
 i
n
 c

p
u
 t
im

e
 (

s
e
c
o
n
d

s
)

p 0 0.2 0.5 0.8

(b)

e=50

0

5

10

15

50 90 130 170 210

n

d
if
fe

re
n
c
e
 i
n
 c

p
u
 t
im

e
 (

s
e
c
o
n
d

s
)

p 0 0.2 0.5 0.8

(c)

Fig. 11 The effect of different values of p on the running time of NTDfirst minus the running time

of NTDsecond, for e ∈ {10, 30, 50} . When n = 90 , p = 0 , and e = 50 , NTDfirst is faster than NTD-

second

1822 Algorithmica (2021) 83:1786–1828

1 3

occurrence of the leaf label Tridens was changed to Tridens.1, another one to

Tridens.2, another one to Tridens.3, and so on. These (distinctly leaf-labeled)

trees were also considered in our experiments and are referred to as T
A
 , T

B
 , T

C
 , T

D
 ,

T
E
 , and T

F
.

The size of the leaf label set of T
A
 , T

B
 , T

C
 , T

D
 , T

E
 , and T

F
 is 16, 20, 21, 21, 22, and

50 leaves, respectively. For every s ∈ {A, B, C, D, E} , N
s
 contains 8 leaves, and N

F

contains 16 leaves. Note that for all s ∈ {A, B, C, D, E, F} , the number of leaf labels

in T
s
 is larger than than the number of leaf labels in N

s
 due to the leaf relabeling pro-

cess just described to obtain distinctly leaf-labeled trees.

In our implementations, the input trees are represented in standard Newick format

and the input networks in extended Newick format [32]. We employ the graph-the-

oretic standard adjacency list to store the input networks, making it easy to support

different input formats at the same time.

Experimental Results. We used the trees T
s
 and networks N

s
 , where

s ∈ {A, B, C, D, E, F} , from Table S4 in [31], as explained above. In the experi-

ments, we computed the rooted triplet distance between each T
s
 and N

s

and also between pairs of these networks. According to Equation (1.1),

D(T
s
, N

s
) = S(T

s
, T

s
) + S(N

s
, N

s
) − 2S(T

s
, N

s
) . To make L(T

s
) = L(N

s
) when com-

puting D(T
s
, N

s
) , if a leaf x in N

s
 appeared as several leaves x.1,… , x.i in T

s
 then

we replaced x in N
s
 by leaves labeled x.1,… , x.i , attaching each of them as a child

of the parent of x. The maximum time spent by any of our algorithms was when

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

ChileniumErpetion

NB .

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

Chilenium

Erpetion

(a) The network (b) The network ND.

Fig. 12 The networks N
B
 and N

D
 from [31]

1823

1 3

Algorithmica (2021) 83:1786–1828

computing D(T
F

, N
F
) , with NTDfirst requiring only 0.18 seconds to run and NTD-

second 0.05 seconds.

Our findings are summarized in Tables 2 and 3. By inspecting the tables,

Experiment 2 reveals two ways that the current definition of the rooted triplet

distance for networks could be improved:

1. Table 2 shows S(T
s
, T

s
) , S(N

s
, N

s
) , S(T

s
, N

s
) , and D(T

s
, N

s
) for every

s ∈ {A, B, C, D, E, F} . The values of D(T
s
, N

s
) seem quite large compared to

the number of triplets in each T
s
 (given by S(T

s
, T

s
)). This is because of the

resolved triplets that arise when N
s
 is created from a multilabeled tree using the

method in [31], and the fan triplets that are created whenever a leaf x is replaced

by x.1,… , x.i in N
s
 . Consequently, it would be desirable to give less weights to

such triplets. A more flexible definition of the rooted triplet distance that can

assign different weights to different triplets could therefore be useful.

2. Next, Table 3 lists the triplet distance D(N
s
, N

s�
) for all pairs s, s

� ∈ {A, B, C, D, E} .

The networks N
A
,… , N

E
 have identical leaf label sets, but the leaf label set of N

F

is different, which is why N
F
 is excluded from Table 3. Interestingly, although the

two networks N
B
 and N

D
 are structurally different (see Fig. 12), their triplet dis-

tance is 0. This suggests that alternative definitions of the rooted triplet distance

for networks may be better in practice, as discussed in Sect. 5 below.

Table 2 Experiments on the real

datasets

The computed values of S(T
s
, T

s
) , S(N

s
, N

s
) , S(T

s
, N

s
) , and D(T

s
, N

s
)

s S(T
s
, T

s
) S(N

s
, N

s
) S(T

s
, N

s
) D(T

s
, N

s
)

A 560 716 443 390

B 1140 1870 840 1330

C 1330 2185 965 1585

D 1330 2205 964 1607

E 1540 1996 983 1570

F 19,600 43,710 16,553 30,204

Table 3 Experiments on the real

datasets, continued

The computed values of D(N
s
, N

s�
) . In particular, observe that

D(N
B
, N

D
) = 0

N
A

N
B

N
C

N
D

N
E

N
A

0 20 19 20 10

N
B

20 0 1 0 10

N
C

19 1 0 1 9

N
D

20 0 1 0 10

N
E

10 10 9 10 0

1824 Algorithmica (2021) 83:1786–1828

1 3

5 Final Remarks

We have developed two new algorithms for computing the rooted triplet distance

between two phylogenetic networks over the same leaf label set. We have also pre-

sented an implementation of the algorithms and evaluated their performance on sim-

ulated and real datasets.

Future work involves creating new algorithms that are even more efficient than

the algorithms given here, as well as to research variants of the studied problem that

may provide more biologically meaningful ways for comparing networks. An exam-

ple of such a variant is motivated by the experiments on the real dataset in Sect. 4.4.

Recall that the two networks N
B
 and N

D
 were structurally different, yet their triplet

distance was 0. The reason is that, unlike in the case of trees, the same triplet can

appear several times in a network, and for two networks N
1
 and N

2
 to be compared,

if a triplet appears 1000 times in N
1
 and only once in N

2
 , it would contribute 0 under

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

ChileniumErpetion

6, 1

2, 1

1, 2

1, 1

2, 11, 1

4, 1

NB .

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

Chilenium

Erpetion

1, 2

1, 1

2, 1

2, 1

1, 1

2, 1

8, 1

5, 1

5, 1

(a) The network (b) The network ND.

Fig. 13 Next to every vertex marked with a circle is the number of different pairs of disjoint paths from

that vertex to the leaves with labels Tridens and Chilenium, and the number of different disjoint

paths from the root to the vertex. With definition A of multiplicity for resolved triplets, the resolved tri-

plet ������� ��������� | �������� appears (4 + 6 + 2 + 1 + 2 + 1) ⋅ 1 + 1 ⋅ 2 = 18 times in N
B
 and

(5 + 5 + 8 + 2 + 2 + 2 + 1 + 1) ⋅ 1 + 1 ⋅ 2 = 28 times in N
D
 . With definition B, this triplet appears 7

times in N
B
 and 9 times in N

D

1825

1 3

Algorithmica (2021) 83:1786–1828

the current definition of D(N1, N2) . However, extending the definition of the triplet

distance for networks to capture information about the frequencies of triplets in the

networks can be done in different ways, leading to different outcomes. For example,

consider the following two alternative definitions of multiplicity for a resolved triplet

xy|z, where u and v are the vertices used in the definition of the consistency of a

resolved triplet with a network in Sect. 1:

A. The to t a l number o f quad r up le s o f pa t h s o f t he fo r m

((u ⇝ v), (v ⇝ x), (v ⇝ y), (u ⇝ z)) that are disjoint except for in u and v, and

furthermore, the path from u to z does not pass through v.

B. The total number of pairs of vertices (u, v) such that there exist four paths of the

form (u ⇝ v), (v ⇝ x), (v ⇝ y), (u ⇝ z) that are disjoint except for in u and v, and

furthermore, the path from u to z does not pass through v.

The definitions for the case of fan triplets are analogous. Now consider the two net-

works N
B
 and N

D
 . As shown in Fig. 13, if we follow definition A of multiplicity,

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

ChileniumErpetion

1, 1

1, 1

2, 1

NB .

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

Chilenium

Erpetion

1, 1
2, 1

2, 1

(a) The network (b) The network ND.

Fig. 14 Next to every vertex marked with a circle is the number of different pairs of disjoint paths

from that vertex to the leaves with labels Chilenium and CHAM_clade, and the number of differ-

ent disjoint paths from the root to the vertex. With definition A of multiplicity for resolved triplets,

the resolved triplet ��������� ����_����� | �������� appears (1 + 2 + 1) ⋅ 1 = 4 times in N
B
 and

(2 + 2 + 1) ⋅ 1 = 5 times in N
D
 . With definition B, this triplet appears three times in both networks

1826 Algorithmica (2021) 83:1786–1828

1 3

the resolved triplet ������� ��������� | �������� appears 18 times in N
B
 and

28 times in N
D
 (and we could thus let it contribute 10 to the extended rooted triplet

distance). If we choose definition B instead, this resolved triplet appears 7 times in

N
B
 and 9 times in N

D
 . On the other hand, according to Fig. 14, the resolved tri-

plet ��������� ����_����� | �������� appears 4 times in N
B
 and 5 times in N

D

according to definition A, but 3 times in both networks according to definition B.

In summary, definition B seems somewhat simpler to compute than definition A,

but it fails to distinguish between certain cases that definition A can handle. To

determine under what circumstances definition B is good enough in practice is an

open problem and a future research topic.

Finally, Cardona et al. [33] gave an alternative generalization of the rooted tri-

plet distance from trees to networks. While the extension proposed by Gambette and

Huber [13] is closer to the definition of the widely studied rooted triplet distance

for trees, efficient algorithms for Cardona et al.’s extension might also be useful.

However, as pointed out in [13] and [33], neither one of them yields a metric for

all classes of phylogenetic networks (see Corollary 1 in [13] and Figs. 19 and 20

in [33]), so another open problem is to find even more informative generalizations.

Acknowledgements JJ was partially funded by RGC/GRF project 15221420. KM acknowledges the sup-

port by the Danish National Research Foundation, grant DNRF84, via the Center for Massive Data Algo-

rithmics (MADALGO).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-

mons licence, and indicate if changes were made. The images or other third party material in this article

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen

ses/by/4.0/.

References

 1. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates Inc, Sunderland (2004)

 2. Nakhleh, L., Sun, J., Warnow, T., Linder, C. R., Moret, B. M. E., Tholse, A.: Towards the develop-

ment of computational tools for evaluating phylogenetic network reconstruction methods. In Pro-

ceedings of the 8th Pacific Symposium on Biocomputing (PSB 2003), pp. 315–326, 2003

 3. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci. 53(1), 131–147

(1981)

 4. Dobson, A. J.: Comparing the shapes of trees. In Combinatorial Mathematics III, pp. 95–100.

Springer, Berlin (1975)

 5. Estabrook, G.F., McMorris, F.R., Meacham, C.A.: Comparison of undirected phylogenetic trees

based on subtrees of four evolutionary units. Syst. Zool. 34(2), 193–200 (1985)

 6. Moore, G.W., Goodman, M., Barnabas, J.: An iterative approach from the standpoint of the addi-

tive hypothesis to the dendrogram problem posed by molecular data sets. J. Theor. Biol. 38(3),

423–457 (1973)

 7. Robinson, D.F.: Comparison of labeled trees with valency three. J. Combin. Theory B 11(2),

105–119 (1971)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1827

1 3

Algorithmica (2021) 83:1786–1828

 8. Penny, D., Watson, E.E., Steel, M.A.: Trees from languages and genes are very similar. Syst.

Biol. 42(3), 382–384 (1993)

 9. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Dis.

Appl. Math. 71(1), 153–169 (1996)

 10. Finden, C.R., Gordon, A.D.: Obtaining common pruned trees. J. Class. 2(1), 255–276 (1985)

 11. McVicar, M., Sach, B., Mesnage, C., Lijffijt, J., Spyropoulou, E., De Bie, T.: SuMoTED: an intu-

itive edit distance between rooted unordered uniquely-labelled trees. Pattern Recog. Lett. 79,

52–59 (2016)

 12. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts Algorithms and

Applications. Cambridge University Press, Cambridge (2010)

 13. Gambette, P., Huber, K.T.: On encodings of phylogenetic networks of bounded level. J. Math.

Biol. 65(1), 157–180 (2012)

 14. Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the maximum agreement of phylo-

genetic networks. Theor. Comput. Sci. 335(1), 93–107 (2005)

 15. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks

with constrained recombination. J. Bioinform. Comput. Biol. 2(1), 173–213 (2004)

 16. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun.

ACM 16(6), 372–378 (1973)

 17. Jansson, J., Lingas, A.: Computing the rooted triplet distance between galled trees by counting trian-

gles. J. Dis. Algor. 25, 66–78 (2014)

 18. Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially resolved trees.

Theor. Comput. Sci. 412(48), 6634–6652 (2011)

 19. Brodal, G. S., Fagerberg, R., Pedersen, C. N. S., Mailund, T., Sand, A.: Efficient algorithms for

computing the triplet and quartet distance between trees of arbitrary degree. In Proceedings of the

Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 1814–1832. Society for

Industrial and Applied Mathematics, 2013

 20. Brodal, G. S., Mampentzidis, K.: Cache oblivious algorithms for computing the triplet distance

between trees. In Proceedings of the 25th Annual European Symposium on Algorithms (ESA 2017),

volume 87 of Leibniz International Proceedings in Informatics (LIPIcs), pp 21:1–21:14. Schloss

Dagstuhl’Leibniz-Zentrum fuer Informatik, 2017

 21. Critchlow, D.E., Pearl, D.K., Qian, C.L.: The triples distance for rooted bifurcating phylogenetic

trees. Syst. Biol. 45(3), 323–334 (1996)

 22. Griebel, T., Brinkmeyer, M., Böcker, S.: EPoS: a modular software framework for phylogenetic

analysis. Bioinformatics 24(20), 2399–2400 (2008)

 23. Jansson, J., Rajaby, R.: A more practical algorithm for the rooted triplet distance. J. Comput. Biol.

24(2), 106–126 (2017)

 24. Sand, A., Holt, M.K., Johansen, J., Brodal, G.S., Mailund, T., Pedersen, C.N.S.: tqDist: a library for

computing the quartet and triplet distances between binary or general trees. Bioinformatics 30(14),

2079–2080 (2014)

 25. Jansson, J., Rajaby, R., Sung, W.-K.: An efficient algorithm for the rooted triplet distance between

galled trees. J. Comput. Biol. 26(9), 893–907 (2019)

 26. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theor. Com-

put. Sci. 10(2), 111–121 (1980)

 27. Byrka, J., Gawrychowski, P., Huber, K.T., Kelk, S.: Worst-case optimal approximation algorithms

for maximizing triplet consistency within phylogenetic networks. J. Dis. Algor. 8(1), 65–75 (2010)

 28. Perl, Y., Shiloach, Y.: Finding two disjoint paths between two pairs of vertices in a graph. J. ACM

25(1), 1–9 (1978)

 29. McKenzie, A., Steel, M.: Distributions of cherries for two models of trees. Math. Biosci. 164(1),

81–92 (2000)

 30. Bordewich, M., Semple, C.: Computing the minimum number of hybridization events for a consist-

ent evolutionary history. Dis. Appl. Math. 155(8), 914–928 (2007)

 31. Marcussen, T., Heier, L., Brysting, A.K., Oxelman, B., Jakobsen, K.S.: From gene trees to a dated

allopolyploid network: insights from the angiosperm genus Viola (Violaceae). Syst. Biol. 64(1),

84–101 (2015)

 32. Cardona, G., Rosselló, F., Valiente, G.: Extended Newick: it is time for a standard representation of

phylogenetic networks. BMC Bioinform. 9(1), 532 (2008)

1828 Algorithmica (2021) 83:1786–1828

1 3

 33. Cardona, G., Llabres, M., Rossello, F., Valiente, G.: Metrics for phylogenetic networks II: nodal and

triplets metrics. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(3), 454–469 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Jesper Jansson1 · Konstantinos Mampentzidis2 · Ramesh Rajaby3 ·

Wing‑Kin Sung3,4

 Konstantinos Mampentzidis

 kmampent@cs.au.dk

 Ramesh Rajaby

 e0011356@u.nus.edu

 Wing-Kin Sung

 ksung@comp.nus.edu.sg

1 Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon,

Hong Kong

2 Department of Computer Science, Aarhus University, Aarhus, Denmark

3 School of Computing, National University of Singapore, 13 Computing Drive, Genome 117417,

Singapore

4 Genome Institute of Singapore, 60 Biopolis Street, Genome 138672, Singapore

http://orcid.org/0000-0001-6859-8932
http://orcid.org/0000-0001-7806-7086

	Computing the Rooted Triplet Distance Between Phylogenetic Networks
	Abstract
	1 Introduction
	1.1 Background
	1.2 Problem Definitions
	1.3 Previous Work
	1.4 New Results
	1.5 Organization of the Article

	2 A First Approach
	2.1 Preprocessing
	2.1.1 The Fan Graph
	2.1.2 The Resolved Graph
	2.1.3 The Fan Table and the Resolved Table

	2.2 Triplet Distance Computation

	3 A Second Approach
	3.1 Preprocessing
	3.1.1 The Block Tree
	3.1.2 Contracted Block Networks
	3.1.3 Constructing All Contracted Block Networks Efficiently

	3.2 Checking If a Triplet is Consistent with a Network
	3.2.1 Checking a Fan Triplet
	3.2.2 Checking a Resolved Triplet

	3.3 Triplet Distance Computation

	4 Implementation and Experiments
	4.1 Algorithm Implementation
	4.2 The Setup
	4.3 Experiment 1: Performance
	4.4 Experiment 2: Limitations of the Rooted Triplet Distance

	5 Final Remarks
	Acknowledgements
	References

