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Abstract. The difference between networks has been often assessed by
the difference of global topological measures such as the clustering coef-
ficient, degree distribution and modularity. In this paper, we introduce a
new framework for measuring the network difference using the Gromov-
Hausdorff (GH) distance, which is often used in shape analysis. In order
to apply the GH distance, we define the shape of the brain network by
piecing together the patches of locally connected nearest neighbors us-
ing the graph filtration. The shape of the network is then transformed
to an algebraic form called the single linkage matrix. The single linkage
matrix is subsequently used in measuring network differences using the
GH distance. As an illustration, we apply the proposed framework to
compare the FDG-PET based functional brain networks out of 24 atten-
tion deficit hyperactivity disorder (ADHD) children, 26 autism spectrum
disorder (ASD) children and 11 pediatric control subjects.

1 Introduction

The functional and anatomical connectivity studies based on graph theory have
provided new understanding of human brain [1,2]. The characteristic of the brain
network is quantified by the global topological measures such as clustering co-
efficient, characteristic path length and modularity [1,3]. The network compar-
ison is then performed by determining the difference between these topological
measures. Each measure reflects different topological characteristic of the brain
network. For example, the clustering coefficient and characteristic path length
are related with the small-worldness, the assortativity and betweenness are re-
lated with the scale-freeness and the modularity is related with the community
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structure [4,1]. These measures give us a clue for whether the networks have sim-
ilar topological properties. However, it is unclear which measure is appropriate
for network comparison. Instead of trying to find one particular characteristic
of network at a given scale, one can also look at the overall change of topologi-
cal features through persistent homology [5,6,7]. In the persistent homology, the
topological features such as the connected components and circles of the net-
work are tabulated in terms of the algebraic form known as Betti numbers. The
network difference is then often measured using the bottleneck distance which
basically ignores the geometric information of network nodes.

In this paper, we propose a radically different computational framework for
determining network difference. Instead of trying to model the topological fea-
tures of networks, we first define the shape of network using the topological
concept called the graph filtration. The graph filtration is a new graph simplifi-
cation technique that iteratively build a nested subgraphs of the original graph.
The algorithm simplifies a complex graph by piecing together the patches of
locally connected nearest nodes. The process of graph filtration can be shown
to be mathematically equivalent to the single linkage hierarchical clustering and
dendrogram construction. Once the shape of network is defined, we transform
the shape into an algebraic form called the single linkage matrix. The single
linkage matrix is subsequently used in computing the network difference using
the Gromov-Hausdorff (GH) metric. The GH metric is a deformation-invariant
dissimilarity measure often used in matching deformable shapes [8,9]. The GH
metric was never used in measuring the distance between brain networks before.

The proposed method is applied in differentiating functional brain networks
with 96 regions of interest (ROIs) extracted from FDG-PET data for 24 attention-
deficit hyperactivity disorder (ADHD), 26 autism spectrum disorder (ASD) and
11 pediatric controls (PedCon). Numerical experiments show that the graph
filtration framework can differentiate the populations better than most known
graph theoretic approaches and the recently popular persistent homology frame-
work. The methodological contributions of this paper are:
(1) We propose a new geometric framework for defining the shape of networks

using graph filtration. We introduce the concept of graph filtration and show
that it is equivalent to the single linkage hierarchical clustering and dendro-
gram construction. This implies that there is a mapping from any complex
networks to dendrograms.

(2) We determine the distance between networks using the Gromov-Hausdorff
metric for the first time. The framework is then used in determining the
brain network difference.

(3) We demonstrate that our framework outperforms most of graph theoretic
measures and the recently popular persistent homology framework.

2 Main Ideas

The main problem we are trying to solve is to compare and quantify the brain
network differences in ADHD, ASD and PedCon populations. We start with
briefly introducing the correlation-based brain network construction.



304 H. Lee et al.

Fig. 1. (a) An example of shape representation using a network of nodes X =
{x1, . . . , x6} and the distance cX . The pair (X, cX) defines the hand. (b) Graph fil-
tration algorithm for representing the graph (X, cX ). (c) The resulting shape can be
equivalently represented as the single linkage matrix dX and the geodesic distance
matrix lX . (d) A deformable hand where dX and lX are invariant.

Brain Network Construction. Suppose FDG-PET measurements are ob-
tained in p selected ROIs in n subjects. Each ROI serves as a node in the brain
network. Let X = {x1, · · · , xp} be the collection of such nodes. Let fi be the
FDG-PET measurement at the node xi modeled as a random variable. The mea-
surement fi are assumed to be distributed with mean zero and the covariance
Σ = [σij ] ∈ R

p×p. The correlation between fi and fj is given by

corr(fi, fj) =
σij√
σiiσjj

.

We can define the metric between the nodes xi and xj through the correlation:

cX(xi, xj) = 1 − corr(fi, fj).

Then the brain network can be represented as the metric space (X, cX).

Shape of Brain Network. One can characterize the deformable shapes in
images using a collection of nodes and the mapping between the deforming
nodes. In deformation-invariant shape matching frameworks [8,9], we can iden-
tify an open and bended hands as equivalent by establishing the correspondence
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Fig. 2. The shapes of brain networks at the end of the graph filtration (a) ADHD, (b)
ASD and (c) PedCon

between nodes (Fig. 1 (d), see below for details). Unlike shapes in images, the
shape of brain network is difficult to define and visualize since it is not deter-
mined by the Euclidean distance between the nodes, but the correlation between
measurements on the nodes. In this paper, we define the shape of the network
by piecing together patches of locally connected nearest neighbor nodes in an
iterative fashion as illustrated in Fig. 1 (b).

The brain network can be viewed as the weighted graph (X, cX) consisting
of the collection of nodes X and the distance cX . We start with ε = 0 and
increase the ε value at each iteration. The value of ε is taken discretely from the
smallest cX(xi, xj) to the largest cX(xi, xj). We connect two nodes xi and xj

if cX(xi, xj) < ε. By increasing ε, more connected edges are allowed and larger
patches are generated. If two nodes are already connected directly or indirectly
via other intermediate nodes in smaller ε values, we do not connect them. For
example, in Fig. 1 (b), we do not connect x2 and x5 at ε = 3.2 since they were
already connected through other nodes at ε = 3. When ε is larger than any
distance cX(xi, xj), the iteration terminates since the graph does not change
anymore. Suppose Gj corresponds to the graph obtained at the j-th iteration
with ε = εj . Then for ε1 < ε2 < ε3 < · · · , the algorithm generates the sequence
of graphs, G1 ⊂ G2 ⊂ G3 ⊂ · · · . Such a sequence of nested graphs is called a
graph filtration in algebraic topology[5,6]. In this fashion, we define the shapes
of the brain network as a sequence of nested subgraphs (Fig. 2).

Single Linkage Matrix. The graph filtration exactly corresponds to the single
linkage hierarchical clustering as demonstrated in Fig. 1 (b). The equivalence to
the graph filtration and the dendrogram is self-evident. The linking of two nodes
corresponds to the linking of leaves in the dendrogram. Increasing the ε value in
the graph filtration corresponds to increasing the height of the dendrogram.

In the hierarchical clustering, the distance between patches of nodes C1 and
C2 is given by the distance between the closest members in C1 and C2:

dX(C1, C2) = min
x1∈C1

min
x2∈C2

cX(x1, x2).
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For example, when ε = 3, the distance between the two patches {x1, x2, x3} and
{x4, x5, x6} is given by the distance between x3 and x4. Thus, we can represent
the shape of brain network as the single linkage matrix, where the elements are
the single linkage distances between nodes.

Gromov-Hausdorff Distance. After representing the shapes of brain net-
works, we need to compute the distance between the networks for quantification.
Given two metric spaces (X, dX) and (Y, dY ), the Gromov-Hausdorff Distance
(GH) distance between X and Y is defined as [10,8]:

dGH(X, Y ) = inf
f :X→Y

g:Y →X

1
2

max (F(f),G(g),H(f, g)) , (1)

where F(f) = sup
x1,x2∈X

|dX(x1, x2) − dY (f(x1), f(x2))|,

G(g) = sup
y1,y2∈Y

|dX(g(y1), g(y2)) − dY (y1, y2)|,

H(f, g) = sup
x∈X,y∈Y

|dX(x, g(y)) − dY (f(x), y)|.

We used the single linkage distance for dX and dY . Note that the single linkage
distance does not satisfy the triangle inequality but satisfies [11]

max(dX(x1, x2), dX(x2, x3)) ≥ dX(x1, x3).

In our problem, all the nodes in X and Y are in the fixed locations, thus, the
mapping functions f and g are simply given as f(xi) = yi and g(yi) = xi and
Eq. (1) is discretized as [9,12]

dGH(X, Y ) =
1
2

max
∀i,j

|dX(xi, xj) − dY (yi, yj)|.

3 Experimental Results

Data Description. The data consists of 24 ADHD (19 boys, mean age: 8.2
± 1.6 years), 26 ASD (24 boys, mean age: 6.0 ± 1.8 years) and 11 PedCon (7
boys, mean age: 9.7 ± 2.5 years). PET images were preprocessed using Statistical
Parametric Mapping (SPM) package. After spatial normalization to the standard
template space, mean FDG uptake within 96 ROIs were extracted. The values
of FDG uptake were globally normalized to the individuals total gray matter
mean count.

Comparison of the Connectivity Matrix. The distance matrices obtained
from correlation cX and single linkage matrices dX are shown in Fig. 3. The
group difference is more evident in the single linkage matrices. The maximum
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Fig. 3. The correlation-based distance cX (top) and single linkage matrix dX (bottom)
for (a) ADHD, (b) ASD and (c) PedCon. In each connectivity matrix, the upper-left
and the lower-right 48 ROIs are from left and right hemispheres, respectively. The
order of ROIs of the left and the right hemispheres are horizontally and vertically
symmetric, thus, the diagonal terms from the top-right to the bottom-left represents
bilateral symmetry of brain.

single linkage distances of ADHD, ASD and PedCon are 0.62, 0.51, 0.48. The
most regions in ADHD are weakly connected except a few strongly connected
regions within the occipital (O) and left frontal (F) regions and between the
right and the left frontal regions [13,14]. On the other hand, PedCon network is
well-connected in the whole brain regions. In ASD, the connection is segmented
according to lobes and temporal (T) asymmetry is obviously visible [15,14].

Performance against other Network Measures. We estimated single link-
age matrices of 24 ADHD, 26 ASD and 11 PedCon jackknifed resampled data sets
and estimated the network differences using 8 different measures including the
GH distance, bottleneck distance, assortativity, centrality, clustering coefficient,
characteristic path length, small-worldness and modularity (Fig. 4) [6,1,3].

After constructing the distance matrices, we divided the networks into 3 clus-
ters using the hierarchical clustering and evaluated the clustering accuracy by
comparing the assigned labels with the true labels. The clustering accuracies of
GH distance, characteristic path length and small-worldness are all 100 %. How-
ever, the distance between the groups is much larger than the distance within
the groups in the GH metric, i.e. |w − b| = 0.49 in (Fig. 4(a)), indicating the
superior performance of the GH-metric.
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Fig. 4. Network comparison using various network measures: (a) GH distance, (b)
bottleneck distance, (c) assortativity, (d) centrality, (e) clustering coefficient, (f) char-
acteristic path length, (g) small-worldness and (h) modularity

4 Conclusions

We presented a novel framework for computing the distance on networks. Using
the graph filtration, we defined the shape of the network as a sequence of nested
subgraphs. The graph filtration is then transformed into an algebraic form called
the single linkage matrix. The single linkage matrices were demonstrated to dif-
ferentiate the group differences in the ADHD, ASD and PedCon populations.
The distance between different single linkage matrices is quantified using the
Gromov-Hausdorff metric. The Gromov-Hausdorff metric was validated against
other global network measures from graph theory and persistent homology:
bottleneck distance, assortativity, centrality, clustering coefficient, characteris-
tic path length, small-worldness and modularity. The GH metric outperforms
all of them in terms of the clustering accuracy and the difference between the
within- and the between-group distance.
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