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ABSTRACT

Motivation: Elementary flux modes (EFMs) represent a key concept
to analyze metabolic networks from a pathway-oriented perspective.
In spite of considerable work in this field, the computation of the full
set of elementary flux modes in large-scale metabolic networks still
constitutes a challenging issue due to its underlying combinatorial
complexity.
Results: In this article, we illustrate that the full set of EFMs
can be enumerated in increasing order of number of reactions
via integer linear programming. In this light, we present a novel
procedure to efficiently determine the K-shortest EFMs in large-
scale metabolic networks. Our method was applied to find the
K-shortest EFMs that produce lysine in the genome-scale metabolic
networks of Escherichia coli and Corynebacterium glutamicum.
A detailed analysis of the biological significance of the K-shortest
EFMs was conducted, finding that glucose catabolism, ammonium
assimilation, lysine anabolism and cofactor balancing were correctly
predicted. The work presented here represents an important step
forward in the analysis and computation of EFMs for large-scale
metabolic networks, where traditional methods fail for networks of
even moderate size.
Contact: fplanes@tecnun.es
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
In recent years, different approaches have been proposed to
investigate the structure of complex metabolic networks (Price et al.,
2004). In particular, elementary flux modes (EFMs) have attracted
increasing interest. An EFM is defined as a minimal set of enzymes
that operates at steady state with all irreversible reactions used in
the appropriate direction (Schuster and Hilgetag, 1994; Schuster
et al., 2000). An analogous concept in Petri net theory is provided
by the minimal T -invariants (Koch et al., 2005). The relevance
of EFMs for various applications has been recently reviewed
(Trinh et al., 2009). EFM analysis has proved useful in elucidating
novel metabolic pathways in addition to textbook knowledge,

∗To whom correspondence should be addressed.

e.g. a new catabolic pathway that degrades glucose via the glyoxylate
shunt (Fischer and Sauer, 2003; Liao et al., 1996; Schuster et al.,
1999). Several software packages for computing EFMs have been
developed, e.g. METATOOL (von Kamp and Schuster, 2006),
CellNetAnalyzer (Klamt et al., 2007), YANAsquare (Schwarz et al.,
2007) and efmtool (Terzer and Stelling, 2008). However, EFM
analysis suffers from an important drawback: the number of EFMs
grows exponentially with network size (Klamt and Stelling, 2002).
For instance, more than two million EFMs have been reported
for the metabolic network describing the central metabolism in
Escherichia coli, which contains 110 reactions (Gagneur and Klamt,
2004). Despite a number of attempts to cope with such complexity
(Dandekar et al., 2003; Klamt et al., 2005; Schuster et al., 2002;
Terzer and Stelling, 2008; Teusink et al., 2006), computing the
full set of EFMs in large metabolic networks still constitutes a
challenging issue.

Based on the work of Beasley and Planes (2007), we show
here that the full set of EFMs can be enumerated via integer
linear programming. Technically, our approach produces EFMs in
increasing order of number of reactions by solving a sequence of
discrete optimization problems. Thus, it is promising to start with the
shortest, second shortest, etc., overall called K-shortest EFMs. The
‘K-shortest’concept has been previously used in the context of graph
theory and paths (see, for illustration, Planes and Beasley, 2009),
but not in the context of EFMs. Acuña et al. (2009) have recently
suggested that finding short EFMs should become interesting if size
is considered a relevant criterion.Also, in Mavrouniotis et al. (1990),
biochemical pathways (not EFMs) are obtained in increasing length
order.

Detection of K-shortest EFMs is of interest for several biological
applications. Experimentally, it is expensive and laborious to
overexpress a large number of enzymes. On the other hand, since the
highest increase in pathway flux is achieved if all enzymes (Kacser
and Acerenza, 1993) or (at least) a considerable number of enzymes
in a pathway (Fell and Thomas, 1995; Niederberger et al., 1992)
are overexpressed, shorter pathways are better suited as a target for
genetic manipulation. Moreover, shorter pathways can carry higher
fluxes (Meléndez-Hevia et al., 1994; Pfeiffer and Bonhoeffer, 2004).

The use of integer linear optimization makes our procedure
more flexible than previous approaches found in the literature
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(Schilling et al., 2000; Schuster et al., 2000), which require the
computation of the full set of EFMs before any further analysis
can be performed. Instead, our method allows us to directly explore
the K-shortest EFMs related to a particular problem of interest, e.g.
the K-shortest EFMs that consume/produce a particular metabolite.

In order to illustrate the applicability of our approach, we here
analyse the K-shortest EFMs producing lysine in two different
genome-scale metabolic networks, E.coli K-12 MG1655 (Feist et al.,
2007) and Corynebacterium glutamicum ATCC 13032 (Kjeldsen
and Nielsen, 2009). Lysine is one of the essential amino acids
in humans and is also used as supplement in animal feeds. The
industrial production of lysine has a long history in biotechnology
(Tosaka et al., 1983; Wendisch et al., 2006). Studying the production
of lysine has been essential for the rational design of optimized
strains. Nowadays, C.glutamicum is the organism of choice for
lysine overproduction due to the higher yields obtained with it. The
capability for producing lysine has been previously examined from
a pathway oriented perspective (de Graaf, 2000; Mavrovouniotis
et al., 1990; Schuster et al., 2007). However, these studies were not
conducted at the genome-scale. Therefore, the results presented here
extend these studies to a larger scale.

2 METHODS
The mathematical model proposed below formulates the task of finding
EFMs as a sequence of optimization problems. Our method starts from the
basis that the flux mode involving the minimum number of reactions must
be elementary. We here refer to it as the shortest EFM. Accordingly, we first
define the constraints and the function (objective) to be optimized that allows
us the calculation of the shortest EFM. Based on this optimization model,
we then show how to calculate the K-shortest EFMs. Finally, extensions of
the K-shortest to other problems of interest are presented.

We mean here by 1-shortest EFM, the EFM containing the minimum
number of reactions; 2-shortest EFM, the EFM containing the second
minimum number of reactions, etc. We may have multiple EFMs containing
the same minimum number of reactions. If this occurs, they are counted
separately with different K values. The enumeration order of equally long
EFMs depends on the actual implementation of the mathematical model and
the solving procedure.

As noted above, EFMs are defined as minimal sets of enzymes in steady
state (Schuster et al., 2000). The meaning of ‘minimal’ in the definition of
EFMs refers to the non-decomposability condition, i.e. the addition of an
enzyme would turn the EFM into non-elementary. In contrast, we here refer
the 1-shortest EFM as to the EFM that contains the (global) minimum number
of enzymes.

2.1 Shortest EFM
Assume we have a metabolic network that comprises R reactions and C
compounds. Here we decompose reversible reactions into two opposing
reaction steps. Thus, we can regard all fluxes as taking positive values. Let scr

be the stoichiometric coefficient associated with compound c (c = 1, … , C)
in reaction r (r = 1, … , R). As usual in the literature (Schilling et al., 2000;
Schuster and Hilgetag, 1994), substrates and products have negative and
positive stoichiometric coefficients, respectively. The matrix containing all
these coefficients is called the stoichiometric matrix.

A zero-one (binary integer) variable is assigned to each reaction, namely
zr = 1 if reaction r (r = 1, … , R) is active in the EFM, 0 otherwise. In addition,
each reaction has an associated non-negative (integer) flux tr . As we are
studying structural properties of metabolic networks, it is appropriate to
use integer fluxes. If the coefficients of the stoichiometric matrix (scr ) take
integer values, as it is assumed here and in many other approaches such as
Petri net theory (Koch et al., 2005), then the relative fluxes carried by EFMs

can also be described using integer values. In addition, our computational
experience reveals that the K-shortest method is more expensive when fluxes
are allowed to be non-integer.

For the optimization model we need constraints relating the reaction
variables zr and tr :

tr ≤Mzr r =1,...,R (1)

zr ≤ tr r =1,...,R (2)

Equation (1) ensures that no flux traverses a reaction r if zr = 0. Equation (2)
guarantees that tr is non-zero if zr = 1. Note here that in the case a reaction r
is active (zr = 1), its associated (integer) flux value tr can take any value from
the interval [1, M], M being a large constant value. This does not constitute
an issue if M is a sufficiently large value.

In our model, reversible reactions are decomposed into two irreversible
reactions, and therefore, we define the set B={(α,β)| reaction α and reaction
β are the reverse of each other, α < β}.

zα +zβ ≤ 1 ∀ (α,β )∈B (3)

Equation (3) ensures that a reaction and its reverse do not appear in an
EFM.

The steady-state condition is critical for the definition of EFMs and it is
formulated as

R∑
r=1

scr tr =0 ∀c∈ I (4)

where I is the set of internal compounds. As opposed to internal compounds,
external compounds are excluded from being balanced, because they are
exchange metabolites between the outside and the system under study or they
belong to metabolic pools whose concentration is assumed constant. They
typically represent consumed substrates, excreted products and cofactors.
We denote the set of external compounds by E.

In order to avoid the trivial solution (zr = tr = 0, r=1, … , R), we require
that at least one reaction is active:

R∑
r=1

zr ≥ 1 (5)

Equations (1–5) define the flux modes solution space for a particular
metabolic network. In order to calculate the shortest EFM, we minimize
the number of reactions:

minimize
R∑

r=1

zr (6)

As noted above, EFMs cannot be decomposed into smaller entities without
violating the steady-state assumption, Equation (4). This is referred as to the
non-decomposability (elementary) condition (Schuster and Hilgetag, 1994).
In essence, this condition implies that no subset of reactions of an EFM can
perform at steady state. We ensure that the non-decomposability condition
is satisfied by minimizing the number of active reactions involved in the
solution flux mode. Clearly, the flux mode involving the minimum number
of reactions will be non-decomposable.

2.2 K-shortest EFMs
The mathematical optimization model given above [objective function (6)
subject to Equations (1)–(5)], once solved, allows us to obtain the shortest
EFM. In order to find the K-shortest EFM, we need to add further constraints
to eliminate the (K −1)-shortest EFMs from the set of solutions. To illustrate
this, suppose we are interested in finding the 2-shortest EFM. Let Z1

r be the
binary solution associated with the shortest EFM, where Z1

r equals to 1 if
reaction r is active, 0 otherwise. We need to eliminate the shortest EFM
from the set of solutions. To do this we add the following constraint to our
previous formulation:

R∑
r=1

Z1
r zr ≤

(
R∑

r=1

Z1
r

)
−1 (7)
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The left-hand side of Equation (7) determines the number of reaction
variables in the current solution that were active in the 1-shortest EFM
solution. The right-hand side is the number of reactions that were active
in the 1-shortest EFM less one. The inequality states that the number of
active reactions repeating from the 1-shortest EFM should be less by at least
one than the total number of active reactions in that EFM. This ensures
that, once we solve our model, the new solution found does not contain
the shortest EFM. This also guarantees that the shortest EFM can never
occur as a part of any other flux mode. In essence, we remove the shortest
EFM from the solution space. In the general case, the K −1 shortest EFM
solution is eliminated before the K-th solution is computed and clearly the
optimization problem for the K-th shortest EFM accumulates constraints
from all (1, … , K −1) previous solutions, i.e. in order to find the K-shortest
EFM, we need to include EFM elimination constraints related to the first
(K −1) shortest EFMs:

R∑
r=1

Zk
r zr ≤

(
R∑

r=1

Zk
r

)
−1 k =1, ... ,K −1 (8)

where Zk
r is the binary solution for the k-shortest EFM.

Note here that the K-shortest EFMs described above are also elementary.
For an indirect proof, suppose that the K-shortest EFM (once solved) is not
elementary, i.e. it contains a subset of reactions satisfying Equations (1–5)
and (8). Since we are constructing EFMs in increasing order of the number
of reactions they contain, we must have encountered the EFM corresponding
to this subset before. However, then we would have added a constraint, as
described in Equation (8), preventing it from ever appearing as a subset in
future EFMs. So it cannot in that case ever be found as part of the K-shortest
EFM, which contradicts the original assumption. Thus, every EFM we find
must be elementary.

2.3 Extensions to K-shortest EFMs
Our procedure can be applied to enumerate all EFMs, namely by constructing
them one by one. This is not particularly efficient for small-scale metabolic
networks when compared with existing methods. The main advantage of our
mathematical optimization model is that, by adding new constraints, special
subsets of EFMs (of particular biomedical or biotechnological interest) can
be found without having to first compute all EFMs as is the case in existing
methods (Klamt et al., 2005; Schilling et al., 2000; Schuster et al., 2000;
Terzer and Stelling, 2008). Below, we present some of these constraints that
can be easily added to our formulation.

Genome-scale metabolic networks are typically compartmentalized
models, in the simplest case containing the extracellular compartment and
cytosol. We assume that metabolites in the extracellular compartment can be
taken up or secreted as by-products, therefore these metabolites can be set
to be external. We denote U the set of extracellular metabolites defining the
growth medium. In the case an extracellular metabolite c is not included in
the medium set, we need to avoid this compound to be consumed. Equation
(9) describes how this constraint is incorporated into our model.

R∑
r=1

scr tr ≥ 0 ∀c∈E,c /∈U (9)

We may also need to find the K-shortest EFMs that produce a particular
external compound, µ. To do so, we need to add the following constraint:

R∑
r=1

sµr tr ≥ 1 (10)

This can be easily reformulated if we want an external compound µ to be
used as substrate, as observed in Equation (11).

R∑
r=1

sµr tr ≤ −1 (11)

Note here that Equation (5) can be dropped from the formulation if we
include Equations (10) or (11), as both already require at least one compound
to be produced or consumed, respectively, hence at least one reaction must
be active. In addition, the non-decomposability condition is not guaranteed
when more than one constraint based on Equations (10) or (11) is included in
the formulation. For example, if we apply constraint (10) for metabolites µ1

and µ2, i.e. finding solutions to our model that produces µ1 and µ2, then we
might obtain solutions containing two EFMs, namely one producing µ1 and
another producing µ2. For this reason, in this article, we restrict our analysis
to EFMs forced to produce/consume one metabolite. Equation (9) does not
alter the non-decomposability condition.

2.4 Integer programming
Our mathematical optimization model given above for computing the K-
shortest EFMs [objective function (6) subject to Equations (1–5) plus
elimination constraints (8) and perhaps constraints (9–11)] is an integer linear
program. Algorithmically such programs are solved by linear programming
based tree search (Pardalos and Resende, 2002). Various free and commercial
software tools are available to perform this task. We used ILOG CPLEX�.

3 RESULTS
We applied our method to three different metabolic networks.
Firstly, we examined a well-known metabolic network that contains
the tricarboxylic acid (TCA) cycle and some adjacent reactions
(Schuster et al., 1999). Since this metabolic network is of moderate
size, the full set of EFMs can be obtained using classic methods
(Schuster et al., 1999). We used it as a benchmark to validate
the capabilities of our method. Then, we applied our method
to study the production of lysine in two different genome-scale
metabolic networks, E.coli K-12 MG1655 (Feist et al., 2007) and
C.glutamicum ATCC 13032 (Kjeldsen and Nielsen, 2009). Details
of the three metabolic networks can be found in the Supplementary
Material.

3.1 TCA cycle network
For the TCA cycle network, our method correctly enumerated, in
increasing order of number of reactions, all 16 EFMs previously
determined in Schuster et al. (1999). Details on the 16 EFMs are
shown in Table 1. The shortest EFM contains two reactions, which
are catalyzed by enzymes Pck and Ppc. The 2-shortest EFM also has
two reactions. The 16-shortest EFM involves 13 reactions. These
results confirm the applicability of our method.

We compared the computation time of our method with
METATOOL (version 5.1) for this particular small network. Our
method turned out to be less efficient than METATOOL, though
both methods take <1 s (data not shown). However, as will be shown
below, our method is particularly suitable for large-scale metabolic
networks, where classical methods for EFMs computation are not
applicable.

In addition, we extended the analysis by calculating the subset
of EFMs that produces succinyl-CoA (SucCoAxt). This is done by
incorporating a constraint based on Equation (10) for SucCoAxt
into the K-shortest EFMs formulation. Our method directly
enumerated the six EFMs producing SucCoAxt without having to
first compute the full set of EFMs, as typically done by METATOOL
and classic methods (Table 1).
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Table 1. Full set of EFMs in the TCA cycle metabolic network

K L Enzyme set SCA

1 2 Pck; Ppc –
2 2 Pps; Pyk –
3 5 AlaCon; Eno; Gdh; IlvE_AvtA; Pyk –
4 5 AspC; AspCon; Eno; Gdh; Ppc –
5 5 AspA; AspC; Fum; Gdh; Mdh –
6 7 Eno; Ppc; SucCoAcon; -Fum; -Mdh; -Sdh; -SucCD 1
7 8 AspA; AspC; Eno; Gdh; Ppc; SucCoAcon; -Sdh;

-SucCD
2

8 9 AceEF; Acn; 2 Eno; GltA; Icd; Ppc; Pyk; SucAB;
SucCoAcon

3

9 9 AceEF; Acn; 2 Eno; Gdh; GltA; GluCon; Icd; Ppc; Pyk –
10 10 2 AceEF; Acn; 2 Eno; GltA; Icl; Mas; Mdh; 2 Pyk;

SucCoAcon; -SucCD
4

11 11 AceEF; Acn; Eno; Fum; GltA; Icd; Mdh; Pyk; Sdh;
SucAB; SucCD

–

12 11 2 AceEF; Acn; Eno; Fum; GltA; Icl; Mas; 2 Mdh; Pck;
2 Pyk; Sdh

–

13 12 2 AceEF; Acn; 3 Eno; GltA; Icl; Mas; Ppc; 2 Pyk; 2
SucCoAcon; -Fum; -Sdh; -2 SucCD

5

14 13 3 AceEF; 2 Acn; 3 Eno; Fum; 2 GltA; Icd; Icl; Mas; 2
Mdh; 3 Pyk; Sdh; SucAB; SucCoAcon

6

15 13 3 AceEF; 2 Acn; 3 Eno; Fum; Gdh; 2 GltA; GluCon;
Icd; Icl; Mas; 2 Mdh; 3 Pyk; Sdh

–

16 13 2 AceEF; Acn; AspC; AspCon; 2 Eno; Fum; Gdh;
GltA; Icl; Mas; 2 Mdh; 2 Pyk; Sdh

–

K : the order by which EFMs are computed; L: the number of reactions in each EFM;
SCA—order by which EFMs producing SucCoAxt are computed. Reversible reactions
active in the opposite direction have a minus sign before the flux value.

3.2 Genome-scale metabolic networks
We calculated the K-shortest EFMs that produce lysine in the
genome-scale metabolic networks of E.coli and C.glutamicum with
K = 10. These metabolic networks differ in the number of reactions
and metabolites, as well as in the level of accuracy. During the
computation of 10-shortest EFMs some errors in the C.glutamicum
network were identified. In particular, an error in reaction dapB was
responsible for a null lysine net synthesis. More details as to errors
can be found in the Supplementary Material.

The E.coli network is larger than the C.glutamicum network.
For this reason, the E.coli metabolic network represents a
greater challenge in the computation of 10-shortest EFMs. Our
method successfully computed them, though the difference in the
computation time is significant (see Supplementary Material). We
used glucose and ammonium as carbon and nitrogen sources,
respectively, for both metabolic networks. See Supplementary
Material for exact definition of the medium set, U. A sufficiently
large M value is needed to ensure that no EFM information is
lost. We conducted experimentation for different M values (see
Supplementary Material) and selected M = 10 000, since no change
in the K-shortest EFMs solution was found with respect to smaller
M values. This selected value is similar to that proposed in previous
studies (Kjeldsen and Nielsen, 2009; Vallino and Stephanopoulos,
1993).

We first applied our mathematical model to the metabolic
network of E.coli. Figure 1 shows a merged representation of
the 10-shortest EFMs producing lysine in E.coli. The shortest

Fig. 1. Merged representation of the 10-shortest EFMs producing lysine
in E.coli when cofactors are set as internal metabolites. Ellipses represent
metabolites and arrows reactions. Stoichiometric coefficients higher than
one are represented next to the edge linking the respective metabolite.
Dashed ellipses are duplicated metabolite nodes, light grey ellipses are
medium metabolites and the black ellipse is the target metabolite. Numbers
in brackets after enzyme abbreviations correspond to the number of EFMs
where these are present. Thickness of the arrows is proportional to this
number. Boxed enzyme abbreviations represent the lysine biosynthetic
pathway (Cohen and Saint-Girons 1987, Wittmann and Becker, 2007),
enzyme abbreviations in light grey, in dark grey and black correspond to
glycolysis, the Entner–Doudoroff pathway and the methylglyoxal bypass,
respectively. The following metabolite nodes in the cytosolic compartment
were removed from the representation for better visualization: atp, adp, amp,
nad, nadh, nadp, nadph, h, coa, h2o, pi, co2. Note here that abbreviations are
the same as in the original network (see Feist et al., 2007). Thus, reactions
involving only these removed metabolites may seem disconnected from the
sub-network when they are actually connected, e.g. NADTRHD.

EFMs are mainly fermentation modes and therefore, they require
higher fluxes on glucose catabolism (see Supplementary Material
for more information about the fluxes and the reaction sets). The
combinatorial effect seen in EFM analysis can be immediately
observed. This is particularly apparent for transport reactions.
For example, there are two different reactions for the uptake of
glucose (glc-d) from the extracellular compartment to the periplasm,
specifically GLCtex and GLCtexi. Thus, there will be at least two
EFMs among the 10-shortest EFMs that differ only in the use of one
of these two reactions while the rest of the enzyme set remains the
same. Such combinatorial features can also be found in the other
K-shortest EFMs.

A detailed analysis of Figure 1 reveals that there are three major
pathways for glucose catabolism: glycolysis, the Entner–Doudoroff
(ED) pathway and the methylglyoxal bypass. Glycolysis provides
higher quantities of ATP but does not produce any NADPH and
therefore the periplasmic NAD(P) transhydrogenase, THD2pp,

3161

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/25/23/3158/216440 by guest on 21 August 2022



[16:23 4/11/2009 Bioinformatics-btp564.tex] Page: 3162 3158–3165

L.F.de Figueiredo et al.

is required to reduce NADP by oxidizing NADH. The ED
pathway can use two different precursors of 6-phospho-d-gluconate
(6pgc), namely, 6-phospho-d-glucono-1,5-lactone (6pgl) and
d-gluconate (glcn). In case 6pgl is used as precursor the oxidative
part of the pentose phosphate (PP) pathway produces NADPH and
therefore, the THD2pp is not required in this mode, in contrast with
the rest of EFMs. When the methylglyoxal bypass is used there is
a very low ATP yield from glucose catabolism and therefore, the
ATP synthase, ATPS4rpp, has a higher flux when compared with the
other modes. It should be noted that this pathway, though possible,
is very unlikely to be the main catabolic route of glucose due to the
toxicity of methylglyoxal (Subedi et al., 2008).

In E.coli, ammonium assimilation can be carried out via the
glutamine synthetase/glutamate synthase (GLNS/GLUSy) cycle
or exclusively using glutamate dehydrogenase (GLUDy). The
GLNS/GLUSy cycle constitutes the main ammonium assimilation
route even for growth conditions with high extracellular ammonium
content (Yuan et al., 2006). In the 10-shortest EFMs, the assimilation
of ammonium is however conducted by GLUDy, which involves
fewer steps and consumes less ATP. The other route would appear
for EFMs containing 40 reactions.

In addition, it is well-known that E.coli has only one pathway
for lysine biosynthesis using aspartate and pyruvate as precursors
(Cohen and Saint-Girons, 1987; Wittmann and Becker, 2007). This
is also observed in the left upper corner in Figure 1, where the
thickness of the involved arrows is maximal, i.e. they appear in all
10-shortest EFMs.

On the right-hand side of Figure 1, there are many reactions
around the periplasmatic proton node, h[p]. These reactions are
mainly involved in the establishment of a proton gradient so that
ATP and NADPH can be produced. We assumed that cofactors
are buffered in the metabolic network and set them as external
metabolites. We repeated our K-shortest procedure (K = 10) and
found that the shortest EFM involves 27 reactions, as opposed to
the case described above where the shortest EFMs involved 38
reactions.

In Figure 2, there are no EFMs producing by-products such
as lactate or pyruvate. The main reason is that there is no need
of fermentative modes or other modes producing cofactors in
small reaction steps and with high fluxes, since cofactors are now
external metabolites. The catabolism of glucose in Figure 2 is
again accomplished by the same three pathways: glycolysis, the
ED pathway and the methylglyoxal bypass. Combinations of these
three pathways are also found in the 10-shortest EFMs, e.g. in
the 7-shortest EFM, the ED pathway is combined with the triose
phosphate part of glycolysis, while in the 10-shortest EFM the
ED pathway is combined with the methylglyoxal bypass. There
is a detour to the classical glycolysis described in textbooks, via
dihydroxyacetone (dha). This detour has been recently hypothesized
by van Winden et al. (2003). However, the use of dha as intermediate
is questionable due to its toxicity and possible conversion to
methylglyoxal (Molin et al., 2003; Subedi et al., 2008).

The results also show that, with glycolysis as single catabolic
pathway, it is possible to produce one mole of lysine per mole
of glucose consumed, consuming four moles of NADPH and one
mole of ATP and producing two moles of NADH. Thus, from a
molecule containing six carbon atoms, glucose, it is possible to
produce another six-carbon molecule, lysine, requiring two NADPH
for ammonium assimilation, plus two NADPH and one ATP for

Fig. 2. Merged representation of the 10-shortest EFMs producing lysine in
E.coli when cofactors are set as external metabolites. Enzyme abbreviations
in light grey and dark grey represent the methylglyoxal bypass and a detour
of the classical glycolysis over dha, respectively. The following metabolite
nodes in the cytosolic compartment were removed from the representation
for better visualization: atp, adp, amp, nad, nadh, nadp, nadph, h, coa, h2o,
pi, co2. Note here that abbreviations are the same as in the original network
(see Feist et al., 2007).

the intermediate metabolites inter-conversion. However, due to the
carboxylation and decarboxylation reactions, this 1:1 conversion
cannot be deduced directly from the number of carbons.

A similar analysis was conducted for C.glutamicum. We found
that the shortest EFM contains 33 reactions when cofactors are set to
internal. The shortest EFMs for C.glutamicum are not fermentative
(Fig. 3) in contrast to E.coli (Fig. 1) and the main route for glucose
catabolism is the PP pathway. A reasonable question that can be
posed is why there is no fermentative mode in the shortest EFMs
for C.glutamicum. This is due to the fact that the reaction catalyzed
by lactate dehydrogenase, which reduces pyruvate to lactate, is not
present in the metabolic network, nor any other pathway linking
pyruvate to lactate. Note, however, that such reaction is present in
the genome annotation of this organism and there is experimental
data on lactate dehydrogenase mutants (Inui et al., 2004).

In Figure 3, it is also apparent that the main variability in the
10-shortest EFMs is in the balancing of cofactors and there are no
alternative pathways for glucose catabolism in comparison to the
10-shortest EFMs of E.coli (Fig. 1). This fact can be attributed to the
differences in the metabolic networks caused by evolution. While in
E.coli the ED pathway and the methylglyoxal bypass are present, to
date they have not been identified in C.glutamicum (Eggeling and
Bott, 2005). Moreover, there are differences in some anaplerotic
reactions. Nevertheless, there is also an evident difference in the
accuracy of both networks, since the number of reactions in the
metabolic network of E.coli is almost 5-fold higher while the size of
the genome and the number of predicted proteins for both organisms
is of the same order of magnitude (Blattner et al., 1997; Kalinowski
et al., 2003).

As mentioned above, the PP pathway is the only glucose catabolic
pathway present in the EFMs, which is due to the requirement of
redox anabolic power. An alternative pathway would have been the
TCA cycle or anaplerotic reactions between oxaloacetate, malate,
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Fig. 3. Merged representation of the 10-shortest EFMs in C.glutamicum
producing lysine and with cofactors as internal metabolites. Boxed enzyme
abbreviation is characteristic for C.glutamicum (Eggeling, 1994; Wittmann
and Becker, 2007), enzyme abbreviations in light grey, dark grey and
black represent the PP pathway, the longest and the shortest pathways for
ammonium assimilation, respectively. The following metabolite nodes, in
the cytosolic compartment, were removed from the representation for better
visualization: ATP, ADP, NAD, NADH, NADP, NADPH, H-transport, COA,
PI, CO2.

phosphoenolpyruvate and pyruvate. However, the presence of the
complete TCA cycle requires more enzymes to reduce NADP using
glucose. Experimentally, the PP pathway also has a more important
role in NADPH synthesis than the TCA cycle. Indeed, metabolic flux
analyses have shown that ∼70% of the NADPH is generated by the
PP pathway and the remaining 30% by isocitrate dehydrogenase of
the TCA cycle (Eggeling and Bott, 2005).

Possible NADPH regenerating cycles, involving anaplerotic
reactions, which are often mentioned in the literature (cf. Wittmann
and Becker, 2007), are not found with this function. Instead, they
can only convert NADPH into NADH because in the genome-
scale network the reactions mdh and mqo are set to irreversible
forcing these cycles to be irreversible. The existence of two
glyceraldehyde-3-phosphate dehydrogenases, gapA and gapB, also
allows the conversion of NADPH into NADH, but not the reverse.
If the reaction catalysed by lactate dehydrogenase is included in
the metabolic network, the fermentative pathways are still not the
shortest because there is no alternative to the PP pathway for
NADPH synthesis, and therefore, the EFMs with this pathway are
the shortest (data not shown).

Regarding the ammonium assimilation, it can be seen that a
larger number of EFMs uses glutamate dehydrogenase (gdh) and
only two EFMs use the glutamine synthase/glutamate synthase
(glnA/gltBD) pathway. The appearance of a longer route is due
to the fact that the 10-shortest EFMs in C.glutamicum have more

Fig. 4. Merged representation of the 10-shortest EFMs producing lysine
in C.glutamicum and with cofactors as external metabolites. Enzymes with
abbreviations in light grey represent glycolysis. The following metabolite
nodes, in the cytosolic compartment, were removed from the representation
for better visualization: ATP, ADP, NAD, NADH, NADP, NADPH,
H-transport, COA, PI, CO2.

widely distributed lengths than the 10-shortest EFMs in E.coli.
Nevertheless, for C.glutamicum, the shorter pathway is more
relevant at high ammonium concentrations (Eggeling and Bott,
2005).

If cofactors are set external, the PP pathway, the cycles converting
NADPH to NADH and enzymes from the respiratory chain do not
appear in the 10-shortest EFMs. Instead, glycolysis is the main
route for glucose catabolism (Fig. 4). This pathway is indeed the
shortest catabolic pathway in this network, as the ED pathway and
the glyoxylate bypass are not present. The main variability in these
EFMs is found in the synthesis of by-products such as glycerate
and glycine and in the interconnection of the catabolic and anabolic
part of the EFMs. The latter is evident by the detour made through
malate (Fig. 4).

From Figures 3 and 4, it can be observed that the 10-shortest
EFMs involve the shortest lysine biosynthetic pathway described
in the literature (Wittmann and Becker, 2007). An alternative longer
route does exist in C.glutamicum, which differs in three reactions and
requires one additional reaction to balance succinate and succinyl-
CoA, as shown in the 10-shortest EFMs of E.coli (Figs 1 and 2).
This means that EFMs with higher length are needed so as to obtain
the alternative pathway for lysine synthesis.

4 CONCLUSION
The computation of EFMs in genome-scale metabolic networks has
been very difficult if not impossible so far. In order to explore
the metabolic capabilities of a given organism via EFMs, often
smaller sub-networks are delimited. However, the analysis of small
sub-networks can be misleading (Kaleta et al. 2009; Terzer and
Stelling, 2008) and therefore, the computation of EFMs in genome-
scale networks is essential for a more comprehensive analysis of
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the metabolic capabilities of an organism. In such large networks,
detecting short EFMs is of interest from the biological viewpoint.
Experimentally, it is expensive to overexpress a large number of
enzymes, so that shorter pathways are better suited for genetic
manipulation. Moreover, shorter pathways usually carry higher
fluxes.

In this article we showed that the full set of EFMs can
be theoretically enumerated via discrete optimization. This is a
promising development in EFM computation and it might serve
as a basis for building new methods to explore the structure of
large metabolic networks. We presented an effective method to
compute the shortest EFMs even in genome-scale networks, as
opposed to classic approaches, where EFM analysis cannot be
accomplished. A clear advantage of our method in comparison to the
classic approaches for EFMs computation is its inherent flexibility.
Certainly, the use of optimization enables one to directly search
for EFMs that produce/consume a certain metabolite or involve
a particular reaction. For this reason the K-shortest EFMs is a
suitable concept when exploration of a specific subset of EFMs is
of interest.

It is beyond the scope of this article to analyse the run-time
complexity of the algorithm. Interesting results in that direction
have been presented by Acuña et al. (2009). Here we have shown
by numerical examples that even for genome-scale networks, the
K-shortest EFMs can be computed in reasonable time.

Our procedure was applied to find the 10-shortest EFMs that
produce lysine in the genome-scale metabolic networks of E.coli
and C.glutamicum. The computation of the 10-shortest EFMs in
C.glutamicum was faster than in E.coli, mainly due to the difference
in network complexity. The sets of reactions in the computed EFMs
can be divided into four parts: catabolism of glucose; anabolism
of lysine; ammonium assimilation and a subset responsible for
cofactor balancing, when cofactors are set internal metabolites.
This classification is in agreement with the presentation in many
biochemical textbooks.

The catabolic subset converts glucose into aspartate and pyruvate,
precursors of lysine, and plays an important role in cofactor supply,
in particular of NADPH. In the genome-scale network of E.coli,
a variety of pathway combinations exists for glucose catabolism
because NADPH can be obtained via a NAD(P) transhydrogenase,
whereas in the network of C.glutamicum the PP pathway is
preponderant for NADPH supply. The cofactor balancing subset is
more influenced by the catabolic subset than by the anabolic subset.
The latter partially overlaps in the solutions of both organisms and
does not change in the 10-shortest EFMs. Shorter routes are clearly
favored by the K-shortest EFMs method and this fact is evident
in the anabolic subset and ammonium assimilation subsets. When
cofactors are removed from the balancing constraints, pathways with
100% yield are obtained, hence highlighting the impact of cofactors
consumption/supply in lysine synthesis.

Finally, contrary to the widely held belief that the computation
of EFMs in large-scale metabolic networks is impossible, the work
presented here represents an important step forward.
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