COMPUTING THE SINGULAR VALUE DECOMPOSITION

ON THE ILLIAC IV
Franklin T. Luk

TR 80-415

Department of Computer Science
Cornell University
Ithaca, New York 14853

Jatea s N R
N .

COMPUTING THE SINGULAR VALUE DECOMPOSITION
ON THE ILLIAC IV

Franklin T. Luk
Department of Computer Science

- Cornell University
Ithaca, NY 14853

ccepted for publication in ACM Transactions on Mathematical Software.

C eyt

Abstract:

In this paper, we study the computation of the singular value decomposition
of a matrix on the ILLIAC IV computer. We describe the architecture of the
machine and explain why the standard Golub-Reinsch algorithm is not applicalle
to this problem. We then present a one-sided orthogonalization method whiz
makes very efficient use of the parallel computing abilities of the ILLIAT
machine. Our method is shown to be Jacobi-like and numerically statle. Firnally
a comparison of our method on the ILLIAC IV computer with the Golub-Peirsch
algorithm on a conventional machine demonstrates the great potential of parallel

computers in the important area of matrix computations.

Key Words and Phrases:

ILLIAC-IV computer, Singular value decomposition, Golub-Peirsch algoriti-,

Jacobi-1like method, Parallel matrix computations.

CR Categories: 5.14 :

COMPUTING THE SINGULAR VALUE DECOMPOSITION ON THE ILLIAC IV

1. Introduction
We study the computation of the singular value decomposition
on the ILLIAC IV computer. Suppose that we have & real m x n matrix A,

Its singular value decomposition (SVD) can be defined as

A=uvt (1.1)
with
vu-vv. A and L = diagloy, «o0 5 0p)
vhere
k = min(m,n) . (1.2)

The zatrices U and V consist of the orthonormalized eigenvectors
assoziated with the k largest eigenvalues of Mt and AtA,
respectively, The diagonal elements of £ are the non-negative
square roots of the k 1largest olgenvnl_uen of Mt, and are called

the singular values, We assume that

“1 262 2 coe Zcr >0 and °r+1 - eee m qt- o, (1.5) ‘

i.e. the rank of A equals r, An alternative definition of the

singular value decomposition is

t ' .
. A=Uzv. . ‘(1.'0)
with
.)
vy, = v:v, =I apd E = diu(cl. eee s "r)'

The singular value decomposition is a very useful matrix
decomposition (see [7]). Various methods have been proposed for
its computation. The standard method was introduced by Goludb and
Kahan in 1965 [6]). They use first the Householder transformation
to bidiagonalize the given matrix, and them the QR method to co=pute
the singular values of the resultant bidiagonal form, Their method
superceded & one-sided orthogonalization method given by Hestenes
in 1958(10]." Hestenes' method is, however, easily adaptable to
special purpose computations, It was suggested by Chartres (1962)
[2] for a computer with a magnetic backing store, and was implemented
on & mini-computer by Nash [12]. In this paper, we study the
implementation of Hestenes' method on the ILLIAC IV computer and stow
that the method makes very efficient use of the parallel computing

abilities of the ILLIAC machine.
Our new algorithm is likely to be highly beneficial for probtlems

with large values of m and n that must be solved repeatedly. In fact,

our project was launched because a seismologist at the United States
Geological Survey wanted to solve his least squares problems on the ILLIAC
computer. He was interested in the machine because of its large main
menory and potential high execution speed. A nice exposition on least

squares problems arising from earthquake studies is given in [17].
We are going to use the Frobenius norm for matrices, i.e.

fab = lall, = (12‘.3 etf"a)l/2 for A= (s,),

and the Euclidean nom for vectors, i.e,
t
sk = Bsh, = G&*0)*/2 .

2, The ILLIAC IV Computer

The ILLIAC IV computer was built by the Burroughs Corporation
and is located at NASA/Ames Research Center, Moffett Field, Californis,
The computer consists of 6l synchronous processing elements (PE's)
under the direction of a single control unit (CU). Each PE has 2048
words of €L-bit memory with an access time of 188 nanoseconds, and
is capable of performing a general floating-point operation in about
1.7 microseconds and a typical bookkeeping operation in about 1.2
microseconds, The PE instruction set is similar to that of conven-
tional machines with two exceptions. First, each PE can communicate
data to four other PE's through routing instructions. Second, the
PE's can set their own mode registers to effectively disable or i
enable themselves, The CU takes about 0.7 microseconds to perform &
bookkeeping operation,

The main memory of the ILLIAC is logically a 16-million word
drum, which is divided into 52 bands and has & 100 millisecond rotation
period, Data transfers to or from the PE memory are program initiated
and are performed in blocks of 102k words, The transfer time for .
1024 words is about 66 microseconds; it takes about 4.2 milliseconds
to refresh half the PE memory.

A floating-point number on the ILLIAC consists of a 1-bit sigm,

a 15-bit exponent to the radix 2, and a normaliged 48-bit mantissa.
The machine precision € 1s thus about 3.55 X 10'15. A fixed-point

punber has a 1-bit sign and a 4B8-bit mantissa,

3. Programaing Languages for the ILLIAC

There are three languages availeble for programming the
ILLIAC: 1its assembly language, ASK; a FORTRAN-1like language, CFD
(15); and an ALGOL €0-1ike language, GLYPNIR (11), .Both CFD and

- -

GLYPNIR do not hide the basic 6i-wide architecture of the ILLIAC.
We must restructure our data and algorithm so that the computation
can be done in parallel in "strips" of width €k or less.

Let us briefly describe the data declarations in GLYPKIR.
The PE memory of the ILLIAC can be viewed as a two-dimensional
structure where each word can be addressed by an ordered pair which
specifies the PE memory module and the address within that module.
A group of 64 words, each in a different module but each Laving the
same address within its module, is called a superword or s.ord. We
can divide the variable types in GLYPNIR into two major categories.
The first represents words or vectors of words; they are called the
Ccu w;ariable.. The second represents swords or vectors of swords
they are called the PE variables, There are also the Boolean varisatles
and the so-called ADB variables.

A sword vector of length n represents an inldexable vector
of swords. It is thus in some sense an n x 64 array, A GLYPNIR
program cannot directly handle two-dimensional arrays whose row

and column dimensions exceed 6k,

4. A _Row Orthogonalization Method

There are three reasons why the standard SVD method of Golub
and others (see [6] and [8]) may be undesirable on a parallel processor,
First, although the Householder transformation is inherently parallel, tte

effective vector length decreases at each step, causing irefficlencies.

Second, the parallel QR method of Sameh and Kuck may be numerically un-’
stable (see [9) and [14]), In contrast, the one-sided orthogonalization
method of Hestenes [10] is easily adaptable to computation on & parallel
machine. Third, data movement across the PE memories can be very ex-

pensive. The Hestenes method requires very little communication among

the PE's.

The method of Hestenes consists of generating an orthogonal

matrix V such that the non-null column vectors of the matrix
H = AV

are mutually orthogonal and non-increasing in norm. The nonzero

columns of H are then normalized so that

£ |o
H=(Ulo =
oo (e

with
u:,'vr =1, and z, = aiag(oy, ... » Op).
Ccnsequently,
t
A=UZV, (1.4)
vhere

Vr i1s an n X r matrix consisting of the first r columns

of V.

Nash [12] followed Hestenes' approach, but Chartres (2] chose to
orthogoralize the rows of the given matrix A, We have decided on
the row orthogonalization scheme, for it is easily adaptable to
solving overdetermined linear equations,

. We aim to generate an orthogonal matrix Uf' so that the non-

mull rowv vectors of the matrix
]

=%

are mutually orthogonal and non-increasing in norm, We then norwalize

the nonzero rows of K to obtain

t
K= 5 L
ofl|o 0
with
I, = diag(oy, ... , 0,) and v:vr -I.
It follows that
+ . .
A= Urtrvr » (1.5%)

where

U, 1is an m X r matrix consisting of the first r columns
of U,

We are going to construct the matrix U as a product of plane
rotations. Let us write the matrix A as

’ (b.1)

>
"
8% P P

vhere

g: 18 & 1 X n row vector, for { = 1,2,,.., m.

Given any two rows 32 and 3;, with 1< j, we would consider thea

orthogonal if
fagh<cllall or Had<ecllall, (h2)

where ¢ is the machine precision, or if

nta.

Te, T Ty < (.3)

wvhere 7T 1is a previously chosen tolerance., We do not transfora

orthogonal rows, but would permute them if

llagll < llayl

Suppose now that the two'.g.iven rows do not satisfy the orthogonality

condition (4.2) or (4.3). Let us consider the action of a plane

rotations
cos ¢ sin ¢ at at .
=l Il Bl I : (4.8)
-sin @ cos @ ’5; g;

The idea is to choose @ such that
88, =0 and 2,0 > g0 .

The second condition ensures that the computation always proceeds

tovards an ordering of row norms, Following Nash [12], we let

t
a= 22123

B = s, 1® - loy®, (1.5)
Y S R

Note that y 1s positive since a 1s nonsero, Then, if p is pcsitive

we compute

co-v-(r_"’..g)l/a and sin 9 =

> , (L€)

a
27 cos @

otherwise we let

sin @ = (L;Tp)l/a and cos g = 2?3?6 . (87)
In (4.4), we could use the Fast Givens transformations (ses
{4)) which requires only 2n multiplications, an apparent 50% work
vreduction. But a heavy overhead in maintaining the scalirg factors
eats up the savings unless the row length n is molerately large [1%].
As in the traditional Jacobi algorithm, the plane rotatiors are
performed in a set sequence called a sweep, which corsists of thre

[m(m-1)1/2 plane rotations on the row pairs
(1,2), (1,3), ... , (1,m), (2,3), ..., (2,m), (3,4), ..., (n-1,m).

The iterative procedure terminates if one complete sweep occurs in which

all rows are orthogonal and no rovws arc interchanged.

Our orthogonslization method is in essence the Jacobi method

\ to compute its eigenvalues,

implicitly applied to the matrix AA
We can refer to the literature [18] for the convergence properties
of our rethod. We see that the convergence ig quadratic and takes
the order of 6 to 10 sweeps, i.e. from an to Snz plane rotations
(see [13]).

We now present our method in its entﬁ'ety. Two Boolean

variables are introduced:

withu ¢ true if matrix U 1is desired, false otherwise.

withy § true if matrix V 4s desired, false otherwise,

We zake the arbitrary choice that

’ =102,

Recall that

€ = 3.55 x 10713

1s the precision of the ILLIAC machine. The matrices U and V are written as

U= (21, PQ’ see 2‘) » (".8)

V(e X oooe s X ¢
ALGCRITHM 1 (8SVD).
I. Initialize:

(1) Let
e2:=0.55 x 107152,
1’:- 10'2‘.
and
c:=0.,
(2) For 1:=1,2,...,m do
compute |1a,]12.

(3) Compute 2 2
L [Y

(8) If (withu) then let U := I,
9

II. Repeat until c = [m(m-1)]/2:
(1) Let ¢ :=0
(2) For (1,3) := (1,2),(1,3),...,(1,m),(2,3),...,(2,m),
G,4),...,(3,m),..00,(n-1,m) do
1r |[‘QJ||2< 8% then
(a) Let c :=c+1,
Else it |lg, < 67 then
(a) Exchange 8, and L
(b) If (withu) then exchange u, eand 8y

Else if .i‘.z s, 2
et
2y ‘.1

then

() 1t Mgk lagh? tnen
(1) Exchange 8, amd LY
(11) 1If (withu) then exchange u, and 8y

Else
(a) Compute
t
' a =288y
“ - 2 _ 2
- B = lla 0° - lle,l",

' :“ Y= (f + 92)1/20
a (b) If >0 then
(1) Compute

10

s ¢ 10 (rg-a)‘k :

and
a
ek T
Else
(1) Compute
-p 1/2
sin @ := o »
and
a
cos @ := —_—2'. sin ¢ °
(c) Compute
!:-colo-51+sin¢-3 »
33 = -gin @ o £1+ cos @ o '!J'
and 21 1=V,
(d) Update)
lull?s= (con #)’ 18,112 + (ota 902 |Is,11?
+ acos sin ¢
Hayl1:= Gatn 2)%| 18,117 + (con 0)%) 1,11
-~ acos Ps8in ¢
and

Haghi2e= 11w 112
(e¢) If (withu) then

z :-cOIQ-21+.£n¢oga.

- 4y t=-sin@ . u, + cos Q. 8y
4 =z .
III. Compute singular values:
(1) Let 4 :=1. :
(2) Repeat until 1>m or llall <é:

(8) Let o, := llall.

(b) If (vithv) then vae 8
e ll-

(c) Let 1 :=1 +1,

[\ Tat » oz 4 = 1.

We wish to compare the required work of Algoritha 1 and the
Golub-Reinsch method [8]., One sweep of Algorithm 1 takes about
(Sn + ln)-2/2 multiplications if the U matrix is desired, and

sn-2/2 multiplications otherwise. We assume that

a<n,

for we can compute the SVD of At if m > n. We further supgose that

our Jacobi-like method takes 8 sweeps to converge and that only two
QR steps are required per singular value for the Golub-Reinsch
algorithm (cf. [1]). The following table gives the nuzter of culti-

plications required by the two methods in four different cacses.

hatricea Desired Algorithm 1 Golub-Feinsch
L P A 20u°n + 1€’ 700 + 12 /3
U, £, 200°n + 16a® 2aln + a0’
2 2 3
}:r, Vr 202°n n’n -m
L, 200°n zan - 253 3

We see that Algorithm 1 is about three times slower then the standard
SVD algorithm in computing the full singular value decozpcsition.
However, the special architecture of the ILLIAC IV cozputer can reiuce
the number of required multiplications by an asyzptotic factor of €L,
Our Jacobi-like algorithm is therefore very efficient on a parallel
computer. We should mention that Chan [1] descrited a roiified Golud-
Reinsch algorithm that could suve up to 50% of rz-hine ex<zution tize

if m<<n,
12

5. Least Squares Solutions

We have defined the singular value docénpolition of an m x n matrix A as

A = umvt (1.1)
Its pseudo-inverse s an n x m matrix A+ given by
+ t
A = VU » (501)

where

l= L3 N . (503)

13

An important application of the pseudoinverse is in solving
overdetermined systems of linear equations
AX =B, (5-3)
whers B 1is a given m X s matrix and
m>n. (5.4)
We seek an n x s matrix X such that

B - AX|| = min . 5.s)

The solution matrix X is not unique unless the matrix A 1is of full
rank, We therefore impose the condition that we want the matrix i
of minimum norm in the solution space. It is well known (see, e.g.,
{6]) that X 1s unique and is given by

X=a'. (5.6)
Thus, we have that

X =wc, (5.7
where

c=u'.

The matrix C can be generated by applying to the rows of B those
plane rotations that we use to orthogonalize the rows of A. It
is unnecessary to accumulate the plane rotations.

We now present an algorithm based on Algorithm SVD for
computing the minimum norm solution to the overdetermined system (5.3).
‘There is an input parameter "cutoff." Our method sets to zero all
those singular values of A that are smaller than cutoff - [|A|l, The 1
YOV Vector BY denotes the i-th row of B, for 1 =1,2,...,m.

14

ALGORTTHM 2, (MINFIT)
I. Initialige:

(1) Lc't
&:=06.55 x 05?2
?1m 1024
and
c:=0,

(2) For 41=1, 2, «vop, B d;
compute || a, ||

3) Comput
¢ * % a2
II. Repeat until c = [m(m-1)]/2:
(1) Let ¢ :=0.
(2) For (4,3) := (1,2),(1,3),...,(2,m),(2,3),...,(2,m),
(3)“))0--:(3,!),...,(!—1,.) do
1t %< 6 then
(o) Let e :=c + 1,
Else if ||.512< 62 then

(a) Exchange a and 2

(v) Exchange b, and E_J.
Else if
"ot 2
a; &
12411124
then

() 1t llat’< layl¥ then
(1) Exchange 8, and a
(11) Exchange b, and »

Else
(a) Compute
= ~at
@ 1= 3,8,
2
B 1= lo, I - llaI®,

and
v o (a2 L a?)\1/2

e

(b) I >0 then

(1) Compute e (LLE)1/2

— A W ok

a
sin @ 3= _;'_o .
Else
(1) Compute

n (152)

a
CoOSQPttrsn P °

(c) Compute
!u-eoloogi+|1nv-ga.
L) t=-sin @ g +cos P 24
and 8 =¥
v @ Update || y)| 21m (cos 917 Il a1l 2 + (sta 9)? f1a,l12
‘ + a cos 9 sin ¢
Ilgjllzs- (sta 9?2 || sl 24 (con? || gjl.lz
-gcos ¢sin P
W a,IR:= 1l wlf
(s) Compute
gz-cosqa-gi+sinv'hj,
QJ o--ninv'p_‘feoaong »
and
by s= 2.

III, Compute least squares solutiong
(1) Let
V:=0,

Y:=0,
and
1:=1,

(2) Repeat until 1 >n or u,,‘n < cutofe . ||All:

(a) Compute

: a
¥, 1=

~ ° ﬂgil

and

b

b -a-]l—u—"1
U M

(b) Let 1 :=1+1,
(3) Let r:=1-1,

4 t
4 i= b,
(4) Compute X 15 1 !l. L)

One sweep of ‘Algorithn 2 takes about s-"’nlz multiplications.
We neglect the terms involving s because s << n in most nppuutlonl..
With the same assumptions on convergence rates as in the last section,
tke required work for our MINFIT algorithm is about 20m2n multiplications
while that for a similar method based on the Golub-Reinsch algorithm
(s=e [2]) is about omn® + b multiplications., If m >> n, it saves
work to first reduce the regression matrix A to upper triangular
form using Householder transformations, before applying the MINFIT
algorithm (cf. [1])). Such a two-stage scheme requires about 3mu2 + 11n3/3
rultiplications, Fortunately, the parallel computing abilities of the
TLLIAC zachine reduce the work of our.ulgorithm by an asymptotic tuctof
of €4. Thus, our MINFIT algorithm is an effective solver for least

squares prodblems,

17

6. Data Structures.

Let us first assume that n < 64. As our slgorithms access
A by rows, we lay out the rows of the matrix across the processing
elements of the ILLIAC, We thus represent the matrix by a sword
vector A[*] of order m,

We work with the rows of A to compute (a) the pairwise inner
product, and (b) the' new rows after a plane rotation. The GLYFNIR
language provides a built-in function ROWSUM that sums the 64 numbers

of a sword in 6 additions. The GLYPNIR expression

ROWSUM(A[I] * A[J]))

computes the inner product of the i-th and j-th rows of A. If n < €L,
we must disable the last (64 - n) processing elements when we call thé

) [}
ROWSUM function. An alternative is to apply our algorithms to an

~
a x 64 matrix A, given by
~
A = (A|o) .

The following lines of GLYPNIR code compute the new i-th ani

J-th rows of A at the end of a plane rotation:

T t= A[I] * COSPHI + A[J] * SINPHI ;
A[J] 1= -A[I) * SINPHI + A[J] * COSPHI j
A1) 3= T3

vhere T 48 a sword used for tempora.r.y storage.

We now consider the case wvhen n > 6L, Let

- [&]
f.e. 8 equals the smallest integer > n/64. We construct an m x €he

matrix 3, given by
18

A=) .
The rows of 3 are then divided into 4 equal segments:
A= (A1|A2|--~|A‘) .

Thus, we may represent the matrix A by the ¢ sword vectors
ALl#), ... , AL[#]), each of order m.

The GLYPNIR expression
ROWSUM(AL[I] * AL[J] + -« + AS[I] * A2[J])

‘computes the inner product of the i-th and J-th rows of the matrix A.
Flane rotations are applied to individual segments of the rows. For

exemple, we may write the & lines of code

A1l{J] s= -A1[I] * SINPHI + Al!J) * COSPHI ; t
A2(J) 3= -A2[1] * SINPHI + A2[J) * COSPHI j
A2{J) 3= -A2'I) * SINPHI + A£(J] * COSPHI 3

to compute the new vector

8y i -8,-sin @ +3‘1 ccos P,

A major shortcoming of this approach is that we must write a separate
prograa for each value of & . A better alternative is to store row
i of A'1 in sword A([1-1]). 2 +]) [or sword A([§-1):m+1)], and we have
to write just one program.

Since the columns of the matrix U are transformed in the same
manner as the rows of A, we lay out U so that its columns lie across
the processing elements. Thus, we represent the matrix by a sword

13

vector U[*] of dimension m. For the.two differeat cases of
m S 64 and m > 64, we apply tochnlquu*;’iulht to those discussed

in the previous paragraphs.

The rows of the data matrix B are modified in an identical
fashion as the rows of A, Therefore, we lay out the rows of B
across the processing elements. The two cases of column dimension
8< 6k and 8> 64 for B are dealt with in the same ;arner as
the corresponding cases for the matrix A.
The execution time of Algorithm MINFIT is independent of s, for

8 < 64, If 8 18 much greater than m, then the execution time will be

proportional to r&]'

7. Bumerical Properties
Let us examine the question of numerical stability. An error

analysis of the action of plane rotations on a matrix was given by
Wilkinson in his classic text [19). His error bounds were later-
improved by Gentleman [5]. We use their results to study the effects
of the plane rotations in one sweep of our algorithm,
Let
M =3 n(-1) , (7.1)

d let R
and le 4

We can show that the computed matrix K“ after one sweep of rotations

represent the j-th plane rotation, for J = 1,2,...,M.

satisfies the inequality

UK, -RByy - RAl < 2®men-2)aea¥Bymt0-2y) g

20

The right-hand side of the inequality (¥.2) is an extreme upper bound,
We expect the statistical distribution of the rounding errors to reduce
the error to well below the level of the bound; for this reason alone,
a factor of the order of (l-l~n--2)"|'/2 in place of (m +n-2) might
be more realistic. We see that our algorithm 1is extremely stable,

As the matrix U 1is formed as a product of plane rotations,
we examine here the deviation from orthogonality of such & product.
Let 6“ represent the computed product of the plane rotations in one

sweep. We have the inequality that

-t8 nl/z(m+n-2)(1+2'l'8)"+"’2 .

!pH-BHRH-l ces “1“ <2 (7.3)

Agein statistical consideration indicates that a factor of the order

of nllh(nfn-z)lk instead of nlla(n*n- 2) 1s probadbly more

realistic. The matrix U 4is thus very close to an orthogonal matrix,
The tolerance T controls the accuracy of the solution,

At convergence of our algoritim, we have that

v, -1l < re (.

Indeed, our numerical experiments show that the accuracy of the computed

singular values and vectors of A 1s of the order of v,

8. Test Results

We have written GLYPNIR programs implementing Algorithms SVD

and MINFIT. Tests were carried out on the ILLIAC IV co-puter.
21

EXAMPLE 1 (see [8]).
We have chosen the following matrices:

22 1 2 3 7 (2 1

i 7 10 o 8 2 21 1
<1 13 -1 -11 3 1 10 1

A=| 3 2 13 -2 & s B=] & o 4|,

9 8 1 -2 & 0 -6 -6

9 I 5 -1 -3 6 3

2 -6 6 5 1 1 11 12

L 5 o -2 2| [0 -5 -5]

The singular values of A are 128, 20, V3B%, 0 and 0. Our
'BVD program computed those values to machine precision. The minimum

nora solution to the overdetermined system

is given by

o
'

o

o
]

]
.

B~ Bl» #* o (<
o

B~ B» == o Rl

|

Our MINFIT program returned a solution accurate to 14 decimal digits.

EXAMPLE 2 (see [6]).

Let us compute the full singular value decomposition of the n x n
matrix

!1 «l =1 1 -1 ..
D D S T
1 -1 -1 ...

1 -1 .. 4

O 1 ...

which is 1ll-conditioned as it has a very small singular value,

The matrix becomes singular if we add 2782

to its (n,1) position.
We applied our SVD program to this choice of A for different
values of n. For comparison, we have chosen the S8VD subroutine in
the EISPACK eigenvalue package from the Araonne-l!ationnl Laboratory (3].
The EISPACK routine implements the method of Golub and Reinsch [8]
and has been coded for high execution efficiency. We applied the .
routine to the same matrix on an IBM 370/168 computer at the Stanford
Linear Accelerator Center. The code was compiled by the FORTRAN H

EXTENDED compiler with optimization level 2,

TLLIAC IV IBM 370/168 ILLIAC TIME

n iter time time IBM TIME
16 7 0.21 0.101 2,08

32 8 1.02 0.57 1.79
L8 8 2.36 1.76 1.34

64 9 4.56 k.03 1.13
96 10 13.04 12,81 1.02
128 9 21.94 29,68 0.74

23

Unfortunately, our ILLIAC times are only estimstes. The TLLIAC
timing routine did not work for the whole summer of 1979. However, ve
have actual timings of an algoritha similar to Algorithm 1, and it require
28 -zn + 16 -3 multiplications per sweep. The ILLIAC times in the table
are those actual timings multiplied by a factor of nine-elevenths.

It should be pointed out that the GLYPNIR compiler produces very
inefficient code. We had the experience that a CFD program implementing !
sanme algorithm gave a saving of 41X in execution time over the GLYPXIR cox

We must admwit that in most applications one is interested in micii
ing the overall cost of solving a problem, rather than the time required
solve it. However, it is not easy to determine the costs of solving the
problem on the two machines. They both use complicated algorithms, takin
1?to account factors such as storage, priority, time-of-the-day, etc. We
can only say that for our examples one second of ILLIAC time is about tean
times as expensive as one second of IBM time at the Stanford Linear Accel
tor Center.

We were unable to run examples with larger values of n on the ILL
due to storage limitations placed on our account by the ILLIAC.TENEX syst
Nonetheless, we observe that our ILLIAC routine becomes more efficient
relative to the EISPACK routine with increasing values of n. The execut!

time of the former is crudely proportional to

(iter xr&] x nz).

while that of the latter to n3. There is thus a good potential in matri:
computations of a parallel computer with many processors.

The ILLIAC IV computer is still the only machine of its kind.
PHOENIX project has been proposed and it calls for building a parallel ¢
consisting of 1024 processors. The cost was estimated at 35 million dol
in 1977. 1t was suggested that such a machine could eliutnnt_e the need
pew wind tunnel at the NASA/AMES Research Center which might cost ten t

as much.

8]

f2]

(3]

(4]

5]

16
(7]
(8]
9]

(10

(11

(12}

13)

REFERENCES

Chan, T. F. C., "On computing the singular value decomposition,”
Regort STAN-CS-77-533, Computer Science Dept., Stanford
University (1977).

Chartres, B.A,, "Adaptation of the Jacobi method for a computer
with cagnetic-tape backing store," Computer J. 5 (1962),
51-€0,

Garbow, B.S., Boyle, J.M., Dongarra, J.J., and Moler, C.B.,
Matrix Eigensystem Routines--EISPACK Guide Extension
Srringer-Verlag, Berlin (1977).

GCentlezan, W.M., "Least squares computations by Givens trans-
for-ations without square roots," J. Inst. Maths. Applics.
1z (1973), 323-336.

Gentleman, W.M., "Error analysis of QR decompositions by Givens
transforzations,” Lin. Alg. Applics. 10 (1975), 189-197.

Golub, G.H., and Fahan, W., "Calculating the singular values and
pseudo- inverse of amatrix,"J. SIAM Ser. B: Numer. Anal, 2
(1%¢5), z05-22k,

Golub, G.H., and Luk, F.T., “Singular value decomposition:
applications and computations," ARO Report 77-1, Transactions
of tg; 22-nd Conference of Army Mathematicians (1977),
577-605. :

Golub, G.H., and Reinsch, C., "Singular value decomposition and
least squares solutions,” Numer, Math, 1k (1970), L03-420.

Heller, D., "A survey of parallel algorithms in numerical linear
algebra," SIAM Review 20 (1978), 740-777.

Hestenes, M.R., "Inversion of matrices by biorthogonalization and
related results,” J. Soc. Indust. Appl. Math. 6 (1958),
S1-50.

Lawrie, D.H., Laycan, T., Baer, D., and Randal, J.M., "GLYPNIR-=
a progravming language for ILLIAC IV," Comm, ACM 18 (1975),
157-1€L,

Nash, J.C., "A one-sided transformation method for the singular
value decomposition and algebraic eigenproblem,” Computer J,
18 (1975), 74-76.

Rutishauser, H., "The Jacobi method for real symmetric matrices,”
Furer, Math. 9 (1966), 1-10.

25

(1k)

(15]
[16]
7
(18]

(19)

Sameh, A,H., and Kuck, D.J., "A parallel QR algorithm for svm-
n;rig tridiagonal matrices," IEEE Trans. Computers C-26 (1977),
-153. -

8tevens, K.G., Jr., "CFD--a FORTRAN-like language for the ILLIAC
Iv," ACM Sigplan Notices 10 No. 3 (1975), 72-76.

Stewart, G.W., private communication (1978).
Wiggins, R.A., "The general linear inverse problem: implication

of surface waves and free oscillations for earth structure,” Re-
views of Geophysics and Space Physics 10 (1972), 251-285.

Wilkinson, J.H., "Note on the quadratic convergence of the cyclic
Jacobi process," Numer. Math. 4 (1962), 296-300.

Wilkinson, J.H., The Algebraic Eigenvalue Problem, Clarendom, Oxford
(1965).

26

Ackrowledgements

The author acknowledges the generous support of the Institute for Advanced
Corrutation. He is grateful to Drs. David Stevenson and Harold Brown for theiv
help in programming the ILLIAC w'. and to Professor Gene Golub, Professor
Janes Wilkinson and especially the anonymous referee for their valuable suggestions,

which have greatly improved the manuscript.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif

