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Abstract We establish a characterization of the vertices of a tropical polyhedron
defined as the intersection of finitely many half-spaces. We show that a point is a vertex
if, and only if, a directed hypergraph, constructed from the subdifferentials of the active
constraints at this point, admits a unique strongly connected component that is maximal
with respect to the reachability relation (all the other strongly connected components
have access to it). This property can be checked in almost linear-time. This allows
us to develop a tropical analogue of the classical double description method, which
computes a minimal internal representation (in terms of vertices) of a polyhedron
defined externally (by half-spaces or hyperplanes). We provide theoretical worst case
complexity bounds and report extensive experimental tests performed using the library
TPLib, showing that this method outperforms the other existing approaches.
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1 Introduction

Tropical polyhedra are the analogues of convex polyhedra in tropical algebra. The
latter deals with structures like the max-plus semiring, which is the set R ∪ {−∞},
equipped with the addition (x, y) �→ max(x, y) and the multiplication (x, y) �→ x+y.

The study of the tropical analogues of convex sets is an active research topic,
which has been treated under various aspects. It arose in the work of Zimmermann
[61], following a way opened by Vorobyev [58], motivated by optimization theory.
Max-plus convex cones, thought of as the analogues of linear spaces, were studied
by Cuninghame-Green [20]. Their theory was independently developed by Litvinov,
Maslov, and Shpiz (see, in particular, [47], and also [50]) with motivations from
variations calculus and asymptotic analysis, and by Cohen, Gaubert, and Quadrat
[23,24] (see also [37]) who initiated a “geometric approach” of discrete event systems
[22], further developed by Katz [44,26]. In [25,51], Singer, Nitica, and some of the
aforementioned authors, related this theory to abstract convexity [54]. The work of
Briec and Horvath [13] is also in the spirit of generalized convexity, some motivations
from mathematical economy appeared in [14]. Polyhedral max-plus convex sets also
appeared in the work of Bezem et al. [15], as sets defined by “max-atoms,” with
motivations from sat-modulo theory (SMT) solving. Moreover, the field has been
considerably developed after the work of Develin and Sturmfels [27], who related
tropical and discrete geometry, showing in particular that tropical polyhedra can be
thought of as regular polyhedral subdivisions of the products of two simplices. This
was at the origin of a number of works, by Joswig, Santos, Yu, Block, Ardila, and the
same authors [1,19,28,29,41–43].

From the perspective of tropical geometry, tropical polyhedra may be thought of as
degenerate limits of classical polyhedra along a logarithmic deformation (see [13]
for a proof of this fact), or as the image by the valuation of polyhedra over an
ordered field of real Puiseux series. This explains a certain analogy between tropi-
cal and classical convexity. In particular, tropical analogues of several theorems in
classical convexity have been established, including the ones of Hahn and Banach
[25,27,61], Minkowski [18,34], Minkowski–Weyl [33,35], Radon [16,36], Helly
and Carathéodory [13,38,36], and also more advanced discrete convexity results
[36].

In contrast, algorithmic aspects of tropical polyhedra have not yet been thoroughly
explored. In particular, a tropical polyhedron can be represented in two different ways,
either externally, in terms of affine inequalities, or internally, as a set generated by
finitely many points and rays, see [35] and the references therein. The minimal inter-
nal representations of a tropical polyhedron are essentially unique, and consist of its
extreme points (vertices) and representatives of extreme rays. Passing from an external
description of a polyhedron to a (minimal) internal description, or inversely, is a funda-
mental computational issue, comparable to the well-known vertex/facet enumeration
or convex hull problems in the classical case.

In this article, we develop a combinatorial characterization of the extreme points
and rays of tropical polyhedra defined externally. The characterization is equivalently
expressed in terms of tropical polyhedral cones (as homogeneous representations of
polyhedra). Polyhedral cones are sets consisting of vectors x = (x1, . . . , xd) with
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entries in R ∪ {−∞} satisfying a system of linear inequalities in the tropical sense,
i.e. of the form:

max
i∈[d] Aki + xi ≤ max

j∈[d] Bkj + x j , for k ∈ [p], (1)

where for all integers n, [n] refers to the set {1, . . . , n}, and A, B are matrices of
size p × d with entries in R ∪ {−∞}. If C refers to the cone defined by the latter
inequalities, a vector v ∈ C is said to be (tropically) extreme if it cannot be written as
the point-wise supremum of two vectors of C that are both different from it. We denote
by arg max Akv (respecively arg max Bkv) the set of indices j ∈ [d] attaining the
maximum at the left-hand side (respectively right-hand side) of each inequality (1). We
associate with a vector v ∈ C a directed hypergraph, referred to as the tangent directed
hypergraph at v in the cone C , consisting of the nodes {i ∈ [d] | vi �= −∞}, and one
directed hyperarc (arg max Bkv, arg max Akv) for each index k ∈ [p] such that both
maxima in (1) coincide and take a finite value. This definition is illustrated in Sect. 3,
in which more information on directed hypergraphs can be found. The reachability
relation induces a partial order on the strongly connected components of a directed
hypergraph, meaning that a component is “greater” than another if the former can be
reached from the latter. The main result of this paper is the following characterization:

Theorem 1 Let C be a tropical polyhedral cone. A vector v ∈ C is tropically extreme
if, and only if, the set of the strongly connected components of the tangent directed
hypergraph at v in C , partially ordered by the reachability relation, admits a greatest
element.

This theorem shows interesting analogies and discrepancies with the classical result
stating that a point of a polyhedron defined by inequality constraints is a vertex if, and
only if, the family of gradients of active constraints at this point is of full rank. In the
tropical case, the expressions arising on both side of the constraints (1) are not differ-
entiable, but they are convex, and so, they admit a subdifferential at each point at which
they take a finite value. The subdifferential of the map x �→ maxi∈[d] Aki +xi at point
v is easily seen to be the convex hull of the set of vectors of the canonical basis of R

d

with indices in arg max Akv. The same is true, mutatis mutandis, for the map appearing
at the right-hand side of (1). Hence, Theorem 1 appears to be an infinitesimal charac-
terization, as the classical result. However, the classical rank condition does not have
a tropical analogue: several rank notions have been considered in the tropical setting
[3,28], none of which explains the reachability condition appearing in Theorem 1.

Theorem 1 has both theoretical and algorithmic applications. In the companion
paper [11], it is used to show that the tropical analogues of the polar of the cyclic
polytope have fewer vertices than in the classical case (in other words, along the
deformation sending a classical polyhedron to a tropical polyhedron, some classical
extreme points degenerate in points which are no longer extreme in the tropical sense).

From the algorithmic point of view, a significant advantage of the criterion provided
by Theorem 1 is that it can be evaluated in almost linear time in the size of the tangent
hypergraph (Theorem 12). Thus, the corresponding computational complexity exclu-
sively depends on the size of the external representation of the cone. This allows us to
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define an algorithm determining the extreme points and rays of a tropical polyhedron
defined by inequalities (Sect. 4). We call this algorithm the tropical double description
method, by analogy with the classical method which goes back to Motzkin et al. [49]
and was later refined by Fukuda and Prodon [31]. Given a polyhedron defined by a
system of p inequalities, it consists in determining the set of the extreme generators of
the polyhedron defined by the first k inequalities, by induction on k = 1, . . . , p. It is
based on a result (Theorem 13) allowing to build a set of generators of the intersection
of a polyhedron with a half-space. This result can be extended to the intersection with
tropical hyperplanes (Theorems 19 and 20), so that the tropical double description
method can also handle polyhedra defined as mixed intersections of half-spaces and
hyperplanes. Theorem 1 is the cornerstone of the double description method, as the
latter algorithm critically relies on an efficient criterion to eliminate non-extreme gen-
erators (propagating such generators in the induction considerably increases the time
complexity).

We include for the sake of comparison an alternative algorithm (Sect. 5), based on
determining the extreme generators of a polyhedron P by computing the vertices
of the arrangement formed by (tropical) hyperplanes associated with the half-spaces
defining P , assuming that they are in general position. For some polyhedra, this
algorithm has a better worst-case complexity than the double description method.
However, its interest is rather theoretical, as this worst-case complexity is essentially
tight, and it does not apply to arbitrary polyhedra.

The inductive approach used in the tropical double description presented here is
reminiscent of an algorithm of Butkovič and Hegedus [12] computing a generating set
of a tropical polyhedral cone described by linear (in)equalities. Gaubert [32, Chap. III]
gave a similar one and derived the equivalence between the internal and external repre-
sentations (see also [35,37]). Our approach is more general in the sense that it handles
intersections with other kinds of constraints. Moreover, the efficient elimination of
redundant candidates using directed hypergraphs brings an important breakthrough
both in theory and in practice in comparison with the previous techniques. We refer
the reader to Sect. 6 for an exhaustive discussion.

In [42], Joswig defined a method which is able to compute the vertices of the poly-
hedral complex associated with a tropical polytope (in the sense of [27]), from a set of
generating points. Other approaches [46,56] rely on a similar technique applying on
cones described by (in)equalities. While such algorithms are of interest from a combi-
natorial point of view, the size of the complex may be much larger than the number of
vertices, leading to a suboptimal method to determine concise internal representations.

The dual problem of computing an external representation of a tropical polyhedron
generated by a set of points and rays recently appeared to be more tractable: in a
paper of the first two authors with Katz [10], it is shown that such a representation can
be determined in incremental quasi-polynomial time, hence with a total complexity
quasi-polynomial in the size of the input and the output. This result is based on the
particular structure of polar cones of tropical polyhedra (relations between defining
inequalities and weighted transversals in undirected hypergraphs) and it cannot be
transposed to the primal problem discussed in this study.

We also note that the tropical double description method allows one, in particular,
to check whether the intersection of a family of half-spaces is empty. However, if one
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is only interested in checking the latter emptyness property, different algorithms may
be used. Indeed, the emptyness problem is equivalent [6] to solving a mean payoff
game, a problem for which several combinatorial algorithms have been developed,
including pseudo-polynomial algorithms (no polynomial time algorithm is currently
known).

Finally, we note that the main results of this article have been announced in the
proceedings article [4].

2 Preliminaries on Tropical Polyhedra and Polyhedral Cones

We denote by Rmax := R ∪ {−∞} the tropical (max-plus) semiring. It is equipped
with the addition x ⊕ y := max(x, y) and the multiplication x ⊗ y := x + y (also
denoted by concatenation xy). The neutral elements for these two laws are denoted
by 0 := −∞ and 1 := 0. We shall use the notation λ−1 for the tropical inverse of a
scalar λ ∈ Rmax \ {0}, which is nothing but the opposite of λ.

The set R
d
max refers to the d-th fold Cartesian product of the tropical semiring. Its

elements can be thought of as points of an affine space, or as vectors. They are denoted
by bold symbols, for instance x = (x1, . . . , xd). The elements 00 and 11 refer to the
vectors whose coordinates are all equal to 0 and 1, respectively. In the sequel, the
tropical semiring Rmax will be equipped with the topology arising from the metric
(s, t) �→ |es − et |. The set R

d
max will be equipped with the product topology, and the

associated closure operator will be denoted by cl(·).
Tropical operations are naturally extended to vectors and matrices over Rmax, defin-

ing (A⊕ B)i j = Ai j ⊕ Bi j and (AB)i j = ⊗k Aik Bk j . The Minkowski sum of two sets
S, S′ ⊂ R

d
max, denoted by S ⊕ S′, is defined as the set {x ⊕ x′ | (x, x′) ∈ S × S′}.

A set C ⊂ R
d
max is said to be a tropical convex set if it contains the tropical segments

between any two of its points x and y. The latter is defined as the set of points of the
form λx ⊕ μy, for λ,μ ∈ Rmax such that λ ⊕ μ = 1. Note that this definition is
analogous to the familiar one (in standard convexity) which requires in addition the
scalars λ and μ to be non-negative: the latter condition is automatically satisfied in
the tropical setting, since 0 = −∞ ≤ λ holds for any λ ∈ Rmax. The tropical convex
hull co(S) of a subset S ⊂ R

d
max is the set of the combinations λ1x1 ⊕ · · · ⊕ λpx p,

where p ≥ 1, xi ∈ S and λi ∈ Rmax for all i ∈ [p], and λ1 ⊕ · · · ⊕ λp = 1.
Similarly, a set C ⊂ R

d
max is said to be a tropical (convex) cone if it contains all

the combinations λx ⊕ μy (λ,μ ∈ Rmax) of any of two elements x, y ∈ C . Given
S ⊂ R

d
max, the tropical cone generated by S, denoted by cone(S), is the set of the

elements λ1x1 ⊕ · · · ⊕ λpx p where p ≥ 1, xi ∈ S and λi ∈ Rmax for all i ∈ [p].
A tropical convex set (respectively convex cone) is said to be finitely generated if it
is of the form co(S) (respectively cone(S)) for some finite subset S ⊂ R

d
max. In the

sequel, the terms convex set or cone are interpreted in the tropical sense.
Given a convex set C ⊂ R

d
max, a point p ∈ C is said to be an extreme point (or

vertex) of C if for all x, y ∈ C and λ,μ ∈ Rmax such that λ⊕μ = 1,p = λx ⊕μy

holds only if p = x or p = y. Analogously, when C is a convex cone, a non-null
vector v ∈ C is said to be extreme in C if for all x, y ∈ C , v = x ⊕ y implies v = x

or v = y. In this case, the set Rmaxv = {λv | λ ∈ Rmax} is said to be an extreme ray
of C , and the vector v is a representative of this ray.
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The subset B := {0,1} of the tropical semiring constitutes a sub-semiring of Rmax.
A subset D of B

d is said to be a boolean cone if for all x, y ∈ D and λ,μ ∈
B, λx⊕μy ∈ D (in other words, D is a sup-semilattice for the standard partial order
on B

d ). A vector of a boolean cone D is said to be extreme if it cannot be expressed
as the pointwise supremum of two other vectors of D .

Tropical polyhedra and polyhedral cones are defined analogously to classical ones.
A tropical affine half-space is a set formed by the solutions x = (xi ) ∈ R

d
max of a

tropical affine inequality

a0 ⊕
⊕

i∈[d]
aixi ≤ b0 ⊕

⊕

i∈[d]
bixi ,

where ai , bi ∈ Rmax for all i = 0, . . . , d. It is said to be a tropical (linear) half-space
when the coefficients a0 and b0 are omitted. In this setting, a tropical polyhedron
(respectively a tropical polyhedral cone) is the intersection of finitely many tropical
affine (respectively linear) half-spaces. Equivalently, any tropical polyhedron can be
seen as the set of the solutions of a system of inequality constraints Ax⊕c ≤ Bx⊕d,
where A and B are p× d-matrices with entries in Rmax, c and d are vectors of R

p
max,

and≤ denotes the standard partial ordering of vectors. Similarly, a tropical polyhedral
cone is the set of the solutions of a two-sided system of the form Ax ≤ Bx.

The description of tropical polyhedra and polyhedral cones as intersections of half-
spaces is said to be external. Moreover, tropical polyhedra and polyhedral cones admit
an internal representation, by means of finitely many points and rays, as established
by the following tropical analog of the Minkowski–Weyl theorem.

Theorem 2 ([35, Theorem 2]) The tropical polyhedra of R
d
max are precisely the sets

of the form co(P)⊕ cone(R) where P and R are finite subsets of R
d
max.

The tropical polyhedral cones of R
d
max are precisely the sets of the form cone(V )

where V is a finite subset of R
d
max.

Thus, a tropical polyhedron P is the sum of a bounded (finitely generated and
convex) set and of a polyhedral cone. The latter coincides with the recession cone
rec(P) of P , which is defined as the set {v | x ⊕ λv ∈ P for all λ ∈ Rmax}, given
an arbitrary point x ∈P , see [34]. When P �= ∅ is defined by a system of inequalities
Ax ⊕ c ≤ Bx ⊕ d, the recession cone can be shown to be the set of the solutions of
the system Ax ≤ Bx.

The couple (P, R) is said to be a generating representation of a tropical polyhe-
dron P when P = co(P) ⊕ cone(R). Similarly, the set V is a generating set of
a tropical polyhedral cone C when C = cone(V ). For algorithmic purposes, we
look for representations which are minimal in a suitable sense. The following propo-
sition, which combines several results of [34], shows that such representations do
exist. (Actually, the results of [34] apply more generally to closed—not necessarily
polyhedral—tropical convex sets.)

Proposition 3 ([34, Theorems 3.2 and 3.3, Corollary 3.4]) A tropical polyhedron
P ⊂ R

d
max admits a generating representation (P, R) in which P consists of the

extreme points of P , and R contains precisely one representative of each extreme ray
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of the recession cone of P . Moreover, if (P ′, R′) is any generating representation of
P , then P ′ ⊃ P, and R′ contains at least one scalar multiple of every element of R.

Similarly, a tropical polyhedral cone C ⊂ R
d
max admits a generating set V consist-

ing of precisely one element in each extreme ray of C . Moreover, if V ′ is any generating
set of C , then V ′ contains at least one scalar multiple of every element of V .

The generating representations (P, R) and the generating set V arising in this
proposition will be referred to as minimal. The minimal generating representations
of a tropical polyhedron (or of a tropical polyhedral cone) are almost identical, as
they only differ by multiplicative factors on the representatives of extreme rays. We
obtain canonical minimal representations by requiring these vectors to be scaled for
the “norm” ‖·‖ over R

d
max defined by ‖x‖ := maxi∈[d] exi , i.e. to satisfy ‖x‖ = 1.

Tropical polyhedra of R
d
max can be represented by polyhedral cones of R

d+1
max . In

the classical setting, such a technique is known as homogenization (see for instance
Ziegler’s monograph [59]). As shown in [24,34], the same technique works in the
tropical setting.

We restrict here our attention to the case of finitely generated convex sets. The
notation (M v) refers to the matrix obtained by appending the vector v after the last
column of the matrix M .

Definition 1 Let P = {x ∈ R
d
max | Ax ⊕ c ≤ Bx ⊕ d} be a non-empty tropical

polyhedron (A, B ∈ R
p×d
max , c, d ∈ R

d
max). The homogenized cone P̂ is the polyhedral

cone given by

P̂ := {
x ∈ R

d+1
max | (A c) x ≤ (B d) x

}
.

When x ∈ R
d
max and α ∈ Rmax, the element (x, α) refers to the vector of R

d+1
max

whose d first coordinates coincide with x, and the last coordinate is equal to α. The
generating representations of a tropical polyhedron and of its homogenized cone are
connected by the following result, which is an immediate consequence of the relations
between a convex set and its homogenized cone which are established in [34, § 2].

Proposition 4 (Corollary [34]) Let P ⊂ R
d
max be a non-empty tropical polyhedron.

Then the following statements hold:

(i) if (P, R) is a generating representation of P , then (P × {1}) ∪ (R × {0}) is a
generating set of its homogenized cone P̂ .

(ii) conversely, if V is a generating set of P̂ , then the couple (P, R) defined by
P := {α−1p | (p, α) ∈ V and α �= 0} and R := {r | (r,0) ∈ V } forms a
generating representation of P .

(iii) in the two previous statements, if any of the representations is minimal (and
canonical), then the other is also minimal (and canonical).

As a consequence, p is a vertex of P if, and only if, the vector (p,1) is an extreme
vector of the homogenized cone P̂ . Similarly, the extreme vectors of the recession
cone rec(P) are precisely the elements r ∈ R

d
max such that (r,0) is extreme in P̂ .

Thus, we will only state the main results of this work for tropical cones, leaving to the
reader the derivation of the affine analogues using homogenization, along the lines of
Proposition 4.
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Fig. 1 A tropical polyhedron in R
2
max (left), and an equivalent representation by a cone in R

3
max (right)

Example 1 In the following sections, we will illustrate our results on the tropical
polyhedron P depicted in solid gray (the black border is included) in the left-hand
side of Fig. 1. It is defined as the intersection of the half-spaces given by the inequalities:

0 ≤ x1 + 2

x1 ≤ max(x2, 0)

x1 ≤ 2

0 ≤ max(x1, x2 − 1)

This polyhedron is generated by the vertices p1 = (−2, 1), p2 = (2, 2), and p3 =
(0,−∞), and by the extreme ray Rmaxr

0 where r0 = (−∞, 0).
Its homogenized cone C is depicted in the right-hand side of Fig. 1. This cone is

represented in barycentric coordinates: each element (x1, x2, x3) is represented as a
barycenter with weights (ex1 , ex2 , ex3) of the three vertices of the outermost triangle.
Two representatives of a same ray are thus represented by the same point. Besides, this
barycentric representation is convenient to represent points with infinite coordinates,
which are mapped to the boundary of the triangle. The cone C is given by the linear
inequalities

x3 ≤ x1 + 2

x1 ≤ max(x2, x3)

x1 ≤ x3 + 2

x3 ≤ max(x1, x2 − 1)

In accordance with Proposition 4, it is generated by the extreme elements v0 =
(−∞, 0,−∞), v1 = (−2, 1, 0), v2 = (2, 2, 0), and v3 = (0,−∞, 0).
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3 Combinatorial Characterization of Extremality Using Directed Hypergraphs

We first show that the extremality of a vector of a (non-necessarily polyhedral) tropical
cone is a local property.

Proposition-Definition 5 Let C be a tropical cone, and v be a non-null vector of C .
Then v is extreme in C if, and only if, there exists a neighborhood N of v such that

∀x, y ∈ C ∩ N , v = x ⊕ y �⇒ v = x or v = y.

In the latter case, v is said to be locally extreme in C .

Proof The “only if” part of the result is straightforward. Suppose that v is locally
extreme in C , and let N be a neighborhood of v as in Proposition 5. Suppose that
x, y ∈ C are two vectors distinct from v, and satisfying v = x ⊕ y. Consider α > 0
sufficiently small so that x′ := α−1v ⊕ x and y′ := α−1v ⊕ y both belong to N .
Clearly, v = x′ ⊕ y′, and it follows that v is equal to one of the two vectors x′ and y′.
As α > 0, this yields a contradiction. ��

The support of a vector x = (xi ) ∈ R
d
max is defined as the set of the indices of its

non-null coordinates

supp(x) := {i ∈ [d] | xi �= 0}.

The following proposition states that the extremality of an element of a tropical cone
can be established only by considering the vectors of the cone which have a smaller
support

Proposition 6 Let C ⊂ R
d
max be a tropical cone, and v be a non-null vector of C .

Then the following two statements are equivalent:

(i) v is extreme in C ,
(ii) v is extreme in {x ∈ C | supp(x) ⊂ supp(v)}.
Proof Let D := {x ∈ C | supp(x) ⊂ supp(v)}. It is straightforward that D is a
tropical cone. Besides, for any vectors x, y ∈ C such that v = x ⊕ y, their supports
are both included in supp(v), hence x, y ∈ D . This concludes the proof. ��

For the rest of the section, the set C is supposed to be a polyhedral cone defined by
a system of linear inequalities Ax ≤ Bx, with A, B ∈ R

p×d
max . Using Proposition 6, it

is assumed that v is an element of C satisfying supp(v) = [d], up to considering the
extracted system A′y ≤ B ′y, where A′ and B ′ are respectively the matrices formed by
the columns of A and B of index i in the support of v. We denote by Ak (respectively
Bk) the k-th row of the matrix A (respectively B), for k ∈ [p].

Following the line of Proposition 5, we introduce the notion of tangent cone at the
point v, which captures the constraints induced by the cone C in the neighborhood
of v.
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Definition 2 The tangent cone to C at the element v is the tropical polyhedral cone
T (v,C ) defined by the following intersection of half-spaces:

T (v,C ) :=
⋂

k∈[p]
Akv=Bkv>0

{
x ∈ R

d
max

∣∣
⊕

i∈arg max(Akv)

xi ≤
⊕

j∈arg max(Bkv)

x j

}
,

where for any c = (ci ) ∈ R
1×d
max , the set arg max(cv) is defined as the argument of the

maximum cv = maxi∈[d](ci + vi ).

Proposition 7 There exists a neighborhood N of v such that for all x ∈ N , x belongs
to C if, and only if, it is an element of v +T (v,C ).

Proof Consider a neighborhood N in which all elements x satisfy the following con-
ditions:

(i) Akx < Bkx for all k ∈ [p] such that Akv < Bkv,
(ii) arg max(Akx) ⊂ arg max(Akv) and arg max(Bkx) ⊂ arg max(Bkv) for any other

k ∈ [p].
Let x ∈ N . Note that x belongs to C if, and only if, for each k ∈ [p] verifying
Akv = Bkv,

max
i∈arg max(Akv)

(Aki + xi ) ≤ max
j∈arg max(Bkv)

(Bkj + x j ), (2)

by definition of N .
Suppose that x belongs to C . Let k such that Akv = Bkv > 0. As for all i ∈

arg max(Akv) and j ∈ arg max(Bkv), Aki + vi = Bkj + v j > 0, the term Aki + vi

(respectively Bkj +v j ) can be subtracted from Aki +xi (respectively Bkj +x j ) in (2),
which shows

max
i∈arg max(Akv)

(xi − vi ) ≤ max
j∈arg max(Bkv)

(x j − v j ). (3)

Conversely, suppose that x − v = (xi − vi )i is an element of T (v,C ). Consider
k ∈ [p] such that Akv = Bkv > 0. Adding the term Aki + vi (respectively Bkj + v j )
to each xi − vi (respectively x j − v j ) in (3) shows that x satisfies (2). Besides, if
Akv = Bkv = 0, the row vectors Ak and Bk are identically null (since v has a full
support), and (2) is trivially satisfied. ��
Remark 2 The term tangent cone is borrowed from convex analysis and optimiza-
tion, where it is usually defined as the set of the directions which are asymptotically
admissible from the vector v in the set C

T 0(v,C ) :={
x ∈ R

d | ∃{tk}k≥0 ∈ (R∗+)N, {vk}k≥0 ∈ C N, tk −→
k→+∞ 0, (vk − v)/tk −→

k→+∞ x
}
.
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We claim that T (v,C ) defined here is the topological closure of T 0(v,C ) (the
latter is closed in R

d , but not in R
d
max). Using essentially the same technique as in

the proof of Proposition 7, it can be shown that T 0(v,C ) coincides with the set
T (v,C )∩R

d . Thus, the inclusion cl(T 0(v,C )) ⊂ T (v,C ) is implied by the fact that
T (v,C ) is closed, as any tropical polyhedral cone. The opposite inclusion T (v,C ) ⊂
cl(T 0(v,C )) comes from that the vector11 necessarily belongs to T (v,C ), hence any
element x ∈ T (v,C ) can be expressed as the limit of the sequence of the elements
xk := x ⊕ (k−111), for k tending to +∞. As for k ≥ 0, every vector xk belongs to
T (v,C ) ∩ R

d = T 0(v,C ), this completes the proof of the claim.

Combining Proposition 7 with the local characterization of extremality given by
Proposition 5 yields the following reduction:

Proposition 8 The vector v is extreme in C if, and only if, the element 11 is extreme
in T (v,C ).

Proof Let N ′ be the set consisting of the elements x− v for x ∈ N , where N is given
by Proposition 7. First remark that 11 ∈ T (v,C ).

Observe that two vectors x, y ∈ C ∩N satisfy v = x⊕y if, and only if, x′ := x−v

and y′ := y − v belongs to T (v,C ) ∩ N ′ (by Proposition 7), and 11 = x′ ⊕ y′. We
deduce that v is locally extreme in C if, and only if, 11 is locally extreme in T (v,C ).
We conclude the proof by Proposition 5. ��

The interest of Proposition 8 is that we are now reduced to characterizing extremality
of a vector of B

d in a closed tropical cone D (here T (v,C )), which is stable under
the usual multiplication by positive scalars, i.e.α × x ∈ D for all x ∈ D and α > 0
(the multiplication being understood entrywise).

Proposition 9 Let D ⊂ R
d
max be a closed tropical cone, which is stable under the

multiplication by positive scalars in the usual sense. Then a vector w ∈ D ∩ B
d is

extreme in D if, and only if, it is extreme in set D ∩ B
d seen as a boolean cone over

B
d .

Proof The “only if” part is obvious.
For the “if” part, suppose that w = x ⊕ y, where x, y ∈ D . Observe that every

entry of x and y is non-positive, and consider the sequences of the vectors xk := k×x

and yk := k × y, for k ≥ 1. By assumption, all elements xk and yk belong to D .
Besides, xk ⊕ yk = k × w = w, since w ∈ B

d . The two sequences (xk)k and (yk)k

admit a limit, respectively denoted by x′ and y′, which both belong to D ∩ B
d (since

D is topologically closed). The element w being extreme in the boolean cone D ∩B
d ,

one of the two vectors x′ or y′ is equal to w. Supposing for instance that w = x′, we
know that x′ ≤ x ≤ w, and we conclude that w = x. ��

Instantiating Proposition 9 with the tangent cone T (v,C ) provides the following
combinatorial characterization of the extremality of v:

Theorem 10 Let C ⊂ R
d
max be a polyhedral cone, and v a vector of C with full

support. The following three propositions are equivalent:

(i) the vector v is extreme in C ,
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(ii) the vector 11 is extreme in the boolean cone T (v,C ) ∩ B
d ,

(iii) there exists i ∈ [d] such that the following inequalities hold:

∀ j ∈ [d], ∀x ∈ T (v,C ) ∩ B
d , xi ≤ x j . (4)

Proof The equivalence (i) ⇔ (i i) follows from Propositions 8 and 9. It remains to
show (i i)⇔ (i i i).

Suppose that 11 is extreme in the boolean cone D := T (v,C )∩B
d . We claim that

there exists i ∈ [d] such that for all x ∈ D \ {11}, xi = 0. If not, 11 could be written as
the sum of some elements x j ∈ D such that x

j
j = 1, for j = 1, . . . , d. It follows that

for all elements x of D and j ∈ [d], xi ≤ x j .
Reciprocally, if (4) is satisfied, then every vector x ∈ D \{11} verifies xi = 0. Then

for all pairs (x, y) of such elements, we have (x ⊕ y)i = 0. We conclude that 11 is
extreme. ��

As the tangent cone T (v,C ) is defined by inequalities with coefficients in B, the
nature of the characterization provided by Theorem 10 is purely boolean. However,
testing, by exploration, whether there exists i ∈ [d] such that every vector ofT (v,C )∩
B

d satisfies xi ≤ x j for all j ∈ [d], does not have acceptable complexity. Instead, we
propose to express the satisfiability of the inequalities (4) as a reachability problem
on directed hypergraphs.

Directed hypergraphs are a generalization of directed graphs, in which arcs leave
and enter subsets of vertices. A directed hypergraph over the nodes 1, . . . , d is a set
of hyperarcs of the form (T, H), where T, H ∈ 2d . The notion of reachability is
extended from directed graphs to directed hypergraphs, and defined inductively as
follows: given a hypergraph G, and i, j ∈ [d], i is reachable from j in G, which is
denoted by j �G i , if i = j , or there exists a hyperarc (T, H) in G such that i ∈ H ,
and all elements of T are reachable from j .

Example 3 Figure 2 depicts an example of directed hypergraph consisting of the hyper-
arcs a1 = ({1}, {2}), a2 = ({2}, {3}), a3 = ({3}, {1}), a4 = ({2, 3}, {4, 5}), and
a5 = ({3, 5}, {6}). We visualize a hyperarc as a bundle of arrows: a solid disk sector
indicates that the different arrows going through it belong to the same hyperarc; the
head (respectively tail) of the hyperarc is the union of the heads (respectively tails) of

Fig. 2 A directed hypergraph
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these arrows. Applying the recursive definition of reachability from the node 1 dis-
covers the nodes 2, then 3, which leads to the two nodes 4 and 5 through the hyperarc
a4, and finally the node 6 through a5.

We now introduce the notion of tangent directed hypergraph, which is an equivalent
encoding of the tangent cone as a directed hypergraph. It derives from the system of
inequalities defining the tangent cone:

Definition 3 The tangent directed hypergraph at v, denoted by G(v,C ), is the directed
hypergraph consisting of the hyperarcs (arg max(Bkv), arg max(Akv)) for every k ∈
[p] such that Akv = Bkv > 0.

The reachability relation of the tangent directed hypergraph precisely captures the
constraints of the form xi ≤ x j satisfied by the boolean elements x of the tangent
cone, as shown below:

Proposition 11 The following two conditions are equivalent:

(a) i is reachable from j in the hypergraph G(v,C ),
(b) for all x ∈ T (v,C ) ∩ B

d , xi ≤ x j ,

Proof We first prove by induction that for every node i reachable from j , the inequality
xi ≤ x j holds for all x ∈ T (v,C )∩B

d . The case i = j is trivial. Suppose that there
exists a hyperarc (T, H) in G(v,C ) such that i ∈ H , and each k ∈ T is reachable
from j . Then for all x ∈ T (v,C ) ∩ B

d ,⊕k∈T xk ≤ x j . Besides, xi ≤ ⊕k∈T xk by
definition of T (v,C ) and G(v,C ). Hence xi ≤ x j . This shows that (a)⇒ (b).

Then, let us show by contraposition that (b) ⇒ (a). Let R be the set of nodes
k ∈ [d] reachable from j , and assume that i �∈ R. Consider the element x ∈ B

d

defined by xk = 0 if k ∈ R, and 1 otherwise. In particular, xi > x j . Let (T, H) be
a hyperarc of G(v,C ). If T ⊂ R, then H is included into R, so that the inequality
⊕k∈H xk ≤ ⊕l∈T xl is satisfied. If T �⊂ R, the latter inequality is still valid because
⊕l∈T xl = 1. We deduce that x belongs to T (v,C ) ∩ B

d . ��
Remark 4 The two statements of Proposition 11 can also be shown to be equivalent
to the property:

(c) for all x ∈ T (v,C ), xi ≤ x j . Replacing T (v,C )∩B
d by T (v,C ), the first part

of the proof of Proposition 11 indeed shows (a)⇒ (c). The implication (c)⇒ (b)

is trivial.

Given a directed hypergraph G, the strongly connected components (Sccs for short)
are defined as the equivalence classes of the relation ≡G , given by i ≡G j if i �G j
and j �G i . Strongly connected components are partially ordered by the relation �G
induced by reachability, i.e. C �G C ′ if C and C ′ admit a representative i and j ,
respectively, such that i �G j .

The theorem stated in the introduction now follows as a consequence of the previous
results.

Proof of Theorem 1 From Theorem 10 and Proposition 11, the vector v is extreme if,
and only if, there is a node i reachable from every node j in the tangent directed
hypergraph G(v,C ). This holds if, and only if, i belongs to a strongly connected
component C such that C ′ �G(v,C ) C for any Scc C ′.
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Fig. 3 The set v2 +T (v2, C )

(in light blue) (Color figure
online)

Example 5 Let us illustrate Theorem 1 by establishing the extremality of the vector
v2 = (2, 2, 0) of the cone C defined in Example 1. In (5), only the second and third
inequalities are active at v2, and the terms which belong to the arguments of the left/
right-hand sides are underlined. A system of inequalities defining the cone T (v2,C ),
in (6), is obtained by keeping only the underlined terms.

x3 ≤ x1 + 2

x1 ≤ max(x2, x3)

x1 ≤ x3 + 2

x3 ≤ max(x1, x2 − 1) (5)

x1 ≤ x2

x1 ≤ x3 (6)

Figure 3 illustrates that the cones C and v2+T (v2,C ) locally coincide in a neigh-
borhood of v2. The tangent directed hypergraph G(v2,C ) associated with the vector
v2 is formed by the two hyperarcs ({2}, {1}) and ({3}, {1}). The node 1 consequently
forms the greatest strongly connected component of the hypergraph (for the partial
order �G(v2,C )).

Remark 6 It was shown in the proof of Theorem 3.1 of [34] (see also [33]), and inde-
pendently in [18, Theorem 14], that the vector v ∈ C is extreme if, and only, if there
exists i ∈ [d] such that v is minimal of type i , i.e. minimal in the set {x ∈ C | xi = vi }.
This result can be recovered as a corollary of Theorem 1.

Observe that i is reachable from any node j ∈ [d] in G(v,C ) if, and only if,
the hypergraph G′ = G(v,C ) ∪ { ({i}, { j}) | j ∈ [d] } is strongly connected. Let
C ′ = {x ∈ R

d
max | Ax ≤ Bx, x j − v j ≤ xi − vi for all j ∈ [d]}. Then G′ is

precisely the tangent directed hypergraph G(v,C ′). By Proposition 11 and Remark 4,
G′ is strongly connected if, and only if, the tangent cone T (v,C ′) is reduced to the ray
Rmax11. By Proposition 7, this amounts to the equality C ′ ∩ N = Rmaxv for a certain
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neighborhood N of v, or equivalently, C ′ = Rmaxv (as C ′ is connected). The latter
holds if, and only if, v is minimal of type i .

It follows that the nodes contained in the greatest strongly connected component of
G(v,C ) (if it exists) are precisely the integers i ∈ [d] such that v is minimal of type
i . This suggests an alternative proof of Theorem 1.

An algorithm due to Gallo et al.[39] shows that the set of nodes that are reachable
from a given node in a directed hypergraph G can be computed in linear time in the
size of the hypergraph, size(G) :=∑

(T,H)∈G(|T |+ |H |). The following result shows
that one can in fact compute the maximal Sccs with almost the same complexity. The
algorithm, which is too technical to be included here, is detailed in [8].

Theorem 12 ([8]) The set of maximal Sccs of a hypergraph G over the nodes 1, . . . , d
can be computed in time O(size(G) × α(d)), where α denotes the inverse of the
Ackermann function.

The function α is a very slowly growing map. In particular, α(x) ≤ 5 for any
practical values of x . Hence, the complexity is said to be almost linear. The term α(d)

originates from the use of Tarjan’s union-find structure [57] to efficiently manipulate
partitions of the set of nodes 1, . . . , d. In the sequel, MaxScc denotes an algorithm
returning the set of the maximal Sccs of the hypergraph given in input, with the time
complexity given in Theorem 12.

As a consequence, the criterion of Theorem 1 can be very efficiently evaluated,
in almost linear time in the size of the system of inequalities defining the tropical
polyhedral cone. It can also benefit from the sparsity of the system, as the size of the
tangent directed hypergraph is bounded by the number of non-null coefficients in the
inequalities.

4 The Tropical Double Description Method

We next present a tropical analogue of the double description method of Motzkin
et al. [49]. The tropical method computes a minimal generating set of a polyhedral
cone, starting from a system of tropically linear inequalities defining it. We first deal
with the inductive scheme of the method (Sect. 4.1), then present the main algorithm
(Sect. 4.2), and its extension to intersections with tropical hyperplanes (Sect. 4.3).

4.1 Inductive Scheme

The tropical double description method relies on an incremental technique based on
a successive elimination of inequalities. Given a polyhedral cone defined by a system
of p constraints, it computes by induction on k = 1, . . . , p a generating set Vk of the
intermediate cone defined by the first k constraints.

Passing from the set Vk to the set Vk+1 relies on a result which, given a polyhedral
cone C and a tropical half-space H , allows to build a generating set V ′ of C ∩H
from a generating set V of C . This is referred to as the elementary step of the scheme.
(Note that the next result applies more generally to non-polyhedral tropical cones
provided they are closed.)
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Theorem 13 (Elementary step) Let C ⊂ R
d
max be a closed tropical cone generated

by a set V of elements of R
d
max, and let H be a half-space. Then the cone C ∩H is

generated by the following set:

(V ∩H )∪{
v ⊕ ρw | (v,w)∈(V ∩H )×(V \H ), ρ=max{μλ−1 | λv ⊕ μw∈H }}.

(7)

The cone C ∩H is thus generated by the elements v of V satisfying the constraint
associated with the half-space H , and by their pairwise combinations with the vectors
w which are not located in H . Each combination v ⊕ ρw corresponds to the last
element belonging to the half-space H encountered when following the path from v

to w along the tropical (projective) segment {λv ⊕ μw | λ,μ ∈ Rmax}.
Remark 7 Observe that the scalar ρ is correctly defined in (7), meaning that the set
M = {μλ−1 | λv ⊕ μw ∈ H } admits a maximal element. First, note that M is not
empty (consider λ = 1 and μ = 0). We claim that it is bounded. If not, v⊕ ρw ∈H
for arbitrarily large scalar ρ ∈ Rmax, so that ρ−1v⊕w ∈H as soon as ρ > 0. As H is
closed, this would imply that w ∈H (taking ρ →+∞), which is nonsense. Finally,
the set M is closed, as the inverse image of H by the continuous map ρ �→ v ⊕ ρw.
The supremum of the set M therefore belongs to M .

Proof (Theorem 13) Any element of the set given in (7) obviously belongs to C ∩H .
Now consider x ∈ C ∩ H . Using the tropical analogue of the Minkowski–

Carathéodory theorem established in [34, Theorem 3.1], x can be written as a combi-
nation of at most d elements of V , i.e. there exist V ′ ⊂ V ∩H and W ′ ⊂ V \H
with |V ′| + |W ′| ≤ d, and:

x =
⊕

v∈V ′
λvv ⊕

⊕

w∈W ′
λww,

where the λv and λw are non-zero scalars (in the tropical sense). Let ρ(v,w) =
max{μλ−1 | λv ⊕ μw ∈ H } for any pair (v,w) ∈ V ′ × W ′. First, let us show
that for all w ∈ W ′, there exists v ∈ V ′ such that λvρ(v,w) ≥ λw. If not, there is a
given w ∈ W ′ satisfying λvρ(v,w) < λw for all v ∈ V ′, hence λvv ⊕ λww �∈ H
(since λv > 0). Observe that the complementary of H is stable by addition and by
multiplication by a non-zero scalar, so that

x =
(⊕

v∈V ′
λvv ⊕ λww

)
⊕

( ⊕

w′∈W ′\{w}
λw′w

′)

should not belong to H , which is a contradiction.
For all w ∈ W ′, let vw be an element of V ′ such that λvwρ(vw,w) ≥ λw. As λw is

not null, we have ρ(vw,w) > 0, hence we can write:

x =
(⊕

v∈V ′
λvv

)
⊕

( ⊕

w∈W ′

(
λw(ρ(vw,w))

−1)(vw ⊕ ρ(vw,w)w)
)
.
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This shows that any element x of C ∩H can be expressed as a combination of vectors
of the set given in (7). ��

Let us denote by εi the element of R
d
max whose i th coordinate is equal to 1, and the

other coordinates to 0. The following theorem describes the whole inductive approach:

Theorem 14 (Inductive scheme of the tropical double description method) Let C ⊂
R

d
max be a polyhedral cone defined as the set {x ∈ R

d
max | Ax ≤ Bx}, where A, B ∈

R
p×d
max (with p ≥ 0). Let V0, . . . , Vp be the sequence of finite subsets of R

d
max defined

as follows:

⎧
⎨

⎩

V0 = {εi }i∈[d],
Vk =

{
v ∈ Vk−1 | Akv ≤ Bkv

}

∪ {
(Akw)v ⊕ (Bkv)w | v,w ∈ Vk−1, Akv ≤ Bkv, and Akw > Bkw

}
,

for all k = 1, . . . , p. Then C is generated by the finite set Vp.

Proof We show by using Theorem 13 that each Vk forms a generating set of the
polyhedral cone {x ∈ R

d
max | Alx ≤ Blx for all l = 1, . . . , k}. For k = 0, this is

obvious.
Now suppose k ≥ 1. Let Hk be half-space defined by the inequality Akx ≤

Bkx, and v,w ∈ Vk−1 such that v ∈ Hk and w �∈ Hk . We are going to show
that max{μλ−1 | λv ⊕ μw ∈ Hk} = (Akw)−1(Bkv) (note that Akw is not null as
Akw > Bkw). Indeed, if we set x to v ⊕ ((Akw)−1(Bkv))w, we have Akx = Akv ⊕
Bkv ≤ Bkv ≤ Bkx. Besides, if λ > 0 and λv⊕μw ∈Hk , then λ(Akv)⊕μ(Akw) ≤
λ(Bkv) ⊕ μ(Bkw). If μ > 0, then μ(Akw) > μ(Bkw) so that μ(Akw) ≤ λ(Bkv).
Thus μλ−1 ≤ (Akw)−1(Bkw). The inequality also trivially holds as soon as μ = 0.

As a consequence, up to multiplicative factors, Vk coincides with the set provided
by Theorem 13 for V = Vk−1 and H =Hk . This completes the proof. ��

Observe that Theorem 14 provides a constructive proof of the “Minkowski part”
of the Minkowski–Weyl theorem (Theorem 2), as it shows that all tropical polyhedral
cones are generated by finite sets of elements of R

d
max.

Example 8 Figure 4 provides an illustration of the elementary step on the cone defined
in Example 1 and the half-space given by the constraint x2 ≤ x3 + 5/2 (depicted in
light blue in Fig. 4, while the set of elements activating the inequality is in darker
blue). The three elements v1, v2, and v3 satisfy the constraint, while v0 does not.
Their combinations are the elements w1,0, w2,0, and w3,0, respectively.

Remark 9 The inductive scheme of the tropical double description method looks very
similar to its classical counterpart, but they are distinguished by a minor difference: the
combinations (Akw)v ⊕ (Bkv)w with Akv = Bkv and Akw > Bkw do not appear in
the classical case (see [31, Lemma 3]), while they are essential in the tropical setting.

For instance, consider the cone of R
3
max generated by the set V consisting of the

elements where v = (0, 0, 0) and w = (2, 1, 0) (in bold black in Fig. 5). Its intersection
with the half-space {(x1, x2, x3) | x2 ≤ x3} (in light blue) is generated by a minimal
set containing: the vectors v (which activates the constraint x2 ≤ x3) and v′ = (2, 1, 1)

(obtained by combining v and w). Thus, the element v′ cannot be dispensed with.
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Fig. 4 The elementary step of
the double description method
(Color figure online)

Fig. 5 Illustration of Remark 9
(Color figure online)

4.2 The Tropical Double Description Method Algorithm

Theorem 13 and subsequently Theorem 14 may return non-extreme elements (see
Example 8 in which w2,0 and w3,0 are not extreme). If these redundant elements
are not eliminated, the cardinality of the sets Vk grows quadratically in the worst case
at each step (because of the pairwise combinations in Theorem 14 of the v and w).
Hence, the complexity of the inductive technique previously discussed is double expo-
nential (O(d2p

)), both in time and space, which is clearly untractable. We propose to
eliminate non-extreme elements at each step of the induction using the criterion based
on directed hypergraphs, and the associated almost linear algorithm MaxScc.

The resulting algorithm ComputeExtRays (Fig. 6) provides the scaled represen-
tatives of the extreme rays of the cone C . The argument p corresponds to the number
of constraints of the system Ax ≤ Bx. When p = 0, the cone coincides with R

d
max,

and it is generated by the set {εi }i∈[d]. When p > 0, the system is split into the system
Cx ≤ Dx formed by the first (p − 1) inequalities, and the last inequality ax ≤ bx.
The elements provided by Theorem 14 are computed from the set V of extreme ele-
ments of the intermediate cone D = {x ∈ R

d
max | Cx ≤ Dx}. The set W is used to
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Fig. 6 Implementation of the tropical double description method

store the extreme rays of C . The extremality test is evaluated at Lines 10-11. First, the
tangent hypergraph G(w,C ) is computed thanks to a function BuildHypergraph.
Then, the function MaxScc returning the set of the maximal Sccs of the hypergraph
is called. If the test succeeds, the element w is first normalized into the scaled element
‖w‖−1 w, and then appended to the set W .

Observe that the extremality test is applied only to the elements associated with
the combinations (av j )vi ⊕ (bvi )v j , and not to the elements v ∈ V≤ which satisfy
av ≤ bv. Indeed, each element v ∈ V≤ is extreme in the cone D , and subsequently
in the cone C , since C ⊂ D .

4.2.1 Complexity Analysis

Each operation in Rmax is supposed to take a unit time. We use hash sets to encode
subsets of R

d
max. A hash set is a hash table which maps keys to a fixed value (cho-

sen arbitrarily, for instance Nil). The keys stored in the hash table correspond to the
elements of the represented set. The amortized time complexity of adding, searching,
and removing an element in the set is bounded by the complexity of hashing a vector
of R

d
max, which is supposed to be O(d).

We first study the complexity of the inductive step, which refers to the set of
operations performed since the last call to ComputeExtRays (Lines 7–14). Starting
from the last intermediate generating set V , it consists in (i) computing the set given
in (7), and (ii) eliminating non-extreme combinations. Its complexity can be precisely
characterized in terms of the size of V . It can be verified that it is dominated by the
complexity of the extremality tests performed in the loop from Lines 8–14. Each test
requires to build a hypergraph G (Line 10). This operation can be done in linear time
in its size, which is in O(pd). According to Theorem 12, MaxScc(G) is executed in
time O(size(G)α(d)) = O(pdα(d)). The loop is iterated O(|V |2) in the worst case,
so that the following statement holds:
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Proposition 15 The worst case time complexity of the inductive step in
ComputeExtRays is O(pdα(d)|V |2).

We also stress that the inductive step is optimal in terms of space complexity, since
a non-extreme element is never stored in the resulting set W , even temporarily. It
follows that its space complexity is bounded by O(d max(|V |, |W |)).
Remark 10 Observe that the construction of the hypergraph G (Line 10) can be opti-
mized by maintaining some extra information for each element of the intermediate
set V .

Indeed, consider a tropical linear form c ∈ R
1×d
max and a non-null combination

v = λx ⊕ μy of two elements x, y ∈ R
d
max. The set arg max(cv) can be computed

efficiently from the sets arg max(cx) and arg max(cy):

arg max(cv) =
⎧
⎨

⎩

arg max(cx) if λ(cx) > μ(cy),

arg max(cy) if λ(cx) < μ(cy),

arg max(cx) ∪ arg max(cy) otherwise.
(8)

The value of cv can be computed in O(1) time from cx and cy using the same idea.
Now, let v be an element returned by ComputeExtRays(A, B, p). Using (8), the

list of the tuples ((Akv, arg max(Akv)), (Bkv, arg max(Bkv))) (k ∈ [p]) can be prop-
agated by induction during the execution of ComputeExtRays(A, B, p). In practice,
we have observed that this optimization considerably speeds up the computation of
the associated hypergraph.

The overall complexity of the algorithm ComputeExtRays depends on the max-
imal size of the sets Vk (0 ≤ k ≤ p − 1) returned in the intermediate steps

Proposition 16 The worst case time complexity of the ComputeExtRays algorithm
is bounded by

O(p2dα(d)V 2
max),

where Vmax is the maximal cardinality of the sets Vk for k = 0, . . . , p − 1.

In classical geometry, the upper bound theorem of McMullen [48] shows that the
maximal number of extreme points of a convex polytope in R

d defined by p inequality
constraints is equal to

U (p, d) :=
{(p−�d/2�

�d/2�
)+ (p−�d/2�−1

�d/2�−1

)
for d even,

2
(p−�d/2�−1

�d/2�
)

for d odd.

The polars of the cyclic polytopes [59] are known to reach this bound. In the tropical
setting, a recent work of Allamigeon, Gaubert, and Katz [11] proves that the number
of extreme rays of a tropical polyhedral cone C in R

d
max defined by p inequalities is

bounded by a similar quantity.

Theorem 17 ([11]) The number of extreme rays of a tropical cone in R
d
max defined as

the intersection of p tropical half-spaces cannot exceed U (p + d, d − 1).
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The bound of Theorem 17 is shown in [11] to be asymptotically tight for a fixed p,
as d tends to infinity, being approached by the signed cyclic tropical polyhedral cones,
which are a tropical generalization of the (polar of) the cyclic polytope, taking into
account a sign pattern. The bound is believed not to be tight for a fixed d, as p tends
to infinity, because the growth of the number of extreme rays for the model of signed
cyclic polyhedral cones is too slow. Finding the optimal bound is an open problem.

By combining Proposition 16 and Theorem 17, we readily get the following upper
bound on the complexity of ComputeExtRays:

Corollary 18 The worst-case time complexity of the ComputeExtRaysalgorithm is
bounded by O

(
p2dα(d) · (U (p + d − 1, d − 1))2

)
.

The asymptotic behavior of the bound of Corollary 18 is the following one:

O

(
p2dα(d) ·

(
1+ p

�(d − 1)/2�
)2� d−1

2 �(
1+ �(d − 1)/2�

p

)2p
)

when p + d � 1. (9)

In particular, the bound (9) is dominated by O(p2dα(d) · (e(1 + M
m )2m)), where

m and M are respectively the minimum and the maximum of p and �(d − 1)/2�.
The algorithm ComputeExtRays is therefore polynomial time as soon as one of the
parameters d or p is constant. In general, we shall keep in mind that the quality
of the bounds given above directly depends on the quality of the upper bound of
Theorem 17. As the latter may not be tight for certain asymptotic regimes of the
(p, d) parameters, the former may give a loose overestimate of the complexity of the
algorithm ComputeExtRays.

4.3 Variants of the Algorithm with Other Kinds of Constraints

Our algorithm defined in Sect. 4.2 can be generalized to handle systems including
tropical linear constraints other than inequalities.

4.3.1 Tropical Hyperplanes

Tropical geometry originates when looking at classical objects with logarithmic glasses
or valuations. Let k denotes the field of complex Puiseux series in an indeterminate t ,
equipped with the valuation v which takes the opposite of the smallest exponent arising
in a series. Then, a tropical linear space may be defined as the closure of the image of
a linear space over k by the map which applies the valuation v to each coordinate, see
[55,53] for more information. In particular, consider the hyperplane in kd defined by
the equation

∑d
i=1 aixi = 0, with ai ∈ k. Then, a theorem of Kapranov characterizing

more generally the non-archimedian amoebas of hypersurfaces [30] shows that the
closure of the image of this hyperplane by the valuation coincides with the set of
points y ∈ R

d
max such that the maximum in the expression max1≤i≤d v(ai ) + yi is

attained at least twice. Such a set is known as a tropical hyperplane [27,53]. Tropical
hyperplanes form a subclass of tropical polyhedral cones of R

d
max, see Fig. 7.
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Fig. 7 The tropical hyperplane “max(x1, 1/2+ x2, 1+ x3) attained at least twice” (left), and the signed
tropical hyperplane 1/2+ x2 = max(x1, 1+ x3) (right)

Tropical hyperplanes can be handled in the elementary step of the double description
method thanks to the following result:

Theorem 19 Let C ⊂ R
d
max be a closed tropical cone generated by a set V

of elements of R
d
max, and let H = {x ∈ R

d
max | cx = maxi∈[d](ci + xi )

is attained at least twice}be a tropical hyperplane (c ∈ R
1×d
max ). Then the cone C ∩H

is generated by:

{v ∈ V | cv is attained atleast twice}
∪ {(cw)v ⊕ (cv)w | v,w ∈ V, cv attained only once and cw at least twice}
∪ {(cw)v ⊕ (cv)w | v,w∈V , cv andcw are attained only once and at distinct indices}.

(10)

Proof If V ′ is the set of vectors given in (10), then we clearly have V ′ ⊂ C ∩H so
that cone(V ′) ⊂ C ∩H .

Conversely, supposing x ∈ C ∩H , then by Minkowski-Carathéodory theorem on
C = cone(V ), we have x = ⊕d

i=1 λiv
i with vi ∈ V (i = 1, . . . , d). Let I, J ⊂ [d]

such that for all i ∈ I , cvi is attained at least twice, and for every j ∈ J , cv j is attained
only once (I ∩ J = ∅).

We know that the maximum
⊕

i∈I λi (cv
i ) ⊕ ⊕

j∈J λ j (cv
j ) is reached at least

twice. Let κ = cx. If κ = 0, then necessarily for any j ∈ J , λ j (cv
j ) = 0 hence

λ j = 0 (if not, cv j = 0 would be attained more than once). Thus x ∈ cone(V ′)
obviously.

Now, suppose that κ > 0. We distinguish two cases:

(i) Suppose that there exists i0 ∈ I such that λi0(cv
i0) = κ . Then

x =
⊕

i∈I

λiv
i ⊕

⊕

j∈J

λ jv
j
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=
⊕

i∈I

λiv
i ⊕ κ−1

(⊕

j∈J

λ j (cv
j )

)
λi0v

i0 ⊕ κ−1
⊕

j∈J

(
λi0(cv

i0)
)
λ jv

j

as κ ≥
⊕

j∈J

λ j (cv
j )

=
⊕

i∈I

λiv
i ⊕ κ−1

⊕

j∈J

λi0λ j
(
(cv j )vi0 ⊕ (cvi0)v j ).

(ii) Otherwise, for all i ∈ I , λi (cv
i ) < cx. In this case, the maximum cx is necessarily

attained by two distinct terms λ j1(cv
j1) and λ j2(cv

j2), with j1, j2 ∈ J , j1 �= j2,
and if k1 and k2 are respectively the arguments of the maxima cv j1 and cv j2 , we
have k1 �= k2. Let Jl = { j ∈ J | kl �∈ arg max(cv j )} for l = 1, 2. Note that
J1 ∪ J2 = J . Then

x =
⊕

i∈I

λiv
i ⊕

⊕

j∈J

λ jv
j

=
⊕

i∈I

λiv
i ⊕ κ−1

(⊕

j∈J1

λ j (cv
j )

)
λ j1v

j1

⊕ κ−1
⊕

j∈J1

(
λ j1(cv

j1)
)
λ jv

j ⊕ κ−1
(⊕

j∈J2

λ j (cv
j )

)
λ j2v

j2

⊕ κ−1
⊕

j∈J2

(
λ j2(cv

j2)
)
λ jv

j since κ = λ j1(cv
j1) = λ j2(cv

j2),

and κ ≥
⊕

j∈J

λ j (cv
j )

=
⊕

i∈I

λiv
i ⊕ κ−1

⊕

j∈J1

λ jλ j1

(
(cv j )v j1 ⊕ (cv j1)v j )⊕ κ−1

⊕

j∈J2

λ jλ j2

(
(cv j )v j2 ⊕ (cv j2)v j ).

In both cases, x ∈ cone(V ′), which completes the proof. ��
The extremality criterion of Theorem 1 can be extended to systems containing tropi-

cal hyperplane constraints. Every hyperplane {x ∈ R
d
max | cx is attained at least twice}

generates the hyperarcs (arg max(cv) \ {i}, {i}) (for each i ∈ arg max(cv)) in the
directed hypergraph G(v,C ). This results from the fact that the hyperplane can be
equivalently expressed as the set of the solutions of the following system:

cixi ≤
⊕

1≤ j≤d
j �=i

c jx j for i = 1, . . . , d (11)

and that (11) is active on v if, and only if, i ∈ arg max(cv).
Thus, the extreme rays of the intersection of p tropical hyperplanes can be deter-

mined in time O((pd)2α(d)(V ′max)
2), where V ′max is the maximal size of the sets
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arising in the intermediate steps of the induction. In comparison, by expanding
hyperplanes to a collection of pd half-spaces using (11), the complexity of the
algorithm ComputeExtRays is O(p2d3α(d)Vmax). Since V ′max ≤ Vmax, the variant
presented here improves time bounds by a factor dVmax/V ′max.

4.3.2 Signed Tropical Hyperplanes

Another noticeable case of tropical polyhedral cones consists of signed tropical hyper-
planes, which are sets of points satisfying an equality ax = bx, where the support
of the vectors a and b are disjoint [3,52]. They correspond to subsets of (non-signed)
hyperplanes (Fig. 7). The elementary step of the double description method can be
extended to such sets, as follows:

Theorem 20 Let C ⊂ R
d
max be a closed tropical cone generated by a set V of elements

of R
d
max, and let a, b ∈ R

1×d
max . Then the cone C ∩ {x ∈ R

d
max | ax = bx} is generated

by the following set:

{v ∈ V | av = bv} ∪ {(aw)v ⊕ (bv)w | v,w ∈ V, av < bv and aw > bw}
∪ {(aw)v ⊕ (bv)w) | v,w ∈ V , av < bv and aw = bw}
∪ {(aw)v ⊕ (bv)w | v,w ∈ V , av = bv and aw > bw}.

Proof Straightforward from two successive applications of Theorem 13 on the
inequalites ax ≤ bx and ax ≥ bx. ��

The extremality criterion of Theorem 1 can also be generalized to signed
hyperplanes, by introducing two symmetric hyperarcs per equality in the tan-
gent directed hypergraph: for an equality ax = bx, the tangent hypergraph
G(v,C ) at the element v will contain the hyperarcs (arg max(av), arg max(bv)) and
(arg max(bv), arg max(av)).

5 Arrangements of Tropical Hyperplanes

In this section, for the sake of comparison, we present an alternative approach to the
problem of computing the extreme rays of a tropical cone described as the intersection
of half-spaces in general position. This approach relies on arrangements of signed
tropical hyperplanes.

We consider the case in which the tropical cone C is defined as the set of the
solutions x ∈ R

d
max of the system of inequalities Ax ≤ Bx (A, B ∈ R

p×d
max ). We

suppose, without loss of generality, that for all k ∈ [p], the supports of the k-th rows
of A and B are disjoint. For each half-space {x ∈ R

d
max | Akx ≤ Bkx}, we introduce

the associated signed hyperplane, denoted by Hk and defined as the set of the elements
x ∈ R

d
max satisfying the equality Akx = Bkx.

Following [28,53], a matrix M ∈ R
k×k
max is said to be tropically non-singular if, and

only if, the tropical permanent

tper M = ⊕σ∈Sk M1σ(1) . . . Mkσ(k) (12)
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is not null, and the maximum in (12) is reached at precisely one permutation σ in
the symmetric group Sk . In this section, we will assume that the half-spaces defining
the cone C are in general position, meaning that every square submatrix of A⊕ B is
(tropically) non-singular.

A finite set of signed hyperplanes constitutes an arrangement. In this setting, a
vertex of the arrangement will refer to the intersection of some of the hyperplanes
when this intersection is reduced to a ray Rmaxx (i.e., a point, written in homogeneous
coordinates).

Proposition 21 When the half-spaces defining the cone C are in general position, the
extreme rays of C are vertices of the arrangement formed by the signed hyperplanes
Hk (1 ≤ k ≤ p) and the hyperplanes Z j = {x ∈ R

d
max | x j = 0} (1 ≤ j ≤ d).

Before proving Proposition 21, we first recall that the max-plus Cramer Theorem
[3,52,53] shows that the vertices of the arrangement of Proposition 21 are precisely
given as the non-trivial intersections of (d − 1) signed hyperplanes. It also provides a
constructive method to determine the vertices using Cramer permanents.

Proposition 22 (Corollary of [52],[53, § 5],[3, Theorem 6.6]) Given n ∈ [d], let A′
(respectively B ′) the sub-matrix formed by the first (n − 1) rows and n columns of A
(respectively B). Let Ci be the matrix of size (n− 1)× (n− 1) obtained from A′ ⊕ B ′
by deleting the i-th column (i ∈ [n]). Let x ∈ R

d
max be the vector of support [n] defined

by xi = tper Ci for all i ∈ [n].
Then the intersection of the hyperplanes Hk (1 ≤ k ≤ n−1) and Z j (n+1 ≤ j ≤ d)

is either empty, or reduced to the ray Rmaxx.

These d Cramer permanents tper Ck can be naively computed by solving d assign-
ment problems, leading to a time complexity O(d4). However, as remarked in [53],
all the permanents can be determined (up to a multiplicative constant) as the opti-
mal solution of a single transportation problem. This allows to determine the vertex
of the arrangement in time O(d3). Alternatively, all the Cramer permanents can be
determined by solving a single optimal assignment problem, and then by applying a
variant of the Jacobi algorithm in [52], which also gives a O(d3) algorithm. Note also,
although that it will not be needed here, that the emptyness of the intersection can be
checked a priori by inspecting the parity of the optimal permutations in the tropical
Cramer permanents [52], [3, Theorem 6.4]. Finally, observe that Proposition 22 applies
to the intersection of hyperplanes Hk (k ∈ K ), and Z j ( j ∈ J ), with |J |+|K | = d−1,
up to permuting hyperplanes and coordinates.

Proof of Proposition 21 Given a representative v of an extreme ray of C , we are going
to show that at least (n− 1) inequalities among the system Ax ≤ Bx are active at the
point v, where n is the cardinality of the support of v.

Without loss of generality, we will assume that supp(v) = [n], with n ≤ d. Let w be
the vector of R

n
max reduced to the first n coordinates of v. Applying Proposition 6, the

element w is extreme in the cone C ′ defined the system A′y ≤ B ′y over y ∈ R
n
max,

where A′ and B ′, respectively, correspond to the first n columns of A and B. By
Theorem 1, let i be a node of the greatest Scc of the tangent directed hypergraph
G(w,C ′). Any other node j ∈ [n] \ {i} of H (w,C ′) has to reach i . Hence, there
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Fig. 8 Computing the extreme rays from the vertices of signed hyperplane arrangement

exists a hyperarc ak j such that T (ak j ) is reduced to the singleton { j} (if not, j would
not reach any node except itself). Each hyperarc corresponds to an inequality active
at w, and subsequently at v.

The extreme ray Rmaxv is therefore included into the intersection of the signed
hyperplanes Hk j with j ∈ [n] \ {i} and Zn+1, . . . , Zd . By Proposition 22 and the
subsequent discussion, we deduce that the intersection of the hyperplanes is reduced
to the ray Rmaxv. The latter is consequently a vertex of the arrangement. ��
Remark 11 Observe that the converse of Proposition 21 does not hold, in the sense
that not every vertex of the arrangement belonging to the cone C is an extreme ray. For
instance, for d = 3, consider the cone C defined as the intersection of the half-spaces
associated with the inequalities x1⊕ (−1)x2 ≤ x3 and (−1)x1⊕x2 ≤ x3. These two
half-spaces are in general position, and the intersection of the associated hyperplanes
are reduced to the ray Rmax(0, 0, 0), which is not extreme in the cone C .

Proposition 21 naturally leads to the idea of determining the extreme rays of the
cone C by enumerating of all the vertices of the arrangement, then keeping only
the vertices belonging to the cone, and eliminating the non-extreme ones using the
characterization of Theorem 1. This algorithm is provided in Fig. 8. Its complexity is
given by the following result:

Theorem 23 When the half-spaces defining the tropical cone C are in general posi-
tion, the extreme rays of C can be determined in time O

(
(pdα(d)+ d3) · (p+d

d−1

))
.

The complexity of the algorithm is thus asymptotically given by

O

(
(pdα(d)+ d3) ·

(
1+ p + 1

d − 1

)d−1 (
1+ d − 1

p + 1

)p+1
)

when p + d � 1.

In theory, this improves the worst-case bound of the algorithm ComputeExtRays
given in Corollary 18 in some cases. Nevertheless, in practice, the algorithm of Fig. 8
appears to be of little use, since the worst case execution time is essentially always
achieved. The leading term

(p+d
d−1

)
of the complexity bound is indeed a lower bound

on the execution time of the algorithm (every subset S of (d − 1) hyperplanes is
examined). In contrast, the algorithm ComputeExtRays takes advantage of the fact
that Vmax is in general much smaller than the upper bound of Theorem 17.
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Furthermore, the algorithm presented here can only be applied to the general posi-
tion setting, contrary to ComputeExtRays. Given an arbitrary polyhedral cone C ,
this is certainly possible to execute the algorithm of Fig. 8 on an intersection of half-
spaces in general position approximating C . However, this approach may provide
many more rays than the cone C actually has. Indeed, the approximation of a poly-
hedral cone C by a sequence of polyhedral cones C (m) defined by half-spaces in
general position is discussed in Sect. 5 of [11]. The proof of Theorem 8 there deals
with the case where C ⊂ C (m) holds for all m. It shows that any accumulation point
of a family of representatives of extreme rays of C (m), as m → ∞, is a generating
family of C . However, in general the generating family obtained in this way contains
many redundant generators.

6 Comparison with Alternative Approaches and Experimental Results

6.1 Existing Incremental Algorithms in the Tropical Setting

Butkovič and Hegedus [12] were the first to establish the existence of a finite generating
family for the set of solutions of Ax ≤ Bx (see also [17] for a recent account), but their
method was not intended to be algorithmically efficient. Unlike the present approach,
their elementary step leads to an algorithm which is not tail-recursive, and in which it
is not natural to incorporate an incremental elimination of redundant generators. This
provides a method with a double exponential complexity.

The principle of the approach implemented by the second author in the Maxplus
toolbox of Scilab [21], and refined in our previous work [2], is similar to the one of
ComputeExtRays. However, it uses a much less efficient elimination of non-extreme
vectors, which does not take the external representation of the cone into account.
This elimination relies on a characterization in terms of set covers due to Vorobyev
and Zimmermann, or equivalently on residuation [5,58,60] for a recent overview).
Its time complexity is O(d|V |2), where V is the set of extreme rays of the previ-
ous intermediate cone D . Subsequently, the total complexity of the inductive step is
O(d|V |4).

Butkovič et al. [18] proposed a characterization of extreme points in terms of
minimal elements of a given type (see Remark 6) to compute a minimal gen-
erating family of a polyhedral cone given by a set of rays. This characteriza-
tion reduces the latter problem to computing the set of (Pareto) minimal vectors
of a given set of k vectors in dimension d, which can be solved in time time
O(k(log2 k)d−3) (for d ≥ 4) using [45]. Using this approach as a replacement of
Theorem 1, this leads to a variant in which the inductive step has a complexity of
O(d|V |22d−3(log2|V |)d−3) (the algorithm of [45] must be called d times, on a set
of O(|V |2) vectors).

6.1.1 Time Complexities

The complexities of the different approaches are compared in Table 1. Recall that
Vmax denotes the maximal cardinality of the intermediate generating sets. As shown
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in [11], there exists instances in which Vmax is of order (p + d)(d−1)/2, for d � p,
other instances in which it is of order p2d−2 for p � d, and in general, experiments
(§ 6.3 below) suggest that Vmax is by far the leading term. Hence, our algorithm
yields a significant speedup over the method described in [2], as indicated by the
ratio V 2

max/(pα(d)) of their worst-case time complexities. The same remains true by
comparison with the variant of based in the extremality criterion of [18], in which case
the factor becomes 2d−3(log2 Vmax)

d−3/(pα(d)).
Observe that, unlike ComputeExtRays, the other algorithms may temporarily

store non-extreme elements of C during the inductive step. As a result, the space
complexity is not optimal, and it can only be bounded by O(d|V |2). This may be
harmful to the scalability of these algorithms.

For the sake of completeness, we provide in Table 1 a comparison with the classical
double description method, whose principle is close to our algorithm. In the classical
case, the elimination of redundant elements can be performed using either an algebraic
criterion which can be checked in O(pd2) arithmetical operations, or a combinatorial
criterion of complexity O(p|V |). See [31] for a detailed presentation. We observe
that the complexity of the extremality test and the inductive step of our algorithm, as
functions of the size of their inputs (d, p, and |V |), is smaller than the complexity of
their classical analogues (in general, the size of V , both in the classical and the tropical
settings, is much larger than dα(d)).

6.2 Tropical Extreme Rays Versus Tropical Polyhedral Complexes

Another approach, along the lines of [27,42], would consist in representing tropical
polyhedra by polyhedral complexes in the usual sense. However, an inconvenient of
polyhedral complexes is that their number of vertices (called “pseudo-vertices” to
avoid ambiguities) is exponential in the number of extreme rays [27]. Hence, the rep-
resentations used here are more concise. This is illustrated in Fig. 9 (generated using
Polymake [40]), which shows an intersection of 10 tropical half-spaces, correspond-
ing to the “natural” pattern studied in [11]. There are only 24 extreme rays, but 1381
pseudo-vertices.

Another approach, developed by Lorenzo and de la Puente in [46] (see also Truf-
fet [56]), relies on a similar decomposition of tropical polyhedral cones as polyhedral
complexes. Unlike the previous one, the decomposition arises from half-spaces. Given
a cone C defined by a system Ax ≤ Bx with A, B ∈ R

p×d
max , the algorithm of [46]

consists in the enumeration of tuples of 2d integers in {1, . . . , p} corresponding to (pos-
sibly empty) cells of the associated complex. Its worst-case complexity is in O(p2d),
which is greater than the bound given in (9) on the complexity of ComputeExtRays,
as soon as d � 1 or p � 1. On top of that, it is possible to exhibit tropical cones
with a polynomial number of extreme rays, but on which the algorithm of [46] have
an exponential complexity. Given p reals t1 < · · · < tp, consider the polyhedral

cone C [11] defined by the inequalities tkx2 ≤ ⊕ j �=2t j−1
k x j , for 1 ≤ k ≤ p. This

cone arises as the second polar of the cyclic cone studied in [10]. Here, t j−1
k refers

to the scalar ( j − 1) × tk . It can be verified that the algorithm of [46] enumerates
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Fig. 9 An intersection 10 affine half-spaces in dimension 3 which has 24 vertices (in red) and 1381
pseudo-vertices (consisting of the 24 vertices, and the points depicted in yellow) (Color figure online)

(2p+d−2
2p

)
tuples. In contrast, as shown in the proof of [10, Proposition 6], the number

of extreme rays of the cone C , and also of all intermediate cones C j (1 ≤ j ≤ p)
defined by the j first inequalities, is bounded by O(pd). The complexity of the algo-
rithm ComputeExtRays is thus polynomial, bounded by O(p4d3α(d)).

6.3 Benchmarks

The algorithm ComputeExtreme has been implemented by Allamigeon in the library
TPLib (Tropical Polyhedral Library) written in OCaml [9]. Table 2 reports some
experiments for different classes of tropical cones: (i) samples formed by several
cones chosen randomly (referred to as rndx where x is the size of the sample), (ii)
and the polars of signed cyclic cones which are known to have a very large number
of extreme elements [11]. For each cone, the first columns respectively report the
dimension d, the number of half-spaces p, the size of the final set of extreme rays, the
mean size of the intermediate sets, and the execution time T (for samples of “random”
cones, we give average results).

In our implementation, inequalities are dynamically ordered during the execution:
at each step of the induction, the inequality ax ≤ bx is chosen so as to minimize the
number of combinations (av j )vi ⊕ (bvi )v j . Note that this strategy does not guarantee
that the size of the intermediate sets of extreme elements is smaller. However, it reports
better results than without ordering.

We compare our algorithm with an implementation of the algorithm of [2,21]
incorporating the optimizations in [7], whose execution time T ′ is given in the seventh
column. When the number of extreme rays is of order of 104, the second algorithm
needs several days to terminate. For instance, its execution have lasted 45 days on
the signed cyclic cone with the parameters d = 20 and p = 8, while our algorithm
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Table 2 Execution time benchmarks of TPLib on a single core of a 3 GHz Intel Xeon with 3 Gb RAM

d p # Final # Inter. T (s) T ′ (s) T/T ′

rnd100 12 15 32 59 0.24 6.72 0.035

rnd100 15 10 555 292 2.87 321.78 8.9× 10−3

rnd100 15 18 152 211 6.26 899.21 7.0× 10−3

rnd30 17 10 1484 627 15.2 4667.9 3.3× 10−3

rnd10 20 8 5153 1273 49.8 50941.9 9.7× 10−4

rnd10 25 5 3999 808 9.9 12177.0 8.1× 10−4

rnd10 25 10 32699 6670 3015.7 – –

cyclic 10 20 3296 887 25.8 4957.1 5.2× 10−3

cyclic 15 7 2640 740 8.1 1672.2 5.2× 10−3

cyclic 17 8 4895 1589 44.8 25861.1 1.7× 10−3

cyclic 20 8 28028 5101 690 ∼ 45 days 1.8× 10−4

cyclic 25 5 25025 1983 62.6 ∼ 8 days 9.1× 10−5

cyclic 30 5 61880 3804 261 – –

cyclic 35 5 155040 7695 1232.6 – –

ComputeExtRays has returned in only 690 seconds. Therefore, for some extreme
cases (for instance d ≥ 30), the comparison could not be made in practice.

The ratio T/T ′ illustrates that our algorithm brings a breakthrough in terms of exe-
cution time, which confirms the discussion of Sect. 6.1. Recall that the main difference
between the two algorithms lies in the criterion of elimination of non-extreme vectors,
which can be evaluated in time O(pdα(d)) (Theorem 12) and O(d|V |2) respectively.
As indicated by the experiments, the term |V |2 is by far dominating, so that our algo-
rithm benefits from relying on an extremality criterion which does not depend on this
factor. This shows that the result of Theorem 1 is interesting not only in theory but
also in practice.
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