Computing the Visibility Graph of Points Within a Polygon

Boaz Ben-Moshe
Computer Science
Ben-Gurion University
Beer-Sheva 84105, Israel
benmoshe@cs.bgu.ac.il

Olaf Hall-Holt
Applied Math. & Statistics
Stony Brook University
Stony Brook, NY 11794-3600
olaf@ams.sunysb.edu

Matthew J. Katz
Computer Science
Ben-Gurion University
Beer-Sheva 84105, Israel
matya@cs.bgu.ac.il

Joseph S. B. Mitchell
Applied Math. & Statistics
Stony Brook University
Stony Brook, NY 11794-3600
jsbm@ams.sunysb.edu

ABSTRACT

We study the problem of computing the visibility graph de-
fined by a set P of n points inside a polygon @Q: two points
p,q € P are joined by an edge if the segment pg C Q. Ef-
ficient output-sensitive algorithms are known for the case
in which P is the set of all vertices of). We examine the
general case in which P is an arbitrary set of points, interior
or on the boundary of @ and study a variety of algorithmic
questions. We give an output-sensitive algorithm, which is
nearly optimal, when @ is a simple polygon. We introduce a
notion of “fat” or “robust” visibility, and give a nearly opti-
mal algorithm for computing visibility graphs according to
it, in polygons @ that may have holes. Other results include
an algorithm to detect if there are any visible pairs among
P, and algorithms for output-sensitive computation of vis-
ibility graphs with distance restrictions, invisibility graphs,
and rectangle visibility graphs.

Categories and Subject Descriptors: F.2.2 [Analy-
sis of Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems—geometrical problems and com-
putations

General Terms: Algorithms, Theory

Keywords: Visibility graphs, polygons, illumination, guard-
ing, fatness, output-sensitive algorithms

1. INTRODUCTION

The visibility graph is a fundamental geometric structure
useful in many applications, including illumination and ren-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SCG' 04, June 8-11, 2004, Brooklyn, New York, USA.

Copyright 2004 ACM 1-58113-885-7/04/0006 ...$5.00.

dering, motion planning, pattern recognition, and sensor
networks.

Let @ be a polygon with n vertices. Let P = {s1,...,8m}
be a set of m points (sites) in Q; the points in P may lie both
on the boundary of @ and in the interior of Q). The visibility
graph of P in @, denoted VGg(P), is the graph whose nodes
are the points P and whose edges connect pairs of nodes that
see one another within @ (i.e., the segment joining the points
lies within Q). See Figure 1 for an example. In this paper,
we present efficient algorithms to compute VGg(P).

There has been considerable study of visibility graphs and
algorithms to compute them (see, e.g., [24]). Optimal algo-
rithms are known for computing the visibility graph of all
vertices of @ (i.e., the case that P = V is the vertex set
of Q): one can compute VGg(V) in time O(n + k) if @ is
simple, or time O(nlogn + k) if @ has holes, where k is the
size of the output. The algorithms for computing VGq (V)
exploit the structure of the entire visibility graph VGq (V)
in achieving their efficiency, charging off work to the edges.

For our more general problem of computing VGg(P) for
any set of sites P within @), there are two immediate solu-
tions based on existing techniques:

(1) We can build the supergraph, VGo(V U P), in time
O((n + m)log(n + m) + k'), where k' is the size of
the output, and then report only those edges of in-
terest to us (those of VGg(P)); however, k' could be
enormously greater than the size of the desired out-
put — e.g., k' may be Q(n?), with n >> m, while
the size of VGg(P) may be very small (e.g., O(m), or
O(1)). Computing the relative convex hull, C, of P
with respect to @, and then computing the free bitan-
gents [22] within C reduces the number of superfluous
edges computed, but there may still be a substantial
discrepancy between the Q(m?) edges that may be re-
ported and the output size (possibly O(1)).

(2) We can preprocess @ for ray shooting queries and then
conduct a query for every pair of points of P, thereby
determining VGg(P). This method takes time
O(m?*q(n)), where g(n) is the time for performing a
ray-shooting query: ¢(n) = O(logn) if @ is simple,

and ¢(n) = O(y/nlogn) if Q has holes and we spend
O(n®/? log n) time to preprocess Q. While this method
may be far superior to method (1) if n >> m, it still
requires Q(mQ) queries, as it is not output-sensitive.

In this paper, we introduce techniques to achieve output-
sensitivity, with a running time close to linear in both the
input size (m + n) and the output size (the number, k, of
edges of VG (P)), for the case that @ is a simple polygon.

We also introduce a notion of fat or robust visibility, which
models the fact that a point ¢ that is “just barely” visible
from p may not be detected by a camera or viewer at p,
depending on the resolution of the sensor. In order for ¢
to be fatly (or robustly) visible from p, we require that no
matter where ¢ may move within a disk Br(q) of radius r
centered at ¢, ¢ continues to lie within) and be visible from
p. The radius r of the disk is determined by the distance
from p, according to a fatness parameter, «, which is the
lower bound on the angle subtended by the disk with respect
to a viewer at p.

In many visibility applications, there is a distance restric-
tion on how far one can see. We give an output-sensitive
visibility graph algorithm for the case in which each point
of P has an associated range of sight.

Figure 1. The visibility graph VG (P) is shown with dashed edges
joining pairs of visible sites of P within a polygon Q.

Summary of Results.

(1) For a simple polygon @, we show that the VGg(P) can
be computed in time O(n 4+ mlogmlog mn + k) using
O(n + m) space, where k is the number of edges of
VGg(P). The specialization of this result to the case
in which the sites are exactly the vertices of @ (P = V)
yields an O(n log® n+k) algorithm that nearly matches
the optimal O(n + k) algorithm of [18].

(2) For a simple polygon @Q and a set P of m sites in Q
each having an associated range (distance) of vision,
we show that the range-restricted visibility graph can
be computed in time O(nlogn +m>/? 4 k) time using
O(n+mlogm) storage." (There is a space-query time
tradeoff that allows the running time to be reduced to
roughly O(n +m*? + k).)

(8) We introduce a natural notion of “robust” visibility, and
we show how to compute the robust visibility graph of
a set of sites P within a polygon @ in nearly optimal
(output-sensitive) time, even if @ has holes.

1Here, é() indicates big-Oh notation ignoring polylog factors.

(4) We give algorithms for detecting the emptiness of the
edge set of VGg(P), both for the case that Q is any
simple polygon and an improved algorithm for the case
that @ is a one-dimensional terrain.

(5) We give an efficient algorithm for computing the visibil-
ity graph of P within an arbitrary polygon (possibly
with holes) in the case that visibility is rectangle visi-
bility.

(6) We give an output-sensitive algorithm for computing in-
visibility graphs for sites P within a simple polygon @,
whose edge set is the complement of the visible pairs.
This algorithm allows one to compute a representation
of dense visibility graphs particularly efficiently.

Related Work. Prior algorithms to compute visibility
graphs have addressed only the special case in which the sites
‘P are given as the set V' of all vertices of the polygon (). The
first algorithms to construct the visibility graph VGg (V) re-
quired time O(n?log n) [20], using a radial sweep about each
vertex of Q. Welzl [25] and Asano et al. [5] improved the
time bound to O(n?), which is worst-case optimal but not
output-sensitive. Hershberger [18] gave an optimal O(n+ k)
output-sensitive algorithm to compute VGg (V) for a sim-
ple polygon Q. For general polygons (with holes), Overmars
and Welzl [21] obtained a relatively simple O(klogn)-time
method, requiring O(n) space. Then, Ghosh and Mount [13]
obtained an O(k + n logn)-time algorithm, using O(k) stor-
age. Pocchiola and Vegter [23] have improved the space
bound to optimal using the concept of the wvisibility com-
plez; their algorithm requires time O(k + nlogn) and uses
O(n) space.

Preliminaries. Let @) be a polygon in the plane having n
vertices; i.e., Q is a connected subset of R? whose boundary,
0Q, is the union of n straight line segments (the edges of
Q). We consider @ to be a closed region in the plane (it
includes its boundary) and assume that the interior of @ is
connected. We let h denote the number of holes of Q; thus,
0Q) consists of h + 1 cycles. Q is a simple polygon if h = 0.

We let P C @ denote a set of m points within Q. We refer
to the points P as sites. Two points, p,q € Q, are visible
if and only if pg C Q. The wisibility graph, VGg(P), of P
with respect to @ is a graph whose nodes are the sites P and
whose edges link pairs of sites that are visible to each other.
We let k denote the number of edges of VGq(P).

2. VISIBILITY GRAPHS IN A
SIMPLE POLYGON

We consider the case in which @ is a simple polygon (h = 0)
having n vertices, and P = {s1,...,sm} is a set of m sites
within Q.

Our algorithm is based on divide-and-conquer. We be-
gin by describing a simple algorithm that is output-sensitive
but not as efficient as our main result. We only sketch the
method, since we give more details for our improved algo-
rithm.

2.1 An Output-Sensitive Algorithm

We cut @ into two subpolygons, 1 and @2, using a diago-
nal, £, of @ such that the set of sites P is partitioned into two

subsets, P1 C @1 and P2 C Q2, of approximately the same
cardinality (say, |P1],|P2| > m/4). We recursively compute
VG, (P1) and VGg, (P2). The edges of VGg(P) still to be
computed are those that straddle the cut £, joining s; € Q1
to s; € Q2. For each s; € P, we determine the subsegment
o; C £ of points on the cut £ that are visible from s;. Let
L; denote the set of all (infinite) lines passing through s;
that intersect ;. Such a family of lines L; forms a “double
wedge”, which, in the dual, corresponds to a line segment,
L} (under any standard point-line duality transformation).
A site s; € Q1 is visible to a site s; € Q2 if and only if
L;NL; # 0, in which case there is a unique line £ € L; N L,
namely, £ is the line through s; and s;. See Figure 2. In the
dual, then, the visibility of s; and s; corresponds to the seg-
ment L; intersecting L7, at a point £* that is dual to line £.
Thus, we can compute the set of all visibilities that straddle
& by computing all of the “red-blue” segment intersections
between the “red” segments Lj corresponding to sites Pi
and the “blue” segments L] corresponding to sites Pa.

The difficulty now is that the best known algorithms for
the bichromatic segment intersection problem require that
the union of the red segments is a connected set and that
the union of the blue segments is also connected; in such a
case, the K red-blue intersections can be reported in time
O(K +71+1b), for r red segments and b blue segments [7, 10,
17]. (If the unions are not known to be connected, then the
intersections can be computed in time O((r 4 b)*/3 log(r +
b) + K) [1, 16].)

Instead of computing only the red-blue segment intersec-
tions, though, we can compute all intersections among the
dual segments Lj, regardless of which subpolygon contains
the corresponding site s;. Each such intersection does cor-
respond to a visible pair of sites; however, the pair of sites
may both belong to the same subpolygon. This means that
each visible pair is discovered over and over again.

One can argue, though, that a visible pair is rediscovered
only O(logm) times, since in going down the recursion tree,
s; and s; are on the same side of a cut only O(log m) times
before they are split by a cut. This gives the following result:

PRrROPOSITION 1. The simple divide-and-conquer algorithm
requires time O(n 4+ mlog mlog mn + klogm).

2.2 An Improved Algorithm

We now improve upon our simple divide-and-conquer algo-
rithm in order to remove the factor of O(logm) that multi-
plies the output size, k, in the running time, which is caused
by over-reporting the visible pairs.

Our improved algorithm makes use of the query structure
of Guibas and Hershberger [14], modified in order to account
for the presence of sites in the polygon. We first summarize
their construction, which was developed to answer shortest
path queries in a polygon, and then describe how we modify
and extend it to obtain our new results.

In order to build a query structure for shortest paths, we
first compute a hierarchical decomposition of the polygon
Q@ by repeatedly splitting @) into two with a diagonal. The
collection of diagonals produced in the recursive splitting
procedure form the nodes of a binary tree, where the two
children of a diagonal are the diagonals splitting its left and
right subpolygons. The factor graph augments this splitting

Figure 2. lllustration of the cut &, the visible subsegments o;, and
the set of lines L;. Site s; sees site s; if there is a line in common
to L; and L.

tree with an edge between each pair of diagonals d1, d2 such
that both diagonals lie on the boundary of a subpolygon
obtained during the splitting process. That is, if we look
at the polygon @ after all the diagonals have been added,
then two diagonals will be connected by an edge in the fac-
tor graph if and only if they can be connected inside @ by
a path that does not cross any diagonals of lesser depth in
the splitting tree. For each edge of the factor graph, Guibas
and Hershberger compute an hourglass query structure that
permits shortest path queries of the following form: given a
point p and an hourglass h that connects di and d2, find the
length of the shortest path from p to a point on d2, assum-
ing that this path passes through d;. This query requires
time proportional to the sum of the heights of the two diag-
onals in the tree. The construction time to build the factor
graph and all its query structures is proportional to the total
number of diagonals.

In order to adapt this query structure to the problem of
visibility between sites of P, we first choose the sequence of
diagonals in such a way that the number of sites on either
side of a diagonal is approximately balanced. Some of these
diagonals may have endpoints on the interior of edges of the
polygon, rather than vertices, so the complexity of the poly-
gon may increase to ©(m+mn). The recursion continues until
there is exactly one site in each leaf subpolygon. We now
build the factor graph and the associated hourglass query
structures as before, in time O(m + n). We only need those
hourglasses that are “open”, namely those whose diagonals
are mutually visible. In addition, we will only use the fol-
lowing type of query: For a given point p and an hourglass
h, determine the parts of each diagonal of h that are visi-
ble to p, if any. In order to answer this visibility query, we
determine the point at which a ray from p is tangent to a
given side of h. Finding this tangent is the basic ingredient
of the shortest path query, and thus can be answered in time
O(log(m +n)) = O(log mn) with the same query structure.

Now to compute the pairs of visible sites, we begin by
constructing an appropriate set of dual segments to charac-
terize the part of ray space covered by each site. Consider a
ray r from site s, and the initial segment i of r that lies in

the interior of (). This initial segment ¢ will intersect some
set D of diagonals. If D is not empty, then let d be the ele-
ment of D of minimum depth. We associate r with d. That
is, we associate the ray r with the first diagonal that would
cut the ray inside the polygon, during the original splitting
process. Note that if a ray from site s; is directed toward
another site sz, then it will be associated with a diagonal,
since it will have to cross a diagonal that separates s1 from
s2. If we thus assign all the rays from a site s to their asso-
ciated diagonals, we will have a partition of the rays from s
into intervals of rays. The set of diagonals thus associated
with s cannot include two diagonals of the same depth, and
thus the number of ray-space intervals is O(log m) per site.
Computing these intervals can then be accomplished at a
cost of O(log mlogmn) per site.

Now to compute the set of visible pairs of sites, we con-
sider each diagonal d in turn, and compute the intersections
between all the ray-intervals associated with d. In the dual
space, the ray interval is a segment, so we can compute the
set of segment intersections in time O(k1 +m1 log m1) time,
where m; is the number of dual segments associated with d,
and ki is the number of intersections found.

LEMMA 1. A given pair of visible sites will be discovered
either once or twice.

The total cost of the intersection calculation is then O(k+
mlog?m). This leads to a total running time of O(n +
mlogmlogmn + k) to find all k of the visible pairs.

We conclude with our main result of this section:

THEOREM 1. One can construct the wisibility graph
VGo(P) of m sites P within a simple polygon Q having
n vertices in time O(n+ mlog mlog mn + k), where k is the
number of visible pairs (edges of VGq(P)).

Remark: We are able to extend the above theorem
to the case of polygons with h holes, at a cost of a factor
of O(h) in the time complexity. The extension utilizes a
decomposition of the polygon with holes into O(h) corridors
and junction triangles (as in [15, 19]).

3. DISTANCE-RESTRICTED
VISIBILITY GRAPHS

Consider now the case in which each point p € P has an
associated range of sight, d, > 0, such that an observer at
point p can see only up to distance dp. Then, the distance-
restricted wvisibility graph, VGo(P), of P with respect to Q
contains a directed edge from point p € P to point ¢ € P
if and only if pg C @ and |pq| < dp, where |pg| denotes the
Euclidean length of pg (see Figure 3).

We consider the case in which @ is a simple polygon. We

first present an alternative algorithm for computing VG¢ (P).

This algorithm is less efficient than the one presented in Sec-
tion 2, but it can be transformed easily into an algorithm
for computing VGq (P).

We begin by preprocessing () for shortest path queries
([14]). This permits us to answer a wedge query in time
O(logn): Given a site s; € P and a diagonal £ of @), we can
determine the segment o; C £ of points on the cut € that are
visible from s;. The wedge w; is the set of rays with apex s;
that intersect o;.

Figure 3. The distance-restricted visibility graph with only two pos-
sible ranges of sight: short (solid disks) and long (hollow circles).

Our algorithm uses the divide and conquer paradigm. We
find a diagonal £ that divides @) into two subpolygons, such
that each of them contains at least one fourth of the points in
P (refer to Section 2.2). For each point s; € P we compute
the wedge w; and the segment o; through which it sees ¢ (in
total O(mlogn) time).

Without loss of generality we assume that & is vertical
(since we can simply rotate the scene to achieve this). Let
Py (resp. Pr) denote the subset of points in P to the left
(resp. to the right) of £. Let S be the set of the m segments
o; C &, for s; € P. We build a skeleton of a segment tree
T for the segments S. We insert the segments of S into T'.
Recall that each segment o; is stored in O(logm) nodes of
T, such that the canonical segments associated with these
nodes consist of a partitioning of o; into subsegments. At
each node v of T we divide the segments stored in v (i.e.,
the canonical set of v) into two canonical subsets Sl and S7,
so that S (resp. S7) includes all of the segments stored in
v that are associated with points in P; (resp., Pr).

Let s; € P; and s; € Pr, and assume that s; and s; are
visible to each other (though possibly at a distance greater
than max{ds,,ds; }). Let o be the intersection point between
5is; and £. Clearly o € 0; No;. The segment o; (resp., ;)
is stored in O(log m) nodes of T' corresponding to O(logm)
canonical segments whose union is o; (resp., o). We focus
on the canonical segment o C o; (resp., ' C o;) in which
o lies. From the definition of a segment tree it follows that
either ¢ C ¢’ or ¢/ C 0. Assume, e.g., that o C ¢’, and let
w be the wedge from s; through o. Then s; lies in w.

The opposite direction is also true. That is, if o (resp.,
c') is one of the canonical segments into which o; (resp., o;)
was partitioned, where s; € P; and s; € P,, and if o C o’
and s; € w, where w is the wedge from s; through o, then
s; and s; see each other through a point o € o.

Thus, in order to find all pairs (s;,s;) of points, s; € P,
and s; € P,, such that s; and s; are visible to each other
(without the distance restriction), we do the following. For
each node v of T, we preprocess the subset of P, corre-
sponding to the canonical subset S;, for efficient wedge range
searching. Now, for each node v of T" we proceed as follows.
For each segment o; € S!, we perform a range searching
query with the wedge from s; and through the canonical

Figure 4. lllustration of a sector.

segment o of v. We do this query in the range searching
data structures of v and of all its ancestors in T'. All points
that are found are reported to be visible from s;.

We now switch the roles of left and right and repeat.
That is, we preprocess the subsets of P; corresponding to
the canonical subsets S, for wedge range searching, and we
perform queries with wedges from points in P,.

At this stage we have found all left-right pairs that are
visible to each other, in the usual sense (without distance
restriction), and each such pair was discovered at most twice.
We now proceed to find all left-left visible pairs and all right-
right visible pairs, by processing each of the two parts of the
polygon @ recursively.

The algorithm described above computes the visibility
graph VGg(P), but it can be transformed easily into an al-
gorithm for computing the distance-restricted visibility graph,
VGq(P). Instead of preprocessing the subsets of P, (resp.,
Pi) corresponding to the canonical subset S, (resp., Sfj) for
wedge range searching, we preprocess them for efficient sec-
tor range searching, where a sector is obtained by inter-
secting a wedge with a disk centered at the origin of the
wedge. The query ranges associated with point s; € P will
be sectors of radius ds,, each of which is the intersection of
two halfplanes and a disk. See Figure 4. Thus, we can use
known results (see, e.g., [2, 4]) in multi-level range search
data structures to answer queries in time (roughly) output
size plus O(ml/ 2): the first two levels of the structure apply
halfspace range searching to be able to report all points in
the query wedge as a union of canonical sets, and the third
level of the structure reports those points in the canonical
sets that lie within the query disk.

THEOREM 2. Let Q be a simple polygon with n vertices,
and let P be a set of m points in Q) with associated ranges of
sights. Then VGq(P) can be computed in O(n +m>/? + k)
time, using roughly O(n 4+ m) storage.

If we can afford to use more storage space, we can reduce
the running time, using the known space-query tradeoff of
range searching.

Notice that if the number k of edges in VG (P) is greater
than m®/2, and the number & of edges in VGg(P) is signif-
icantly smaller than k, then the above algorithm is more
efficient than the algorithm for computing VGg(P) (which
could then be scanned for edges that are too long).

4. ROBUST VISIBILITY

In this section we assume that @) is a polygon, possibly with
holes, consisting of n vertices in total, and that P is a set

Figure 5. p and ¢ are a-robustly visible to each other.

Figure 6. The rectangles Rj, and Ry,

of m points in Q. We say that p € P a-robustly (or a-
fatly) sees q € P, for a given angle o > 0, if the “ice cream
cone” with p as apex, pg as axis, and « as opening angle is
completely contained in). Refer to Figure 5. This notion
of robust visibility models the situation in which a camera
or sensor at p can only detect ¢ if there is a “fat” wedge
(e.g., indicative of the angular resolution of the sensor) of
unobstructed space containing ¢, so that if ¢ is perturbed
within a neighborhood, it is still seen from p.

We define the a-robust visibility graph, VGg(P), to be
the (undirected) graph whose nodes are the sites P and
whose edges link a pair of sites p,q € P if and only if p
a-robustly sees ¢ and g a-robustly sees p, in which case we
say that p and g are a-robustly visible to each other. We
wish to find all k edges of VG§(P). We present an algo-
rithm that finds all these pairs, possibly together with some
other pairs; however, the additional pairs reported by our
algorithm are guaranteed also to be robustly visible, just
with a slightly different parameter: every pair reported by
the algorithm is (a/c¢)-robustly visible to each other, for an
appropriate constant c¢. The running time of the algorithm
is O(n +mlogmn + k') (resp., O(nlogn + mlogmn +k')),
where k’ is the number of pairs reported, for the case that
Q is a simple polygon (resp., polygon with holes). (The
dependence on « is a factor of O(1/«).)

The Algorithm

We start by choosing a uniform sample of O(1/ca) orienta-
tions, such that, the angle between any orientation and the
sample orientation that forms the smallest angle with it is
at most 3, where 3 = f(«) is an appropriate parameter. We
now repeat the following algorithm for each of the sample
orientations p.

Let § be an appropriate parameter, depending on « and
B. We say that a rectangle is of orientation p if its (di-
rected) medial axis is of orientation p. (The medial axis of
a rectangle of width W and length L > W is a line segment

Figure 7. The algorithm finds all pairs p, ¢ that are a-robustly visible
to each other.

of length L — W positioned in the center of the rectangle,
aligned with the longer sides. It is the locus of points that
are centers of maximal disks within the rectangle.) We call
the origin of the (directed) medial axis the focus point of
the rectangle. For each point p € P we compute a maximal
rectangle R, C (@ of orientation p, with p at its focus point
and with aspect ratio . See Figure 6. This can be done
in O(logn) time per p, after preprocessing @ in time O(n)
(if @ is simple [12]) or O(nlogn) (if @ has holes). For this
step, we compute the Voronoi diagram (see, e.g., [6, 11]) of
Q@ according to the convex distance function defined by a
rectangle of aspect ratio § with origin at the focus point,
and we preprocess the diagram for point location queries.
Then, for a given p € P, the Voronoi diagram reports the
boundary element(s) (edge or vertex) of @ that is in contact
with Ry, allowing us to compute R,.

Let R, denote the rectangle contained in Rp, such that
the distance between each of the sides of R;, and the corre-
sponding side of R, is w/4, where w is the width of R,. We
now perform an orthogonal range searching query with Rj,
to report all points in P that lie in R;,. For each such point
q, we output the pair p, q.

The Analysis

We prove the following lemma

LEMMA 2. 1. If p,q € P are a-robustly visible to each
other, then the algorithm above will report the pair p,q;
and,

2. There exists a constant ¢, such that, if a,b is a pair
reported by the algorithm above, then a,b are (a/c)-
robustly visible to each other.

PROOF. (Sketch) In this extended abstract, we only give
a sketch of the proofs without detailing the computation
of the explicit values of the parameters. Consider the first
claim. Assume p,q € P are a-robustly visible to each other,
and assume, e.g., that pq is horizontal with p to the left of
q. Let p be the sample orientation that forms the smallest
angle with the positive z-axis. We know that this angle is
at most 8. Let R be the axis-aligned rectangle, depicted in
Figure 7, of length |pg|+r and width r, where r is the radius
of the ice cream balls of p and q. We show that there exists
a rectangle S, of orientation p, with p at its focus point and
with aspect ratio d, such that (i) S, is contained in R, and
(ii) ¢ € S,, where S, is the rectangle contained in Sp, such
that the distance between each of the sides of S, and the
corresponding side of S, is w/4, and w is the width of S,.

Since S, C R and R C @, and since R, is maximal, we know
that S, C Ry, and therefore ¢ necessarily lies in R;, which
contains Sj,.

Consider now the second claim. Since the pair a,b was
found by the algorithm, we know that both a and b lie in a
rectangle, R,,, that is a shrunk copy of a larger rectangle R,
(of aspect ratio §), where, say, a lies at its focus point. We
also know that the larger rectangle R, (which is obtained
from R, by moving each of its sides away from the center a
distance of w’/2, where w’ is the width of R}), is contained
in Q. This implies, with the right choice of parameters, that
there exists a constant ¢ such that a,b are (a/c)-robustly
visible to each other.

Concerning the efficiency of the algorithm, it is easy to
see that each pair that is reported by the algorithm above is
rediscovered only a constant number of times (O(1/«)), and
therefore the total running time of the algorithm is O(n +
mlogmn + k') (resp., O(nlogn + mlogmn + k') if Q is a
simple polygon (resp., a polygon with holes).

THEOREM 3. Let Q be a polygon, possibly with holes, con-
sisting of n edges in total, and let P be a set of m points in
Q. One can compute in O(nlogn + mlogmn + k') time
(or O(n+mlogmn+k'), if Q is simple) all pairs in P that
are a-robustly visible, possibly together with some other pairs
that are (a/c)-robustly visible, for some constant c. Here, k'
is the number of (a/c)-robustly visible pairs.

5. VISIBILITY DETECTION

We consider now the problem of detecting whether or not
there is any pair of sites in P that see one another; i.e., we
want to detect whether the edge set of VGg(P) is empty,
and, if it is not, produce a witness visible pair. This problem
of detecting “visibility independence” of a point set arises
in applications of sensor coverage (guarding) and visibility-
preserving terrain simplifications [8].

For a simple polygon @ visibility detection can be done
by applying the simple version of the algorithm of Section 2,
just applying a line segment intersection detection algorithm
(for the dual segments) instead of a reporting algorithm.
The algorithm terminates upon discovery of a visible pair.
We thus have

THEOREM 4. For a simple polygon @ having n vertices
and a set P of m sites within), we can detect if the edge
set of VGg(P) is empty in time O(n + mlogmlogmn).

The rest of the section is devoted to the special case of
terrains in the plane, which arises in the visibility-preserving
terrain simplification applications. For this case, we present
a specialized algorithm which is slightly more efficient and
which exploits the geometric properties of terrains.

Let T be a terrain of size n in the plane. That is, T is an
z-monotone polygonal chain with n vertices. Let P be a set
of m points above T'. Our goal is to determine whether there
exists a pair {p,p’} of points in P, such that p and p’ see
each other. We shall assume that between any two points
in P there is at least one vertex of T, because otherwise
there are clearly two points in P that see each other. (We
can easily check in O(n 4+ m) time whether this assumption
holds, assuming 7" and P are already sorted by z.)

Preliminaries

Our solution is based on the following claim.

CrLAaM 1. Let p and q be two points in P, q to the right
of p, that do not see each other. Let u be a vertexr of T to
the right of q that is visible from both p and q. Then for any
point a (on or above T') to the right of u, if a is visible from
q then it is also visible from p.

Figure 8. Proof of Claim 1.

PROOF. Since p and g do not see each other and since u is
visible from p, u must lie above the line through p and g; see
Figure 8. Notice that for any point ¢ above the line through
p and ¢ and to the right of ¢ we have that segment pc is
above segment gc. Now let a be a point on or above 1" to
the right of u, and assume a is visible from ¢. Then a must
lie above the ray emanating from ¢ and passing through u
(and therefore it also lies above the ray emanating from p
and passing through u). We need to show that the segment
pa does not intersect T'. Since pa lies above ga, pa does not
intersect T between g.x and a.z, and since pa lies above pu,
pa does not intersect T between p.x and q.z. O

COROLLARY 1. Under the conditions of the claim abowve,
if we want to determine whether there exists a point a € P
to the right of u that is visible from either p or q, then it is
enough to consider p; we may forget about q.

'

Figure 9. The requirement that p and ¢ do not see each other is
necessary.

Remark: The requirement that p and ¢ do not see
each other in the claim above is necessary, as can be seen
in Figure 9. In this figure p and ¢ can see each other, but
there exists a point a that is visible from ¢ and not from
p. The reason why the requirement that p does not see ¢ is
necessary is that it forces u and the point a to be above the
line through p and q.

The Algorithm

Our algorithm sweeps the input scene from left to right,
with a vertical line [, until either a point of P that is visible
from some point to its left is encountered, or the rightmost
vertex of T is encountered. During the sweep the algorithm

maintains a set S of rightward directed rays. Initially this
set is empty; it is updated whenever [passes through a point
in P or a vertex of T'. For each point p € P to the left of [, let
pp be the minimum angle ray that emanates from p and hits
[before entering T'. (The angle is measured with respect to
the negative y-axis.) The set S is an appropriate subset of
these rays. Let Ps denote the subset of P corresponding to
the rays in S. With each ray p, € S we also keep the vertex
of T that determines its angle.

The algorithm uses two auxiliary data structures. The
first data structure D; stores a (dynamic) set of halfplanes
H, and supports queries of the following form: Given a point
a, determine whether a belongs to the intersection of the
halfplanes in Hi. The set H; will be the set of halfplanes
lying below the lines containing the rays in S. Assuming a
lies on [(and is on or above T'), if a belongs to the inter-
section of the halfplanes in H;, then it is not seen by any
of the points in Ps, and therefore, as we shall see, it is not
seen by any of the points in P to the left of [.

The second data structure Do stores a (dynamic) set of
halfplanes H> and supports queries of the following form:
Given a point w, find all halfplanes in H» containing w.
The set Ho will be the set of halfplanes lying above the lines
containing the rays in S. Assuming w lies on ! (and is on
or above T'), then the reported halfplanes correspond to the
points in Ps that see w.

The best known bounds for the first data structure are
due to Brodal and Jacob [9], who present a linear-size dy-
namic data structure that supports some basic queries on
the convex hull of a set of points in the plane. Both the
update time and the query time of their data structure is
O(logm). As for the second data structure (which in the
dual setting is simply a dynamic data structure for half-
plane range searching), we have the following bounds using
the results of Brodal and Jacob: Storage — O(m), update —
O(m), Query — O(logm + klog m).

We now describe the operations performed by the sweep
algorithm for each of the two types of events.

| passes through a point a of P. We first check
whether a is seen by one of the points in Ps by perform-
ing a query in the first data structure D;. If a does not
lie in the intersection of the halfplanes in H; (i.e., the half-
planes lying below the lines containing the rays in S), then
it is seen by some point in Ps and we are done. Otherwise,
we add the ray p, to S, where p, is the ray emanating from
a and passing through the vertex immediately to the right
of a. We also update the sets H1 (of D1) and Hz of D»
accordingly (where Hs is the set of halfplanes lying above
the lines containing the rays in S).

| passes through a vertex w of 7. We use the second
data structure D3 to find all k., points in Ps that see w. For
each of these points p we need to update its corresponding
ray pp in S, by computing the ray that emanates from p
and passes through w. According to the claim above we
may delete all these rays from S, except for the one that
forms the smallest angle to the right of w with respect to
the downward vertical ray from w. (It is easy to see that
this ray is necessarily the ray whose origin is the leftmost.)
We thus update the sets H; and H» accordingly.

The Analysis

We first prove the correctness of the algorithm above. Then
we analyze it to obtain bounds on its space and time con-

sumption.

LEMMA 3. For any location of the sweep line l, let a be a
point on 1 (on or above T') and let p be a point in Ps. Then
a is visible from p if and only if p, intersects I not above a.

PrOOF. From the description of the algorithm it is clear
that p, is the minimum angle ray that hits [before enter-
ing T. ([l

LEMMA 4. If there exist two points in P that see each
other, then the algorithm will detect this fact.

PRrROOF. Let ¢ be the leftmost point in P that is visible
from a point of P to its left, and let p € P be the leftmost
point that sees q. We show that the pair {p, ¢} will be de-
tected by the algorithm. More precisely, we show that p is
in Ps when [reaches ¢q. Indeed, if p is removed from Pgs
before | reaches g, then the point p’ € P, that is “responsi-
ble” for p’s removal, must lie to the left of p and must see
q, contradicting our assumption concerning p. O

In order to bound the running time, we notice that a point
in P is inserted only once to the set Ps, so the sum of k.,
over all vertices w of T, is O(m).

THEOREM 5. Let T be a terrain in the plane of size n,
and let P be a set of m points above T'. Then one can detect
if the edge set of VG (P) is empty in time O((n+m)logm)
using O(n +m) space.

6. RECTANGLE VISIBILITY

Consider now the notion of rectangle visibility, in which we
say that p and g are r-visible to one another if and only if
the minimum enclosing axis-parallel rectangle, R(p,q), lies
inside). Based on an algorithm that combines our divide-
and-conquer techniques with orthogonal range searching data
structures, we establish the following result (whose proof is
deferred to the full paper):

THEOREM 6. Let Q be a polygon, possibly with holes, con-
sisting of n edges in total, and let P be a set of m points in
Q. One can compute in O(nlogn + mlogmn + k) time all
k pairs in P that are r-visible to one another.

7. INVISIBILITY GRAPHS

A visibility graph can be specified by listing its k edges (the
visible pairs of sites); however, an alternative specification
is to list the complementary graph edges, giving those k
pairs of sites that are invisible to each other. Since k +
k= (7;)7 there are situations in which the visibility graph is
particularly dense and it would be advantageous to compute
the invisibility graph in output-sensitive time, depending on
k. (Agarwal et al. [3] have studied the related problem of
compact representations of a visibility graph, as a union of
a small number of complete subgraphs.)

We observe that the algorithms described in Section 3 (for
computing the visibility graph and the distance-restricted
visibility graph in a simple polygon) can be modified for the
purpose of computing the invisibility graph. We only need
to replace the wedge range searching (resp., the sector range
searching, in the case of distance-restricted visibility) with
range searching with the complement of a wedge (resp., with
the complement of sector). We thus obtain:

THEOREM 7. In a simple polygon Q having n vertices, the
invisibility graph of m points P within Q@ can be computed
in time O(n+m3? + k), where k is the number of invisible
pairs of sites in P. In addition, the invisibility graph can be
computed within the same time bound in the case that each
point in P has an associated range of sight, dp.

As for the algorithms in Section 3, we can improve the
running time to O(n 4+ m*? + k) at the cost of increasing
the storage space to m*3. We also note that in the unre-
stricted case, the segment tree and the range searching can
be replaced by red-blue segment intersection, yielding the
same O bounds.

Acknowledgements

M. Katz and J. Mitchell are partially supported by grant
No. 2000160 from the U.S.-Israel Binational Science Foun-
dation. M. Katz and B. Ben-Moshe are partially supported
by the MAGNET program of the Israel Ministry of Indus-
try and Trade (LSRT consortium). J. Mitchell acknowledges
support from Honda Fundamental Research Lab, NASA Ames
Research (NAG2-1620), the National Science Foundation
(CCR-0098172), and Metron Aviation. O. Hall-Holt is par-
tially supported by the National Science Foundation (DMS-
9983196).

References

[1] P. K. Agarwal. Partitioning arrangements of lines:
II. Applications. Discrete Comput. Geom., 5:533-573,
1990.

[2] P. K. Agarwal. Range searching. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Com-
putational Geometry, chapter 31, pages 575-598. CRC
Press LLC, Boca Raton, FL, 1997.

[3] P. K. Agarwal, N. Alon, B. Aronov, and S. Suri. Can
visibility graphs be represented compactly? Discrete
Comput. Geom., 12:347-365, 1994.

[4] P. K. Agarwal and J. Erickson. Geometric range search-
ing and its relatives. In B. Chazelle, J. E. Good-
man, and R. Pollack, editors, Advances in Discrete and
Computational Geometry, volume 223 of Contemporary
Mathematics, pages 1-56. American Mathematical So-
ciety, Providence, RI, 1999.

[5] T. Asano, T. Asano, L. J. Guibas, J. Hershberger, and
H. Imai. Visibility of disjoint polygons. Algorithmica,
1:49-63, 1986.

[6] F. Aurenhammer and R. Klein. Voronoi diagrams. In
J.-R. Sack and J. Urrutia, editors, Handbook of Com-
putational Geometry, pages 201-290. Elsevier Science
Publishers B.V. North-Holland, Amsterdam, 2000.

[7] J. Basch, L. J. Guibas, and G. D. Ramkumar. Report-
ing red-blue intersections between two sets of connected
line segments. In Proc. 4th Annu. European Sympos. Al-
gorithms, volume 1136 of Lecture Notes Comput. Sci.,
pages 302-319. Springer-Verlag, 1996.

[8] B. Ben-Moshe, M. J. Katz, J. S. B. Mitchell, and Y. Nir.
Visibility preserving terrain simplification — An experi-
mental study. In Proc. 18th Annu. ACM Sympos. Com-
put. Geom., pages 303-311, 2002.

[9] G.S.Brodal and R. Jacob. Dynamic planar convex hull.
In Proc. 43rd IEEE Sympos. Foundations of Computer
Science, pages 617-626, 2002.

(10]

(11]

(12]

(13]

(17]

(18]

(19]

T. M. Chan. Dynamic planar convex hull operations in
near-logarithmic amortized time. Journal of the ACM,
48(1):1-12, 2001.

L. P. Chew and R. L. Drysdale, III. Voronoi diagrams
based on convex distance functions. In Proc. 1st Annu.
ACM Sympos. Comput. Geom., pages 235244, 1985.
F. Chin, J. Snoeyink, and C. A. Wang. Finding the
medial axis of a simple polygon in linear time. Discrete
Comput. Geom., 21(3):405-420, 1999.

S. K. Ghosh and D. M. Mount. An output-sensitive al-
gorithm for computing visibility graphs. SIAM J. Com-
put., 20:888-910, 1991.

L. J. Guibas and J. Hershberger. Optimal shortest path
queries in a simple polygon. J. Comput. Syst. Sci.,
39(2):126-152, Oct. 1989.

L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and
J. S. Snoeyink. Approximating polygons and subdivi-
sions with minimum link paths. Internat. J. Comput.
Geom. Appl., 3(4):383-415, Dec. 1993.

L. J. Guibas, M. H. Overmars, and M. Sharir. Inter-
secting line segments, ray shooting, and other applica-
tions of geometric partitioning techniques. In Proc. 1st
Scand. Workshop Algorithm Theory, volume 318 of Lec-
ture Notes Comput. Sci., pages 64—73. Springer-Verlag,
1988.

S. Har-Peled and M. Sharir. Online point location
in planar arrangements and its applications. Discrete
Comput. Geom., 26:19-40, 2001.

J. Hershberger. An optimal visibility graph algorithm
for triangulated simple polygons. Algorithmica, 4:141—
155, 1989.

S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell. An
efficient algorithm for Euclidean shortest paths among
polygonal obstacles in the plane. Discrete Comput.
Geom., 18:377-383, 1997.

D. T. Lee. Proximity and reachability in the plane. Re-
port R-831, Dept. Elect. Engrg., Univ. Illinois, Urbana,
IL, 1978.

M. H. Overmars and E. Welzl. New methods for com-
puting visibility graphs. In Proc. 4th Annu. ACM Sym-
pos. Comput. Geom., pages 164—171, 1988.

M. Pocchiola and G. Vegter. Computing the visibility
graph via pseudo-triangulations. In Proc. 11th Annu.
ACM Sympos. Comput. Geom., pages 248-257, 1995.
M. Pocchiola and G. Vegter. Topologically sweeping
visibility complexes via pseudo-triangulations. Discrete
Comput. Geom., 16:419-453, Dec. 1996.

J. Urrutia. Art gallery and illumination problems. In
J.-R. Sack and J. Urrutia, editors, Handbook of Com-
putational Geometry, pages 973-1027. North-Holland,
2000.

E. Welzl. Constructing the visibility graph for n line
segments in O(n?) time. Inform. Process. Lett., 20:167—
171, 1985.

