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On O (n 2) exact  algorithm is given for com- 
puting the volume of a set of n spheres 
in space. The algorithm employs the La- 
guerre Voronoi (power) diagram and a 
method for computing the volume of the 
intersection of a simplex and a sphere ex- 
actly. We give a new proof of a special 
case of a conjecture, popularized by Klee, 
concerning the change in volume as the 
centres of the spheres become further 
apart. 
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1 Introduction 

In this paper we give a n  O(n 2) exact algorithm 
for computing the volume of the union of a set 
of n spheres in space. This problem is of interest 
in nuclear physics [7, 6] and urban planning [4]. 
The only other exact method known to the authors 
is by an application of the inclusion-exclusion prin- 
ciple, giving an exponential running time algo- 
rithm. Our approach is to partition space into poly- 
gonal cells, with one cell for each sphere, so that 
the volume of the union can be computed by sim- 
ply summing the volume of the intersection of each 
sphere with its corresponding cell. The cell decom- 
position used is the Laguerre-Voronoi diagram [3, 
1], which was used to solve the two dimensional 
version of the same problem. A critical procedure 
required is to compute the volume of the intersec- 
tion of a sphere and three half spaces. Our ap- 
proach generalized to d-dimensions whenever the 
measure of the intersection of a hypersphere and 
d half spaces is computable. This problem is partic- 
ularly simple for d = 2, but seems hard for d > 4. 

In the paper, we consider the three-dimensional 
case in detail. In principle it is possible to obtain 
a formula for computing the volume of the intersec- 
tion of a sphere and three half spaces, but such 
a formula would be extremely complex. We rather 
adopt the decomposition approach. We decompose 
the problem, using elementary geometric proper- 
ties, and show that the volume of the intersection 
of a sphere and three half spaces can be computed 
if a formula for computing the volume of the inter- 
section of a sphere and t w o  half spaces is available. 
We also present such a formula, thus giving an 
exact method of computing the volume of the union 
of n spheres. 

As our model of computation, we adopt the real 
RAM in Preparata and Shamos [8], in which each 
word is capable of holding a single real number, 
and, besides the fundamental arithmetic operations 
and comparisons, the square root and inverse trig- 
onometric functions are available at unit cost. In 
computing the volume of the union of spheres, 
those additional operations seem indispensable. 

We also mention an old problem on the volume 
of the union of spheres, and prove a special case 
of the conjecture by means of the Laguerre-Voron- 
oi diagram. 
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2 Laguerre-Voronoi diagram 
and the measure of the union 
of spheres 

Suppose we are given n hyperspheres S~ in d-di- 
mensional space R e with center x~ and radius 
r~ (i = 1 . . . . .  n): 

Si = { x ~ R d I ( x  - xi)r (X - xi) ~ r{}. 

The Laguerre-Voronoi diagram in R e for these 
spheres is defined as follows [3, 1]. We define the 
distance dL(S~, x) from hypersphere Si to an arbi- 
trary point x in R e by 

alL(S,, x) 2 = (x-- x 0 T ( x - -  x 0 - -  r~ 

in terms of which we denote the Voronoi region 
V(Si) of Si by 

V(S, = N {x I dL(S,, x) 2 ~ dL(Sj, x)2}. 
g 

The collection of V(S~) (i= 1, . . . ,  n) partitions the 
space, which will be referred to as the Laguerre- 
Voronoi diagram. The inequality dL(Si,x)2<_ 
dL(Sj, x) 2 is obviously linear in x and determines 
a half space, and hence every region V(Si) is a con- 
vex polyhedron in R d. In the two-dimensional case, 
the boundaries of the regions of the diagram con- 
sist of straight line segments, and the diagram can 
be computed in O(n log n) time [3]. In d-dimen- 
sional case (d_> 3), the diagram can be constructed 
in 0 (qt(d+ 1)/2]) time [ 1, 2]. In the Laguerre-Voronoi 
diagram, S~ itself may not intersect V(S~) and some 
V(S~) may be empty. Figure 1 depicts a Laguerre- 
Voronoi diagram for twenty circles. 
For  X _  R a, denote by # (X) the measure of X. 
The reason why the Laguerre-Voronoi diagram is 
of use in computing the measure of the union of 
hyperspheres is contained in the following lemma. 
It says that it suffices to compute the measure of 
the intersection of each hypersphere with its corre- 
sponding Voronoi polyhedron. 

L e m m a  2.1. # S #(Sjm V(Sj)). 
i 

Proof We first show that 

S~c~V(Sj)c_Sjc~V(Sj) forany  i , j= l ,  . . . ,n. (2.1) 

3 2 4  
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0 
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Indeed, 

Si c~ V(S~) = ~ {x ~ Ral(x - x j) r ( x -  x j ) -  r 2 
k 

< ( x -  Xk)r(x-- Xk)-- r 2 and 

(x-x,)T(x-xi)_<r, ~} 

g [(~ {x ~ Rdl (x -- x y  (x -- xj) -- r~ 
k 

_< (x - xk)T (X -- xk) -- r~}] 
n (x ~RdI(X-- xj)T (x--  xj)-- r 2 

<_ (x -- x0 r (x - xi) - r 2 <_ 0} 

Sj ~ V(Sj). 

Therefore, we have 

[since V(S~) (i = 1, ..., n) partitions 

the space R d] 

= ~ ~(sj~ v(sj)) [from(2.1)]. [] 
j = l  



Thus, it is seen that, given the Laguerre-V0ronoi 
diagram, the problem of computing the volume of 
the union of these n spheres is reduced to that 
of computing #(Sin V(Sj)). Since V(Sj) is a convex 
polyhedron, we can easily partition it into sim- 
plices, and so we can compute #(Syn V(Sj)) if the 
measure of the intersection of a sphere and a sim- 
plex can be computed. 
We use the following notation in the sequel: given 
a half space H~-, we denote by H ~ the hyperplane 
determining the H I  and define H I  to be R d -  Hk +. 
Consider a sphere S and a simplex X which is the 
intersection of d + 1 half spaces H~- (k = 1 . . . .  , d + 1) 
in R d. Then we have the following lemma by virtue 
of a fundamental formula in set theory. 

Lemma 2.2. The measure of the intersection of a 
sphere and a simplex in R d can be computed if the 
measure of the intersection of a sphere and (at most) 
d half spaces is computable. 

Proof Since S n Z = S n H~ n H~- n . . .  n Hf+ 1, we 
have 

(s n z) 
d + l  

=p(S)-- ~ # ( S n H [ )  
k = 1  

+ X #(SnH~nHL) 
l ~ k l < k 2 < ~ d + l  

-- ~ #(SAH~nH[~nH[~) 
1 <_k 1 < k 2 < k 3 < _ d +  1 

Ju , . .  

+(--1) n ~ #(SAH~c~H[n...~H[~) 
1 _<k 1 < k 2 <  . . .  <ka<_d+ 1 

+ ( -  1)"+a#(SnH; n i l e  n ... n H [ + p  (2.2) 

In (2.2), since 2 is a simplex, H1  n H2  n . . .  n H/+ 1 
is empty, and we obtain the lemma. []  

In the two-dimensional case, it is easy to see that 
the area of the intersection of a circle and two 
half planes can be computed in a constant time, 
as is described in Sect. 4. In this case, the Laguerre- 
Voronoi diagram for n circles can be constructed 
in O(n log n) time [3] and a convex polygon can 
be triangulated in linear time, so that the area of 
the union of n circles can be computed in O (n log n) 
time in total. 
In the three-dimensional case, it is not trivial to 
compute the volume of the intersection of a sphere 
and three half spaces. A procedure for this will 
be given in the next section. 

3 Computing the volume 
of the intersection of a sphere 
and three half spaces 

Let S be a sphere and H+I, H+, H~- be half spaces 
in the three-dimensional space such that C + 
- - H I  n H~-n  H~- is a nonempty cone with apex 
p. We denote by Fk + the face of the cone C + on 
H~ 1, 2, 3). We also define a cone C -  to be 
the closure of H i - n  H 2  n H 3 ,  and, similarly den- 
ote its faces by Fk-(k= 1, 2, 3). We consider the 
problem of computing the volume of S n C + by 
simple case analysis. 

Case 1. p~S. In this case, let H~- be the half space 
such that the boundary plane H ~ contains all the 
three points of intersection with the boundary of 
S and each of three rays of C + and such that H2  
contains p. Then, we trivially have 

p(S n C +) = p(S n C + n H~-) + #(S n C + n H~). 

The first term of the right hand side is # H 
4- ' , k ~  1 / 

since C + n H ~  = n H I  _S .  For  the second term 
k = l  

we need the fact that S n H~-n H ~  n H ~ - - 0  for 
l_<kl_<k2_<3. To see this, note first that 
H4 n H~  n Hk2 is the interior of a simplex pointed 
at some point p on S with rays H4~ n Hk~,~ H o n H~ 
H~ n H~ emanating from p (Fig. 2). Since p is on 
the boundary of S, except at this point, each ray 
lies entirely outside of S. Hence the simplex inter- 
sects S at precisely p, proving the fact. We observe 
also that H~- n H I  n H2 n H3  = 0 because 
H~- n H~- n H + c~ H~- • 0. The second term can 
therefore be expressed as 

p ( ( S n H ; ) n C  +) 

= # ( S n H ; ) -  ~ #(SnH~  n i l / )  
k = l  

+ (S n n H L n HL)  
l _ < k l < k 2 _ < 3  

-I~(SnHY, nHi-  n H  2 n H ~ )  

=/~(SnH;)- ~ #(SAH; n i l / ) .  
k ~ l  

Thus, in this case, # ( S n C  +) can be computed if 
the volume of the intersection of a sphere and two 
half spaces can be computed. 

325 



o o 
H4nH 2 

~ FI 4 

o H~nH~ 

o 
H~n H 2 

~ "  S n H~n Hl-nH~ 

H~nH 2 
o - 
4ni l1 

o 
H4 

S 

F ig .  2 

F ig .  3 

0 
Hk 

Case 2. p6S. If there is a face, say F~ +, of the cone 
C + that has no intersection with S, we have 
# ( S n C + ) = 0  when Sc~H[- -O and #(Sc~C +) 
=#(Sc~H~ c~H~) when Sc~H[ 4=O. Therefore, 
suppose that every face of the cone C + intersects 
S. In this case, we have the following. 

Lemma 3.1. I f  p6S and every face of C + intersects 
S, there is at least one face of the cone C-  having 
no intersection with S. 

Proof. We first show that if S intersects both Fk + 
and Fk-, it must intersect at least one of the bound- 
ary rays of Fk + and one of the boundary rays of 
Fk- Suppose x e S ~ F k  + and yeSc~Fk_ Then, the 
line segment 2-~___S and p 6 2 y  by hypothesis. 

- - ~  0 - -  Therefore, as x y _  Hk, x y must intersect a bound- 
ary ray of both Fk + and Fk- (Fig. 3). 

We may therefore assume that S intersects at least 
one of the two rays of each face of C + and similarly 
for C-. Therefore S intersects at least two rays of 
C +, which lie on some face Fk +, at points x and 
y. S also intersects Fk- at some point z. But then 
p e A x y z c S ,  a contradiction (Fig. 4). [] 

From this proposition, we see that S c~H[ 
c~H 2 n H~ is the intersection of S and at most 
two of H i ( k =  1, 2, 3). Thus, in Case 2, we can 
compute #(Sc~C +) directly from a formula like 
(2.2) if the volume of the intersection of a sphere 
and two half spaces can be computed. 

4 Computing the volume 
of the intersection of a sphere 
and two half spaces 

We begin with how to compute the area of the 
intersection of a circle with radius r and two dis- 
tinct half planes. Let A and B be the distances 
from the center of S to the lines determining the 
half planes. Let C be the distance from the center 
of S to the point of intersection of those two lines. 
We only consider the case with 0 < A < B _< C < r; 
other cases are similar or much easier. 
The given two lines partition S into four regions. 
There are two cases 1 and 2 as depicted in Fig. 5. 
Since the area of a circle and the area of the inter- 
section of a circle and a half plane can be computed 
easily, we only consider how to calculate the areas 
areat(r, A, B, C) and area2(r , A, B, C) of shaded 
regions in both cases. 
We first consider the case 1. Defining two angles 
OA and 0h and two triangles TA and TB as in Fig. 6 a, 
we see that 

areal (r, A, B, C) 

1 
= 2 (OA + OB) ?.2 _ # (TA) -- # (TB) 

A A = [(arccos  arccos ) 2 
+ arccos - - -  arccos r 2 

r 

A 

2 

2 
(4.1) 
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Supposing that areal(r, A, B, C) is redefined by 
(4.1) as a function of r, A, B and C such that 
0 < I A I < B < C < r, from Fig. 6 b, we see that 

1 
area2 (r, A, B, C) = ~ ( -- O A + O B) r2 + I~ ( Ta) - # ( TR) 

= areal (r, - A, B, C). (4.2) 

We thus can compute the area of the intersection 
of a circle and two half planes. 
We next consider how to compute the volume of 
the intersection of a sphere S with radius R and 
two distinct half spaces in three-dimensional space. 
Let A and B be the distances from the center of 
S to the two planes determining the half spaces. 
Let C be the distance from the center of S to the 
line of intersection of those two planes. We only 
consider the case with 0 < A ___ B_< C < R; other 
cases are similar or easier to handle. 
Consider on orthogonal coordinate system such 
that its origin is the center of S and the x-axis 
is parallel to the line of intersection of those two 
planes. Then, the section of the space by the plane 

x = ~ for ~ with - ~ < ~ < ~ looks 

like Fig. 5 with r = ~ 2 .  Since we can compute 
the volume of a sphere and the volume of the inter- 
section of a sphere and a half space easily, and 
from (4.2), we have only to evaluate 

volume 1 (R, A, B, C) 

- ~ a r e a l ( ~ , A , B , C ) d x  
- R21/g~Zc2-c2 

=2  I a r e a l ( l / / R 2 - x 2 , A , B ,  C) dx.  
o 

To evaluate this, using 

f (x, ~, r) 

=-f[ ( rE-x2)  arccos 

-- r 2 x--  arccos 

O~ 

2 

0~ 

/ r 2  q X2  

dx 

2 c~xl//r2_c~2--X 2 

3 
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o~ 3 x 

2 ~x 
--  r 3 a r ccos  

3 1/(r 2_ (r 
we have 

volume1 (R, A, B, C) 

= [F ( ~ 2 - -  C2, A, R) -- V (0, A, R)] 

+ [F (V/R 2 - C 2, B, R)-- F(0, B, R)] 

( A B) v~-c~ 
- -  f ( R 2 - - x 2 ) d x  arccos ~ + arccos ~ o 

+ (A I / ~ - -  AZ + B ~ C S -  B2) VR2 - C2 

: F(I / /~-C2,  A, R) + F ( ~ , B ,  R) 

re(2 A3\ ~[2 B~) 

1 (2R2 + C2) ~ (arccos A + arccos B ) 
3 

Apparently this problem has only been solved 
completely in R 1. For a history of the problem 
the reader is referred to Klee [5]. We can prove 
a special case of this problem by using the La- 
guerre-Voronoi diagram. This result also appears 
implicitly in Lieb and Simon [7] using a different 
approach. 

Theorem 5.1. If  s(x'i,xj)=~s(xi,xj) for ~>_1 and 

all l <_i<j<_n, we have l~ S <_# S . 
i i 

Proof We can suppose x i = 0  for some i, and x) 
= ~ xj for j = 1 . . . . .  n. Since Sj and S~ have the same 
radius and c~_>l, we have V(S,)c_V'(S'~), where 
V(Sj) (resp. V'(S~)) is the Voronoi region of Sj (resp. 
S~) in the Laguerre-Voronoi diagram for spheres 
Sj (resp. S~) (j = 1, ..., n). Hence 

a(s, v(si)) <_ #(s; v(s;)). (5.1) 

By similar arguments, we can see that (5.1) holds 
for any i=  1, ..., n, and then from Lemma 2.1, we 
obtain the proposition. [] 

In three-dimensional case, the Laguerre-Voronoi 
diagram for n spheres can be computed in O(n 2) 
time [2], and each Voronoi polyhedron can be par- 
titioned into simplices in linear time. Also, through 
Sects. 3 and 4 above, we have shown that the vol- 
ume of the intersection of a sphere and a simplex 
can be computed exactly in a constant time. Then, 
from Lemma 2.1, we have the following theorem. 

Theorem 4.1. The volume of the union of n spheres 
in three-dimensional space can be found in O(n 2) 
time. [] 

5 The union of spheres problem 

The following problem is discussed in Klee [-5]. 
For i=  1, ..., n, let Si be a hypersphere with center 
xi, and S'i a hypersphere with center x} in d-dimen- 
sional space such that S~ and S'~ have the same 
radius and, for any i,j with l<i<_j_<n, 
s(xi, x j)<_ s(x'i, x)), where s(.,.) is the Lz-distance be- 
tween two points. Is it true that 
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