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COMPUTING THE WEDDERBURN DECOMPOSITION
OF GROUP ALGEBRAS BY THE BRAUER–WITT THEOREM

GABRIELA OLTEANU

Abstract. We present an alternative constructive proof of the Brauer–Witt
theorem using the so-called strongly monomial characters that gives rise to an
algorithm for computing the Wedderburn decomposition of semisimple group
algebras of finite groups.

1. Introduction

The Wedderburn decomposition of a semisimple group algebra kG of a finite
group G over a field k, that is, the decomposition of kG as a direct sum of simple
algebras, is a helpful tool for studying several problems. For example, a good
description of the Wedderburn decomposition of kG is useful for describing the
automorphism group of kG [Her97], [Oli-Rı́o-Sim06] or for studying the unit group
of the integral group ring ZG if k = Q [Jes-Lea], [Jes-Rı́o], [Rı́o-Rui], [Rit-Seh],
[Seh]. It also has applications in coding theory if k is a field of characteristic p > 0
[Ple-Huf].

Recently in [Jes-Lea-Paq] a character-free method was given to compute the
Wedderburn decomposition of QG for nilpotent groups, and this method was ex-
tended and simplified in [Oli-Rı́o-Sim04] to groups including the abelian-by-super-
solvable groups. The approach in [Oli-Rı́o-Sim04] allowed the implementation of
the package wedderga [Bro-Kon-Oli-Olt-Rı́o] for the computer system GAP [GAP].

In this paper we present an algorithmic method to compute the Wedderburn
decomposition of kG for G an arbitrary finite group and k an arbitrary field of
characteristic 0 using the Brauer–Witt theorem. This algorithm also has been im-
plemented for the computer system GAP, enlarging the functionality of the package
wedderga, and it is based on a constructive approach of the Brauer–Witt theorem
using strongly monomial characters (see section 2 for the definition).

The Brauer–Witt theorem ensures that each simple component of kG is similar
to a cyclotomic algebra over its center. As far as we know, the precise description
of this cyclotomic algebra is not obvious from the proofs of the Brauer–Witt the-
orem available in the literature (see e.g. [Yam]). The proof of the Brauer–Witt
theorem presented in [Yam] relies on the existence, for each prime integer p, of a
p-elementary subgroup of G that determines the p-part of a given simple component
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1074 GABRIELA OLTEANU

up to similarity in the corresponding Brauer group. We present a slightly differ-
ent approach of the proof of the Brauer–Witt theorem in which instead of using
p-elementary subgroups we use strongly monomial characters or strongly monomial
subgroups that allow a good description of the simple algebras. Moreover, using
this approach, the number of subgroups to look for is larger, and eventually one
could obtain a description of a simple component more easily or even a description
in which it is not necessary to consider each prime separately as has to be done in
general.

The Brauer–Witt theorem is also a standard theoretical method for computing
the Schur index of a character in the above situation. See [Shi], [Her96] and [Her03]
for an approach that studies this aspect of the theorem, i.e., the computation of
the Schur index of the simple components.

In section 2 we establish the basic notation and we collect several results from
[Oli-Rı́o-Sim04]. In section 3 we present the algorithmic proof of the Brauer–Witt
theorem in four steps and we finish with a sketch of the algorithm. Finally, in
section 4 we show how the algorithm works in a couple of examples.

This paper has been written under the supervision of Ángel del Rı́o who posed
the problem and provided many useful suggestions.

2. Monomial and strongly monomial characters

The simple components in the Wedderburn decomposition of kG are parameter-
ized by the complex irreducible characters of the group G. The simple component
corresponding to the irreducible character χ is the unique simple ideal I of kG such
that χ(I) �= 0. Following [Yam], we denote this simple component by A(χ, k). The
centre of A(χ, k) is k = k(χ), the field of character values of χ over k. The simple
algebra A(χ, k) represents an element of the Schur subgroup of the Brauer group of
k. If F is a field extension of k, then A(χ, F ) = F (χ)⊗k A(χ, k), and therefore the
cyclotomic structure up to similarity of A(χ, k) determines the cyclotomic struc-
ture of A(χ, F ). Hence, we are interested in considering k as small as possible, for
instance Q.

The results of this section are mostly from [Oli-Rı́o-Sim04] and play an important
role in our proof of the Brauer–Witt theorem. We begin by establishing some
notation. Throughout G is a finite group, H a subgroup of G, R a ring, F ≤ L
a field extension, χ an ordinary irreducible character of G, n an integer and p a
prime number. Also, we use the following notation:

CenG(H) centralizer of H in G
NG(H) normalizer of H in G
Gal(L/F ) Galois group of L/F

ξn = e
2πi
n complex n-th primitive root of unity

R ∗σ
τ G crossed product of G with coefficients in R, action σ and

twisting or cocycle τ (see e.g. [Pas])
Br(F ) Brauer group of the field F
Br(F )p the subgroup of Br(F ) consisting of all classes whose

exponent is a power of p
ResF→L restriction map from Br(F ) to Br(L)
CorL→F corestriction (transfer) map from Br(L) to Br(F )
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THE WEDDERBURN DECOMPOSITION OF GROUP ALGEBRAS 1075

[A] element of the Brauer group Br(F ), i.e., the equivalence
class of a central simple F -algebra A under the similarity
relation ∼ in Br(F )

(L/F, τ) crossed product algebra for a finite Galois extension
F ≤ L and τ ∈ Z2(Gal(L/F ), L∗) (see e.g. [Rei])

C(F ) similarity classes in Br(F ) represented by a cyclotomic
algebra

mF (χ) Schur index of χ over the field F
mF (χ)p p-part of the Schur index of χ over the field F
deg(χ) the degree of the character χ
Lin(H, K) set of linear characters of H with kernel K, where K � H(

a,b
F

)
quaternion algebra over F , where a, b ∈ F ∗ (see e.g. [Pie])

H(F ) quaternion algebra
(−1,−1

F

)

If K � H ≤ G, then let ε(H, K) = K̂ = 1
|K|

∑
k∈K k ∈ QK if H = K, and if

H �= K, then let
ε(H, K) =

∏
M/K∈M(H/K)

(K̂ − M̂),

where M(H/K) denotes the set of all minimal normal subgroups of H/K. Fur-
thermore, let e(G, H, K) denote the sum of the different G-conjugates of ε(H, K)
in QG, that is, if T is a right transversal of CenG(ε(H, K)) in G, then e(G, H, K) =∑

t∈T ε(H, K)t, where CenG(ε(H, K)) is the centralizer of ε(H, K) in G. Clearly,
e(G, H, K) is a central element of QG. If the G-conjugates of ε(H, K) are orthog-
onal, then e(G, H, K) is a central idempotent of QG.

A Shoda pair of G is a pair (H, K) of subgroups of G with the properties that
K�H and there is ψ ∈ Lin(H, K) such that the induced character ψG is irreducible.
Using an old theorem of Shoda [Cur-Rei, Corollary 45.4] that gives a criterion for
irreducibility of monomial characters, we know that a pair of subgroups of G is a
Shoda pair if and only if K � H, H/K is cyclic and if g ∈ G and [H, g] ∩ H ⊆ K,
then g ∈ H. Furthermore, if (H, K) is a Shoda pair of G, then there is a unique
rational number α such that αe(G, H, K) is a primitive central idempotent of QG
[Oli-Rı́o-Sim04].

It is easy to see that if K � H ≤ G and ψ1, ψ2 ∈ Lin(H, K), then A(ψG
1 , Q) =

A(ψG
2 , Q), and so we denote A(G, H, K) = A(ψG, Q) for any ψ ∈ Lin(H, K).

In other words, the sum of the different characters induced by the elements of
Lin(H, K) is an irreducible rational character of G and A(G, H, K) is the simple
component of QG associated to this character.

A strong Shoda pair of G is a Shoda pair (H, K) of G such that H � NG(K)
and the different conjugates of ε(H, K) are orthogonal. If (H, K) is a strong Shoda
pair, then e(G, H, K) is a primitive central idempotent of QG.

An irreducible monomial character (respectively strongly monomial character)
χ of G is a character of the form χ = ψG for ψ ∈ Lin(H, K) and some Shoda
(respectively strong Shoda) pair (H, K) of G, or equivalently A(χ, Q) = A(G, H, K)
for some Shoda (respectively strong Shoda) pair (H, K) of G. Then we say that
A(G, H, K) is a monomial (respectively strongly monomial) component of QG.

A finite group G is monomial if every irreducible character of G is monomial,
and it is strongly monomial if every irreducible character of G is strongly mono-
mial. It is well known that every abelian-by-supersolvable group is monomial, and
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1076 GABRIELA OLTEANU

recently it was proved that it is even strongly monomial. In [Oli-Rı́o-Sim04] it is
shown that every monomial group of order less than 500 is strongly monomial. We
recently found that all monomial groups of order smaller than 1000 are strongly
monomial and the smallest monomial non-strongly-monomial group is a group of
order 1000, the 86-th one in the library of the GAP system. However, there are irre-
ducible monomial characters that are not strongly monomial in smaller groups. The
group of the smallest order with such irreducible monomial non-strongly-monomial
characters is presented in Example 10.

If (H, K) is a strong Shoda pair of a group G, then one can give a description
of the structure of the simple component A(G, H, K) as a matrix algebra over a
crossed product of an abelian group by a cyclotomic field with action and twisting
that can be described with easy arithmetic using information from the group G.
Namely, in [Oli-Rı́o-Sim04, Proposition 3.4] it is shown that if (H, K) is a strong
Shoda pair, then

A(G, H, K) 	 Mn(Q(ξm) ∗σ
τ N/H),

where N = NG(K), n = [G : N ], m = [H : K], Q(ξm)∗σ
τ N/H is the crossed product

of the group N/H with coefficients in the field Q(ξm) with action σ and twisting τ
given as follows: if hK is a generator of H/K and n, n′ ∈ N , then σ(nH) = ξi

m if
n−1hnK = hiK, and τ (nH, n′H) = ξj

m if [n, n′]K = hjK.

3. The algorithmic proof of the Brauer–Witt theorem

The Brauer–Witt theorem states that the simple component A(χ, k) correspond-
ing to the irreducible character χ of the group G over the field k is a simple algebra
similar to a cyclotomic algebra over its center k = k(χ), that is, a crossed product
algebra (k(ξ)/k, τ ), where ξ is a root of 1 and all the values of the cocycle τ are
roots of unity in k(ξ).

In this section we present a proof of the Brauer–Witt theorem that gives a
method to explicitly construct the above cyclotomic algebra. Our proof is divided
into four steps that one could name as: constructible description for the strongly
monomial case, reduction of the general case to the strongly monomial case, ex-
istence of strongly monomial characters, and change of field. The first step deals
with the strongly monomial case, that is, the constructible description of the sim-
ple component associated to a strongly monomial character. The reduction step
consists of describing the p-part of A(χ, k) as the p-part of the algebra A(θ, k) as-
sociated to a strongly monomial character θ of a subgroup of G. Then we are faced
with the problem of showing that the appropriate strongly monomial character θ
for every prime p does exist. One of the conditions on θ in the reduction step is
that k(θ) = k, and it is not always true that such a character with this condition
exists. However, there does exist a character θ such that k(θ) ⊆ Lp, where Lp is the
p′-splitting field of A(χ, k) (see §3.2 for the definition). The proof of the existence
of the desired strongly monomial character is presented in the third step. So we
have gone up to each Lp to describe the p-part, and now we have to return to the
initial field k. The way back is the change of field part which is made through the
corestriction map.

3.1. The strongly monomial case. The following proposition provides the con-
structible Brauer–Witt theorem for strongly monomial characters. It gives a precise
description of the simple algebra associated to a strongly monomial character as
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THE WEDDERBURN DECOMPOSITION OF GROUP ALGEBRAS 1077

an algebra similar to a cyclotomic algebra. In this particular case, one obtains the
description of the strongly monomial simple component at once, without the need
to follow the next steps as has to be done in the general case.

Proposition 1. Let (H, K) be a strong Shoda pair of the group G, ψ ∈ Lin(H, K),
N = NG(K), m = [H : K], n = [G : N ] and ξm a complex primitive m-th root of
unity. Then N/H 	 Gal(Q(ξm)/Q(ψG)).

Furthermore, if k is a field of characteristic 0, k = k(ψG), d = [Q(ξm):Q(ψG)]
[k(ξm):k]

and τ ′ is the restriction to Gal(k(ξm)/k) of the cocycle τ associated to the natural
extension

(1) 1 → H/K 	 〈ξm〉 → N/K → N/H → 1,

then

(2) A(ψG, k) 	 Mnd(k(ξm)/k, τ ′).

Proof. It is proved in [Oli-Rı́o-Sim04, Theorem 3.4] that

A(ψG, Q) 	 Mn(Q(ξm) ∗σ
τ N/H),

where the action σ is induced by the natural conjugation map f : N → Aut(H/K) 	
Gal(Q(ξm)/Q) and the twisting is the cocycle τ given by the exact sequence (1).
Since H/K is maximal abelian in N/K, the kernel of f is H. The center of A(ψG, Q)
is Q(ψG); hence f(N/H) ⊆ Gal(Q(ξm)/Q(ψG)) and the isomorphism holds because
[N : H] = deg(A(ψG,Q))

n = [Q(ξm) : Q(ψG)].
Furthermore, [A(ψG, k)] = ResQ(ψG)→k([A(ψG, Q)]) = [(k(ξm)/k, τ ′)] and

deg(A(ψG, k))
deg(k(ξm)/k, τ ′)

=
[G : H]

[k(ξm) : k]
=

n[Q(ξm) : Q(ψG)]
[k(ξm) : k]

= nd,

which yields the isomorphism A(ψG, k) 	 Mnd(k(ξm)/k, τ ′). �

Remark 2. Notice that the description in (2) can be given by the numerical infor-
mation of a 4-tuple:

(3) (nd, m, (oi, αi, βi)1≤i≤l, (γij)1≤i<j≤l),

where n, d and m are as in Proposition 1 and the tuples of integers (αi)1≤i≤l,
(βi)1≤i≤l, (γij)1≤i<j≤l satisfy the relations: xgi = xαi , goi

i = xβi , [gj , gi] = xγij , for
x a generator of H/K, g1, . . . , gl ∈ N/K such that N1/H = 〈g1〉 × · · · × 〈gl〉 (with
gi the image of gi ∈ N/K in N/H), where N1/H is the image of Gal(k(ξm)/k) in
N/H under the isomorphism N/H 	 Gal(Q(ξm)/Q(ψG)) and oi is the order of gi,
for every i = 1, . . . , l.

Thus A(ψG, k) 	 Mnd(A), where A is the algebra defined by the following pre-
sentation:

(4) A = k(ξm)(g1, . . . , gl|ξgi
m = ξαi

m , goi
i = ξβi

m , gjgi = gigjξ
γij
m , 1 ≤ i < j ≤ l).

3.2. Reduction to strongly monomial characters. Let the finite group G have
exponent n and let k be a field of characteristic 0. For every irreducible character
χ of G and every prime p, the p′-splitting field of the simple component A(χ, k)
over k = k(χ) is the unique field Lp between k and k(ξn) such that [k(ξn) : Lp]
is a power of p and [Lp : k] is relatively prime to p. That is, the field Lp is
the field corresponding to the Sylow p-subgroup of Gal(k(ξn)/k) by the Galois
correspondence.
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Let D be a division algebra central over k with index m that has the following
factorization into prime powers m = pa1

1 pa2
2 . . . pas

s . Then D is k-isomorphic to the
product D1 ⊗ D2 ⊗ · · · ⊗ Ds, where Di is a division algebra central over k with
index pai

i for every i from 1 to s. We call the algebra class [Di] the pi-part of [D]
and we denote it by [D]pi

. If p � m, then let the p-part of [D] be equal to [k], the
identity in the Brauer group of k. Recall that mk(χ) denotes the Schur index of
χ over k which coincides with the Schur index of the simple component A(χ, k) of
kG corresponding to χ. Furthermore, mk(χ)p is the p-part of the Schur index of χ
over k.

The following proposition gives the reduction part (up to similarity) of the com-
putation of a simple p-component [A(χ, k)]p, for every prime p, to the computation
of the p-part corresponding to a suitable subgroup of G and an irreducible character
of it that verifies some additional conditions.

Proposition 3. [Yam, Proposition 3.8] Let G be a finite group, χ an irreducible
character of G, k a field of characteristic 0 and k = k(χ). Let M be a subgroup of
G and θ an irreducible character of M such that k(θ) = k.

For each prime p such that (χM , θ) is coprime to p, one has

[A(χ, k)]p = [A(θ, k)]p.

Moreover, mk(χ)p = mLp
(θ).

3.3. Existence of suitable strongly monomial characters. Theorem 3 states
that the p-part of A(χ, k) is Brauer equivalent to the p-part of A(θ, k) provided
(χM , θ) is coprime to p and χ and θ take values in k. If θ is a strongly mono-
mial character, then this p-part would be described as explained in Proposition 1.
Therefore, one would like to show that such a character θ does exist for every prime
p dividing the Schur index of χ. However, this is not true. Alternatively, using the
following Proposition 4, which is a corollary of the Witt–Berman theorem [Cur-Rei,
Theorem 42.3], one can find such a character θ if k is replaced by Lp, the p′-splitting
field of A(χ, k). The Witt–Berman theorem is a generalization of Brauer’s theo-
rem on induced characters to the case where the underlying field k is an arbitrary
subfield of the complex field C.

Proposition 4. Every k-character of G is a Z-linear combination
∑

i aiθ
G
i , where

every ai ∈ Z and each θi is an irreducible character of a strongly monomial subgroup
of G.

Proof. By the Witt–Berman theorem, every k-character of G is a Z-linear combina-
tion

∑
i aiθ

G
i , where the θi’s are irreducible k-characters of k-elementary subgroups

Hi of G. In particular, the Hi’s are cyclic-by-pi-groups for some primes pi and by
[Oli-Rı́o-Sim04] each Hi is strongly monomial. �

The next proposition establishes the existence of a strongly monomial subgroup
and character with the desired properties that appear in Theorem 3, relative to the
field Lp, the p′-splitting field of A(χ, k).

Proposition 5. Let the finite group G have exponent n, ξ = ξn and χ be an
irreducible k-character of G. For every prime p, there exist a strongly monomial
subgroup M of G and an irreducible character θ of M such that (χ, θG) = (χM , θ)
is coprime to p and k(θ) ⊆ Lp, where Lp is the p′-splitting field of A(χ, k).
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Proof. Let b be a divisor of |G| such that |G|/b is a power of p and (p, b) = 1. Then,
by Proposition 4, b1G =

∑
i ciλ

G
i , where each λi is a k-character of a subgroup Mi

of G which is strongly monomial. Furthermore,

bχ =
∑

i

ciχλG
i =

∑
i

ci(χMi
λi)G.

Moreover, k(χMi
) ⊆ k(χ) ⊆ k, k(λi) ⊆ k for every i and k(ξ) is a splitting field

of every subgroup of G. Thus if θj is a constituent of χMi
λi, that is, θj appears

in the decomposition of χMi
λi as a sum of irreducible characters, then (θj , λi) is a

multiple of [k(θj) : k] and therefore

bχ =
∑

j

dj [k(θj) : k]θG
j ,

where each θj is an irreducible character in a group M ′
j which is strongly monomial.

Then
b = (χ, bχ) =

∑
j

dj [k(θj) : k](χ, θG
j ).

Since b is not a multiple of p, there is j such that if M = M ′
j and θ = θj , then

[k(θ) : k](χ, θG) is not a multiple of p. Thus (χ, θG) is not a multiple of p. Since
k ⊆ k(θ) ⊆ k(ξ) and [k(ξ) : Lp] is a prime power, one has that k(θ) ⊆ Lp. �

Proposition 5 proves that, for each prime p, there exists a strongly monomial
character θ of a subgroup M of G that takes values in Lp and (χM , θ) is coprime to
p. Hence, from Theorem 3 it follows that A(χ, Lp) is similar to A(θ, Lp), because
the index of A(χ, Lp) is a power of p.

Observe that it was proved that the subgroup M in Proposition 5 can be taken
to be strongly monomial. Moreover, using the Witt–Berman theorem, one can
prove that M could be taken to be p-elementary. However, for practical reasons,
it is better not to impose M to be p-elementary or even strongly monomial, be-
cause the role of M , or better say θ, is to use the presentation of A(θ, Lp) as a
cyclotomic algebra given in Proposition 1 to describe the p-part of A(χ, Lp), which
is similar to A(θ, Lp) by Theorem 3. So, not imposing conditions on M but on
θ, a strongly monomial character in a possibly non-strongly-monomial group, the
list of possible θ’s is larger and it is easier to find the desired strongly monomial
character. The proof of Proposition 5 does not provide a constructive way to find
the character θ, but this is clearly a finite computable searching problem. One
only needs to compute Lp, an easy Galois theory problem, and then run on the
strongly monomial characters θ of the subgroups M of G computing (χM , θ) and
k(θ) until the character satisfying the hypothesis of Proposition 5 is found. The
search of the strongly monomial characters of a given group can be performed using
the algorithm explained in [Oli-Rı́o].

3.4. Back to the initial field. In this last step we complete the proof of the
Brauer–Witt theorem. Moreover, using an explicit formula for the corestriction
CorLp→k on 2-cocycles, where Lp is the p′-splitting field of A(χ, k), and the descrip-
tion of the simple components A(χ, Lp) as algebras similar to precise cyclotomic
algebras, we obtain a good description of the simple algebra A(χ, k).

The proof of the Brauer–Witt theorem in standard references such as [Yam] does
not pay much attention to effective computations of the corestriction CorLp→k.
Instead, we are interested in explicit computations of the cyclotomic form of an

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1080 GABRIELA OLTEANU

element of the Schur subgroup. After decomposing the simple algebra A(χ, k) into
p-parts and describing every simple p-part as similar over Lp to a cyclotomic algebra
[(k(ξ)/Lp, τ )], the corestriction permits returning to the initial field k. Hence,
for every prime p, we have CorLp→k([(k(ξ)/Lp, τ )]) = [(k(ξ)/k, CorLp→k(τ ))]. A
formula for the action of the corestriction on 2-cocycles is given in [Wei, Proposition
2-5-2]. This formula takes an easy form in our situation, because we only need to
apply CorLp→k to a 2-cocycle τ that takes values in a cyclotomic extension k(ξ) of
k such that [Lp : k] and [k(ξ) : Lp] are coprimes. In particular, H = Gal(k(ξ)/Lp),
the Sylow p-subgroup of the abelian group G, has a complement H ′ = Gal(k(ξ)/L′

p)
on G = Gal(k(ξ)/k). We can formulate the following proposition.

Proposition 6. Let F/k be a finite Galois extension and k ≤ L, L′ ≤ F fields such
that L∩L′ = k and LL′ = F . Let G = Gal(F/k), H = Gal(F/L), H ′ = Gal(F/L′)
and let τ ∈ H2(H, F ∗) be a 2-cocycle of H. Then G 	 H × H ′ and

(CorL→k(τ ))(g1, g2) = NF
L′(τ (π(g1), π(g2))),(5)

where π : G → H denotes the projection, NF
L′ is the norm function of the field exten-

sion L′ ≤ F and g1, g2 ∈ G. In particular, if [(F/L, τ)] is a cyclotomic algebra and
F is a cyclotomic extension of k, then CorL→k([(F/L, τ)]) = [(F/k, CorL→k(τ ))] is
a cyclotomic algebra.

Proof. By [Spi, Theorem 22.17], H 	 Gal(L′/k) and H ′ 	 Gal(L/k) and the
mapping ϕ : G → Gal(L′/k)×Gal(L/k) given by σ → (σ|L′ , σ|L) is an isomorphism;
hence G 	 H × H ′. Then, using H ′ as a transversal of H in G, the formula from
[Wei, Proposition 2-5-2] for the corestriction in the particular case of the 2-cocycle
τ ∈ H2(H, F ∗) takes the following form, where π′ : G → H ′ denotes the projection:

CorL→k(τ )(g1, g2) =
∏

t∈H′

t−1τ (tg1π
′(tg1)−1, π′(tg1)g2π

′(tg1g2)−1)

=
∏

t∈H′

t−1τ (π(tg1), π(π′(tg1)g2))

=
∏

t∈H′

t−1τ (π(g1), π(g2)) = NF
L′(τ (π(g1), π(g2))).

�

Theorem 7. (Brauer–Witt) If G is a finite group of exponent n, χ is an irreducible
character of G, k is a field of characteristic 0 and k = k(χ), then the simple
component A(χ, k) is similar to a cyclotomic algebra over k.

Proof. Let p be an arbitrary prime. Using the restriction homomorphism, we obtain
Resk→Lp

([A(χ, k)]p) = [A(χ, Lp)] = [C], that is, a cyclotomic algebra over Lp, the
p′-splitting field of A(χ, k). Proposition 6 implies that CorLp→k([C]) is a class
of Br(k) represented by a cyclotomic algebra over k. Let [k(ξn) : Lp] = pα and
[Lp : k] = m �≡ 0(mod p). Let a be an integer such that am ≡ 1(mod pα).
Then, using the relation between the restriction and the corestriction given by
CorLp→k ◦ Resk→Lp

([A(χ, k)]p) = ([A(χ, k)]p)m, we obtain

(CorLp→k([C]))a = (CorLp→k ◦ Resk→Lp
([A(χ, k)]p))a

= ([A(χ, k)]p)am = [A(χ, k)]p.
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Because p is arbitrary and the tensor product of cyclotomic algebras over k is
similar to a cyclotomic algebra, we conclude that the class [A(χ, k)] is represented
by a cyclotomic algebra over k. �

Notice that in the proof of Theorem 7 we mentioned that the tensor product
of cyclotomic algebras over k is similar to a cyclotomic algebra. The proof of
this claim is also constructible, because by inflating two cyclotomic algebras say
C1 = [(k(ξn1)/k, τ1)] and C2 = [(k(ξn2)/k, τ2)] to a common cyclotomic extension,
for example k(ξn) for n the least common multiple of n1 and n2, one may assume
that n1 = n2 and hence C1 ⊗ C2 ∼ (k(ξn)/k, τ1τ2).

The constructive algorithm of the cyclotomic structure of a simple component
A(χ, k) of kG given by the proof of the Brauer–Witt theorem is given below.

Algorithm 1. Input: An irreducible character χ of the finite group G and k a field
of characteristic 0.

(1) Compute k = k(χ), the field of character values of the character χ over k.
(2) Compute p1, . . . , pr, the prime divisors of gcd(deg(χ),[k(ξn) : k]).
(3) For every prime p ∈ {p1, . . . , pr} do

(a) Determine Lp, the p′-splitting fields of A(χ, k).
(b) Search θ = ψM , a strongly monomial character of a subgroup M ,

where ψ ∈ Lin(H, K) for a strongly monomial pair (H, K) of M , such
that (χM , θ) is coprime to p and k(θ) ⊆ Lp (the existence is guaranteed
by Proposition 5).

(c) Compute the cyclotomic algebra

A(θ, Lp) = (k(ξnp
)/Lp, τp),

an element in Br(Lp) (using Proposition 1).
(d) Compute CorLp→k(τp) = τ ′

p (using formula (5)).
(e) Compute α such that pα| deg(A(χ, k)) and pα+1 � deg(A(χ, k)) and the

integer a such that am ≡ 1(mod pα), where m = [Lp : k].
(4) Compute the cocycle τ = (τ ′

p1
)ap1 · . . . ·(τ ′

pr
)apr (after inflating to a common

cyclotomic extension).
Output: The similarity class [(k(ξn)/k, τ )].

Remark 8. (i) For every p ∈ {p1, . . . , pr}, CorLp→k([(k(ξn)/Lp, τp)])=[(k(ξn)/k, τ ′
p)]

(Proposition 6) is a cyclotomic algebra in Br(k) and we have [(k(ξn)/k, τ ′
p)] =

[A(χ, k)]mp , where m = [Lp : k]. We obtain [A(χ, k)]p computing [(k(ξn)/k, τ ′
p)]ap .

The output [(k(ξn)/k, τ)] is equal to [A(χ, k)].
(ii) Some of the primes in {p1, . . . , pr} can be covered by a common strongly

monomial character. For example, if χ is a strongly monomial character, then all
the primes are covered at once by this character. See also Remark 9 below.

We finish this section with the algorithm for the computation the Wedderburn
decomposition of a group algebra kG.

Algorithm 2. Input: The finite group G and a field k of characteristic zero.
(1) Compute Irr(G), the set of ordinary irreducible characters of G and n the

exponent of G.
(2) Take a set of representatives E of the k-equivalent classes of Irr(G). Two

characters χ1, χ2 ∈ Irr(G) are k-equivalent if χ2 = σ ◦ χ1 for some σ in
Gal(k(χ1)/k).
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(3) For every χ ∈ E do
(a) Apply Algorithm 1 to compute a simple algebra Aχ similar to A(χ, k).
(b) Add Bχ = Md1/d2(Aχ) to the list of simple components of kG, where

d1 and d2 are the degrees of χ and Aχ, respectively.

Output: The Wedderburn decomposition kG 	
⊕

χ∈E Bχ.

Remark 9. A more efficient algorithm from the implementation point of view is
the one implemented in the wedderga package [Bro-Kon-Oli-Olt-Rı́o] that, instead
of considering every irreducible character and then searching for some strongly
monomial characters of subgroups that give the reduction step, searches for strong
Shoda pairs of subgroups that verify the conditions from step (3)(b) of Algorithm
1 running on descending order and analyzes their contribution in step (3)(c) of
Algorithm 1 for the different characters and primes. Some of the strong Shoda
pairs of subgroups contribute to more than one character or more than one prime.

4. Examples

In this section we present a couple of examples that illustrate the performance of
Algorithms 1 and 2. Some of the computations have been done using the package
wedderga [Bro-Kon-Oli-Olt-Rı́o] for the computer system GAP (The GAP Group,
Version 4.4; 2006) [GAP]. The previous version of the package was useful to com-
pute the Wedderburn decomposition of rational group algebras and semisimple
finite group algebras of strongly monomial groups. The new version, in prepara-
tion, allows one to compute the Wedderburn decomposition of the group algebra
of any finite group over any field of characteristic 0 that can be supported by the
GAP system.

Example 10. The smallest group with a monomial non-strongly-monomial irre-
ducible character is the group given by the following presentation:

G = 〈x, y, a, b | x4 = a3 = 1, x2 = y2 = b2, xy = x−1,

xa = y, ya = xy, xb = y−1, yb = x−1, ab = a−1〉.

The group G is the 28-th group of order 48 in the library of small groups of the
GAP system.

The output of the old function WedderburnDecompositionInfo(QG) of the
wedderga package is:

Wedderga: Warning!! The direct product of the output is a
PROPER direct factor of the input!
[ [ 1, 1, [ ], [ ] ], [ 1, 2, [ ], [ ] ], [ 3, 2, [ ], [ ] ],

[ 3, 2, [ ], [ ] ], [ 1, 3, [ [ 2, 2, 0 ] ], [ ] ] ].
The interpretation of these five 4-tuples using Remark 2 gives rise to five sim-

ple components Q, Q,M3(Q),M3(Q) and M2(Q) corresponding to five strongly
monomial characters of the group G. As can be seen from the warning message of
the wedderga package, these are not all the simple components of QG, because the
group is not strongly monomial. Moreover, the group G is not monomial, having the
first five characters χ1, χ2, χ3, χ4, χ5 (of the character table given below) strongly
monomial, the character χ6 monomial but not strongly monomial and the last two
characters χ7, χ8 not monomial. In order to compute the simple components given
by the last three characters we apply Algorithm 1 to χ6, χ7 and χ8.
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1 [a] [ab] [a2x] [x] [b2] [a2bx] [bx]
χ1 1 1 1 1 1 1 1 1
χ2 1 1 −1 1 1 1 −1 −1
χ3 2 −1 0 −1 2 2 0 0
χ4 3 0 1 0 −1 3 −1 −1
χ5 3 0 −1 0 −1 3 1 1
χ6 4 1 0 −1 0 −4 0 0
χ7 2 −1 0 1 0 −2 −

√
2

√
2

χ8 2 −1 0 1 0 −2
√

2 −
√

2.

The exponent of G is n = 24 = 23 · 3; hence φ(n) = 8 = 23, where φ is the Euler
function and Q(ξn) = Q(ξ24). The field of character values of χ6 is k = Q and of
χ7 and χ8 is k = Q(

√
2). The degrees of the characters χ6, χ7 and χ8 are 4, 2 and

2 respectively; hence the only prime to be considered in all three cases is p = 2
and the 2′-splitting field L2 is Q for χ6 and Q(

√
2) for χ7 and χ8. Notice that in

all these cases it is not necessary to use the corestriction in order to return to the
initial field because the 2′-splitting fields coincide with k.

The character χ6 is monomial, induced by the linear character ψ ∈ Lin(H, K),
ψ : H → C given by ψ(a) = 1 and ψ(b) = ξ4, where (H = 〈a, b〉, K = 〈a〉) is a Shoda
pair in G. Furthermore, H = NG(K) = CenG(ε(H, K)), but the G-conjugates of
ε(H, K) are not orthogonal, so (H, K) is not a strong Shoda pair.

The output of the function WedderburnDecompositionInfo(QG) shows that G
does not have any strongly monomial character of degree 4 and, in particular, χ6

is not strongly monomial. This can be seen also as follows. If χ6 ∈ Lin(H1, K1)
with (H1, K1) a strong Shoda pair of G, then [G : H1] = 4 and x2 ∈ Z(G) ⊆ H1.
Furthermore, some conjugate of H1 contains a, and thus one may assume that
〈a, x2〉 ⊆ H1. Now it is easily seen that H1 = H. Then H ′

1 = 〈a〉 ⊆ K1 and
therefore K1 can be 〈a〉, 〈a, b2〉 or H. But, none of (H, 〈a〉), (H, 〈a, b2〉) or (H, H)
is a strong Shoda pair of G.

However, (H2 = 〈a, b2〉, K2 = 1) is a strong Shoda pair of the subgroup M2 =
〈a, b〉 of G and this gives rise to a strongly monomial character θ2 of M2 whose
field of character values is Q and (χ6|M2 , θ2) = 1 �≡ 0(mod 2). Hence θ2 satisfies
the conditions required in order to apply Theorem 3. The numerical information
associated to this strong Shoda pair of M2 is

[ 1, 6, [ [ 2, 5, 3 ] ], [ ] ]

which shows that A(θ2, Q) 	 Q(ξ6)(g| ξg
6 = ξ−1

6 , g2 = −1). The center of the algebra
is Q(ξ6+ξ−1

6 ) = Q and setting i = −1+2ξ6, one obtains the generalized quaternion
algebra A(θ2, Q) 	 Q(i, g| i2 = −3, g2 = −1, ig = −gi) =

(
−1,−3

Q

)
. We conclude

that the simple component A(χ6, Q) is similar to the algebra
(

−1,−3
Q

)
in Br(Q).

The degree of the algebra A(χ6, Q) is 4, given by the degree of the character χ6;
hence A(χ6, Q) 	 M2

(
−1,−3

Q

)
.

Now we compute the simple algebras given by the characters χ7 and χ8. Note
that these characters are in the same orbit of the action of the automorphism
group of the complex field; hence we only have to compute the simple algebra
corresponding to one of these characters, for instance A(χ7, Q). In this case the
appropriate 2-elementary subgroup of G is M2 = 〈b, x, y〉 and a strong Shoda pair in
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M2 is (H2 = 〈bx〉, K2 = 1), which gives rise to the strongly monomial character θ2

of M2, that has the field of character values Q(
√

2), so the condition Q(θ2) ⊆ L2 =
Q(

√
2) is satisfied. Furthermore, (χ7|M2 , θ2) = 1 �≡ 0(mod 2); hence θ2 satisfies the

required conditions in order to apply Theorem 3. Now the numerical information
is

[ 1, 8, [ [ 2, 7, 4 ] ], [ ] ]

which shows that A(θ2, Q) 	 Q(ξ8)(g| ξg
8 = ξ−1

8 , g2 = −1). The center of the algebra
is Q(ξ8 + ξ−1

8 ) = Q(
√

2); hence A(θ2, Q) 	 H(Q(
√

2)), a quaternion algebra over
Q(

√
2). The degree of the algebra A(χ7, Q) is 2; hence A(χ7, Q) 	 H(Q(

√
2)).

We conclude that QG 	 2Q ⊕ 2M3(Q) ⊕ M2(Q) ⊕ M2

(
−1,−3

Q

)
⊕ H(Q(

√
2)).

The Wedderburn decomposition can be obtained at once with the new version of
the function WedderburnDecompositionInfo(QG) that has the (simplified) output:

[ [ 1, 1 ], [ 1, 1 ], [ 1, 6, [ [ 2, 5, 0 ] ] ], [ 3, 1 ],
[ 3, 1 ], [ 1, 8, [ [ 2, 7, 4 ] ] ], [ 2, 6, [ [ 2, 5, 3 ] ] ] ]

Example 11. The following example presents the description of the simple com-
ponent of a group algebra QG corresponding to an irreducible character of G for
which two primes are involved. Consider the group

G = (〈x, y〉 × 〈b〉) � 〈a〉,
where 〈x, y〉 	 Q8 is the quaternion group of order 8, 〈b〉 is the cyclic group of order
7, 〈a〉 is the cyclic group of order 3 and the action of 〈a〉 on 〈x, y〉 × 〈b〉 is given by
xa = y, ya = xy and ba = b2.

The group G has an irreducible character χ given by the following table, which
contains in the first row a representative of each conjugacy class of G:

1 a a−1 ya−1 x x−1ya b b−1 x2 xb xb−1 yb yb−1 x2b x2b−1 xyb xyb−1

χ 6 0 0 0 0 0 α α −6 0 0 0 0 −α −α 0 0

where α = 2(ξ7 + ξ2
7 + ξ4

7). The character χ is a monomial character induced by
the linear character ψ ∈ Lin(H, K) given by ψ(x) = ξ4 and ψ(b) = ξ7, where
(H = 〈x, b〉, K = 1) is a Shoda pair in G. However, (H, K) is not a strong Shoda
pair, because H is not normal in G = NG(K) and in fact χ is not strongly monomial.

The field of character values of ψ is Q(ψ) = Q(ξ4·7) and the field of character
values of the induced character χ is k = Q(ψG) = Q(α) = Q(

√
−7). The exponent

of the group G is n = 84 = 3 · 4 · 7, and the degree of the extension [Q(ξn) : Q] is
given by φ(n) = 24 = 23 · 3. Then the prime divisors of the degree of the extension
[Q(ξn) : k] are 2 and 3. The degree of the character χ is 6; hence in order to
describe A(χ, Q) it is enough to describe its 2-part and 3-part.

Following the proof of the Brauer–Witt theorem, we look for characters in
strongly monomial subgroups of G for the primes 2 and 3. If there exists such
a character θ on a subgroup M such that (χ, θG) is coprime with 6 and Q(θ) ⊆ k,
then by Proposition 3, [A(χ, Q)] = [A(θ, Q)]. However, a computer search has
shown that such a θ and M do not exist. The unique strongly monomial character
θ of a subgroup M such that the product (χ, θG) is coprime to 6 can be obtained
with M = 〈x, b〉, but then the character field of θ is Q(ξ28), which is not included
in k = Q(

√
−7). Therefore, one has to deal with both primes separately.

First we study the 2-part [A(χ, k)]2. The 2′-splitting field is L2 = Q(ξ7), the
appropriate strongly monomial subgroup of G is M2 = 〈x, y〉 × 〈b〉 and a strong
Shoda pair in M2 is (H2 = 〈x, b〉, K2 = 1), which gives rise to the strongly monomial
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character θ2 of M2 with Q(θ2) = Q(ξ7) and (χ|M2 , θ2) = 1 �≡ 0(mod 2). The
numerical information associated to the strong Shoda pair (H2, K2) of the subgroup
M2 is

[ 1, 28, [ [ 2, 15, 14 ] ], [ ] ]

which gives the simple algebra A2 	 Q(ξ28)(g| ξg
28 = ξ15

28 , g2 = −1). The center of
A2 is Q(ξ7) and A2 = Q(ξ7)(i, g| i2 = g2 = −1, ig = −gi) =

(
−1,−1
Q(ξ7)

)
= H(Q(ξ7)),

which is a division algebra. According to Proposition 1 and Proposition 3, the
algebra A2 is isomorphic to the simple component A(θ2, L2) over L2 and it is
similar to the algebra A(χ, L2) in the Brauer group Br(L2).

The algebra A2 can be described as a cyclotomic algebra over L2 in the following
form: A2 	 k(ξ28) ∗σ2

τ2
Gal(k(ξ28)/L2) = (Q(ξ28)/Q(ξ7), τ2), where τ2 is the 2-

cocycle in Z2(Gal(Q(ξ28)/Q(ξ7)), Q(ξ28)∗) given by τ2(h, h) = −1, where H =
Gal((Q(ξ28)/Q(ξ7)) = 〈h〉 	 C2 and τ2(h1, h2) = 1 if (h1, h2) �= (h, h). Then
Gal(Q(ξ28)/Q(

√
−7)) = 〈g〉 	 C6 with g3 = h, and using formula (5) one obtains

(CorL2→k(τ2))(g1, g2) = −1 if g1, g2 ∈ {g3, g4, g5} and (CorL2→k(τ2))(g1, g2) = 1
otherwise. The integers α and a from step (3)(e) of Algorithm 1 are in this case 1
and the searched 2-cocycle is τ ′

2 = CorL2→k(τ2).
The corresponding algebra is Q(ξ28)(g| ξg

28 = ξr
28, g

6 = −1), where r ≡ 2(mod 7)
and r ≡ 3(mod 4). Hence r = −5. The center of this algebra is Q(

√
−7) and,

setting i = ξ7
28 and j = g3, we obtain Q(

√
−7)(i, j| i2 = j2 = −1, ij = −ji), that

is, the quaternion algebra H(Q(
√
−7)). So, the 2-part [A(χ, k)]2 over k = Q(

√
−7)

is the class of H(Q(
√
−7)), which is a division algebra because it is contained in

H(Q(ξ7)).
Notice that since [Q(ξ7) : Q(

√
−7)] = 3 and (2, 3) = 1, the restriction Resk→L2 is

injective on the 2-part [Yam, Lemma 3.7], and because Resk→L2([H(Q(
√
−7))]) =

[H(Q(ξ7))], one can deduce that [A(χ, k)]2 is [H(Q(
√
−7))] and can avoid the use

of the corestriction in this case.
Now we compute the 3-part [A(χ, Q)]3. The 3′-splitting field is L3 = k(ξ3 · ξ4) =

Q(
√
−7, i, ξ3), the appropriate strongly monomial subgroup is M3 = 〈x2, b〉 � 〈a〉

and a strong Shoda pair in M3 is (H3 = 〈x2, b〉, K3 = 1), which gives rise to the
strongly monomial character θ3 that satisfies the conditions Q(θ3) = Q(

√
−7) ⊆ L3

and (χ|M3 , θ3) = 2 �≡ 0(mod 3). The numerical information corresponding to
(H3, K3) is

[ 1, 14, [ [ 3, 9, 0 ] ], [ ] ]

which gives the simple algebra A3 	 Q(ξ14)(g| ξg
14 = ξ9

14, g
3 = 1). The center

of A3 is Q(
√
−7) = k; hence A3 	 M3(Q(

√
−7)). Notice that in this case we

do not have to use the corestriction because the center of A3 is already k; hence
[A(ψG, k)]3 = [M3(Q(

√
−7))] = [Q(

√
−7)].

The tensor product over Q(
√
−7) of the 2-part and the 3-part gives the simple al-

gebra A(χ, Q) as a similar algebra to H(Q(
√
−7))

⊗
Q(

√
−7) Q(

√
−7) 	 H(Q(

√
−7)).

The degree of the simple algebra A(χ, Q) is 6, the degree of the character χ; hence
A(χ, Q) 	 M3(H(Q(

√
−7))).

Remark 12. Notice that the size of the matrix Bχ in step (3)(b) of Algorithm 2 is
a rational number rather than an integer. The group of smallest order for which
this phenomenon occurs is the group [240, 89] in the library of the GAP system.
Although this does not make literal sense, still the algorithm provides a lot of
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information on the Wedderburn decomposition. This example shows how one can
use this information. Let G be the mentioned group. Then the output of Algorithm
2 applied to QG provides the following numerical information for one of the simple
factors of QG:

[ 3/4, 40, [ [ 4, 17, 20 ] , [ 2, 31, 0 ] ], [ [ 0 ] ] ].
Notice that the first entry of this 4-tuple is not an integer, and a formal presentation
of the corresponding simple algebra is given by

A 	 M3/4

(
Q(ξ40)(g, h|ξg

40 = ξ17
40 , ξh

40 = ξ31
40 , g4 = −1, h2 = 1, gh = hg)

)
.

Denote A = M3/4 (B). The center of the algebra B is Q(
√

2) and the algebras
Q(ξ8)(h|ξh

8 = ξ−1
8 , h2 = 1) 	 M2(Q(

√
2)) and Q(ξ5)(g|ξg

5 = ξ2
5 , g4 = −1) are simple

algebras in B. Furthermore,

B = M2(Q(
√

2)) ⊗Q(
√

2) (Q(
√

2) ⊗Q Q(ξ5)(g|ξg
5 = ξ2

5 , g4 = −1))

= M2(Q(
√

2) ⊗Q Q(ξ5)(g|ξg
5 = ξ2

5 , g4 = −1)).

Hence, we can describe the algebra A as

M3/2(Q(
√

2) ⊗Q Q(ξ5)(g|ξg
5 = ξ2

5 , g4 = −1)),

and we conclude that the algebra A is isomorphic to either M3(D) for some division
quaternion algebra over Q(

√
2) or to M6(Q(

√
2)). To decide which one of these

options is the correct one, one should compute the Schur index of the algebra
Q(

√
2)⊗Q Q(ξ5)(g|ξg

5 = ξ2
5 , g4 = −1). This can be done using local field theory, but

this is out of the range for the methods of this paper.
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