
Computing Top-k Closeness Centrality Faster in Unweighted Graphs∗

Elisabetta Bergamini† Michele Borassi‡ Pierluigi Crescenzi§ Andrea Marino¶

Henning Meyerhenke†

Abstract

Centrality indices are widely used analytic measures
for the importance of nodes in a network. Closeness
centrality is very popular among these measures. For
a single node v, it takes the sum of the distances of
v to all other nodes into account. The currently best
algorithms in practical applications for computing the
closeness for all nodes exactly in unweighted graphs
are based on breadth-first search (BFS) from every
node. Thus, even for sparse graphs, these algorithms
require quadratic running time in the worst case,
which is prohibitive for large networks.

In many relevant applications, however, it is un-
necessary to compute closeness values for all nodes.
Instead, one requires only the k nodes with the high-
est closeness values in descending order. Thus, we
present a new algorithm for computing this top-k
ranking in unweighted graphs. Following the ratio-
nale of previous work, our algorithm significantly re-
duces the number of traversed edges. It does so by
computing upper bounds on the closeness and stop-
ping the current BFS search when k nodes already
have higher closeness than the bounds computed for
the other nodes.

In our experiments with real-world and synthetic
instances of various types, one of these new bounds is
good for small-world graphs with low diameter (such
as social networks), while the other one excels for
graphs with high diameter (such as road networks).
Combining them yields an algorithm that is faster
than the state of the art for top-k computations for
all test instances, by a wide margin for high-diameter

∗E. B.’s and H. M.’s work is partially supported by Ger-
man Research Foundation (DFG) grant ME 3619/3-1 within
the Priority Programme 1736 Algorithms for Big Data. P. C.’s
and A. M.’s work is partially supported by the Italian Ministry
of Education, University, and Research (MIUR) under PRIN
2012C4E3KT national research project AMANDA — Algorith-
mics for MAssive and Networked DAta.

†Institute of Theoretical Informatics, Karlsruhe Institute of
Technology (KIT), Germany.

‡IMT Institute for Advanced Studies Lucca, Italy.
§Dipartimento di Ingegneria dell’Informazione, Università

di Firenze, Italy.
¶Dipartimento di Informatica, Università di Pisa, Italy.

graphs.
Finally, we prove that the quadratic worst-

case complexity cannot be improved on directed,
disconnected graphs, under reasonable complexity
assumptions.

Keywords: Closeness centrality, algorithmic net-
work analysis, graph algorithms, algorithm engineer-
ing

1 Introduction

Finding a graph’s most central nodes is a fundamen-
tal problem in network analysis. Intuitively, the cen-
trality of nodes represents their structural importance
within the domain under consideration. Depending
on the definition, the most central nodes can be for
example those that are traversed by a large fraction
of shortest paths, those that can quickly reach the
rest of the graph or the ones that recur more often
in random walks [16, Chap. 7]. In this work, we fo-
cus on closeness centrality, a widely-used centrality
measure which is defined as the inverse of the average
shortest-path distance. In other words, a node with
high closeness represents an individual or an entity
that is close, on average, to all the other entities of the
domain. The identification of the nodes with highest
closeness finds its application in a plethora of research
areas. Examples include facility location [12], market-
ing strategies [11] and identification of key infrastruc-
ture nodes as well as disease propagation control and
crime prevention [3]. Unfortunately, computing the
closeness of all nodes in a graph can be very expensive.
The currently best algorithm solves an all-pairs short-
est paths (APSP) problem to compute the distance
between each pair of nodes. For an unweighted graph
G = (V,E) with n nodes and m edges, this can be
done in O(n2.373) using fast matrix multiplication [25]
or in O(nm) running a BFS from each node. Since
real-world networks are often sparse and since the first
approach contains large hidden constants, BFS-based
approaches are predominant in practice (also see Sec-
tion 2.2). Nevertheless, this running time becomes
prohibitive already for networks with a few million
nodes, restricting the exact computation of closeness

to a small fraction of real applications. Moreover,
since closeness values tend to be close together [16,
p. 182], resorting to approximations [9, 7] for acceler-
ating the computation may lead to undesirable errors
in the nodes’ ranking w. r. t. closeness.

The problem we therefore target in this paper
is the identification of the top-k nodes with highest
closeness, and doing so faster than computing it for
all nodes. As mentioned above, many research areas
are indeed interested in the most central nodes of the
network, rather than in the closeness value of each
single node. For example, somebody willing to open
a store might be interested in knowing one or a few
locations that are close, on average, to many potential
customers and not in the closeness of each possible
location. To the best of our knowledge, only two
methods that improve on exhaustive computation (=
computing closeness for all nodes) have been proposed
so far [18, 4]. Both are quite recent; only the slightly
older one [18] can handle (nonnegative) edge weights.

Contribution. In this paper, we propose an al-
gorithm for unweighted graphs that, compared to [18,
4], further reduces the number of traversed edges to
find the top-k nodes w. r. t. closeness centrality. The
basic idea is to find, for each node, an upper bound on
its closeness and stop the computation when k nodes
are found whose closeness is higher than the upper
bounds for the other nodes. We present two tech-
niques for computing upper bounds, each effective on
a different class of graphs.

In the worst case, our algorithms are not guar-
anteed to be faster than computing closeness for all
nodes. This is not surprising, since it was proven that
the complexity of finding the node with highest close-
ness is equivalent (under subcubic reductions) to the
APSP problem [1]. Nonetheless, by combining our
two bounds, we achieve significant speedups (between
one and four orders of magnitude) on exhaustive com-
putation, both on street networks and complex net-
works. Compared to the best previous algorithm for
unweighted networks [4], we improve the running time
in all experiments. Intriguingly, there is a clear dis-
tinction between networks with high diameter (such
as street networks) and low diameter (complex net-
works): While the acceleration by our algorithm is
only 1.7 on average (but also up to a factor of 18)
for complex networks, our algorithm outperforms the
previous algorithm [4] by two orders of magnitude on
networks with high diameter. Our last result proves
that, on directed graphs, in the worst case, an algo-
rithm computing the most closeness central vertex in
time O(m2−ǫ) for some ǫ > 0 would falsify the well-
known Strong Exponential Time Hypothesis (SETH,
[10]), which, informally, says that the Satisfiabil-

ity problem is not solvable in time O((2 − ǫ)n) for
any ǫ > 0, where n is the number of variables.

2 Preliminaries

2.1 Notation Let G = (V,E) be a (strongly)
connected unweighted graph with n = |V | nodes and
m = |E| edges. We say node u and v are at distance
k if the length of the shortest path between u and v
is k. We refer to the distance from u to v as d(u, v).
Then, we define the total distance S(v) of node v as
the sum of the distances from v to all the other nodes,
i. e. S(v) =

∑

w∈V d(v, w). The closeness centrality
for node v, c(v), is defined as

c(v) =
n− 1

S(v)
. (2.1)

We define the diameter of G, diam(G), as the maxi-
mum distance between any two nodes in G. Also, we
define the neighborhood N(v) of a node v as the set
of nodes w such that (v, w) ∈ E (or {v, w} ∈ E, for
undirected graphs). The degree of v, deg(v), is the
size of v’s neighborhood.

Some extensions of closeness centrality have been
proposed also for disconnected graphs [19, 8]. How-
ever, we restrict ourselves to connected undirected
graphs and strongly-connected directed graphs, un-
less mentioned explicitly otherwise. We believe this
is not a major limitation, since one could just ap-
ply our algorithm to the largest (strongly) connected
component or to each component separately.

2.2 Related Work The closeness of all nodes in
unweighted graphs can be computed by solving the
APSP problem. For this problem, there is no solu-
tion that is always better than running a BFS from
each node. This requires O(n(n+m)) time (for sparse
graphs this is faster than approaches based on fast
matrix multiplication). Since this running time is
prohibitive for large networks, attention has been de-
voted to approximation algorithms. For graphs with
bounded diameter, Eppstein and Wang [9] proposed
an algorithm that computes the closeness of all nodes
within an additive error ǫ with high probability. The
method basically samples a set of source nodes, runs
a BFS from them and uses the computed distances
to extrapolate the closeness of the other nodes. Sub-
sequently, Brandes and Pich [6] conducted an exper-
imental evaluation of this approximation algorithm,
also considering different ways of sampling the source
nodes. A more refined approximation algorithm with
better practical performance has recently been pub-
lished [7]. Although the approximation algorithms
can often provide scores that are close to the real ones,
they may fail at preserving the ranking, in particular

for nodes with similar closeness. For this reason, the
problem of accurately computing the ranking of the
top-k nodes with highest closeness has been consid-
ered, both exactly [18], with high probability [17] and
with heuristics [15, 14]. Although the algorithms can
actually save time compared to the exhaustive compu-
tation of closeness for all nodes, it was shown [4] that
on many instances their running time is very close to
that of APSP. Only very recently a new method that
efficiently computes the top-k closeness values in un-
weighted graphs has been proposed [4] and shown to
outperform the existing approaches on several real-
world networks. We will refer to this method as
CutClos, from the name of the procedure BFSCut,
on which it is based. This procedure is performed for
each node and it is basically a BFS that keeps track of
the sum of the distances of the visited nodes and of a
lower bound on the distances of the unvisited nodes.
In particular, when all the nodes up to distance j have
been visited in the BFS, the remaining nodes must be
at distance at least j+2, with the exception of the out-
going neighbors of the nodes at distance j. The lower
bound on the sum of the unvisited nodes’s distances
is therefore computed as number of unvisited nodes
times j+2 minus the sum of the out-degrees of nodes
at distance j. When the sum of the visited nodes
plus the lower bound becomes larger than that of the
k-th node with maximum closeness discovered so far,
the BFS is interrupted, avoiding to visit the remain-
ing edges. Clearly, for the approach to work well, the
nodes with maximum closeness must be considered as
early as possible. In the worst case, if nodes are con-
sidered in order of increasing closeness, the approach
would be as bad as running a complete BFS for each
node. Since in real-world networks there is often a
correlation between degree and closeness, the authors
propose to consider the nodes in order of decreasing
degree.

3 Computing top-k closeness centrality

In this section we describe our new approach for
computing the top-k nodes with maximum closeness.
The basic idea of the algorithm is to keep track of a
lower bound on the total distance of each node (and
therefore an upper bound on the closeness). Let S(v)
be the total distance of node v and let S̃(v) be the
lower bound. Then, if S(v) ≤ S̃(w) ∀w ∈ V , it is
also true that S(v) ≤ S(w) ∀w ∈ V . Thus, v is (one
of) the node(s) with maximum closeness. This simple
observation allows us to skip the computation of the
exact value of S(w) for all the remaining nodes.

The idea sketched above is implemented as Al-
gorithm 1: First, we compute the lower bounds S̃
(Line 1) and insert all the nodes into a priority queue

Q, ordered by increasing S̃(v). Then, we extract the
nodes from Q one after another (Line 10). If the
priority S⋆ of the extracted node v⋆ is exactly the to-
tal distance of v⋆ (exact[v] = true), then the closeness
centrality of v⋆ is smaller than the closeness centrality
of all the other nodes in Q. Therefore we can append
v⋆ to the list of the most central nodes. Otherwise
(i. e. S⋆ is only a lower bound on S(v⋆)), we com-
pute the exact total distance of v⋆ (Line 16) and we
re-enqueue v⋆ with priority S(v⋆), possibly with some
optimizations (see Section 3.3). Clearly, the tightness
of the bounds S̃ can influence the algorithm’s perfor-
mance dramatically. If the bounds are close to the
exact values, only a few iterations will be enough to
find the k most central nodes, allowing us to skip the
computation of S(v) for a large portion of nodes. In
Sections 3.1 and 3.2, we propose two different tech-
niques for computing and updating the lower bounds
S̃. The first one finds a tighter bound on networks
with relatively large diameter and degree distribution
with small variance (e. g., street networks), whereas
the second one is more performant on complex net-
works.

Unlike CutClos [4], our algorithm computes
lower bounds in the initialization phase, i. e. before

computing the closeness of any node. This allows us
to skip completely all the remaining nodes, once we
find k nodes whose exact S(v) is smaller than the
lower bounds of the other vertices. On the contrary,
CutClos does not compute any initial bound and
starts a BFS from each node v ∈ V , interrupting it
if the lower bound on S(v) becomes larger than the
current k-th smallest value of S (see Section 2.2 for
more details). Since the lower bound is computed and
updated during the BFS, this often requires to visit
several edges before the bound becomes large enough
to interrupt the BFS, in particular if the diameter is
relatively large.

3.1 Level-based lower bound Let G be an undi-
rected graph and let us consider a BFS traversal from
a source node s. We refer to the distances d(s, v) be-
tween s and all the nodes v ∈ V as levels: node v is
at level i if and only if the distance between s and
v is i, and we write ls(v) = i (or simply as l(v) = i
if s is clear from the context or if the particular s is
irrelevant). Let i and j be two levels, i ≤ j. Then,
the distance between any two nodes v at level i and w
at level j must be at least j− i. Indeed, if d(v, w) was
smaller than j− i, w would be at level i+d(v, w) < j,
which contradicts our assumption. It follows directly
that

∑

w∈V |ls(w) − ls(v)| is a lower bound on S(v),
for all v, s ∈ V :

Lemma 3.1. S̃(v) :=
∑

w∈V |ls(w) − ls(v)| ≤

Algorithm 1: Top-k closeness

Input : A graph G = (V,E)
Output: top-k nodes with highest closeness and their

closeness values c(v)
1 S̃ ← computeLowerBounds(G);
2 Q← ∅;
3 foreach v ∈ V do

4 Q← enqueue(v, pv = S̃(v));
5 exact[v]← false;

6 end

7 i← 0;
8 TopK← [];
9 while i < k do

10 (v⋆, S⋆)← extractMin(Q);
11 if exact[v⋆] then

12 TopK[i]← (v⋆, S⋆);
13 i← i+ 1;

14 end

15 else

16 S(v)←
∑

w∈V d(v, w);

17 Q← enqueue(v, pv = S(v));
18 exact[v]← true;

19 end

20 end

21 return TopK

S(v) ∀v, s ∈ V .

To improve the approximation, we notice that the
number of nodes at distance 1 from v is exactly the
degree of v. Therefore, all the other nodes w such
that |l(v) − l(w)| ≤ 1 must be at least at distance 2
(with the only exception of v itself, whose distance is
of course 0). We can now define the level-based lower

bound S̃(v)
(un)
L

for undirected graphs as:

2(#{w ∈ V : |l(w)− l(v)| ≤ 1} − deg(v)− 1)+

+ deg(v) +
∑

w∈V
|l(w)−l(v)|>1

|l(w)− l(v)|,

that is:

2 ·#{w ∈ V : |l(w)− l(v)| ≤ 1} − deg(v)− 2+

+
∑

w∈V
|l(w)−l(v)|>1

|l(w)− l(v)|.

(3.2)

A straightforward way to compute S̃
(un)
L

would be
to run a BFS from a node s and then, for each node
v, to consider the level difference between v and all
the other nodes. However, this would require O(n2)
operations. Algorithm 2 describes a more efficient

computation of S̃
(un)
L

. Since the bound S̃ for nodes at
the same level differs only in the degrees of the nodes
(see Eq. (3.2)), we can compute the approximation
only once for each level and then subtract, for each

Algorithm 2: Level-based lower bound for
undirected graphs

Input : A graph G = (V,E)

Output: Lower bounds S̃
(un)
L

(v) of each node v ∈ V

1 s← seedNode();
2 d← BFSfrom(s);

3 maxL← maxv∈V d(s, v);
4 for i = 1, 2, ...,maxL do

5 L[i] = {w ∈ V : d(s, w) = i};
6 nL[i] = #L[i];

7 end

8 for i = 1, 2, ...,maxL do

9 sum← 0;
10 for j = 1, 2, ...,maxL do

11 if |j − i| ≤ 1 then

12 sum← sum + 2nL[j];

13 end

14 else

15 sum← sum + |j − i| · nL[j];
16 end

17 end

18 for v ∈ L[i] do

19 S̃
(un)
L

(v)← sum− deg(v)− 2;
20 end

21 end

22 return S̃
(un)
L

node, its degree. Naming maxL the maximum level
in the BFS search, Algorithm 2 computes, for each
level i, the value 2 · #{w ∈ V : |l(w) − i| ≤
1} +

∑

w∈V
|l(w)−i|>1

|l(w) − i| by summing over all the

levels j and then uses this sum to compute S̃
(un)
L

(v)
for all nodes v at level i. This requires exactly
∑

maxL

i=1 maxL + #{v ∈ V : l(v) = i} = maxL
2 + n

operations. Since maxL ≤ diam(G) and adding the
complexity of the initial BFS, the following holds:

Proposition 3.1. Computing the lower bound S̃
(un)
L

takes O(diam2(G) + n+m) time.

Notice that many real-world networks (e.g. social
networks) exhibit the small world phenomenon [24,
21], i. e. their diameter is O(log n). Therefore, for
these networks and large enough n, the computation
of the lower bound is linear in the number of edges.

For directed graphs, the result does not hold for
nodes w whose level is smaller than l(v), since there
might be a directed edge or a shortcut from v to w.
Yet, for nodes w such that l(w) > l(v), it is still
true that d(v, w) ≥ l(w) − l(v). For the remaining
nodes (apart from the outgoing neighbors of v), we
can only say that the distance must be at least 2. The

upper bound for directed graphs S̃
(dir)
L

can therefore

be defined as:

2 ·#{w ∈ V : l(w)− l(v) ≤ 1}

+
∑

w∈V
l(w)−l(v)>1

(l(w)− l(v))− deg(v)− 2 (3.3)

The computation of S̃
(dir)
L

for directed graphs
is analogous to the one described in Algorithm 2.
The particular choice of the source node s does not
influence the correctness of the bounds; however, it
can determine how close they are to S. A node s
with large eccentricity (i. e., maximum distance) is
preferable, since the presence of more level allows for
a major differentiation in the lower bounds of the
different nodes. For this reason, in seedNode() in
Algorithm 2, first we pick a node v at random and
then we choose as s the node with maximum distance
from v.

3.2 Neighborhood-based lower bound In a
tree we can compute the closeness centrality of all
nodes faster than running a BFS from each node. We
exploit this by providing an exact bound for trees
which translates into a lower bound in general un-
weighted graphs later on.

Let us consider a node s for which we want to
compute S(s). The number of nodes at level 1 in the
BFS tree from s is clearly the degree of s. What
about level 2? Since there are no loops, all the
neighbors of the nodes in N(s) are nodes at level 2
for s, with the only exception of s itself. Therefore,
naming Lk[s] the set of nodes at level k from s and
#Lk[s] the number of these nodes, we can write
#L2[s] =

∑

w∈N(s) #L1[w] − deg(s). In general, we
can always relate the number of nodes in each level
k of s to the number of nodes at level k − 1 in the
BFS trees of the neighbors of s. Let us now consider
#Lk[s], for k > 2. Figure 1 shows an example where s
has three neighbors w1, w2 and w3. Suppose we want
to compute #L4[s] using information from w1, w2 and
w3. Clearly, L4[s] ⊂ L3[w1]∪L3[w2]∪L3[w3]; however,
there are also other nodes in the union that are not
in L4[s]. Let us consider w1: the nodes in L3[w1] (red
nodes in the leftmost tree) are of two types: nodes in
L4[s] (the ones in the subtree of w1) and nodes in L2[s]
(the ones in the subtrees of w2 and w3). An analogous
behavior can be observed for w2 and w3 (central and
rightmost trees). If we simply sum all the nodes in
#L3[w1], #L3[w2] and #L3[w3], we would be counting
each node at level 2 twice, i. e. once for each node in
N(s) minus one. In general, for k > 2, we can write

#Lk[s] =
∑

w∈N(s)

#Lk−1[w]−#Lk−2[s] · (deg(s)− 1).

(3.4)

Algorithm 3: Closeness centrality in trees

Input : A tree T = (V,E)
Output: Closeness centralities c(v) of each node

v ∈ V
1 foreach s ∈ V do

2 #Lk−1[s]← deg(s);
3 S[s]← deg(s);

4 end

5 k← 2;

6 nFinished← 0;
7 while nFinished < n do

8 foreach s ∈ V do

9 if k = 2 then

10 #Lk[s]←
∑

w∈N(s) #Lk−1[w]− deg(s);

11 end

12 else

13 #Lk[s]←
∑

w∈N(s) #Lk−1[w]−

#Lk−2[s](deg(s)− 1);

14 end

15 end

16 foreach s ∈ V do

17 #Lk−2[s]← #Lk−1[s];
18 #Lk−1[s]← #Lk[s];
19 if #Lk−1[s] > 0 then

20 S[s]← S[s] + k ·#Lk−1[s];
21 end

22 else

23 nFinished← nFinished + 1;
24 end

25 end

26 k← k + 1;

27 end

28 foreach s ∈ V do

29 c(v)← (n− 1)/S[v];
30 end

31 return c

From this observation, we define a new method to
compute the total distance of all nodes, described
in Algorithm 3. Instead of computing the BFS tree
of each node one by one, at each step we compute
the number #Lk[v] of nodes at level k for all nodes
v. First (Lines 1 - 4), we compute #L1[v] for each
node (and add that to S(v)). Then (Lines 7 - 27),
we consider all the other levels k one by one. For
each k, we use #Lk−1[w] of the neighbors w of v and
#Lk−2[v] to compute #Lk[v] (Line 10 and 13). If, for
some k, #Lk[v] = 0, all the nodes have been added
to S(v). Therefore, we can stop the algorithm when
#Lk[v] = 0 ∀v ∈ V .

Proposition 3.2. Algorithm 3 requires O(diam(T) ·
m) operations to compute the closeness centrality of

all nodes in a tree T .

Proof. The for loop in Lines 1 - 4 of Algorithm 3
clearly takes O(n) time. For each level of the while
loop of Lines 7 - 27, each node scans its neighbors

w1 w2 w3 w1 w2 w3 w1 w2 w3

Levels

0

1

2

3

4

s s s

Figure 1: Relation between nodes at level 4 for s and the neighbors of s. The red nodes represent the nodes
at level 3 for w1 (left), for w2 (center) and for w3 (right).

in Line 10 or Line 13. In total, this leads to O(m)
operations per level. Since the maximum number of
levels that a node can have is equal to the diameter,
the algorithm requires O(diam(T)·m) operations. ⊓⊔

For cyclic undirected graphs, Eq. (3.4) is not
true anymore – but a related lower bound on #Lk[·]
will still be useful. Indeed, there could be nodes x
for which there are multiple paths between s and x
and that are therefore contained in the subtrees of
more than one neighbor of s. This means that we
would count x multiple times when considering its
level k, overestimating the number of nodes at level
k. However, what we know for sure is that at level
k there cannot be more nodes than in Eq. (3.4). If,
for each node v, we assume that the number #Lk[v]
of nodes at level k is that of Eq. (3.4) and we stop
the computation when the sum of the numbers of
nodes at levels i ≤ k is equal to n, we get a lower

bound on S(v), which we call S̃
(un)
N

(v). In fact, since
#Lk[v] ≥ #{w ∈ V |d(v, w) = k}, the sum of the
levels of the first n nodes found by our algorithm is
always smaller than or equal to the sum of the actual
distances of the n nodes. More formally, we can define

S̃
(un)
N

(v) as

S̃
(un)
N

(v) :=

diam(G)
∑

k=1

k ·min

{

#Lk[v], n−
k−1
∑

i=0

#Li[v]

}

(3.5)
The procedure is described in Algorithm 4. The com-

putation of S̃
(un)
N

works basically like Algorithm 3,
with the difference that here we keep track of the
number of the nodes found in all the levels up to k
(nVisited) and stop the computation when nVisited be-
comes equal to n (if it becomes larger, in the last level
we consider only n−nVisited nodes, see Lines 28 - 33).

Proposition 3.3. For an unweighted graph G, com-

puting the lower bound S̃
(un)
N

described in Algorithm 4

takes O(diam(G) ·m) time.

Proof. Like in Algorithm 3, the number of operations
performed by Algorithm 4 at each level of the while
loop is O(m). At each level i, all the nodes at
distance i are accounted for (possibly multiple times)
in Lines 12 and 15. Therefore, at each level, the
variable nVisited is always greater than or equal to
the the number of nodes v at distance d(v) ≤ i.
Since d(v) ≤ diam(G) for all nodes v, the maximum
number of levels scanned in the while loop cannot be
larger than diam(G), therefore the total complexity
is O(diam(G) ·m). ⊓⊔

In directed graphs, we can simply consider the
out-neighbors, without subtracting the number of
nodes discovered in the subtrees of the other neigh-
bors in Eq. (3.4). The lower bound (which we refer

to as S̃
(dir)
N

) is obtained by replacing Eq. (3.4) with
the following in Lines 12 and 15 of Algorithm 4 and
in Eq. (3.5):

#Lk[s] =
∑

w∈N(s)

#Lk−1[w] (3.6)

In the following, we will use S̃N and the term
neighborhood-based lower bound to indicate either

S̃
(un)
N

or S̃
(dir)
N

, depending on whether the graph under
consideration is undirected or directed. Analogously,
we will use S̃L and level-based lower bound for both
S̃
(un)
L

and S̃
(dir)
L

.

3.3 Additional engineering The two lower
bounds that we described in the previous sec-
tions cover the first line of Algorithm 1 (i. e.
computeLowerBounds(G)). One could either com-
pute only one of them or both of them, taking for
each node the maximum among the two. Since in
Algorithm 1 we stop the computation only when
we find k nodes whose exact value of S is smaller
than the lower bounds of the other nodes, having
lower bounds that are close to the exact values is
crucial. For example, if all the lower bounds were

smaller than minv∈V S(v), our algorithm would be
as bad as computing closeness for each node. On the
other hand, if S(v1), . . . , S(vk) of the top-k nodes
(v1, . . . , vk) were smaller than the lower bounds of
the remaining nodes, we could find the top-k nodes
with a constant number of BFSs. For this reason,
after the initialization, we try to further improve
the bounds of the nodes also while computing the
exact closeness of a node v in Line 16. In the case
of the level-based lower bound, we can keep track
of the nodes in each level of the BFS from v and
recompute S̃L using v as source. If, for some node,
the new bound is larger than its current one, we can
update it. Also, to additionally reduce the number of
visited edges, we can stop the BFS beforehand when
we discover that the closeness of v cannot be larger
than that of the current k-th top node, similarly
to CutClos [4] (see Section 2.2 and [4] for more
details).

4 Experiments

Implementation and Settings. For the ex-
perimental evaluation, we implemented three ver-
sions of our algorithm: one based on the level-
based lower bound (FastClosL), one that uses the
neighborhood-based lower bound (FastClosN) and
one that combines both (FastClos), i. e. takes the
maximum among the two bounds. For a comparison
with the state of the art, we also implemented the
algorithm presented by Borassi et al. [4] (CutClos)
as baseline. This algorithm was shown to outperform
the other existing algorithms for exact and approxi-
mate top-k closeness centrality [4]. We implemented
all algorithms in C++, building on the open-source
NetworKit framework [20]. The machine used has 2
x 8 Intel(R) Xeon(R) E5-2680 cores at 2.7 GHz, of
which we use only one, and 256 GB RAM. All com-
putations are sequential to make the comparison to
previous work more meaningful.

Methodology. We test the algorithms on a
large collection of real-world networks. Tests on syn-
thetic networks are added in order to examine the
scaling behavior of the algorithms. The real net-
works are taken from SNAP (snap.stanford.edu),
KONECT (konect.uni-koblenz.de) and the 10th
DIMACS Implementation Challenge [2]. In case of
disconnected networks, we always extract the largest
(strongly) connected component first. In all the tests
we adopt as a measure of performance the perfor-

mance ratio, introduced by Borassi et al. [4]. Naming
|Evis| the number of edges visited by a top-k algo-
rithm, the performance ratio is defined as |Evis| di-
vided by the number of edges that the exhaustive al-
gorithm (running a BFS for all nodes) would use, i. e.

|Evis|
n·m . This measure does not depend on the particu-

lar implementation of the algorithms, but only on the
actual number of operations performed. Moreover, it
allows an assessment independent of computer archi-
tectures. In the measure we do not consider the ini-
tialization phases of any of the algorithms, since the
times they require are negligible. We refer to the in-
verse of the performance ratio as speedup and evaluate
the algorithms mainly by comparing their speedups.

Results. Our results show that our two lower
bounds perform differently depending on the nature
of the network. In particular, FastClosL performs
very well on street networks (where closeness has a
straightforward interpretation) and on networks with
similar properties, i. e. a relatively large diameter
and small variance in the degree distribution. The
presence of several “levels” with relatively few ver-
tices allows for a differentiation in the lower bounds
of the different nodes. This leads to a fast identifica-
tion of the most central nodes. On the other hand,
FastClosN and the baseline CutClos perform rel-
atively poorly on this kind of networks, because their
assumption is that closeness centrality is strongly cor-
related with the degrees. For example, to find the top
node with highest closeness on the street network of
Luxembourg, FastClosL (as well as the combined
version FastClos) has a speedup of more than 400,
whereas FastClosN and CutClos have speedups
of 3.2 and 2.6, respectively. Since CutClos does not
scale well to large street networks (for networks with
millions of nodes, it does not finish the computation
in two days), we tested only FastClos on a set of
street networks, also taken from [2]. The results are
shown in Table 1. Using FastClos, we are able to
find the top 100 nodes with highest closeness in the
whole European street network in minutes (where the
exhaustive algorithm would take years).

To examine the scaling on graphs with properties
similar to those of street networks, we compared the
algorithms on synthetic Delaunay graphs of increas-
ing sizes, taken from [2]. Figure 2 (left) shows the
speedups of FastClos and those of CutClos, with
k (the number of nodes with highest closeness com-
puted) equal to 1 and 10. The results obtained using
only FastClosN are extremely similar and therefore
omitted. Since we use a log-log scale, it is quite ap-
parent that the speedup of FastClos increases expo-
nentially with the size of the graph, reaching values
of more than 103 for graphs with 220 nodes. The
speedup of CutClos, in turn, is basically constant
and always smaller than 10.

Very different is the behavior of the algorithms on
complex networks (e. g. social networks, communica-
tion networks), characterized by a strongly varying

211 212 213 214 215 216 217 218 219 220

Graph size

100

101

102

103

104
S

p
e
e
d

u
p

FastClos (k=1)

CutClos (k=1)

FastClos (k=10)

CutClos (k=10)

104 105

Graph size

101

102

103

104

105

S
p

e
e
d

u
p

FastClos (k=1)

CutClos (k=1)

FastClos (k=10)

CutClos (k=10)

Figure 2: Left: speedups of FastClos and CutClos on Delaunay graphs, with k = 1 and k = 10, n equal
to powers of 2 and m ≈ 3n. Right: speedups of FastClos and CutClos on random hyperbolic graphs,
with n of increasing sizes and m ≈ 10n.

Algorithm 4: Neighborhood-based lower
bound for undirected graphs

Input : A graph G = (V,E)

Output: Lower bounds S̃
(un)
N

(v) of each node v ∈ V
1 foreach s ∈ V do

2 #Lk−1[s]← deg(s);

3 S̃
(un)
N

[s]← deg(s);
4 nVisited[s]← deg(s) + 1;
5 finished[s]← false;

6 end

7 k ← 2;
8 nFinished← 0;
9 while nFinished < n do

10 foreach s ∈ V do

11 if k = 2 then

12 #Lk[s]←
∑

w∈N(s) #Lk−1[w]− deg(s);

13 end

14 else

15 #Lk[s]←
∑

w∈N(s) #Lk−1[w]−

#Lk−2[s](deg(s)− 1);

16 end

17 end

18 foreach s ∈ V do

19 if finished[v] then

20 continue;
21 end

22 #Lk−2[s]← #Lk−1[s];
23 #Lk−1[s]← #Lk[s];

24 if n− nVisited[s] > #Lk−1[s] then

25 S̃
(un)
N

[s]← S̃
(un)
N

[s] + k ·#Lk−1[s];
26 nVisited[s]← nVisited[s] + #Lk−1[s];

27 end

28 else

29 S̃
(un)
N

[s]← S̃
(un)
N

[s] + k(n− nVisited[s]);
30 nVisited[s]← n;
31 nFinished← nFinished + 1;
32 finished[s]← true;

33 end

34 end

35 k ← k + 1;

36 end

37 return S̃
(un)
N

degree distribution and a very small diameter. Here
FastClosL cannot perform well, because very simi-
lar lower bounds are computed for many nodes, due
to the small number of levels in the BFS trees. On the
other hand, the structure of complex networks allows
FastClosN to compute lower bounds that are close
to the the actual closeness values, quickly identifying
the top-k nodes. Also CutClos performs very well
on complex networks, since here the degree is often re-
lated to the closeness of nodes and the small diameter
makes it possible to quickly discard nodes that can-
not be in the top-k list. Figure 2 (right) shows the
speedups of FastClos and CutClos on synthetic
complex networks of increasing sizes, created with
an efficient generator [22] according to an hyperbolic
geometry-based model [13]. This model was shown to
reproduce many properties of real complex networks
(such as low diameter and power-law degree distribu-
tion, see [23] and the references therein). The figure
shows that the speedups of both algorithms increase
with the size of the graph, with FastClos reaching
values larger than 104. The speedups of FastClos

are always larger than those of CutClos and the
gap between the two seems to increase with the size
of the graphs. It is also interesting to note that the
gap between the number of operations required to
find the top node and the top-k nodes is often much
larger in complex networks than in street networks.
Table 2 summarizes the speedups of FastClos and
CutClos on complex undirected networks. We do
not report the results of FastClosL and FastClosN

because the first one does not perform well on com-
plex networks so it would have been too expensive
to compute for many of the tested networks and be-
cause those of FastClosN are basically the same as
those of the combined algorithm FastClos. The
table shows that FastClos is always faster than
CutClos. The speedups vary considerably depend-

Graph Nodes Edges Speedup (k = 1) Speedup (k = 10) Speedup (k = 100)
luxembourg.osm 114 599 119 666 415.2 375.7 236.7
belgium.osm 1 441 295 1 549 970 4 214.3 3 992.5 2 649.4
netherlands.osm 2 216 688 2 441 238 5 833.3 5 191.3 3 895.7
italy.osm 6 686 493 7 013 978 15 300.8 14 925.2 12 474.8
great-britain.osm 7 733 822 8 156 517 20 298.7 19 579.2 12 762.0
europe.osm 50 912 018 54 054 660 57 462.7 55 947.2 48 303.6

Table 1: Speedups of FastClos on street networks.

ing on the properties of the networks, but they tend to
increase with the size of the network and to be larger
in networks with small diameters. Table 3 contains
the results on directed networks. Also here FastClos

is always faster than CutClos, although the differ-
ence between the two is often relatively small.

To summarize, our results show that our com-
bined version FastClos performs very similarly to
FastClosL on street networks and to FastClosN

in complex networks, i. e. it always performs like the
fastest of the two methods on the network it is ap-
plied to. Also, FastClos is always faster than the
currently best existing method CutClos, several or-
ders of magnitude in street networks and up to a fac-
tor 18 in complex networks, where CutClos already
performs well. In these networks, we are on average
1.7 times faster than CutClos (geometric mean).

5 Hardness Result

In this section, we analyze the time complexity of
computing the vertex with highest closeness central-
ity in the general case of disconnected graphs. If G is
not (strongly) connected, the most common general-
ization [18, 4] for the closeness of a vertex v is

c(v) =
r(v)− 1

f(v)

r(v)− 1

n− 1
=

(r(v)− 1)2

(n− 1)f(v)
,

where f(v) =
∑

w∈R(v) d(v, w), R(v) is the set of

vertices reachable from v, and r(v) is |R(v)| (note that
v ∈ R(v) by definition). If a vertex has (out)degree
0, the previous fraction becomes 0

0 : in this case, the
closeness is not defined.

We believe that our algorithms can be generalized
as well, using the proof techniques in [4]. The
main result of this section proves that, at least in
this general case, the O(mn) worst-case complexity
of the textbook algorithm cannot be significantly
improved, unless the well-known Strong Exponential
Time Hypothesis (SETH) is false [10] (this hypothesis
says that the k-Satisfiablility problem cannot be
solved in time O((2 − ǫ)n), where ǫ > 0 does not
depend on k).

Theorem 5.1. On directed graphs, in the worst case,

an algorithm computing the most closeness central

vertex in time O(m2−ǫ) for some ǫ > 0 would falsify

the SETH.

It is worth mentioning that this result still works if
we restrict our analysis to graphs with small diam-
eter (where the diameter is the maximum distance
between any two connected nodes). Indeed, the di-
ameter of the graph obtained is 7.

The reduction starts from the l-
TwoDisjointSet problem, that is, finding two
disjoint sets in a collection C of subsets of a given
ground set X, where |X| < logl(|C|). It is well known
that an algorithm solving this problem in O(|C|2−ǫ),
where ǫ > 0 does not depend on l, falsifies SETH
[10, 5].

Given an instance (X, C) of the l-
TwoDisjointSet problem, and given a set C ∈ C,
let RC be |{C ′ ∈ C : C ∩ C ′ 6= ∅}|: we want to
check if RC = |C| for all C ∈ C; indeed, RC = |C|
means that C intersects all the sets in C. We
will construct a directed graph G = (V,E), where
|V |, |E| = O(|C||X|) = O(|C| logl |C|), such that:

1. V contains a set of vertices C0 representing the
sets in C;

2. the centrality of a vertex in C0 corresponding
to a set C is a function c(RC), depending only
on RC , meaning that if RC = RC′ then the
vertices corresponding to C and C ′ have the same
closeness;

3. the function c(RC) is decreasing with respect to
RC ;

4. the centrality of vertices in C0 is bigger than the
centrality of all the other vertices.

In such a graph, the maximum closeness is c(|C|) if
and only if RC = |C| for each C, if and only if C does
not contain two disjoint sets. Hence, an algorithm
finding the maximum closeness in time O(m2−ǫ)
yields an algorithm solving the l-TwoDisjointSet

problem in O((|C| logl |C|)2−ǫ) = O(|C|2−
ǫ
2), against

SETH.
To construct this graph (see Figure 3), we start by

adding to V the copy C0 of C, another copy C1 of C and

Speedup (k = 1) Speedup (k = 10) Speedup (k = 100)
Graph Nodes Edges Diam FastClos CutClos FastClos CutClos FastClos CutClos

CA-HepPh 11 204 117 619 13 9.7 8.5 9.5 8.4 8.9 7.9
CA-AstroPh 17 903 196 972 14 69.8 26.4 29.3 18.3 13.9 11.0
CA-CondMat 21 363 91 286 14 493.4 369.9 95.5 76.6 35.5 15.5
Email-Enron 33 696 180 811 11 896.1 225.6 318.8 114.9 38.9 29.3
Gowalla-edges 196 591 950 327 14 33 086.1 12 030.7 33.5 32.8 28.2 26.9
com-youtube 1 134 890 2 987 624 20 2 241.0 2 060.7 168.9 162.1 110.6 104.7
as-skitter 1 694 616 11 094 209 25 187.4 166.1 167.0 148.6 139.8 116.7

Table 2: Speedups of FastClos and CutClos on complex undirected networks.

Speedup (k = 1) Speedup (k = 10) Speedup (k = 100)
Graph Nodes Edges Diam FastClos CutClos FastClos CutClos FastClos CutClos

p2p-Gnutella25 5 153 17 695 10 1 166.7 172.0 58.8 34.7 13.7 11.9
p2p-Gnutella24 6 352 22 928 10 3 631.9 198.8 48.9 30.5 12.3 10.9
Cit-HepTh 7 464 116 252 17 148.9 79.5 25.3 22.0 19.3 11.9
Cit-HepPh 12 711 139 965 12 149.4 129.5 56.3 49.9 30.4 22.5
p2p-Gnutella31 14 149 50 916 11 197.7 96.7 20.5 17.8 8.1 7.7
Slashdot081106 26 996 337 351 11 363.0 171.5 131.9 93.9 53.2 40.6
Slashdot090216 27 222 342 747 11 333.3 165.3 119.7 87.5 54.5 41.3
soc-Epinions1 32 223 443 506 14 1792.9 336.2 53.2 39.3 28.8 22.7
Email-EuAll 34 203 151 132 14 24 833.2 6 306.1 3 419.6 1 348.7 294.6 207.0
twitter-combined 68 413 1 685 152 7 204.7 173.4 152.5 110.6 70.6 47.9
Slashdot0811 70 355 818 310 10 11 021.8 2 940.3 423.0 279.6 47.9 42.8
Slashdot0902 71 307 841 201 11 12 006.4 2 867.0 394.4 262.6 48.6 43.3
WikiTalk 111 881 1 477 893 9 6 746.1 3 276.8 2 604.4 1 004.6 1 026.6 512.9
Amazon0302 241 761 1 131 217 32 38.7 20.2 31.7 16.1 13.9 12.9

Table 3: Speedups of FastClos and CutClos on complex directed networks.

C0 X1

X2

C1 C2 CpYZ

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

∋

6∋

∈

Figure 3: Reducing the TwoDisjointSet problem to the problem of finding the most closeness central
vertex.

a copy X1 of X, and by adding to E the edges (C, x)
for each C ∈ C0, x ∈ X1 such that x ∈ C, and (x,C)
for each x ∈ X1, C ∈ C1 such that x ∈ C. Moreover,
we add a copy X2 of X and we connect all pairs
(C, x) with C ∈ C0, x ∈ X2 and x /∈ C: the closeness

centrality of a vertex C ∈ C0 is (|X|+RC)2

(n−1)(|X|+2RC) (which

only depends on RC). To enforce Items 3 and 4, we
add a path of length p leaving each vertex in C1, and
q vertices linked to each vertex in C0, each of which
has out-degree |C| (we will show that by setting p = 7
and q = 36, all required conditions are satisfied).

More formally, given a ground set X and a
collection C of subsets of X, i.e. an instance of the l-
TwoDisjointSet problem, we build the graph G =
(V,E) as follows.

• V = Z ∪Y ∪C0∪X1∪X2∪C1∪· · ·∪Cp, where Z
is a set of cardinality q|C|, Y a set of cardinality
q, the Cis are copies of C and the Xis are copies
of X;

• each vertex in Y have |C| neighbors in Z, and
these neighbors are disjoint;

• for each x ∈ C, there are edges from C ∈ C0 to
x ∈ X1, and from x ∈ X1 to C ∈ C1;

• for each x /∈ C, there is an edge from C ∈ C0 to
x ∈ X2;

• each C ∈ Ci, 1 ≤ i ≤ p, is connected to the same
set in Ci+1;

• no other edge is present in the graph.

Note that, under the assumption |X| < logl(|C|), the
number of edges in this graph is O(|C| logl(|C|)).

Lemma 5.1. Assuming |C| > 1, all vertices outside

C0 have closeness centrality at most
2|C|
n−1 , where n is

the number of vertices.

Proof. If a vertex is in Z,X2, or Cp, its closeness
centrality is not defined, because it has out-degree
0.

A vertex y ∈ Y reaches |C| vertices in 1 step, and

hence its closeness centrality is |C|2

|C|(n−1) =
|C|
n−1 .

A vertex in Ci reaches p − i other vertices, and
their distance is 1, . . . , p − i: consequently, its close-

ness centrality is (p−i)2

(p−i)(p−i+1)
2 (n−1)

= 2(p−i)
(n−1)(p−i+1) ≤

2
n−1 .

Finally, for a vertex x ∈ X1 contained in Nx sets,
for each 1 ≤ i ≤ p, x reaches Nx vertices in Ci, and
these vertices are at distance i. Hence, the closeness

of x is (pNx)
2

p(p+1)
2 Nx(n−1)

= 2pNx

(n−1)(p+1) ≤ 2Nx

n−1 ≤ 2|C|
n−1 .

This concludes the proof. ⊓⊔

Let us now compute the closeness centrality of a
vertex C ∈ C0. The reachable vertices are:

• all q vertices in Y , at distance 1;

• all |C|q vertices in Z, at distance 2;

• |X| vertices in X1 or X2, at distance 1;

• RC vertices in Ci for each i, at distance i+ 1.

Hence, the closeness centrality of C is:

c(RC) = (q(1+|C|)+|X|+pRC)2

(q(1+2|C|)+|X|+((p+1)(p+2)
2 −1)RC)(n−1)

=

(q(1+|C|)+|X|+pRC)2

(q(1+2|C|)+|X|+g(p)RC)(n−1) if g(p) = (p+1)(p+2)
2 − 1.

We want to choose p and q verifying:

1. the closeness of vertices in C0 is bigger than 2|C|
n−1

(and hence bigger than the closeness of all other
vertices);

2. c(RC) is a decreasing function of RC for 0 ≤
RC ≤ |C|.

If we verify these two conditions, the most central
vertex has closeness c(|C|) if and only if, for all sets
C ∈ C, RC = |C|, if and only if there are not two
disjoint sets in C. Otherwise, the closeness centrality
of the most central vertex is smaller. This way, by
computing the maximum closeness centrality in time
O(m2−ǫ), we would be able to compute if there are
two disjoint sets in O((|C| logl(|C|))2−ǫ) = O(|C|2−

ǫ
2),

against SETH.

It only remains to find these values of p, q: for
Item 2, the derivative c′(RC) of c is (q(1+ |C|)+ |X|+

pRC)
[pg(p)Rc+2p(q(1+2|C|)+|X|)−g(p)(q(1+|C|)+|X|)]

(q(1+2|C|)+|X|+g(p)RC)2(n−1)
.

This latter value is negative if and only if
pg(p)Rc + 2p (q(1 + 2|C|) + |X|) − g(p)(q(1 + |C|) +
|X|) < 0. Assuming g(p) ≥ 5p and RC < |C|, this
value is:

pg(p)RC + 2p (q(1 + 2|C|) + |X|)− g(p)(q(1 + |C|) + |X|)

≤ pg(p)|C|+ 2pq + 4pq|C|+ 2p|X| − g(p)(q − |C| − |X|)

≤ pg(p)|C|+ 4pq|C| − g(p)q|C|

≤ pg(p)|C| − pq|C|.

Assuming q > g(p), we conclude that c′(RC) < 0
for 0 ≤ RC ≤ |C|, and we verify Item 2. In order

to verify Item 1, we want c(RC) ≥
2|C|
n+1 (since c(RC)

is decreasing, it is enough c(|C|) ≥ 2|C|
n+1). Under the

assumptions q > g(p), 0 < |X| ≤ |C| (which trivially
holds for |C| big enough, because |X| ≤ logp |C|),

c(|C|) =
(q(1 + |C|) + |X|+ pRC)

2

(q(1 + 2|C|) + |X|+ g(p)RC) (n− 1)

≥
q2|C|2

(q(3|C|) + |C|+ |C|)(n− 1)

≥
q|C|

5(n− 1)
>

2|C|

n− 1

if q > 10.
To fulfill all required conditions, it is enough to

choose p = 7, g(p) = 35, and q = 36.

6 Conclusions

In this paper we have presented new methods for
finding the k nodes with highest closeness centrality
in a network, a problem of high practical relevance in
network analysis. By finding lower bounds on the
inverse closeness of each node, we limit the exact
computation to a small fraction of vertices. More
precisely, we propose two lower bounds, one that has
shown to work better on networks with relatively
large diameter and degree distribution with small
variance (e. g., street networks) and one that is more
performant on complex networks. The combination
of the two approaches into one method is orders of
magnitude faster than computing closeness for all
nodes in our experiments, on every tested network.
Compared with the state of the art, our combined
approach is always faster than the currently best
algorithm for top-k closeness centrality [4]. Thanks
to our new approach, we are able to find the top-10
nodes with highest closeness in the whole European
street network (with 54 millions edges) in minutes
(where exhaustive computation would take years).

Future work may include the extension of our
technique and of those presented in [4] to weighted

graphs, for which the computation of a lower bound
is the only obstacle. Also, it would be interesting to
investigate whether our concepts can be extended to
other centrality measures, such as betweenness, and
whether they can be used to compute a fast approx-
imation of closeness in very large networks. We also
plan to run our code in parallel to further accelerate
the computations. Our implementation will be made
publicly available as part of a future release of the
network analysis tool suite NetworKit [20].

Acknowledgements. We would like to thank
Moritz von Looz for providing the hyperbolic ran-
dom graphs used in our experiments and numerous
contributors to the NetworKit project.

We also would like to thank Leonardo Mezzina,
who gave us the access to a server for the experiments.

References

[1] Amir Abboud, Fabrizio Grandoni, and Virginia Vas-
silevska Williams. Subcubic equivalences between
graph centrality problems, APSP and diameter.
Proceedings of the 26th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2015, pages
1681–1697. SIAM, 2015.

[2] David A. Bader, Henning Meyerhenke, Peter
Sanders, Christian Schulz, Andrea Kappes, and
Dorothea Wagner. Benchmarking for graph cluster-
ing and partitioning. In Encyclopedia of Social Net-
work Analysis and Mining, pages 73–82. Springer,
2014.

[3] David C. Bell, John S. Atkinson, and Jerry W. Carl-
son. Centrality measures for disease transmission
networks. Social Networks, 21(1):1–21, 1999.

[4] Michele Borassi, Pierluigi Crescenzi, and Andrea
Marino. Fast and simple computation of top-
k closeness centralities. http://arxiv.org/abs/

1507.01490, 2015.
[5] Michele Borassi, Pierluigi Crescenzi, and Michel

Habib. Into the Square - On the Complexity of
Some Quadratic-Time Solvable Problems. http:

//arxiv.org/abs/1407.4972, 2014.
[6] Ulrik Brandes and Christian Pich. Centrality es-

timation in large networks. I. J. Bifurcation and
Chaos, 17(7):2303–2318, 2007.

[7] Edith Cohen, Daniel Delling, Thomas Pajor, and
Renato F. Werneck. Computing classic closeness
centrality, at scale. Proceedings of the 2nd ACM
conference on Online social networks, COSN 2014,
pages 37–50. ACM, 2014.

[8] Benjamin Cornwell. A complement-derived central-
ity index for disconnected graphs. Connections,
26(2):70–81, 2005.

[9] David Eppstein and Joseph Wang. Fast approxima-
tion of centrality. J. Graph Algorithms Appl., 8:39–
45, 2004.

[10] Russell Impagliazzo, Ramamohan Paturi, and Fran-
cis Zane. Which Problems Have Strongly Exponen-
tial Complexity? Journal of Computer and System
Sciences, 63(4):512–530, 2001.

[11] Christine Kiss and Martin Bichler. Identification
of influencers – measuring influence in customer
networks. Decision Support Systems, 46(1):233 –
253, 2008.

[12] Dirk Koschützki, Katharina Anna Lehmann, Leon
Peeters, Stefan Richter, Dagmar Tenfelde-Podehl,
and Oliver Zlotowski. Centrality indices. Network
Analysis, volume 3418 of Lecture Notes in Computer
Science, pages 16–61. Springer Berlin Heidelberg,
2005.

[13] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim
Kitsak, Amin Vahdat, and Marián Boguñá. Hyper-
bolic geometry of complex networks. Physical Re-
view E, 82:036106, Sep 2010.

[14] Yeon-sup Lim, Daniel S Menasché, Bruno Ribeiro,
Don Towsley, and Prithwish Basu. Online estimat-

http://networkit.iti.kit.edu
http://arxiv.org/abs/1507.01490
http://arxiv.org/abs/1507.01490
http://arxiv.org/abs/1407.4972
http://arxiv.org/abs/1407.4972

ing the k central nodes of a network. In IEEE Net-
work Science Workshop (NSW), 2011.

[15] Erwan Le Merrer, Nicolas Le Scouarnec, and Gilles
Trédan. Heuristical top-k: fast estimation of central-
ities in complex networks. Information Processing
Letters, 114(8):432–436, 2014.

[16] Mark Newman. Networks: An Introduction. Oxford
University Press, 2010.

[17] Kazuya Okamoto, Wei Chen, and Xiang-Yang Li.
Ranking of closeness centrality for large-scale social
networks. Frontiers in Algorithmics, 2nd Annual
International Workshop, FAW 2008, volume 5059 of
Lecture Notes in Computer Science, pages 186–195.
Springer, 2008.

[18] Paul W. Olsen, Alan G. Labouseur, and Jeong-
Hyon Hwang. Efficient top-k closeness centrality
search. IEEE 30th International Conference on Data
Engineering, Chicago, ICDE 2014, pages196–207.
IEEE, 2014.

[19] Tore Opsahl, Filip Agneessens, and John Skvoretz.
Node centrality in weighted networks: Generaliz-
ing degree and shortest paths. Social Networks,
32(3):245–251, July 2010.

[20] Christian Staudt, Aleksejs Sazonovs, and Henning
Meyerhenke. Networkit: An interactive tool suite for
high-performance network analysis. http://arxiv.

org/abs/1403.3005, 2014.
[21] Jeffrey Travers and Stanley Milgram. An experimen-

tal study of the small world problem. Sociometry,
32:425–443, 1969.

[22] Moritz von Looz, Henning Meyerhenke, and Roman
Prutkin. Generating random hyperbolic graphs in
subquadratic time. Proceedings of the 26th Interna-
tional Symposium on Algorithms and Computation
(ISAAC), LNCS. Springer, 2015. To appear.

[23] Moritz von Looz, Christian L. Staudt, Henning
Meyerhenke, and Roman Prutkin. Fast generation
of dynamic complex networks with underlying hy-
perbolic geometry. http://arxiv.org/abs/1501.

03545, 2015.
[24] Duncan J. Watts. Small worlds : the dynamics of

networks between order and randomness. Princeton
University Press, 2003.

[25] Virginia Vassilevska Williams. Multiplying matrices
faster than Coppersmith-Winograd. Proceedings of
the 44th Symposium on Theory of Computing Con-
ference, STOC 2012, pages 887–898. ACM, 2012.

http://arxiv.org/abs/1403.3005
http://arxiv.org/abs/1403.3005
http://arxiv.org/abs/1501.03545
http://arxiv.org/abs/1501.03545

	Introduction
	Preliminaries
	Notation
	Related Work

	Computing top-k closeness centrality
	Level-based lower bound
	Neighborhood-based lower bound
	Additional engineering

	Experiments
	Hardness Result
	Conclusions

