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Abstract

We show how the tropical variety of an ideal I � K [x1, . . . , xn] over a field K with

non-trivial discrete valuation can always be traced back to the tropical variety of an

ideal π−1 I � R�t�[x1, . . . , xn] over some dense subring R in its ring of integers. We

show that this connection is compatible with the Gröbner polyhedra covering them.

Combined with previous works, we thus obtain a framework for computing tropical

varieties over general fields with valuations, which relies on the existing theory of

standard bases if π−1 I is generated by elements in R[t, x1, . . . , xn].
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1 Introduction

Given a polynomial ideal I over a field K with a non-trivial valuation ν : K →
R∪{∞}, its tropical variety T (I ) is commonly described as the combinatorial shadow

of its vanishing set over the algebraic closure of K . Tropical varieties arise naturally

in many contexts in mathematics [1,22] and beyond, such as phylogenetic trees in

biology [24, §4], product-mix auctions in economics [2,32] or finiteness of central

configurations in the 5-body problem in physics [12].

However, computing tropical varieties is an algorithmically highly challenging task,

requiring sophisticated techniques from computer algebra and convex geometry. The

first techniques were developed by Bogart, Jensen, Speyer, Sturmfels and Thomas

[5] for the rational function field over the complex numbers C(t) using classical

Gröbner basis methods. More recently, Chan and Maclagan [7] generalised the notion

of Gröbner bases to general fields with valuation in order to compute tropical varieties

thereover. The linchpin of both works is the ability to compute initial ideals. Moreover,

significant advances have been made in specific parts of the computations: Chan [6],

Hofmann and Ren [13], Sommars and Verschelde [29] all worked on improving the

main bottleneck that is the computation of tropical links. The first two works developed

new algorithms based on projections and intersections, respectively, whereas the latter

improved the computation of so-called tropical prevarieties which was essential for

the original algorithm. At the same time, Vaccon [34] showed that Matrix-F5 ideas can

be applied to improve the performance of the generalised Gröbner bases computation.

In contrast, this article revisits the problem on a more fundamental level. As in [7],

the overall goal is to develop a framework for general fields with valuation in which the

original algorithms in [5] work almost ad verbum. However, instead of introducing a

new notion of Gröbner bases, we aim to base it on the existing theory of standard bases

[25]. The key idea is to use Cohen’s Structure Theorem and replace the valued field

K with a power series ring R�t� with its natural valuation. This replaces the original

ideal I � K [x] with an ideal in R�t�[x], which is generated by polynomials in both t

and x under mild assumptions on I . Our approach is to a certain extent equivalent to

that of Chan and Maclagan, which can be seen from the fact that we naturally obtain

an algorithm for computing their Gröbner bases. However, we can leverage existing

implementations, such as in the computer algebra system Singular [8], for a better

performance (see Timings 1).

Our framework relies heavily on two previous works: In [19], we introduced stan-

dard bases for ideals in R�t�[x], whose elements are multivariate polynomials in x and

univariate power series in t over a coefficient ring R. In [20], we introduced Gröbner

fans for ideals in R�t�[x], which are a natural amalgamation of the existing notions

of Gröbner fans for power series rings [3,26,33] and Gröbner fans for polynomial

rings over coefficient rings [23]. In both works, special emphasis is put on ideals in

R�t�[x] generated by polynomials in t and x . For those, our standard bases coincide

with the existing notion of standard bases for polynomials over coefficient rings and

our algorithms consist of a finite sequence of basic polynomial arithmetic.

This article is organised as follows: First, in Sect. 2, we recall Cohen’s Structure

Theorem and use it to establish a bijection between the tropical variety of an ideal in

K [x] and the tropical variety of a corresponding ideal in R�t�[x] (see Theorem 4).
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Next, in Sect. 3, we show that this bijection is compatible with the polyhedral structures

covering the respective tropical varieties (see Corollary 3). Finally, in Sect. 4, we

explain how the corresponding ideal in R�t�[x] can be computed from the original

ideal in K [x].
Furthermore, modified versions of the algorithms in [5] in our framework have been

implemented in the Singular library tropical.lib [15], relying on gfanlib

[14,16] for computations in convex geometry (see Example 5). They are publicly

available as part of the official Singular distribution, and a detailed account on the

modified algorithms can be found in [27].

2 Tracing Tropical Varieties to a Trivial Valuation

The aim of this section is to show how tropical varieties over a valued field K can be

traced back to tropical varieties over a power series ring R�t� as in Convention 2. The

linchpin is to show how initial ideals over one can be described through initial ideals

over the other, and the remaining results then follow naturally from this. Let us start

by recalling Cohen’s Structure Theorem.stop

Theorem 1 (Cohen’s Structure Theorem, [21, §23 Corollary 5]) Let R be a Noetherian

ring, P = 〈p〉 � R an ideal and R̂ the P-adic completion of R. Then

R̂ ∼= R�t�
/
〈p − t〉 ,

where R�t� denotes the ring of formal power series in t with coefficients in R.

Convention 2 For the remainder of the article, fix a field K with a non-trivial discrete

valuation ν : K → R ∪ {∞}. Without loss of generality, we may assume that K is

complete in the topology induced by the valuation, as in our context we can always

pass to its completion if it is not. Let OK be its ring of integers, and let K denote its

residue field. Fix a uniformising parameter p ∈ OK , and R ≤ OK a subring that is

dense in the topology induced by the valuation, i.e. R̂ = OK . By Theorem 1, we have

two exact sequences

0 〈p − t〉 · R�t�〈p−t〉 R�t�〈p−t〉 K 0,

0 〈p − t〉 · R�t� R�t� OK 0.
t 
−→ p

π

Moreover, fix a multivariate polynomial ring K [x] = K [x1, . . . , xn]. By abuse of

notation, we also use π to refer to both the map R�t�[x] → OK [x] as well as the

composition R�t�[x] → OK [x] →֒ K [x], where R�t�[x] and OK [x] denote the rings

of polynomials in x1, . . . , xn with coefficients in R�t� and OK , respectively.

Example 1 (p-adic numbers) The most interesting example is the field K := Qp of

p-adic numbers with OK := Zp the ring of p-adic integers. Then R := Z ≤ Zp

is a natural dense subring, which is computationally easy to work with. The exact

sequences in Convention 2 merely reflect the presentation of p-adic integers as power

series in p:
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0 〈p − t〉 · Z�t�〈p−t〉 Z�t�〈p−t〉 Qp 0,

0 〈p − t〉 · Z�t� Z�t� Zp 0.
t 
−→ p

π

Example 2 Given the choice of R ≤ OK in Convention 2, choosing R := OK is

always possible. However, in many examples there are natural choices for R, which

are computationally much easier to handle than OK itself:

1. K = k((t)) the field of Laurent series over a field k with OK = k�t� the ring of

power series over k, R = k[t] and p = t ; e.g. k = Fq with q a prime power, as

used in [30, Sect. 7] or [17], or k = Q as considered in [5] (see Example 4).

2. Finite extensions K of Qp and Fq((t)), i.e. all local fields with non-trivial valuation,

and also all higher-dimensional local fields.

3. OK any completion of a localisation of a Dedekind domain R at a prime ideal

P � R, p ∈ P a suitable element. Note that p does not need to generate P and

hence OK need not be the completion with respect to the ideal generated by p,

e.g. R = Z[
√

−5], P = 〈2, 1 +
√

−5〉 and p = 2.

4. For an odd choice of R, consider K := Q(s)((t)) so that OK = Q(s)�t�. Set

R := S−1Q[s, t], where S := Q[s, t] \ (〈t − 1, s〉 ∪ 〈t〉) is multiplicatively closed

as the complement of two prime ideals. Then R is a non-catenarian, dense subring

of OK .

To fix the notation, we briefly recall some basic notions in tropical geometry that

are of immediate relevance to us. For an in-depth introduction to tropical geometry, we

refer to the reader to [18]. For a brief survey with a view towards algebraic geometry,

we recommend [9].

Definition 1 (Initial forms, initial ideals, tropical varieties over valued fields) For a

polynomial 0 �= f =
∑

α∈Nn cα · xα ∈ K [x] and a weight vector w ∈ Rn , we define

the valued weighted degree and initial form of f with respect to w to be:

degν,w( f ) := max{w · α − ν(cα) | cα �= 0} ∈ R,

inν,w( f ) :=
∑

w·α−ν(cα) maximal cα · p−ν(cα) · xα ∈ K[x].

For an ideal I � K [x] and a weight vector w ∈ Rn , we define the initial ideal of I

with respect to w to be:

inν,w(I ) := 〈inν,w( f ) | 0 �= f ∈ I 〉 � K[x].

We refer to the set of weight vectors for which the initial ideal contains no monomial

as the tropical variety of I ,

Tν(I ) :=
{
w ∈ Rn

∣∣ inν,w(I ) monomial free
}
.

Theorem 3 (Structure Theorem for Tropical Varieties, [18, Theorem 3.3.5]) Let I �

K [x] define an irreducible subvariety in (K ∗)n of dimension d. Then Tν(I ) is the
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support of a pure polyhedral complex of the same dimension that is connected through

codimension 1.

Next, we introduce initial forms and initial ideals in for elements and ideals in

R�t�[x] and show how initial ideals of ideals in R�t�[x] can be used to compute the

initial ideals of ideals in K [x].

Definition 2 (Initial forms, initial ideals) Given an element 0 �= f =
∑

β,α cα,β ·
tβ xα � R�t�[x] and a weight vector w ∈ R<0 × Rn , we define the weighted degree

and initial form of f with respect to w to be

degw( f ) := max{w · (β, α) | cβ,α �= 0} ∈ R,

inw( f ) :=
∑

w·(β,α) maximal cα,β · tβ xα ∈ R[t, x],

where R[t, x] denotes the ring of polynomials in t, x1, . . . , xn with coefficients in R.

Given an ideal I � R�t�[x] and a weight vector w ∈ R<0 ×Rn , we define the initial

ideal of I with respect to w to be:

inw(J ) := 〈inw( f ) | 0 �= f ∈ J 〉 � R[t, x].

This can be thought of as a natural extension of Definition 1 with trivial valuation on

the coefficients. Note that we only allow weight vectors with negative weight in t , so

that the maximum of all w · (β, α) exists.

Example 3 ( [6, §3.6]) Consider, over the field of 3-adic numbers Q3, the ideal

I = 〈2x2
1 + 3x1x2 + 24x3x4, 8x3

1 + x2x3x4 + 18x2
3 x4〉 � Q3[x1, . . . , x4] = Q3[x],

and the weight vector w := (1, 11, 3, 19). The initial ideal of I under the 3-adic

valuation is then

inν3,w(I ) = 〈x2
1 , x1x3x4, x1x2

2 x3, x1x4
2 , x4

3 x2
4 〉 � F3[x].

Moreover, we have

π−1 I = 〈3 − t, 2x2
1 + 3x1x2 + 24x3x4, 8x3

1 + x2x3x4 + 18x2
3 x4〉 � Z�t�[x],

and for the weight vector (−1, w) ∈ R<0 × R4 a short standard bases computation

(see Proposition 3) yields

in(−1,w)(π
−1 I ) = 〈3, x2

1 , t x1x3x4, t3x1x2
2 x3, t4x1x4

2 , t3x4
3 x2

4 〉 � Z[t, x].

The similarity to the initial ideal of I under the 3-adic valuation is no coincidence.

Proposition 1 For any ideal I � OK [x] and any weight vector w ∈ Rn , we have:

in(−1,w)(π
−1 I )|t=1 = inν,w(I ),
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where (·) denotes the canonical projection (·) : R[x] → K[x].

Proof ⊇ Any term s ∈ OK [x] is of the form s = (
∑

β cβ pβ) · xα with p ∤ cβ for all

β ∈ N. Then the element s′ := (
∑

β cβ tβ) · xα ∈ R�t�[x] is a natural preimage

of s under π for which we have

inν,w(s) = cβ0 · xα = in(−1,w)(s′)|t=1, where β0 = min{β ∈ N | cβ �= 0}.

And because the valued weighted degree of s in OK [x], i.e. the left-hand side in

the following equation, and the weighted degree of s′ in R�t�[x], i.e. the right-hand

side of the following equation, coincide,

degw(xα) − ν(
∑

β cβ pβ) = max{w · α − β | cβ �= 0} = deg(−1,w)(
∑

β cβ · tβ xα),

this implies that any f ∈ OK [x] has a preimage f ′ ∈ R�t�[x] under π such that

inν,w( f ) = in(−1,w)( f ′)|t=1,

simply by applying the above argument to each of its terms.

⊆ Once again consider a term s =
∑

β cβ pβ · xα ∈ OK [x] with p ∤ cβ for all β ∈ N.

Then any preimage of it under π is of the form s′ =
∑

β cβ tβ xα + r for some

r ∈ 〈p − t〉.

If deg(−1,w)(r) > deg(−1,w)(
∑

β cβ tβ xα), we have

in(−1,w)(s′)|t=1 = in(−1,w)(r)|t=1 = 0,

since in(−1,w)(r) ∈ in(−1,w)〈p − t〉 = 〈p〉.
And if deg(−1,w)(r) < deg(−1,w)(

∑
β cβ tβ xα), we have

in(−1,w)(s′)|t=1 = in(−1,w)(
∑

β cβ tβ xα)|t=1 = cβ0 · xα

= inν,w(
∑

β cβ pβ · xα) = inν,w(s),

where β0 := min{β ∈ N | cβ �= 0}.
Now suppose deg(−1,w)(r) = deg(−1,w)(

∑
β cβ tβ xα). First observe that because t

is weighted negatively, there can be no cancellation amongst the highest weighted

terms of r and the terms of
∑

β cβ tβ xα , as the terms of
∑

β cβ tβ xα are not divisible

by p, unlike the terms of the highest weighted terms of r . Therefore, we have

in(−1,w)(s′)|t=1 = in(−1,w)(
∑

β cβ tβ xα)|t=1︸ ︷︷ ︸
=inν,w(

∑
β cβ pβ · xα)

+ in(−1,w)(r)|t=1︸ ︷︷ ︸
=0

= inν,w(s).
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Either way, we always have in(−1,w)(s′)|t=1 ∈ 〈inν,w(s)〉 for any arbitrary preim-

age s′ ∈ π−1(s), and, as before, the same hence holds true for any arbitrary element

f ∈ OK [x]. ⊓⊔

Corollary 1 For any ideal I � K [x] and any weight vector w ∈ Rn , we have:

in(−1,w)(π
−1 I )|t=1 = inν,w(I ).

Proof The statement follows from inν,w(I ) = inν,w(I ∩OK [x]) and Proposition 1. ⊓⊔

Finally, we can introduce tropical varieties in R�t�[x] and show how they relate to

tropical varieties in K [x]. In particular, we note how the tropical varieties in R�t�[x]
that are of interest to us are pure and connected through codimension 1. This is not a

given for tropical varieties over coefficient rings [18, §1.6] and very important algo-

rithmically, as it allows us to run over it via a fan-traversal through the facets of the

maximal cones.

Definition 3 (tropical variety) For an ideal I � R�t�[x], we define its tropical variety

to be

T (I ) = cl
(
{w ∈ R<0 × Rn | inw(I ) monomial free}

)
⊆ R≤0 × Rn,

where cl (·) denotes the closure in the Euclidean topology.

Theorem 4 Let I � K [x] be an ideal. The projection R≤0 × Rn → Rn induces a

bijection

T (π−1 I ) ∩ ({−1} × Rn)
∼−→ Tν(I )

(−1, w1, . . . , wn) 
−→ (w1, . . . , wn),

where ν is the valuation on K in Convention 2.

Proof For the bijection, we show that

in(−1,w)(π
−1 I ) is not monomial free ⇐⇒ inν,w(I ) is not monomial free.

�⇒ Suppose in(−1,w)(π
−1 I )� R�t�[x] contains a monomial tβ xα . By Corollary 1,

we have inν,w(I ) = in(−1,w)(π
−1 I )|t=1, which means inν,w(I ) must contain

the monomial xα ∈ K[x].
⇐� Suppose inν,w(I )�K[x] contains a monomial xα . For the remainder of the proof,

we abbreviate (−1, w)-weighted degree and (−1, w)-weighted homogeneous

with weighted degree and weighted homogeneous, respectively. Consider all

r ∈ R[t, x] such that

f := tβ ·
(
xα + (t − 1) · r

)
∈ in(−1,w)(π

−1 I ), for some β ∈ N.
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Such f exist, because, by Corollary 1, in(−1,w)(π
−1 I ) must contain an element of

the form xα + (t − 1) · r + p · s for some r , s ∈ R[t, x], and p lies in in(−1,w)(π
−1 I ).

We may decompose each r into its weighted homogeneous layers,

r = rq1 + . . . + rql
.

with deg(−1,w)(rqi
) = qi and qi < qi+1, and we may choose β ∈ N and r ∈ R[t, x]

such that l is minimal. We now use the weighted homogeneity of in(−1,w)(π
−1 I ) to

show that l = 0, which means that in(−1,w)(π
−1 I ) contains the monomial tβ xα for

some β ∈ N.

Assume l > 0. Setting d := deg(−1,w)(xα) and rq = 0 for q /∈ {q1, . . . , ql}, we

obtain the following weighted homogeneous layers of f in weighted degree q − β:

fq−β :=

{
tβ ·

(
t · rq+1 − rq

)
, if q �= d

tβ ·
(
xα + t · rd+1 − rd

)
, if q = d.

Since in(−1,w)(π
−1 I ) is weighted homogeneous, all fq−β are contained in this ideal.

Now if ql was strictly bigger than d, we would get fql−β = −tβ · rql
∈

in(−1,w)(π
−1 I ), and thus

tβ ·
(
xα + (t − 1) · (rq1 + . . . + rql−1

)
)

= f − tβ(t − 1) · rql
∈ in(−1,w)(π

−1 I ),

contradicting our choice of β and r with minimal l.

Similarly, if q1 was less than or equal to d, we would get fq1−1−β = tβ · t · rq1 ∈
in(−1,w)(π

−1 I ), and thus

tβ+1 ·
(
xα + (t − 1) · (rq2 + . . . + rql

)
)

= t · f − tβ+1(t − 1) · rq1 ∈ in(−1,w)(π
−1 I ),

again contradicting our choice of β and r with minimal l.

Hence, ql ≤ d < q1, which, however, contradicts qi < qi+1. ⊓⊔

Corollary 2 If I � K [x] defines an irreducible subvariety of (K ∗)n of dimension d,

then T (π−1 I ) is the support of a pure polyhedral fan of dimension d + 1 connected

through codimension one.

Proof Follows immediately from Definition 3 and Theorem 4, which imply that

T (π−1 I ) is the polyhedral fan over T ν(I ). And by Theorem 3, the latter is pure

of dimension d and connected through codimension one. ⊓⊔

We close the section with a couple of examples of tropical varieties over K [x], their

counterparts in R�t�[x] and how they can be computed in Singular.

Example 4 Let K := Q((ε)) be the field of Laurent series, equipped with is natural

valuation ν, and let I � K [x, y] be the principal ideal generated by (x + y +1) ·(ε2x +
y + ε). Then Tν(I ) is the union of two tropical lines, one with vertex at (0, 0) and one

with vertex at (1,−1). Setting R := Q[t] ⊆ OK = Q�t�, Theorem 4 implies that for
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{−1} × R
2

(0, 0, 0)

T (π−1I)

Tν(I)

Fig. 1 T (π−1 I ) as polyhedral fan over Tν (I )

(−1, 1, −1, 1, −1)

(−2, −1, 1, −1, 1)

(0, −3, 1, 1, 1)

(0, 1, 1, −3, 1)

(0, 1, −3, 1, 1)

(0, 1, 1, 1, −3)

Fig. 2 T (〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4, 2 − t〉)

any weight vector w = (wt , wx , wy) ∈ R<0 × R2 in the lower open half-space we

have

w ∈ T (π−1 I ) ⇐⇒
(

wx

|wt |
,

wy

|wt |

)
∈ Tν(I ).

Hence T (π−1 I ) is the polyhedral fan over Tν(I ) as shown in Fig. 1. It consists of

6 rays and 8 two-dimensional cones in a way that the intersection with the affine

hyperplane yields Tν(I ).

Example 5 ([6, §3.6]) Consider I := 〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4〉 �

Q[x1, . . . , x4] ⊆ Q2[x1, . . . , x4], whose preimage is given by

π−1 I = 〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4, 2 − t〉 � Z�t�[x1, . . . , x4].

The tropical variety of the preimage is combinatorially of the form shown in

Fig. 2 and invariant by translation under the one-dimensional subspace generated

by (0, 1, 1, 1, 1). Hence, each of the six drawn vertices represents a two-dimensional

cone and each of the five edges represents a three-dimensional cone.

Intersecting with the affine hyperplane {−1}×R4, we obtain a polyhedral complex

as shown in the top left of Fig. 3, the vertices of Fig. 2 in {0} × R4 becoming points

at infinity.
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<

<

>

>

(1, −1, 1, −1)

1

2
(−1, 1, −1, 1)

(−3, 1, 1, 1)

(1, 1, −3, 1)

(1, −3, 1, 1)

(1, 1, 1, −3)

Tν2
(I)

−

1

4
(1, 1, 1, −3)

<

<

>

>

(−3, 1, 1, 1)

(1, −3, 1, 1)

(1, 1, −3, 1)

(1, 1, 1, −3)

Tν5
(I)

<

<

>

>

1

2
(−1, −1, 1, 1)

1

2
(1, 1, −1, −1)

(−3, 1, 1, 1)

(1, −3, 1, 1)

(1, 1, −3, 1)

(1, 1, 1, −3)

Tν3
(I)

(0, 0, 0, 0)

<

<

>

>

(−3, 1, 1, 1)

(1, −3, 1, 1)

(1, 1, −3, 1)

(1, 1, 1, −3)

Tνp
(I) = T (I) for p > 7

Fig. 3 Tν (I ) for all p-adic valuations and the trivial valuation

SINGULAR /
A Computer Algebra System for Polynomial Computations / Version 4.1.1

0<
by: W. Decker , G.-M. Greuel, G. Pfister , H. Schoenemann \ Feb 2018
FB Mathematik der Universitaet , D-67653 Kaiserslautern \

> LIB "tropical .lib";

> ring r = 0,x(1..4) ,dp;
> ideal I =

. x(1)+2*x(2)-3*x(3),

. 3*x(2)-4*x(3)+5*x(4);

> number p = 2;
> tropicalVariety(I,p);
RAYS

-2 -1 1 -1 1 # 0
-1 1 -1 1 -1 # 1

0 -3 1 1 1 # 2
0 1 -3 1 1 # 3
0 1 1 -3 1 # 4

0 1 1 1 -3 # 5

LINEALITY_SPACE

0 -1 -1 -1 -1 # 0

F_VECTOR
1 6 5

MAXIMAL_CONES
{0 1} # Dimension 3

{0 2}
{0 4}

{1 3}
{1 5}

Fig. 4 Computing tropical varieties over fields with valuation in Singular

Figure 3 further shows the tropical varieties of I �Q[x1, . . . , x4] for other possible

valuations on Q. We see that regardless of the valuation, all tropical varieties share

the same recession fan, as was proven by Gubler [11]. The latter is also necessarily

the tropical variety under the trivial valuation. Note that for p sufficiently large, the

tropical varieties over Qp coincide with the tropical variety under the trivial valuation.

This is because p is simply too large for p − t to matter in any of our standard basis

computations that arise in the computation of T (π−1 I ). In the theory of modular

Gröbner bases [4], these p are referred to as good primes while the other p are referred

to as bad primes.

Figure 4 shows the input and output of the Singular computation of Tν2(I ). Cur-

rently, the computation of tropical varieties is limited to the fields C{{t}} and Qp and

to ideals defined over Q.
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3 Tracing Gröbner Complexes to a Trivial Valuation

In this section, we show how the Gröbner complexes of ideals in K [x] can be traced

back to the Gröbner fans of ideals in R�t�[x]. We show how the latter induces a

refinement of the former and how to determine whether two Gröbner cones map to

the same Gröbner polyhedron. We close this section with a remark on p-adic Gröbner

bases as introduced by Chan and Maclagan [7].

Definition 4 (Gröbner polyhedra, Gröbner complexes over valued fields) For a homo-

geneous ideal I � K [x] and a weight vector w ∈ Rn , we define its Gröbner polyhedra

to be

Cν,w(I ) := cl
(
{v ∈ Rn | inν,v(I ) = inν,w(I )}

)
⊆ Rn .

We refer to the collection �ν(I ) := {Cν,w(I ) | w ∈ Rn} as the Gröbner complex of

I .

Theorem 5 ([18, Theorem 2.5.3]) Let I � K [x] be a homogeneous ideal. Then all

Cν,w(I ) are convex polytopes and �ν(I ) is a finite polyhedral complex.

Definition 5 For an x-homogeneous ideal I � R�t�[x], i.e. an ideal generated by

elements which are homogeneous if considered as polynomials in x with coefficients

in R�t�, and a weight vector w ∈ R<0 × Rn we define its Gröbner cone to be

Cw(I ) := cl
(
{v ∈ R<0 × Rn | inv(I ) = inw(I )}

)
.

We refer to the collection �(I ) := {Cw(I ), Cw(I ) ∩ {0} × Rn | w ∈ R<0 × Rn} as

the Gröbner fan of I .

Proposition 2 ([20, Theorem 3.19]) Let I � R�t�[x] be an x-homogeneous ideal. Then

all Cw(I ) are polyhedral cones and �(I ) is a finite polyhedral fan.

Corollary 3 The map {−1} × Rn ∼−→ Rn, (−1, w) 
−→ w is compatible with the

Gröbner fan �(π−1 I ) and the Gröbner complex �ν(I ), i.e. it maps the restriction of

a Gröbner cone C(−1,w)(π
−1 I ) ∩

(
{−1} × Rn

)
into the Gröbner polytope Cν,w(I ).

Proof Follows directly from Proposition 1, as two weight vectors with the same initial

ideal of π−1 I � R�t�[x] yield the same initial ideal of I � K [x]. ⊓⊔

Note that it may happen that several cones are mapped into the same Gröbner

polytope, i.e. that the image of the restricted Gröbner fan is a refinement of the Gröbner

complex (see Example 6).

We now recall the notion of initially reduced standard bases of ideals in R�t�[x]
from [19] and how they determine the inequalities and equations of Gröbner cones as

shown in [20]. We then use these to decide whether two Gröbner cones are mapped

to the same Gröbner polytope and, by doing so, show that no separate standard basis

computation is required for this.
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Definition 6 (initially reduced standard bases) Fix the lexicographical ordering >

such that x1 > . . . > xn > 1 > t . Given a weight vector w ∈ R<0 × Rn , we define

the weighted ordering >w to be

tβ xα >w tδxγ :⇐⇒ w · (β, α) > w · (δ, γ ) or

w · (β, α) = w · (δ, γ ) and tβ xα > tδxγ .

For g ∈ R�t�[x], the leading term LT>w (g) is the unique term of g with maximal

monomial under >w and for I � R�t�[x], the leading ideal LT>w (I ) is the ideal

generated by the leading terms of all its elements. A finite subset G ⊆ I is called a

standard basis of I with respect to >w, if the leading terms of its elements generate

LT>w (I ).

Suppose G = {g1, . . . , gk} with gi =
∑

α∈Nn gi,α · xα , gi,α ∈ R�t�. We call G

initially reduced, if the set

G ′ :=
{ ∑

α∈N

LT>(gi,α) · xα
∣∣∣ i = 1, . . . , k

}
⊆ R[t, x],

is reduced in the classical sense, i.e. no term in the tail of an element of G ′ is in the

ideal generated by the leading terms of the elements in G ′.

Proposition 3 ([20, Algorithm 4.6]) Let I � R�t�[x] be an x-homogeneous ideal and

w ∈ R<0 × Rn a weight vector. Then an initially reduced standard basis G of I with

respect to >w can be computed using a finite sequence of arithmetic operations in

R�t�[x]. Moreover, if I is generated by elements in R[t, x], then it can be computed

using a finite sequence of arithmetic operations in R[t, x].

Proposition 4 ([20, Proposition 3.8, 3.11]) Let I � R�t�[x] be an x-homogeneous

ideal, let w ∈ R<0 × Rn be a weight vector and let G an initially reduced standard

basis of I with respect to >w. Then {inw(g) | g ∈ G} is an initially reduced standard

basis of inw(I ) with respect to >w, and the Gröbner cone of I around w is given by

Cw(I ) = cl
(
{v ∈ R<0 × Rn | inv(g) = inw(g) for all g ∈ G}

)
.

We now show that our standard bases of π−1 I � R�t�[x] yield Gröbner bases of

initial ideals of I � K [x], allowing us to immediately decide whether two Gröbner

cones of the former are mapped to the same Gröbner polytope of the latter.

Corollary 4 Let I � K [x] be a homogeneous ideal, let w ∈ Rn be a weight vector

and let G be an initially reduced standard basis of π−1 I with respect to the weighted

ordering >(−1,w). Then

{
in(−1,w)(g)|t=1

∣∣∣ g ∈ G
}

is a standard basis of inν,w(I ) with respect to the fixed lexicographical ordering >

restricted to monomials in x.
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Proof By Proposition 4, the set in(−1,w)(G) := {in(−1,w)(g) | g ∈ G} is an initially

reduced standard basis of in(−1,w)(π
−1 I ) with respect to >(−1,w). And because it is

homogeneous with respect to the weight vector (−1, w), it is also an initially reduced

standard basis with respect to >. By choice of >, the set in(−1,w)(G)|t=1 remains a

standard basis of in(−1,w)(π
−1 I )|t=1 with respect to the restriction of > to mono-

mials in x . And since p ∈ in(−1,w)(G)|t=1, in(−1,w)(G)|t=1 is a standard basis of

in(−1,w)(π
−1 I )|t=1 with respect to the restriction of >. ⊓⊔

Example 6 Consider the preimage π−1 I �Z�t�[x, y, z] of the ideal I = 〈2y + x, z2 +
y2〉 � Q2[x, y, z] and the two weight vectors w = (1, 3, 7), v = (1, 10, 5) ∈ R3. Fix

a lexicographical tiebreaker > with x > y > z > 1 > t .

The initially reduced standard basis of π−1 I with respect to >(−1,w) and >(−1,v)

is the following two sets, respectively (initial forms underlined):

G(−1,w) = {2 − t, t y + x, z2 + y2}, G(−1,v)

= {2 − t, t y + x, xy − t z2, t2z2 + x2, y2 + z2},

yielding the following Gröbner basis of inν,w(I ) and inν,v(I ) under >:

Gν,w = {y, z2}, Gν,v = {y, xy, z2, y2}.

One immediately sees that both initial ideals coincide, meaning that the two Gröbner

cones C(−1,w)(π
−1 I ) and C(−1,v)(π

−1 I ) are mapped to the same Gröbner polytope

Cν2,w(I ) = Cν2,v(I ).

Remark 1 (p-adic Gröbner bases) By [18, Sect. 2.4], a Gröbner basis of an ideal

I � K [x] over valued fields with respect to a weight vector w ∈ Rn is a finite

generating set whose initial forms generate the initial ideal inν,w(I ). By Corollary 4,

π(G) is such a Gröbner basis if G ⊆ π−1 I � R�t�[x] is a standard basis under the

monomial ordering >w.

Lines 1 to 6 in Fig. 5 illustrate the computation of a Gröbner bases over the 2-

adic numbers in Singular: Line 3 creates the Katsura(4) ideal in x1, . . . , x4, Line 5

homogenises it on x0 and adds the generator 2 − t , and Line 6 computes its standard

basis. Note that ds is a weighted ordering with weight vector (−1, . . . ,−1,−1) which

1 LIB "poly.lib"; LIB "gfan.lib"; // for katsura() and initial() commands
2 ring r = 0,(x1,x2,x3,x4),dp;

3 ideal I = katsura (4);
4 ring s = integer ,(t,x0,x1,x2,x3,x4),ds;
5 ideal I = homog(imap(r0 ,I),x0), 2-t;

6 ideal stdI = std(I);
7 option( infRedTail);

8 stdI = reduce(stdI ,2-t);
9 ideal inI = initial (stdI , intvec (-1,0,0,0,0 ,0));

10 inI = subst(inI ,t,1);

11 ring r2 = 2,(x0,x1,x2,x3,x4,x5 ,x6),dp;
12 ideal inI = imap(r1,inI);

Fig. 5 Computing Gröbner bases over valued fields in Singular

123



796 Foundations of Computational Mathematics (2020) 20:783–800

Table 1 Timings in seconds

unless aborted after 1 CPU day
Examples gfan Macaulay2 Sage Singular

Cyclic(4) – 1 10 1

Cyclic(5) – – – 1

Cyclic(6) – – – 2

Katsura(3) 1 1 1 1

Katsura(4) – – 10 1

Katsura(5) – – 190 1

Katsura(6) – – 2900 –

Chan 1 1 4 –

is equivalent to a weighted ordering with weight vector (0, . . . , 0,−1) since the ideal

is homogeneous in x0, . . . , x4. Substituting t with 2 in stdI yields a Gröbner basis,

however the monomials will be out of order since the ordering ignores the 2-adic

valuation.

Lines 7 to 12 in Fig. 5 construct the initial ideal: Line 7 forces Singular to do

tail reductions even though this might cause infinite loops in non-global orderings.

Line 8 reduces stdI with respect to 2 − t , so that the minimal degrees in t reflect the

2-valuations. Line 9 computes the desired initial form, and Line 10 replaces all t with

1 so that Line 12 can safely pass to a polynomial ring without t over the residue field.

Table 1 shows timings of the gfan command gfan_padic –groebnerBasis

by Anders Jensen [14], the Macaulay2 Package GroebnerValuations by

Andrew Chan [7,10], an implementation of a p-adic Matrix-F5 algorithm by Tris-

tan Vaccon in Sage [28,34], and the standard basis engine of Singular over integers

under mixed orderings [8]. We consider the following examples:

Cyclic(n) In Q2[x0, . . . , xn], the cyclic ideal in the variables x1, . . . , xn , homogenised

using the variable x0, and weight vector (0, . . . , 0).

Katsura(n) In Q2[x0, . . . , xn], the Katsura ideal in the variables x1, . . . , xn ,

homogenised using the variable x0, and weight vector (0, . . . , 0).

Chan In Q3[x0, . . . , x4], the ideal 〈2x2
1+3x1x2+24x3x4, 8x3

1+x2x3x4+18x2
3 x4〉

and weight vector (−1,−11,−3,−19) taken from [6, §3.6].

All computations were done on a server running Gentoo-3.16.5 with Intel Xeon E5-

2690 processors. Computations exceeding 1 CPU day were aborted. Note that the

computations in Sage were done up to a finite precision of p50 and that the cor-

rectness of the result could only be verified for the examples for which either gfan,

Macaulay2 or Singular finished.

4 Computing the Preimage

This article was dedicated to show how Tν(I ) can be computed via T (π−1 I ), however

until now we have not addressed how to determine the preimage π−1 I in the first place.
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We therefore end the article with two results: The first shows that π−1 I can be obtained

by a saturation, and the second describes how to compute it.

Lemma 1 Let I � K [x] be an ideal, and let { f1, . . . , fk} ⊆ I ∩OK [x] be a generating

set over the valuation ring. Since π : R�t�[x] → OK [x] is surjective, there are

f ′
1, . . . , f ′

k ∈ R�t�[x] such that π( f ′
i ) = fi ∈ R[x]. Then

π−1 I =
(
〈 f ′

1, . . . , f ′
k〉 + 〈p − t〉

)
: p∞

� R�t�[x],

where (·) : p∞ denotes the saturation of the ideal with respect to p.

Proof The ⊇ inclusion is obvious, as p − t is mapped to 0 and p is invertible in K .

For the converse inclusion, let g ∈ π−1 I . Then there are q1, . . . , qk ∈ K [x] such

that

π(g) = q1 · f1 + . . . + qk · fk ∈ K [x],

which means that for a sufficiently high power l ∈ N we have

pl · π(g) = plq1︸︷︷︸
∈OK [x]

· f1 + . . . + plqk︸︷︷︸
∈OK [x]

· fk ∈ OK [x].

Since the map π : R�t�[x] → OK [x] is surjective, there exist q ′
1, . . . , q ′

k ∈ R�t�[x]
such that

pl · π(g) = π(q ′
1 · f ′

1 + . . . + q ′
k · f ′

k),

or rather

pl · g − q ′
1 · f ′

1 + . . . + q ′
k · f ′

k ∈ ker(π) = 〈p − t〉.

Thus pl · g ∈ 〈 f ′
1, . . . , f ′

k〉 + 〈p − t〉, and hence

g ∈ (〈 f ′
1, . . . , f ′

k〉 + 〈p − t〉) : p∞. ⊓⊔

The next example shows that 〈 f1, . . . , f ′
k〉 in Lemma 1 is not necessarily saturated

with respect to p, which is why Proposition 5 shows how to compute it.

Example 7 Consider I = 〈 f1, f2〉 � Q2[x, y], where f1 = x2 + 1
2

y, f2 = y2 + 1
2

y.

Then g = x2 − y2 ∈ I ∩ Z2[x, y] and 2g ∈ 〈 f1, f2〉 � Z2[x, y], but g /∈ 〈 f1, f2〉 �

Z2[x, y].

Lemma 2 Given the same conditions as in Lemma 1, we have

π−1 I =
(
〈 f ′

1, . . . , f ′
k〉 + 〈p − t〉

)
: t∞ � R�t�[x].
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Proof Follows directly from Lemma 1, since p − t ∈ 〈 f ′
1, . . . , f ′

k〉 + 〈p − t〉 implies

that its saturation with respect to p coincides with the saturation at t . ⊓⊔

The following proposition shows how to compute the a standard basis of the preim-

age. It requires the notion of strong standard bases as in [25, Definition A.1.1.8]. The

result and its proof is a straightforward generalisation of [31, Lemma 12.1].

Proposition 5 Let I � K [x] be an ideal, and let { f1, . . . , fk} ⊆ I ∩ OK [x] be a

generating set of I in the valuation ring. Since π : R�t�[x] → OK [x] is surjective,

there are f ′
1, . . . , f ′

k ∈ R�t�[x] such that π( f ′
i ) = fi ∈ OK [x].

Let G ⊆ 〈 f ′
1, . . . , f ′

k〉 + 〈p − t〉 be a strong standard basis with respect to some

weighted ordering >w with weight vector w := (−1, 0, . . . , 0). Then

{ g

tk

∣∣∣ g ∈ G, tk highest power of t dividing g
}

is a strong standard basis of π−1 I with respect to >w.

Proof By Lemma 2, we have G ⊆ π−1 I . It remains to show that for any f ∈ π−1 I

there exists a g ∈ G such that LM>w (g) divides LM>w ( f ). For that, observe that for

any f ∈ R�t�[x] our ordering satisfies

t divides LM>w ( f ) ⇐⇒ t divides f .

Let f ∈ π−1 I . By Lemma 2, t l f ∈ 〈 f ′
1, . . . , f ′

k〉 + 〈p − t〉 for l ∈ N sufficiently big.

Since G is strong, there is a g ∈ G such that LM>w (g) divides LM>w (t l f ). Let tk be

the highest power of t dividing g, so that g/tk ∈ G. Then LM>w (g/tk) has no common

divisor with t l , as by our first observation that would contradict the maximality of k.

Hence it divides LM>w ( f ). ⊓⊔

Example 8 Let I be the ideal Katsura(4) from Remark 1. Figure 6 shows the ini-

tially reduced standard basis of the computation in Fig. 5. By Proposition 5, dividing

stdI[6] and stdI[7] by t yields a standard basis of the preimage. This shows

that stdI does not generate the entire preimage in Z�t�[x1, . . . , x4].

> stdI;
stdI[1]=2-t;

stdI[2]=x0 -x1-tx2 -tx3-tx4
stdI[3]=x1x2 -tx2^2-tx2x4+tx3x4
stdI[4]=x2^2-x0x3+tx1x3+tx2x4

stdI[5]=x1^2x3+tx0x2x3 -3 tx1x2x3 +tx2^2x3-tx0x3 ^2+tx1x3^2
+tx0x2x4 -tx0x3x4 +tx1x3x4 -tx2x3x4 -t^2x2^2x4

stdI[6]=tx3^2+tx1x4 -tx4^2+t^2 x2x3
stdI[7]=tx1^3x4-tx1^2x4^2+t^2x1^2x2x3 -t^2x0x2x3 ^2+3t^2x1x2x3 ^2

-t^2x2^2x3^2+t^2x0x3^3-t^2x1x3^3-t^2 x0x2x3x4 +t^2x0x3^2x4
-t^2x1x3^2x4+t^2x2x3^2x4+t^3x2^2x3x4

Fig. 6 Standard basis for computing a preimage Singular
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