
Computing Visual Attention from SceneDepth

Abstract

Visual attention is the ability to rapidly detect the inter-
esting partsof a given scene. Inspired by biological vision,
the principle of visual attention is used with a similar goal
in computer vision. Several previousworks deal with the
computation of visual attention from images provided by
standard video cameras, but little attention has been de-
voted so far to scene depth as source for visual attention.
The investigation presented in this paper aims at an exten-
sionof thevisual attentionmodel to thescenedepth compo-
nent. A first part of thepaper is devoted to the integration
of depth in thecomputationalmodel build aroundconspicu-
ity and saliency maps. A second part is devoted to exper-
imental work in which results of visual attention,obtained
fromtheextended model andfor various3Dscenes, arepre-
sented. Theresultsspeak for theusefulnessof theenhanced
computationalmodel.

1. Introduction

Visual attention is the ability to rapidly detect the inter-
esting parts of a given scene. Psychophysical studies show
that it playsa fundamental role in human vision.Dueto the
biological structureof theretina, composed of a high reso-
lution central part, the fovea,and a low resolution periph-
eral one, visual attention guides eye movements to place
the fovea on the interesting part of the scene. The part of
the scene imaged onto the fovea can then be processed in
more details. Some biologically plausiblemodels of atten-
tion have beenpresented [6] [2] [5].
Visualattentioncanbeauseful preprocessing stepinacom-
puter visiontask. Usingsuch astep in computer visionsys-
tems permits a rapid selection of a subset of the available
sensory informationbeforefurther processing.Theselected
locationsaresupposed to represent theconspicuouspartsof
the scene, on which further computer vision tasks can fo-
cus. Therefore, an obviousapplication of visual attention is
to reduce the computation cost of high level tasks like seg-
mentation and object recognition, which are known to be
complex, whenachieved in astraightforwardway. Fieldsof
computer vision that can benefit from this task are, for ex-

ample, industrial quality control,surveillance, autonomous
mobilesystems,etc.
Thus, several computational models of attention have been
presented in previousworks[4] [1]. Most of themarebased
on the feature integration principle[6]. Numerousfeatures
are extracted from the scene. According to eachfeature,
conspicuouspartsof theimagearedetected. A combination
of thedetected conspicuitiesgivesriseto thefinal map of at-
tention named saliency map. These saliency-based models
apply to color images as input, as typically provided by a
video camera. The considered features are, typically, in-
tensity, color and intensity gradient components and may
includemulti- resolution.
Little attention has been devoted so far to scene depth as
sourcefor visual attention.Thisisconsidered aweeknessof
the models because depth or 3D vision is an intrinsic com-
ponent of biological vision. As depth appears at an early
stage in thevisual system, it appears to contribute to visual
attention.A further reason to includedepth in thecomputa-
tional model of visual attention isthepresent availability of
3D range cameras.
A previouswork where depth is consideredasa sourcefor
attention is presented in [3]. A depth target mask, which
correspondsto the depth conspicuity map in the saliency-
based model of attention,iscomputed, based onhistogram-
ming.Peaksobserved on thehistogramof thedisparity map
are considered as conspicuouslocations. This model has
been used for example, to detect the closest, to thesensor,
moving object. A limitation of the presented model is its
task-dependency and the absence of a data-drivencompet-
itive mechanism to integrate the extracted featuresinto the
final map of attention.
The investigation presented in this paper aims at an ex-
tension of thebottom-up,task-independent, saliency-based
model of visual attention to thescene depth component. A
first part of thepaper isdevoted to theintegrationof depth in
thecomputational model of attentiondeveloped forpureim-
age vision. A second part is devoted to experimental work
in which results of visual attention, obtained from the ex-
tended model and for various3D scenes, are presented.
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2. Visual attention model

2.1. Saliency-based model
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Figur e 1. Schemeof acomputationalmodelof attention.

According to a generally admitted model of visual per-
ception [4], a visual attention task canbe achieved in three
main steps (Fig. 1).
1) First, a number (n) of features are extracted from the
scene by computing theso called featuremaps. Suchamap
represents the image of the scene, based on a well-defined
feature. This leads to a multi-feature representation of the
scene. The featuresmost usedin previousworksare inten-
sity, color components, and intensity gradient components
(normandorientation).
2) In a second step, each feature map is transformed in
its conspicuity map. Each conspicuity map highlights the
parts of the scene that strongly differ, according to a spe-
cific feature, from its surrounding. In biologically plau-
sible models, this is usually achieved by using a center-
surround-mechanism. Practically, this mechanism can be
implemented with a difference-of-Gaussians-filter, which
can be applied on feature maps to extract local activities
for eachfeature type.
3) In the last stageof theattention model, then conspicuity
maps are integrated together, in a competitive way, into a
saliency mapS in accordancewith equation 1.

S =
nX

i=1

wiCi (1)

The competition between conspicuity maps is usually es-
tablished by selecting weightswi according to a weighting
functionw, like theonepresented in [1]: w = (M � m)2,
whereM is the maximum activity of the conspicuity map
and m is the average of all its local maxima. w mea-
sureshow themost active locationsdiffer from theaverage.
Thus, thisweightingfunctionpromotesconspicuity mapsin
which asmall number of strong peaks of activity ispresent.
Mapsthat contain numerouscomparablepeak responsesare

demoted. It is obvious that this competitive mechanism is
purely data-driven and does not requireany a priori knowl-
edgeabouttheanalyzed scene.

2.2. Mult i-resolution visual attention

A visual attention task has to detect interesting objects,
regardless of their sizes. Thus, a multi-scale conspicuity
operator is required. It has been shown in [4], that applying
variablesizecenter-surroundfilter on fixed sizeimages, has
a high computational cost. An interesting method to im-
plement the center-surround-mechanism, which is used to
compute the conspicuity maps, has been presented in [1].
This method is based on a multi- resolution representation
of images. For eachfeature, nine spatial scales are cre-
atedusing gaussianpyramids, which progressively lowpass
filter and subsample the feature map. Center-Surround is
thenimplemented as thedifferencebetweenfineand coarse
scales. The center is a pixel at scale c 2 f2; 3; 4g and the
surroundis the corresponding pixel at scale s = c + � and
� 2 f3; 4g. Consequently, six mapsF(c; s) are computed
for eachpyramidP (Eq. 2).

F(c; s) = jP(c)�P(s)j (2)

A weighted sum of the six maps F(c; s) results into a
unique conspicuity map for each pyramid and, conse-
quently, for eachfeature. The maps are weighted by the
same weighting functionw as described above.

3. Visual attention with depth

In addition to visual features likeintensity, color compo-
nents and intensity gradient components, thissection intro-
duces depth as new input. Two problems must be solved in
order to integratedepth in themodel of attention: 1) Which
features, relatedto depth, canbe integratedin themodel. 2)
How canthese featuresbe integrated.

3.1. Integration of Depth into themodel of attention

The basic idea is to simply extend the multi- resolution
model of visual attention, described above, to the scene
depth component. Given m suitable features related to
depth, the integration process can be achieved as follow.
First, the feature maps are extracted from the depth data
acquired by a rangefinder. The corresponding conspicuity
mapsare then computed. Hence, besides then conspicuity
maps computed from the color image, m additional ones,
related to depth, are available. The integration module has
to combine n + m conspicuity maps in order to compute
the saliency map and, consequently, n + m features are
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taken into account (Fig. 2). Equation 1, which has been
used in classical models to compute the saliency map, can
be adapted to:

S =
n+mX

i=1

wiCi (3)
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Figure 2. Scheme of a computational model of attention,
considering depth.

3.2. Choice of features

This work considers three potential features related to
depth.
1) Depth: measures the distance from camera to the ob-
jects in the scene. It is obviously relevant and directly avail-
able from the sensor data. Thus, no additional operators are
needed to extract this feature.
2) Mean curvature: is an intrinsic surface feature that pro-
vides useful information about the geometry of the scene
objects. As a second differential order feature, mean cur-
vature has, however, a remarkable disadvantage, i.e. its
sensitivity to noise and non significance on depth discon-
tinuities. The disadvantage related to noise sensitivity can
be overcome through applying smoothing operators on the
range image. Depth discontinuities have to be detected in
order to compute mean curvature only for continuous sur-
faces. Thus, integrating mean curvature in the computa-
tional model of visual attention requires some additional
preprocessing operations.
3) Depth Gradient: This feature vector, based on first or-
der derivative, can be an efficient means to detect important
depth changes in the scene like angles and corners.
Experiments were carried on in order to assort the useful-
ness of these various features. Observations made with var-
ious real and synthetic range images tend to show a rank-
ing of the features which is depth, mean curvature, gradient
norm in an order of decreasing usefulness.
Figure 3 illustrates some observations. The first scene (I)
contains no depth discontinuities, but important curvature
variation. Thus, mean curvature contributes strongly to the

1) 2) 3)

a)

b)
c)

Scene I

a)

b)
c)

Scene II

Figure 3. Computing the saliency map using1) depth,
2) mean curvatureand3) depth gradient norm. a) feature
maps, b) corresponding conspicuity maps and c) saliency
map.

computation of the saliency map. The second experiment
(scene II) shows the sensitivity of mean curvature to depth
discontinuities. It shows also the lower significance of gra-
dient norm.
In the experiments presented in next section only the fea-
turedepthhas been , finally, considered. Because of its low
usefulness in the analysis of the considered scenes, depth
gradient norm has not been considered and mean curvature
has not been taken into account because of the current un-
availability of the required additional operators.

4. Experiments and evaluation

This section presents some targeted experiments carried
on in order to validate the depth enhanced computational
model of visual attention and to show the usefulness of
depth information in a visual attention task. Two features
are considered in these experiments,color anddepth.
Each scene considered in the experiments (Fig. 4) is repre-
sented by its color and its range image (left). Next to each
feature map, the corresponding conspicuity map is repre-
sented. The two conspicuity maps are then combined, ac-
cording to (Eq. 3), into the saliency map. Clearly, depth
contributes significantly to visual attention since the depth
enhanced model detects depth locations which stand out
from their surrounding. In scenea)one attention spot is de-
tected that stems from color contrast. In scenec) andd) two
spots of attention are detected stemming from color contrast
and depth contrast. Each spot is caused by a different fea-
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ture. Thus, both features contribute, equally, to the saliency
map.
Regarding the model’s operation, let us analyze sceneb).
There, despite the presence of high color contrast, only
depth contrast contributes to the detection of one significant
spot of attention. This is due to the competition between
the two features, which takes place during their integration
process through the weightwi that is assigned to each con-
spicuity map. The contribution of a feature to the saliency
map increases with the assigned weight. The weighting
function used in the saliency-based model of attention pro-
motes conspicuity maps that contain one peak response. It,
however, demotes maps that contain several peak responses.
When both conspicuity maps contain, however, almost the
same number of peak responses, they are both promoted by
the weighting function. This explains the results of the ex-
perimentsc) andd), where each conspicuity map contains
one remarkable peak response.
By showing the clear usefulness of depth in scene analysis
and its successful operation in a two-channel competitive
task of visual attention, these experiments validate the depth
enhanced computational model of attention.

5. Conclusion

This paper proposed an extension of the saliency-based
computational model as a means to also consider scene
depth as a feature for visual attention. In order to test the
model, visual attention, computed from the two features
color and depth, was analyzed for a number of scenes. The
results validate the model, namely by showing the signifi-
cance and the effectiveness of channel competition. This is
considered a key element for approaching further applica-
tions involving a larger number of features.
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Figure 4. Detecting conspicuous objects from various 3D
scenes, usingcolor anddepth.
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