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Abstract

Several new algorithms for visual correspondence based
on graph cuts [7, 14, 17] have recently been developed.
While these methods give very strong results in practice,
they do not handle occlusions properly. Specifically, they
treat the two input images asymmetrically, and they do not
ensure that a pixel corresponds to at most one pixel in the
other image. In this paper, we present a new method which
properly addresses occlusions, while preserving the advan-
tages of graph cut algorithms. We give experimental re-
sults for stereo as well as motion, which demonstrate that
our method performs well both at detecting occlusions and
computing disparities.

1. Introduction

In the last few years, a new class of algorithms for visual
correspondence has been developed that are based on graph
cuts [7, 14, 17]. These methods give very strong experimen-
tal results; for example, a recent comparative study [18] of
stereo algorithms found that one such algorithm gave the
best overall results, with approximately 4 times fewer er-
rors than standard methods such as normalized correlation.
Unfortunately, existing graph cut algorithms do not treat oc-
clusions correctly. In this paper, we present a new graph cut
algorithm that handles occlusions properly, while maintain-
ing the key advantages of graph cuts.

Occlusions are a major challenge for the accurate com-
putation of visual correspondence. Occluded pixels are vis-
ible in only one image, so there is no corresponding pixel in
the other image. For many applications, it is particularly im-
portant to obtain good results at discontinuities, which are
places where occlusions often occur. Ideally, a pixel in one
image should correspond to at most one pixel in the other
image, and a pixel that corresponds to no pixel in the other
image should be labeled as occluded. We will refer to this
requirement as uniqueness.

Most algorithms for visual correspondence do not en-

force uniqueness. (We will discuss algorithms that enforce
uniqueness when we summarize related work in section 4).
It is common to compute a disparity for each pixel in one
(preferred) image. This treats the two images asymmet-
rically, and does not make full use of the information in
both images. The recent algorithms based on graph cuts
[7, 14, 17] are typical in this regard, despite their strong
performance in practice.

The new algorithm proposed in this paper is based on
energy minimization. Our method is most closely related
to the the expansion move algorithm of [8], which can find
a strong local minimum of a natural class of energy func-
tions. We address the correspondence problem by first con-
structing a problem representation and an energy function,
such that a solution which violates uniqueness will have in-
finite energy. Constructing an appropriate energy function
is non-trivial; for example, there are natural energy func-
tions where it is NP-hard to even compute a local minimum.
We then use graph cuts to compute a strong local minimum
for our energy function.

This paper begins with a discussion of the expansion
move algorithm of [8]. We then give an overview of our
algorithm, in which we discuss our problem representation
and our choice of energy function, and show how they en-
force uniqueness. In section 4 we survey some related work,
focusing on other algorithms that guarantee uniqueness. In
section 5 we show how to compute a local minimum of our
energy function in a strong sense using graph cuts. Exper-
imental results are given in section 6. Detailed proofs are
omitted to save space, but are contained in a technical re-
port [13].

2. Expansion moves

Let L be the set of pixels in the left image, let R be the
pixels in the right image, and let P be the set of all pixels:
P � L � R. The pixel p will have coordinates �px� py�.
In the classical approach to stereo, the goal is to compute,
for each pixel in the left image, a label fp which denotes a
disparity value for a pixel p. The energy minimized in [8] is



the Potts energy1 of [16]

E�f� �
X
p�L

Dp�fp� �
X

p�q�N

Vp�q � T �fp �� fq�� (1)

Here Dp�fp� is a penalty for the pixel p to have the dis-
parity fp, N is a neighborhood system for the pixels of the
left image and T ��� is 1 if its argument is true and 0 other-
wise. Minimizing this energy is NP-complete, so [8] gives
two approximation algorithms. They involve the notion of
moves.

Consider a particular disparity (or label) �. A configu-
ration f � is said to be within a single �-expansion move of
f if for all pixels p � L either f �p � fp or f �p � �. Now
consider a pair of disparities �, �, � �� �. A configuration
f � is said to be within a single ��-swap move of f if for all
pixels p � L that had labels � or � either f �p � � or f �p � �,
and for all other pixels f �p � fp.

The crucial fact about these moves is that for a given
configuration f it is possible to efficiently find a strong lo-
cal minumum of the energy; more precisely, the lowest en-
ergy configuration within a single �-expansion or ��-swap
move of f , respectively. These local improvement opera-
tions rely on graph cuts. The expansion algorithm consists
entirely of a sequence of �-expansion local improvement
operations for different disparities �, until no �-expansion
can reduce the energy. Similarly, the swap algorithm con-
sists entirely of a sequence of ��-swap local improvement
operations for pairs of disparities �, �, until no ��-swap
can reduce the energy.

This formulation, unfortunately, does not handle occlu-
sions properly. First, two pixels in the left image can easily
be mapped to the same pixel in the right image. Furthemore,
the formulation assumes that each pixel in the left image is
mapped into some pixel in the right image; in reality, some
pixels in the left image can be occluded, and thus do not
correspond to any pixel in the right image.

3. Algorithm overview

3.1. Our representation

Let A be the set of (unordered) pairs of pixels that may
potentially correspond. For stereo with aligned cameras, for
example, we have

A � f hp� qi j py � qy and � � qx � px � k g�

(Here we assume that disparities lie in some limited range,
so each pixel in L can potentially correspond to one of k

1In fact, they consider a more general energy but this is the simplest
case that works very well in practice.

possible pixels in R, and vice versa). The situation for mo-
tion is similar, except that the set of possible disparities is
2-dimensional.

The goal is to find a subset of A containing only pairs
of pixels which correspond to each other. Equivalently, we
want to give each assignment a � A a value fa which is 1
if the pixels p and q correspond, and otherwise 0.

Let us define unique configurations f . We will call the
assignments in A that have the value 1 active. Let A�f� be
the set of active assignments according to the configuration
f . Let Np�f� be the set of active assignments in f that
involve the pixel p, i.e. Np�f� � fhp� qi � A�f�g. We will
call a configuration f unique if each pixel is involved in at
most one active assignment, i.e.

�p � P jNp�f�j � ��

Note that those pixels for which jNp�f�j � � are precisely
the occluded pixels.

It is possible to extend the notion of �-expansions for our
representation.2 For an assignment a � hp� qi let d�a� be its
disparity: d�a� � �qx�px� qy�py�, and letA� be the set of
all assignments in A having disparity �. A configuration f �

is said to be within a single �-expansion move of f if A�f ��
is a subset of A�f� � A�. In other words, some current
active assignments may be deleted, and some assignments
having disparity � may be added.

3.2. Energy function

Now we define the energy for a configuration f . To cor-
rectly handle unique configurations we assume that for non-
unique configurations the energy is infinity and for unique
configurations the energy is of the form

E�f� � Edata�f� � Eocc�f� � Esmooth�f�� (2)

The three terms here include

	 a data term Edata, which results from the differences
in intensity between corresponding pixels;

	 an occlusion term Eocc, which imposes a penalty for
making a pixel occluded; and

	 a smoothness termEsmooth, which makes neighboring
pixels in the same image tend to have similar dispari-
ties.

The data term will be Edata�f� �
P

a�A�f�D�a�; typi-

cally for an assignment a � hp� qi, D�a� � �I�p�� I�q��
�,

where I gives the intensity of a pixel. The occlusion term

2It is also possible to extend the notion of an ��-swap, as discussed in
[13]. However, the resulting algorithm gives experimental results that are
not as good as the current state of the art.



imposes a penalty Cp if the pixel p is occluded; we will
write this as

Eocc�f� �
X
p�P

Cp � T �jNp�f�j � ���

The most nontrivial part here is the choice of smooth-
ness term. It is possible to write several expressions for the
smoothness term. The smoothness term involves a notion
of neighborhood; we assume that there is a neighborhood
system on assignments

N 
 ffa�� a�g j a�� a� � A� g�

One obvious choice is

Esmooth�f� �
X

fa��a�g�N �a��a��A�f�

Va��a��

where the neighborhood system N consists only of pairs
fa�� a�g such that assignments a� and a� have different
disparities (it can include, for example, pairs of assignments
fhp� qi� hp�� q�ig for which either p and p� are neighbors or q
and q� are neighbors, and d�hp� qi� �� d�hp�� q�i�). Thus, we
impose a penalty if two close assignments having different
disparities are both present in the configuration. Unfortu-
nately, it can be shown that not only minimizing this energy
is NP-complete, but also finding a minimum of this function
among all configurations within a single �-expansion of the
initial configuration is NP-complete as well. (We give a
simple reduction from the independent set problem to this
problem in [13]).

We propose another smoothness term which makes it
possible to use graph cuts to efficiently find a minimum
of the energy among all configurations within a single �-
expansion of the initial configuration. The smoothness term
will be

Esmooth�f� �
X

fa��a�g�N

Va��a� � T �f�a�� �� f�a����

(3)
The neighboorhood system here consists only of pairs

fa�� a�g such that assignments a� and a� have the same
disparities (it can include, for example, pairs of assign-
ments fhp� qi� hp�� q�ig for which p and p� are neighbors
and d�hp� qi� � d�hp�� q�i�). Thus, we impose a penalty if
one assignment is present in the configuration, and another
close assignment having the same disparity is not. Although
this energy is different from the previous one it enforces the
same constraint: if adjacent pixels have the same disparity
then the smoothness penalty is zero, otherwise it has some
positive value.

The intuition why this energy allows using graph cuts
is simply that it has a similar form to the Potts energy of
equation 1. However, it is the Potts energy on assignments
rather than pixels; as a consequence, none of the previous
algorithms based on graph cuts can be applied.

4. Related work

Most work on motion and stereo does not explicitly
consider occlusions. For example, correlation based ap-
proaches and energy minimization methods based on regu-
larization [15] or Markov Random Fields [11] are typically
formulated as labeling problems, where each pixel in one
image must be assigned a disparity. This privileges one im-
age over the other, and does not permit occlusions to be
naturally incorporated. One common solution with correla-
tion is called cross-checking [5]. This computes disparity
twice, both left-to-right and right-to-left, and marks as oc-
clusions those pixels in one image map to pixels in the other
image which do not map back to them. This method is com-
mon and easy to implement, and we will do an experimental
comparison against it in section 6.

Similarly, it is possible to incorporate occlusions into en-
ergy minimization methods by adding a label that represents
being occluded. There are several difficulties, however. It
is hard to design a natural energy function that incorporates
this new label, and to impose the uniqueness constraint. In
addition, these labeling problems still handle the input im-
ages asymmetrically.

However, there are a number of papers that elegantly
handle occlusions in stereo using energy minimization [2,
4, 10]. These papers focus on computational modeling to
understanding the psychophysics of stereopsis; in contrast,
we are concerned with accurately computing disparity and
occlusion for stereo and motion.

There is one major limitation of the algorithms proposed
by [2, 4, 10] which our work overcomes. These algorithms
makes extensive use of the ordering constraint, which states
that if an object is to the left of another in one stereo image,
it is also to the left in the other image. The advantage of the
ordering constraint is efficiency, as it permits the use of dy-
namic programming. However, the ordering constraint has
several limitations. First, depending on the scene geometry,
it is not always true. Second, the ordering constraint is spe-
cific to stereo, and cannot be used for motion. Third, algo-
rithms that use the ordering constraint essentially solve the
stereo problem independently for each scanline. While each
scanline can be solved optimally, it is unclear how to im-
pose some kind of inter-scanline consistency. Our method,
in contrast, minimizes a natural 2-dimensional energy func-
tion, which can be applied to motion as well as to stereo.

Our algorithm is based on graph cuts, which can be used
to efficiently minimize a wide range of energy functions.
Originally, [12] proved that if there are only two labels the
global minimum of the energy can be efficiently computed
by a single graph cut. Recent work [7, 14, 17] has shown
how to use graph cuts to handle more than two labels. The
resulting algorithms have been applied to several problems
in early vision, including image restoration and visual cor-
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Figure 1. An example of two images with
4 pixels each. Here L � fp,q,r,sg and
R � fw,x,y,zg. Solid lines indicate the cur-
rent active assignments, and dashed lines in-
dicated the assignments being considered.

respondence. While graph cuts are a powerful optimization
method, the methods of [7, 14, 17] do not handle occlusions
gracefully. In addition to all the difficulties just mentioned
concerning occlusions and energy minimization, graph cut
methods are only applicable to a limited set of energy func-
tions. In particular, previous algorithms cannot be used to
minimize the energy E that we define in equation 2.

The most closely related work consists of the recent al-
gorithms based on graph cuts of [14] and [8]. These meth-
ods also cannot minimize our energy E. [14] uses graph
cuts to explicitly handle occlusions. They handle the input
images symetrically and enforce uniqueness. Their graph
cut construction actually computes the global minimum in
a single graph cut. The limitation of their work lies in the
smoothness term, which is the L� distance. This smooth-
ness term is not robust, and therefore does not produce good
discontinuities. They prove that their construction is only
applicable to convex (i.e., non-robust) smoothness terms.
In addition, we can prove that minimizing ourE is NP-hard
[13], so their construction clearly cannot be applied to our
problem.

5. Graph construction

We now show how to efficiently minimize E among all
unique configurations using graph cuts. The output of our
method will be a local minimum in a strong sense. In par-
ticular, consider an input configuration f and a disparity �.
Another configuration f � is defined to be within a single �-
expansion of f if some assignments in f become inactive,
and some assignments with disparity � become active (a
formal definition is given at the start of section 5.2.1).

Our algorithm is very straightforward; we simply select
(in a fixed order or at random) a disparity �, and we find
the unique configuration within a single �-expansion move
(our local improvement step). If this decreases the energy,

<p,w> <r,z><q,y>

<p,y> <q,z>

<p,w> <r,z><q,y>

<p,y> <q,z>

<p,w> <r,z><q,y>

<p,y> <q,z>

Figure 2. The graph corresponding to figure 1.
There are links between all vertices and the
terminals, which are not shown. Edges with-
out arrows are bidirectional edges with the
same weight in each direction; edges with ar-
rows have different weights in each direction.

then we go there; if there is no � that decreases the energy,
we are done. The critical step in our method is to efficiently
compute the �-expansion with the smallest energy. In this
section, we show how to use graph cuts to solve this prob-
lem.

5.1. Graph cuts

Let G � hV � Ei be a weighted graph with two distin-
guished terminal vertices fs� tg called the source and sink.
A cut C � Vs�Vt is a partition of the vertices into two sets
such that s � Vs and t � V t.3 The cost of the cut, denoted
jCj, equals the sum of the weights of the edges between a
vertex in Vs and a vertex in V t.

The minimum cut problem is to find the cut with the
smallest cost. This problem can be solved very efficiently
by computing the maximum flow between the terminals, ac-
cording to a theorem due to Ford and Fulkerson [9]. There
are a large number of fast algorithms for this problem (see
[1], for example). The worst case complexity is low-order
polynomial; however, in practice the running time is nearly
linear for graphs with many short paths between the source
and the sink, such as the one we will construct. In our
current implementation we use a new max flow algorithm
specifically designed for the kind of graphs that arise in en-
ergy minimization in vision [6].

5.2. Computing a local minimum

We first construct the graphG � hV � Ei, and give the cor-
respondence between cuts on G and configurations. Then
we show that the minimum cut on G yields the configura-
tion that minimizes E among unique configurations within
one �-expansion.

3A cut can also be equivalently defined as the set of edges between the
two sets.



5.2.1 Graph structure

In an �-expansion, active assignments may become inac-
tive, and inactive assignments whose disparity is � may
become active. Suppose that we start off with a unique
configuration f �. The active assignments for a new con-
figuration within one �-expansion will be a subset of �A �
A� � A�, where A� �

�
a � A�f�� j d�a� �� �

�
and

A� � fa � A j d�a� � � g. We will define the configu-
ration �f by A� �f� � �A. Note that in general �f is not unique.

The directed graph G that we will construct has vertices
that correspond to assignments; this is in contrast to the
graphs built by [7, 8, 14, 17]. The terminals will be called s
and t, and for every assignment in �A there will be a vertex.

The edges in G are as follows. For every vertex a �
�A there will be edges �s� a� and �a� t�. In addition, if
fa�� a�g � N there will be edges �a�� a�� and �a�� a��.
Note that in this case, either a� and a� are both inA� or they
are both in A�. Finally, consider a pair of vertices a�� a�
that enter a common pixel p (i.e., where a� � hp� qi and
a� � hp� ri). Note that in this case either a� � A�� a� �
A� or vice-versa. There will be edges between every such
pair of assignments.

Now consider a cut C � Vs�Vt on G. The configuration
fC that corresponds to this cut is defined by

�a � A� fCa �
n
� if a � Vs

� if a � Vt

�a � A� fCa �

�
� if a � Vt

� if a � Vs.

The following lemma is an obvious consequence of this
construction.

Lemma 5.1 C is a cut on G if and only if the configuration
fC lies within a single �-expansion of the input configura-
tion f�.

We now give the weights of the edges in G. First, we
define the occlusion cost

Docc�hp� qi� � Docc�p� �Docc�q��

whereDocc�p� � Cp if �A has only one edge entering p, and
0 otherwise. We define the smoothness cost by

Dsmooth�a�� �
X

fa��a�g�N

a��� �A

Va��a��

Then the weights are as follows.

edge weight for

�s� a� Docc�a� a � A�

�a� t� Docc�a� a � A�

�a� t� D�a� �Dsmooth�a� a � A�

�s� a� D�a� a � A�

�a��a��
�a��a��

Va��a�
fa��a�g�N �

a��a�� �A

�a�� a�� � p�P�a��A��a��A�

a��a��Np� �f�

�a�� a�� Cp
p�P�a��A��a��A�

a��a��Np� �f�

We will refer to the links with weight Docc�a� (i.e., the top
two rows of the above table) as t-links. We will refer to the
links with cost Cp as c-links.

A small example is shown in figure 1. The current set of
assignments is shown with solid lines; dashed lines repre-
sent the new assignments we are considering (i.e., � � �).
In the current configuration, the pixels s andx are occluded,
and the proposed expansion move will not change their sta-
tus.

The corresponding graph is shown in figure 2. The 3
nodes in the top row form A� and the two nodes in the bot-
tom row form A�. Note, for example, that the edge from
hp� wi to hp� yi has weight �, since these two assignments
cannot both be active.

5.2.2 Optimality

We now show that if C is the minimum cut on our graph
G, then fC is the configuration that minimizes the energyE
over unique configurations.

Lemma 5.2 The cost of the cut C is finite if and only if the
corresponding configuration f C is unique.

PROOF: If fC is not unique there is some pixel p � P
such that a pair of assignments a�� a� � Np�f

C� are both
in A�fC�. Without loss of generality let a� � A� and a� �
A�. Then we have a� � Vs and a� � V t, so the edge
�a�� a��, which has weight�, must be cut. Similarly, if the
weight of C is infinite, one of these edges is cut, so some
pixel p is not unique.

Lemma 5.3 Let fC be a unique configuration, with corre-
sponding cut C. Then the cost of the t-links plus the c-links
in C equals Eocc�f

C� plus a constant.

Theorem 5.4 Let C be the minimum cut on G. Then fC is
the unique configuration within one �-expansion of f � that
minimizes the energy E.



Due to space limitations, the proofs of lemma 5.3 and theo-
rem 5.4 are included in [13].

6. Experimental results

Our experimental results involve both stereo and motion.
Our optimization method does not have any parameters ex-
cept for the exact choice of E. We selected the labels �
in random order, and we started with an initial solution in
which no assignments are active. For our data term D we
made use of the method of Birchfield and Tomasi [3] to han-
dle sampling artifacts. The choice of Va��a� was designed
to make it more likely that a pair of adjacent pixels in one
image with similar intensities would end up with similar
disparities. If a� � hp� qi and a� � hr� si, then Va��a� was
implemented as an empirically selected decreasing function
of max�jI�p�� I�r�j� jI�q� � I�s�j� as follows:

Va��a� �
n
� if max�jI�p�� I�r�j� jI�q� � I�s�j� � 	

� otherwise

�

(4)
The occlusion penalty was chosen to be ���� for all pix-

els. Thus, the energy depends only on one parameter �. For
different images we picked � empirically.

We compared our results with the expansion algorithm
described in [8] with the explicit label ’occluded’, since it
is the closest related work. For the data with ground truth
we obtained some recent results due to Zitnick and Kanade
[20]. We also implemented correlation using the L� dis-
tance. Occlusions were computed using cross-checking,
which computes matches left-to-right and right-to-left, and
then marks a pixel as occluded if it maps to a pixel that does
not map back to it. We used a 13 by 13 window for correla-
tion; we experimented with several other window sizes and
other variants of correlation, but they all gave comparable
results.

Quantitative comparison of various methods was made
on a stereo image pair from the University of Tsukuba with
hand-labeled integer disparities. The left input image and
the ground truth are shown in figure 3, together with our re-
sults and the results of various other methods. The Tsukuba
images are 384 by 288; in all the experiments with this im-
age pair we used 16 disparities.

We have computed the error statistics, which are shown
in figure 4. We used the ground truth to determine which
pixels are occluded. For the first two columns, we ignored
the pixels that are occluded in the ground truth. We de-
termined the percentage of the remaining pixels where the
algorithm did not compute the correct disparity (the “Er-
rors” column), or a disparity within �� of the correct dis-
parity (“Gross errors”). We considered labeling a pixel as
occluded to be a gross error. The last two columns show the
error rates for occlusions.

In the electronic version of this paper, available from
http://www.cs.cornell.edu/rdz, the occluded
pixels for figures 3, 5 and 6 are displayed in red. The
running times for our algorithm are on average about 25%
slower than the expansion algorithm of [8], but on the order
of a minute. For example, on the Tsukuba data set our algo-
rithm takes 83 seconds, while [8] takes 75 seconds. These
numbers were obtained using a 500 Megahertz Pentium-III,
and using the new max flow algorithm described in [6].

We have also experimented with the parameter sensi-
tivity of our method. Since there is only one parameter,
namely � in equation 4, it is easy to experimentally deter-
mine the algorithm’s sensitivity. The table below shows that
our method is relatively insensitive to the exact choice of �.

� 1 3 10 30
Error 10.9% 6.7% 9.7% 11.1%
Gross errors 2.4% 1.9% 3.1% 3.6%
False neg.’s 42.2% 42.6% 48.0% 51.4%
False pos.’s 1.4% 1.1% 1.0% 0.8%

7. Conclusions

We have presented an energy minimization formula-
tion of the correspondence problem with occlusions, and
given a fast approximation algorithm based on graph cuts.
The experimental results for both stereo and motion appear
promising. Our method can easily be generalized to asso-
ciate a cost with labeling a particular assignment as inactive.
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