
Computing with Abstract Matrix Structures

Alan P. Sexton and Volker Sorge∗

School of Computer Science
University of Birmingham

www.cs.bham.ac.uk/~aps|~vxs

Stephen M. Watt
Department of Computer Science

University of Western Ontario
www.csd.uwo.ca/~watt

ABSTRACT
Classes of matrices are often presented with symbolic di-
mensions using a mixture of terms and ellipsis symbols to
describe their internal structure. While working with such
classes of matrices is everyday mathematical practice, it has
little automated support. We describe an algebraic encoding
of such matrices in terms of support functions and define the
corresponding addition and multiplication algorithms. It is,
however, non-trivial to retrieve the structural description of
the matrix resulting from these operations. We therefore de-
fine an abstract matrix as an encoding of support function
combinations that enables simple recovery of the structural
properties. This allows us to define arithmetic algorithms for
abstract matrices as extensions of those for support function
combinations using a normalising term rewrite system.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms; I.1.1 [Symbolic and Alge-

braic Manipulation]: Expressions and Their Representa-
tion

General Terms
Algorithms

Keywords
Abstract Matrix Arithmetic, Symbolic Computation

1. INTRODUCTION
Matrices are often treated in an abstract way with sym-

bolic dimensions and containing underspecified parts de-
scribed by the use of ellipsis symbols. Computing and rea-

∗The author’s work was supported in parts by RISC
Transnational Access Programme of the EC FP6 project
Symbolic Computation Infrastructure for Europe (SCIEnce,
contract No. 026133).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Republic of Korea.
Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$10.00.

soning with these abstract or symbolic matrices is math-
ematically routine. For example, the following expression
represents an infinite class of matrices that exhibit a partic-
ular structure:

B =

2

6

6

6

6

6

6

4

a11 · · · a1n

. . .
... 0

ann

b11 · · · b1m

0
. . .

...
bmm

3

7

7

7

7

7

7

5

(1)

Informally, we view an abstract matrix as a collection of
disjoint regions. Each region is a closed polygonal area that
can be uniformly evaluated by a single, unconditional term.
Non-zero regions must be convex, therefore concave regions
must be decomposed into sets of convex regions. For exam-
ple, Matrix B contains four regions: two zero regions, one
triangular region with terms of the form aij , and one trian-
gular region containing bij , where i, j are the index variables
of the matrix. It is precisely this structure of shaped regions
that captures the structural properties of abstract matrices
and lets us reason about them, for example showing that the
product of upper triangular matrices are upper triangular.

We started to address the problems in this area by devel-
oping a conversion procedure for abstract matrices that ac-
cepts input in an intuitive format similar to (1), determines
their meaning and represents them in terms of the regions
they contain, thereby making them available as templates
for concrete matrices [6]. Subsequently we have developed
a purely algebraic representation of abstract matrices that
represents the region structure as a linear combination of
simple support functions, leading to a natural way of defin-
ing addition and multiplication on abstract matrices [7, 8].

The main drawback of a straightforward abstract matrix
arithmetic using support functions is that it obscures the
structural properties of the results. That is, while the result
can be used to obtain the correct terms for the elements of
any concrete matrix in the defined class, the number, shape,
size and composition of the regions of the result matrix can-
not be easily deduced. Our aim is not merely to be able to
compute the symbolic term corresponding to each cell in the
result of adding or multiplying abstract matrices, but also
to solve the deeper problem of recovering the shape of the
regions in the result. In this paper, we present an encod-
ing and algorithms for addition and multiplication that use
a term rewrite system for normalisation. The normalised
result of a computation directly encodes the shape of the
result regions and, for example, shows the upper triangular

1

nature of the product of general upper triangular matrices.
Our work is related to unpublished work of Fateman using

Macsyma [3], in which indefinite matrices can be subjected
to basic algebraic manipulations. While these matrices can
be indefinite in size, their elements are fixed to one par-
ticular functional expression without systematic treatment
of internal structure. In contrast, representing and manip-
ulating the region structure of abstract matrices is one of
our primary goals. The work is also similar in spirit to ear-
lier work by Watt [9, 10], which presented algorithms for
GCD, factorisation and functional decomposition of polyno-
mials with terms of symbolic degree, to work by Knauers
and Schneider [4] on indefinite symbolic summation using
unspecified sequences of summands, as well as to infinite
dimensional exponentiation of matrices using power series
approximations in Mathematica [11].

The remainder of the paper is organised as follows: Sec-
tion 2 provides the formal definitions for the concepts of
abstract matrices and a particular support function to rep-
resent regions within them conveniently. Section 3 shows
how these may be used for näıve abstract matrix arithmetic.
Section 4 gives a term grammar for abstract matrices and
defines a useful regular form for abstract matrix expres-
sions. Then Sections 5 and 6 give algorithms using this
form for matrix addition and multiplication, respectively.
Section 7 discusses the rewrite system required for normali-
sation. Then the paper concludes.

2. REPRESENTATION
An abstract matrix may be viewed as a class of matrices

obtained by specialising free parameters with different val-
ues. In print, these matrices are typically represented as an
array of expressions with entries written as functions of the
index variables and with ellipses in place of omitted parts
of variable size. This form is convenient neither for mathe-
matical formalisation nor for implementation of algorithms.

We shall represent a matrix with symbolic structure as a
general term (in the sense of a term algebra) with free vari-
ables for the row and column indices, and possibly other free
variables representing parameters. This term will involve
certain functions that support subterms or cause them to
vanish, depending on the values of the indices. The use of
these “support” functions leads to an algebraic treatment of
regions in the abstract matrix and avoids having to treat an
exponential number of sub-cases.

Definition 1. A ring of terms, T = (K, V, F), over a
constant set K, variable set V and function set F is a set of
terms including binary addition and multiplication symbols
(“+”,“×”), a unary subtraction symbol (“−”) and nullary one
and zero symbols (“1”,“0”) modulo the equational theory of
rings.

We deliberately leave the nature of the ring arithmetic flex-
ible to admit a wide variety of desirable models.

Definition 2. Given a ring of terms T = (K, V, F), an
abstract matrix over T with index variables i and j is a
term τ ∈ T ′ = (K, V ′, F ′) where i, j 6∈ V , V ′ = V ∪ {i, j},
F ′ ⊇ F . The term τ is called the general element of the
abstract matrix.

An abstract matrix can be instantiated, for particular m and
n, to a matrix of size m × n over T by evaluating the gen-
eral term with integer values of its indices from {1, . . . , m}×

{1, . . . , n}. The reason F 6= F ′ is to admit “support func-
tions”, which we now define.

Definition 3. A support function is a function from Z2

to {0, 1}. By extension, a support function in the ring of
terms of an abstract matrix with indices i, j is a term that
evaluates to 0 or 1 for all evaluations of its free variables.

A support function may be used multiplicatively in subterms
of the general element of an abstract matrix to include or
exclude that subterm at certain values of the matrix indices.

Definition 4. If all the other variables are evaluated, the
set of values for the index variables that give a support func-
tion the value of 1 determines a subset of the elements of
a matrix. We call this a region of support, or region for
short. If all the other variables do not have values, then we
call the term an abstract region.

In specific instantiations, the most common shapes for re-
gions are blocks, triangles, bands and parallelograms. As we
shall show, it is straightforward to form support functions
for these cases. General regions can be formed by adding
support functions for regions with these special shapes.

In general, we allow for three types of regions in an ab-
stract matrix: single terms, single lines or ellipses (horizon-
tal, vertical, diagonal or anti-diagonal), and closed convex
polygons where the edges of the polygons are, again, only
horizontal, vertical, diagonal or anti-diagonal. These can
all be represented via intersections of half-planes that corre-
sponds to the four different possible ellipsis orientations in
the abstract matrix: vertical, horizontal, diagonal and anti-
diagonal, the latter two at ±45◦ angles from the horizontal.
Each half-plane constrains the indices of the region. The dif-
ferent half-planes and the constraints they impose are given
in Fig. 1. In order to capture the idea of half-plane con-
straints algebraically, we define the following support func-
tion:

Definition 5. Let x, y ∈ N then we define

σ(x, y) ::=

(

1 if x 6 y

0 otherwise

We introduce σx,y as a more compact notation for σ(x, y).
We will sometimes also only use σ or an indexed version σ1,
etc. if the actual arguments are irrelevant.

One obvious property of the σ function is σx+z,y = σx,y−z.
Further, the complement of σx,y is σx,y = σy,x−1.

Containment within a half-plane can be neatly captured
by a single σ function, and containment within a region by
a product of σs. Clearly a product of σs always describes
a convex region. For example we can represent the a trian-
gular region in (1) as σ1,iσj,nσi,jaij , where σ1,i restricts the
region to be on or below the top boundary of the triangle,
σj,n restricts the region to be on or to the left of the right
boundary of the triangle, and σi,j restricts it to be on or to
the upper right of the diagonal boundary. If any of these
half-plane constraints are not satisfied, at least one of the
σs will force the value to 0.

To make index variables and the overall dimension of an
abstract matrix explicit we introduce the following notation:

Notation 1. Let n, m ∈ N and i, j be names of index
variables ranging from 1 to n and m, respectively. Then we

2

(i−q1)+(j−r1)≥(q2−q1)

(i−q1)+(j−r1)≤(q2−q1)

q2, r1

q1, r2 i≤q1

i≥q1

q1, r1

q1, r2

j≤r1

j≥r1

q2, r1

q1, r1

i−q1≥(j−r1)

i−q1≤(j−r1)

q2, r2

q1, r1

Figure 1: Half-plane constraints. r1, r2, q1, q2 are the general coordinates representing the start and end points

of ellipses in an abstract matrix.

denote an abstract matrix as

[x(i, j)]n,m

i,j
::=

2

6

4

x(1, 1) · · · x(1, m)
...

...

x(n, 1) · · · x(n, m)

3

7

5

The pair of possible values of the index variables i, j define
the dimensions of the matrix. x is a term that can, but
does not have to, be a functional expression involving the
variables i, j.

We write the non-zero regions of B as a linear combination
of support functions:

B = [σ1,iσj,nσi,jaij + σn+1,iσj,n+mσi,jbi−n,j−n]m+n,m+n

i,j (2)

This notation describes B as a piecewise function in the
variable i, j. We therefore call this notation the algebraic or
closed form of the matrix B. Each summand represents one
single convex region. Moreover the σ coefficients of the single
summands are mutually exclusive, that is, for each different
pair of values i, j at most one summand will be different
from 0. This corresponds to the disjointness condition on
the regions.

Note that the term for B above contains some redundan-
cies. Since i and j are limited to the bounds of the matrix,
the σ1,i of the first summand and the σj,n+m will always
evaluate to 1. Hence we can optimise the expression in (2)
by removing the unnecessary σs:

B = [σj,nσi,jaij + σn+1,iσi,jbi−n,j−n]m+n,m+n

i,j

This expression now fully captures the abstract matrix B.
Moreover, one can still easily see the form of the matrix
as the occurring regions are clearly given as the different
summands and their boundaries can be easily regained from
analysing the σ coefficients.

For the remainder of the paper we will omit indices for the
region entries, as this will make the formulae significantly
more legible.

We find it useful to consider an alternative view of prod-
ucts of sigma terms; namely as the regions that the under-
lying intersection of half planes include. This then leads to
a set theoretic language of combining sigmas and the usual
results, based on the inclusion/exclusion principle, on indi-
cator or characteristic functions.

Definition 6. Let Γ1, Γ2 be products of σ terms. We
define the set notation:

(i) Γ1 ∩ Γ2 = Γ1Γ2

(ii) Γ1 ∪ Γ2 = Γ1 + Γ2 − Γ1Γ2

(iii) Γ1 \ Γ2 = Γ1Γ2

Here Γ2 denotes the complement of Γ2, i.e., the outside of
the region described by Γ2. To calculate the complement of
a convex region, we consider the half-plane components, the
σs of the shape, and sequentially add the complement of each

half-plane in the product of σs, restricted to the intersection
of the half-planes that have already been captured:

Definition 7. Let Γ = σ1σ2 . . . σn, then its complement
Γ is defined as Γ = σ1σ2 . . . σn = σ1 +σ2σ1 +σ3σ1σ2 + · · ·+
σnσ1σ2 . . . σn

Observe that since the complement of a region is a sum, it
is generally concave. When intersecting it with a convex
region, i.e., multiplying the sum with a product of σs we get
a sum of convex regions as a result.

3. NAÏVE ARITHMETIC

3.1 Naïve Addition
Given the representation of two abstract matrices using

support functions, the obvious algorithm will compute a sup-
port function representation of their addition. It suffices to
show an example. Consider addition of two N ×M abstract
matrices A and B where N = q + r and M = n + m.

A + B =

2

6
4

a · · · a

.

..
.
..

a · · · a
| {z }

n

0 · · · 0
.
..

.

..

0 · · · 0

3

7
5

| {z }

m

+

2

6
6
6
6
6
6
6
6
4

r

8
><

>:

b · · · b

.

..
.
..

b · · · b

q

8
><

>:

c · · · c

.

..
.
..

c · · · c

3

7
7
7
7
7
7
7
7
5

(3)

This sum is computed by simply adding the algebraic rep-
resentations of A and B:

A + B = [σj,n a]N,M

i,j
+ [σi,r b + σr+1,i c]N,M

i,j

= [σj,n a + σi,r b + σr+1,i c]N,M

i,j
(4)

This indeed yields the correct result that fully describes the
A + B matrix in 7; depending on the i, j values the expres-
sion either evaluates to a + b, a + c, b, or c. Note, however,
that, in this form, the 3 summands of the result do not corre-
spond simply to the 4 rectangular regions that the resulting
abstract matrix has.

3.2 Naïve Multiplication
Consider the following matrix multiplication between two

matrices of size N × N , where N = n + m. Note that the
block sizes have been reversed between the two matrices to
ensure an “interesting” interaction between their respective
regions on multiplication:

A · B =

m
z }| {

n
z }| {

n
z }| {

m
z }| {

m

8
>><

>>:

n

(

2

6
6
6
6
6
6
6
4

c · · · c d · · · d

. . .
.
..

.

..
.
..

c
.
..

.

..

0
..
.

..

.

d · · · d

3

7
7
7
7
7
7
7
5

·

2

6
6
6
6
6
6
6
6
4

a · · · a

. . .
.
.. 0
a

b · · · b

0
. . .

.

..

b

3

7
7
7
7
7
7
7
7
5

9
>=

>;
n

9
>=

>;
m

3

The general calculation we have to perform is:

A · B = [Aij]
N,N

i,j
· [Bij]

N,N

i,j
=

"

N
X

k=1

AikBkj

#N,N

i,j

Translating A and B into their closed forms we get:

A · B = [σj,mσi,j c + σm+1,j d]N,N

i,j

·[σj,nσi,j a + σn+1,iσi,j b]N,N

i,j
(5)

The product, AB, is then calculated as:
"

N
X

k=1

σk,mσi,kσj,nσk,j ca + σm+1,kσj,nσk,j da+

σk,mσi,kσn+1,kσk,j cb + σm+1,kσn+1,kσk,j db

#N,N

i,j

(6)

This sum captures all possible results of the multiplication.
The single summation can clearly be split into 4 separate
sums, one for each of the summands in the summation.
Each of the resulting terms represents one of four possible
regions. Each region is convex, because their σ coefficients
corresponds to a product of half-planes, which always results
in a convex region. However, these regions are not disjoint
and therefore a direct reading of the region structure of the
result is difficult.

In summary, the results for both näıve addition and mul-
tiplication are correct but the form of these results have se-
rious problems with respect to recovering their region struc-
ture: (a) The single summands may no longer constitute
single regions. (b) The regions they describe may overlap
and we no longer have mutually exclusive σ coefficients for
each summand. (c) How to determining the shape of region
described by a single summand is not obvious.

4. TERM GRAMMAR
We first define a term grammar on which our procedure

works and give a normal form for the closed representations
of abstract matrices that ensures that the region structure
is easily recoverable from abstract matrix terms in normal
form.

Definition 8. The abstract matrix term grammar is:

M ::= [F]iexp,iexp

var,var
Γ ::= σiexp,iexp Γ | ǫ

F ::= R | R + F T ::= exp |

iexp
X

var=1

(F) | F

R ::= Γ T | T

iexp ::= var | int | − iexp | iexp + iexp | iexp − iexp

Where we assume the definition of the following terms: var

for a single variable name, int for a single, non-negative
integer, and exp for an arbitrary functional expression, that
can contain var and int terms.

For notational convenience we shall use the non-terminals
to represent the particular terms they generate, indexing
them if necessary, throughout the paper. We denote abstract
matrices in general as

[M]m,n

i,j = [R1 + · · · + Rk]m,n

i,j = [Γ1T1 + · · · + ΓkTk]n,m

i,j

We now specify the conditions under which the region
structure of an abstract matrix is easily analyseable. The in-
tuition is that the abstract matrix term should be of the form
[Γ1T1 + · · · + ΓkTk]n,m

i,j
, where each ΓsTs summand identi-

fies one region where the size, shape and position of a region

is captured by the ΓS term. Here we use the set notation
w ∈ x and y \ z between terms w, x, y, z to mean the occur-
rence of w in x and the result of removing all occurrences of
y from z.

Definition 9. Let [M]m,n

i,j = [Γ1T1 + · · · + ΓkTk]n,m

i,j be
an abstract matrix, then we say M is in regular form, if the
following holds:

(i) Disjoint: ΓsΓs′ = 0 for s, s′ in 1 . . . k with s 6= s′.
(ii) Convex: Γs = σxs

1,ys
1
· · ·σxs

p,ys
p
, for s in 1 . . . k, p ≥ 1.

(iii) Γ-Partitioned: for s in 1 . . . k, there does not exist a
σx,y ∈ Ts such that σx,yTs = Ts.

(iv) Non-Empty: Γs 6= 0 for s in 1 . . . k

(v) Γ-Minimal: for every Γ in Γ1 . . . Γk and every σx,y ∈
Γ we have Γ \ σx,y 6= Γ.

Note that Γs can evaluate to 1, meaning that Ts spans the
entire matrix.

The disjointness property means that no two summands
can define overlapping regions, hence each summand is the
unique generator of values within its region.

The convexity property ensures that each region is prop-
erly an intersection of half-planes and hence convex. Note
that this condition is actually required by the term grammar
itself and is therefore a requirement of all output from the
full addition and multiplication algorithms.

The Γ-Partitioned requirement makes sure that all pos-
sible structural information on a region ΓT is indeed given
in Γ and no additional structural information might be hid-
den in T . If this condition is not satisfied, then T will be
forced to 0 in some half-plane, independent of the value of
Γ. Hence Γ does not properly describe the true region but
may be merely a non-minimal upper bound of it.

The non-empty property insures that we do not have re-
dundant ΓT terms: i.e. terms that appear to define regions
but which covers no space.

The Γ-Minimal property ensures that the region descrip-
tion defined by Γ is minimal, in the sense that it contains
the smallest possible number of σ coefficients necessary to
define the full region.

5. ADDITION
We now develop addition for abstract matrices revisit-

ing the example from §3.1. Recall that the result of sim-
ply adding the support function representation given in (4)
could be interpreted as three, non-disjoint regions. If we ob-
serve the matrix addition using the structural depiction we
instead get the following result, which clearly contains four
disjoint regions, some containing sums of elements:

A + B =

2

6

6

6

6

6

6

6

6

4

(a + b) · · · (a + b) b · · · b
...

...
...

...

(a + b) · · · (a + b) b · · · b

(a + c) · · · (a + c) c · · · c
...

...
...

...

(a + c) · · · (a + c) c · · · c

3

7

7

7

7

7

7

7

7

5

(7)

In order to motivate how we can separate the resulting re-
gions, we shift to a set view of regions. Let A,B, C be sets
representing the regions containing a, b, c in the matrices
A, B, respectively. Then we can describe the addition of
the regions as the union of the sets. Since we know that B

4

and C are disjoint, this set is composed of the five subsets
A∩B, A∩C, A\B\C, B\A, and C \A. We can compute an
intersection of two sets by simply taking the intersection of
the half-planes that define the sets, which corresponds to the
product of the respective σ terms. A set of the form B \ A
corresponds to the intersection of the half-planes defining B
and those defining the exterior of A, which are the comple-
ments of the σs defining A. Thus we can rewrite (4) into

»

σj,nσi,m (a+b) + σj,nσm+1,i (a+c)+
σj,nσi,mσm+1,i a + σj,nσi,m b + σj,nσm+1,i c

–N,M

i,j

=

»

σj,nσi,m (a+b) + σj,nσm+1,i (a+c)+
σj,nσm+1,iσi,ma + σn+1,jσi,mb + σn+1,jσm+1,ic

–N,M

i,j

(8)

The resulting matrix still contains five regions. However, we
can observe that the term representing the a region contains
an inconsistent σ coefficient in σm+1,iσi,m. Thus this region
vanishes and we can rewrite (8) into

»

σj,nσi,m (a+b) + σj,nσm+1,i (a+c)+
σn+1,jσi,m b + σn+1,jσm+1,i c

–N,M

i,j

This expression is indeed an abstract matrix. (a) Each sum-
mand represents a non-empty single region, (b) the regions
are disjoint, (c) convex as they are solely given by intersec-
tions of half-planes, (d) and Γ-Partitioned as the shape of
each region is fully captured by the preceding σ term.

We now generalise the procedure to obtain the addition
algorithm ADD. Let A, B be abstract matrices of the form

A =
h

ΓA
1 T

A
1 + · · · + ΓA

1 T
A
R

im,n

i,j
B =

h

ΓB
1 T

B
1 + · · · + ΓB

S T
B
S

im,n

i,j

where ΓA
l ,ΓB

l indicates that the respective Γ term originates
from matrix A or B, respectively. To compute the set of
all possible component regions of A + B we first define the
set notation for all regions as Pr = ΓA

r T A
r and Qs = ΓB

s T B
s ,

where r ∈ R = {1, . . . R}, s ∈ S = {1, . . . S}. We then can
combine the sets of regions into disjoint component regions
of the sum by

{Pr ∩ Qs}(r,s)∈(R,S) ∪ {Pr \ Q1 \ · · · \ QS}r∈R

∪ {Qs \ P1 \ · · · \ PR}
s∈S

Exploiting Def 6 we can finally define ADD(A,B) :=
2

6
6
4

ΓA
1 ΓB

1 (T A
1 +T B

1) + ΓA
1 ΓB

2 (T A
1 +T B

2) + · · · + ΓA
RΓB

S (T A
R+T B

S)+

ΓA
1 ΓB

1 · · · ΓB
S T A

1 + ΓA
2 ΓB

1 · · · ΓB
S T A

2 + · · · + ΓA
RΓB

1 · · · ΓB
S T A

R +

ΓB
1 ΓA

1 · · · ΓA
R

T B
1 + ΓB

2 ΓA
1 · · · ΓA

R
T B
2 + · · · + ΓB

S ΓA
1 · · · ΓA

R
T B

S

3

7
7
5

m,n

i,j

With Def 7, complemented σ products are replaced by the
appropriate sums of σ products (the negative intersection
terms vanish as the union terms are mutually disjoint), and
the entire expression is expanded into a simple sum of ΓT

expressions of the form

[Γ1T1 + Γ2T2 + · · · + ΓNTN]m,n

i,j

Observe that the above representation might still contain
empty regions, similar to the a-region in (8). But we can
show the following properties:

Theorem 10. Let A, B be abstract matrices, and let C =
ADD(A,B) = [Γ1T1 + Γ2T2 + · · · + ΓNTN]m,n

i,j
, then the re-

gions in C are (i) disjoint, (ii) convex, (iii) Γ-Partitioned,

Proof. (i) The regions are disjoint by construction.
(ii) Each Γi is a simple product of σ terms and thus convex.
(iii) As A, B are Γ-Partitioned, no term Tj in A,B contains
any relevant σ. Since ADD does not introduce any new σ

expressions in terms Ti of C, it is trivially Γ-Partitioned.

We shall rely on the normalisation process (§7) to rewrite
the result so that the non-empty and Γ-Minimal properties
are also satisfied.

6. MULTIPLICATION
To develop the multiplication algorithm for abstract ma-

trices we revisit again the example from §3.2. Recall that
the result of multiplying the support representation of our
matrices A and B was

2

6

6

6

6

4

n+m
X

k=1

σk,mσi,kσj,nσk,jca +

n+m
X

k=1

σm+1,kσj,nσk,jda+

n+m
X

k=1

σk,mσi,kσn+1,kσk,jcb +

n+m
X

k=1

σm+1,kσn+1,kσk,jdb

3

7

7

7

7

5

N,N

i,j

If we compare this expression with the structural depiction
of the product matrix we not only observe that there are
three different possible results, depending on the relation-
ship between the symbolic variables n and m, but also that
there are more than four different possible regions in those
cases. Observe that in the matrices below we abstract away
from the actual multiplicity of the single elements occurring
in the different regions, thus omitting complex sum expres-
sions, as this can be subsumed in the presentation of the
evaluating terms. Hence the elements only indicate the in-
teraction of regions from the original matrices A and B.
Thus the entries ca means that the region contains entries
that are products of entries from the a-region in A and the
c-region in B.

n = m:
n=m

z }| {

2

6
6
6
6
6
6
6
6
4

ca · · · ca

. . .
.
.
.

ca

0

n=m
z }| {

db · · · db

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

db · · · db

3

7
7
7
7
7
7
7
7
7
5

n > m:
m

z }| {

2

6
6
6
6
6
6
6
6
4

ca · · · ca

. . .
.
.
.

ca

0

n−m
z }| {

ca + da · · · ca + da

.

.

.
.
.
.

ca + da · · · ca + da

da · · · da

.

.

.
.
.
.

da · · · da

m
z }| {

db · · · db

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

db · · · db

3

7
7
7
7
7
7
7
7
7
5

n < m:

n
z }| {

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

ca · · · ca

. . .
.
.
.

ca

0

m−n
z }| {

cb · · · cb

.

.

.
.
.
.

cb
.
.
.

. . .
.
.
.

cb

n
z }| {

cb + db · · · cb + db

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

cb + db · · · cb + db

db · · · db

.

.

.
.
.
.

db · · · db

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Since we get three different explicit cases that are implic-
itly included in the closed form of the product in (6), we
need to extract all possible disjoint regions, as we did for
matrix addition. However, now we have the added problem
that the shapes of the regions are not obvious as the σ terms
describing them are obscured by Σ expressions that involve
the index variable k of the sum. These terms describe the
multiplicity of a region entry for a particular index pair (i, j).

5

We therefore also have to find the tightest possible bound-
ary for each of the regions by extracting the most general
product of σs from under each sum. We do this by com-
puting the product of all the σs that are implied by each
summand but are independent of the summation variable.
We generate this σ-expression by completing the partial or-
der on the σ limits, and display them as a set of Hasse
diagrams [2]1.

ca-region cb-region

j

k

i

m n

k

i

j

n+1

m

σi,mσi,jσi,nσj,n σi,jσi,mσn+1,jσn+1,m

da-region db-region

j

k

n

m+1

k

j

n+1m+1

σm+1,jσm+1,nσj,n σm+1,jσn+1,j

In practice, we only need a minimal set of inequalities that
imply all the inequalities in the Hasse diagram. For example,
we can eliminate σi,n for the summand of the ca-region:
σi,mσi,jσj,n

Pn+m

k=1 (σk,mσi,kσk,j ca). Observe that we have
removed all σ-expressions not involving k from inside the
sum. The remainder can not be removed.

In the next step we separate out overlapping regions by
generating all possible disjoint regions. Unlike the case of
addition, we can no longer exploit disjointness of regions in
the original matrices as the row column multiplication cuts
through all regions. Thus we have to look at all possible
combinations of summands, i.e., 15 altogether. We use again
the set view. Let CA, CB, DA, DB, be the sets representing
the regions containing ca, cb, da, db respectively. Then CA \
DA\CB\DB represents the region containing only ac, (CA∩
DA)\CB\DB the one containing ca+db and so on. We can
compute intersections as products of σs and set difference by
intersection with a region’s complement. Some of the simpli-
fied regions are σi,mσi,jσj,nσj,mca, σi,mσi,jσj,nσm+1,j(ca +
da), σi,mσi,jσj,nσm+1,jσn+1,jσn+1,m(ca + da + cb), etc. In
the last expression we have σj,n, σn+1,j , which are obviously
inconsistent, meaning that the region vanishes. Equation (6)
can thus be rewritten with simplified regions as:

2

6

4

σi,mσi,jσj,nσj,mca + σi,mσi,jσj,nσm+1,j(ca + da)

+σm+1,jσj,nσm+1,ida + σi,jσi,mσn+1,jσj,mcb

+σi,jσi,mσn+1,jσm+1,jσj,m(cb + db) + σm+1,jσn+1,jdb

3

7

5

N,N

i,j

This matrix now only contains disjoint, convex regions
and the shapes of the regions are obvious. Moreover, the
relationships between the sigma terms of the different sum-
mands contain information that yield the correct cases with
respect to the relationship of n and m. For instance, σj,n

and σn+1,j in the third and fourth summand, respectively,
determine that there cannot exist an instance of the matrix
that contains both an da and cb region.

We now present our general algorithm for multiplication,
which is based on the standard dot product of rows with

1Note that we abuse the Hasse diagram notation by using
non-strict rather than the usual strict inequalities.

columns. However, this is carried out pairwise on regions,
and the resulting terms, for any particular cell of the product
matrix, may be from intersecting or overlapping regions. To
end up with a disjoint sum of regions, we need to deal with
these overlaps in a manner similar to the case of addition,
via calculating intersections and differences of regions. As
opposed to our example we calculate this before splitting the
sum into separate regions. While this is slightly less intuitive
it yields the same result and has the benefit that we can
cleanly separate the pure multiplication from rewriting the
result into its regular form.

Let A, B be abstract matrices of the form

A =
h

Γ
A
1 T

A
1 + · · · + Γ

A
1 T

A
R

im,p

i,j
B =

h

Γ
B
1 T

B
1 + · · · + Γ

B
S T

B
S

ip,n

i,j

The abstract matrix multiplication algorithm MULT is de-
fined as follows:

MULT(A, B) := [(AB)i,j]
m,n

i,j
=

"

p
X

k=1

Ai,kBk,j

#m,n

i,j

=

"

p
X

k=1

“

ΓA
1 T

A
1 + · · · + ΓA

RT
A
R

” “

ΓB
1 T

B
1 + · · · + ΓB

S T
B
S

”

#m,n

i,j

=

"

p
X

k=1

“

ΓA
1 ΓB

1 T
A
1 T

B
1 + · · · + ΓA

RΓB
S T

A
R T

B
S

”

#m,n

i,j

=

"

p
X

k=1

(Γ1T1 + Γ2T2 + · · · + ΓNTN)

#m,n

i,j

In the last step we have performed an obvious renaming, as
the distinction between terms originating from A and B is
no longer necessary. While the ΓA and ΓB terms describe
convex regions, the product of a ΓA and a ΓB term does not
describe a simple intersection of the two convex regions as
one might expect. This is because the half-planes described
by the σx,y terms in ΓA describe half-planes with respect to
i, k index variables and those of ΓB describe half-planes with
respect to k, j index variables. Their product, however, is
being interpreted with respect to an i, j indexed space. Thus
the k variable, in this context, no longer has the special
role of an index variable and, instead, acts like an integer
constant in the same way that variables like the matrix width
or height do. Hence terms such as σk,3 are not half-plane
constraints, but merely ordering constraints that link the
real index variables to other constants to form the half-plane
constraints (e.g. σi,kσk,3), or simple control conditionals
that lead to different region shapes depending on relative
size of the underlying region. It should be noted, however,
that the product of a ΓA and a ΓB is just a product of
individual σx,y terms, even if only some of those correspond
to half-plane constraints, and thus still denotes a convex
region.

To factor these overlapping regions into disjoint ones, we
need to apply some elementary set manipulations. If there
are N potentially overlapping regions, then these can be
decomposed into 2N − 1 disjoint component regions. Each
such component region is formed by constructing a region
R as the intersection of some subset R of the regions, and
removing any parts of R that are in any of the other regions,
i.e., intersecting R with the intersection of the complements
of the remaining non-R regions. The content of these regions
then consists of the sum of the elements from the intersected

6

regions. We then compute the 2N − 1 regions as follows:
Let N = {1, . . . , N} and P(N) its powerset. For each I ∈

P(N)\∅ with I = {s1, . . . , sm} and N\I = {sm+1, . . . , sN},
where 1 ≤ m ≤ N and si ∈ N, i = 1, . . . , N compute

RI = (Γs1 · · ·ΓsmΓsm+1 · · ·ΓsN)(Ts1 + · · · + Tsm) (9)

If we enumerate the subsets we can consequently combine
the expressions from (9) as matrix:

"

p
X

k=1

`

R1 + · · · + R2N−1

´

#m,n

i,j

Since the Ri still contain complemented σ, which can be
expanded out fully into the appropriate sum of σ products,
and this sum is distributed across the non-complemented σ

product and the remaining T -expressions, we finally get a
simple sum of ΓT expressions of the form

"

p
X

k=1

`

Γ′
1T

′
1 + Γ′

2T
′
2 + · · · + Γ′

N′T
′

N′

´

#m,n

i,j

=

"

p
X

k=1

`

Γ′
1T

′
1

´

+

p
X

k=1

`

Γ′
2T

′
2

´

+ · · · +

p
X

k=1

`

Γ′

N′T
′

N′

´

#m,n

i,j

The final result of the MULT algorithm has the following
properties:

Theorem 11. Let A, B be abstract matrices, and let C =
MULT(A, B) = [Γ1T1 + Γ2T2 + · · · + ΓNTN]m,n

i,j , then the
regions in C are disjoint and convex.

Proof. Disjointness of the result regions is guaranteed
by the set construction. And since each Γi, i = 1, . . . , N is
a product of single σ terms the regions are also convex.

We observe that the result of MULT is not Γ-Partitioned,
non-empty or Γ-Minimal. To regain these properties, we
use a rewrite system for normalisation presented in the next
section.

7. NORMALISATION
The results of the algorithms ADD and MULT are gener-

ally not in the desired regular form, i.e. the regions of the
resulting matrices are not in a discernible form. To regu-
larise terms after each execution of ADD or MULT we employ
a rewrite system NORM. The advantage of using a formal
rewrite system is that it allows more convenient reasoning on
theoretical properties such as termination and confluence2

NORM takes terms that are not in regular form as input.
The only assumption we make is that all regions in the input
term are convex and disjoint. But this is guaranteed by the
output forms of the two algorithms. Since the output of the
rewrite system is an abstract matrix in the regular form, it
can again be used as input for the addition or multiplica-
tion algorithm and is thus amenable for further arithmetic
manipulations.

We define the rewrite system NORM with the rules given
in Table 1. For these rules we require the following nota-
tional conventions. We define a semantic partial order on σ

subscript terms for use in the side conditions of the rules:

2For an introduction to basic terminology of term rewriting
systems, see [1].

Contraction Rules

σx,y

0
0-σ, if y 4 x

0T
0

0-T

Pp

k=1(0)

0
0-Σ

0σx,y

0
0-σr

σx,y0

0
0-σl

0 + F

F
0-Fr

F + 0

F
0-Fl

Transitive Closure Rule

Γ1σw,xΓ2σy,zΓ3T

Γ1σw,xΓ2σy,zΓ3σw+y,x+zT
Trans,

if σw+y,x+z 6⊳

Γ1σw,xΓ2σy,zΓ3

Factoring Rule

Γ
Pp

k=1 Γ1σx,yΓ2T

Γσx,y

Pp

k=1 Γ1Γ2T
Fact , if k 6∈ {x, y}

Reduction Rules

Γ1σw,zΓ2

Γ1Γ2
Red1 , if σw,x ⊳ Γ1Γ2 ∧ σy,z ⊳ Γ1Γ2 ∧ x 4 y

σx,yΓ

Γ
Red2 , if σx,y ⊳ Γ

σx,yT

T
Red3 , if x 4 y

Table 1: The rules of the system NORM.

Definition 12. We define the partial order 4 on iexp

terms to be x 4 y is true if for all possible bindings of vari-
ables, var, in x and y, to integers, then x 6 y evaluates to
true when terms x, y are evaluated as integer expressions.

Evaluation of x 4 y is straightforward; rewrite as x− y 4 0,
and simplify x−y algebraically, which is straightforward due
to the strict limitations on the form of iexp terms, c.f. Def 8.
If the resulting expression contains any variables then x 64 y.
Otherwise, x−y can be evaluated numerically and x−y 4 0
if and only if x − y 6 0. In particular, this allows the side
condition of 0-σ to be tested on an individual σ term without
having to inspect any other terms in the whole expression.

Definition 13. We define the inclusion relation ⊳ to be
(i) σw,x ⊳ Γ if there is a σy,z ∈ Γ s.t. y 4 z ⇒ w 4 x,
(ii) σw,x 6⊳ Γ if there is no σy,z ∈ Γ s.t. y 4 z ⇒ w 4 x.

The basic idea of ⊳ is to capture all equivalent arithmetic
reorderings of the arguments of a σ expression. For example,
let σx,y+z ∈ Γ then we have σx−z,y ⊳ Γ. This enables us to
state the rewrite system more compactly and thus to show
its theoretical properties more easily. However, it will not
actually change the power of the system as the condition
could be expressed purely syntactically.

We have four sets of rules for contraction, transitive clo-
sure, factoring, and reduction, and rewriting occurs in three
stages, where in each stage the rules are applied exhaustively
before the next stage starts:

Stage 1: Transitive Closure completing the partial or-
der in a given Γ expression. This corresponds to creat-
ing all possible σ expressions that can be read off the
Hasse diagram.

Stage 2: Factoring pulls single σs that are independent
of a summation variable in front of a sum expression.

7

Stage 3: Reduction reduces a Γ expression to a minimal
form while retaining the maximum structural informa-
tion on the overall partial order by removing all implied
σ expressions.

Finally, the contraction rules can be applied during each
stage to reduce the complexity of the entire operation, but
always have to be exhaustively applied as well, before re-
suming the rewriting of the particular stage.

For the current system, R, we are able to prove the fol-
lowing theorems:

Theorem 14 (Correctness). R always yields a term
in regular form.

Proof Sketch. We show that the output of the proce-
dure is always a term in regular form. Theorems 10 and 11
show that ADD and MULT produce terms that are (1) dis-
joint and (2) convex. (3) To show they are Γ-Partitioned,
we convince ourselves that (a) the transitive closure rule
fully completes the partial order relation, (b) the factoring
rule pulls out all relevant information from under the sum,
(c) the reduction rules retain the full partial order and only
eliminate implied σs, (d) the contraction rules only rewrite
inconsistent σ to 0 thus dropping empty regions and ensur-
ing that conditions (4) non-empty, and (5) Γ-Minimal are
also met.

Theorem 15 (Termination). R terminates.

Proof Sketch. It is obvious that both ADD and MULT

terminate, as they are deterministic algorithms applied to fi-
nite expressions. To show that NORM terminates, we show
that each stage of the rewrite process terminates. We define
two reduction orderings: for the sum of regions and the size
of the Γ terms. It is easy to see that the contraction rules
always yield smaller terms wrt. reduction orderings on the
overall sum. Likewise reduction and factoring rules strictly
reduce the Γ terms on which they operate. Only the tran-
sitive closure rule increases Γ terms, and we show that they
terminate due both to the finiteness of the Hasse diagram
and since Γ terms strictly grow to the right.

We can also show a confluence result, however only up to
reordering and re-association of the elements of Γ terms.
We define a equivalence relation ≈ such that Γ1 = Γ2 iff
Γ1 = σ1 · · · σn and Γ2 = σ(1)π · · ·σ(n)π with π ∈ Sn, i.e. a
permutation in n elements. Observe that this is sufficient
for us since the product of σs are commutative anyway. We
can then show

Theorem 16 (Confluence).R is confluent modulo ≈.

Proof Sketch. Since R terminates, it only remains to
show local confluence. We can show for the critical pairs
0-σ and 0-σr, 0-σl that they can always be joined by 0-T as
can not have isolated Γ terms. The remaining critical pairs
are copies of Trans and of Fact, respectively. They can be
joined when exhaustively applied yielding terms containing
Γ terms equivalent under ≈.

8. CONCLUSIONS
We have presented procedures that enable the analysis of

structural properties of results from arithmetic operations
on abstract matrices. This allows us to show general struc-
tural results for infinite classes of matrices under arithmetic

using a robust, computational approach. One example of the
kind of structural result that we can directly obtain with this
approach is that the product of upper triangular matrices is
upper triangular. This is an important problem in practice
but, to the best of our knowledge, ours is the first success-
ful attempt to provide a comprehensive solution that can
automatically solve all possible cases. Our approach uses a
combination of procedural and rule based techniques. The
advantage of using the rewrite system for the normalisation
of results into regular forms is that we can more easily prove
the relevant theoretical properties, in particular confluence
and correctness, than we can for a procedural approach. The
current form of the procedure is the first theoretical design
of our approach and does not yet contain possible optimi-
sations. For an efficient implementation, one will need to
eagerly exploit information on regions, such as their incom-
patibility, to bring down complexity, in particular of the
multiplication algorithm, which is currently exponential in
the number of regions. The current version of the pars-
ing algorithm and the simple arithmetic is implemented in
Maple [5]. We intend to build an extension that allows for
computing and reasoning on structural properties with the
method described in this paper.

9. REFERENCES
[1] F. Baader and T. Nipkow. Term Rewriting and All

That. Cambridge University Press, 1999.

[2] B. Davey and H. Priestley. Introduction to Lattices
and Order. Cambridge University Press, 2002.

[3] R. Fateman. Manipulation of matrices symbolically,
2003. www.eecs.berkeley.edu/~fateman/papers/
symmat2.pdf

[4] M. Kauers and C. Schneider. Application of
unspecified sequences in symbolic summation. In Proc.
of ISSAC 2006, pages 177–183, 2006.

[5] Maplesoft. Maple 12 User Manual. Maplesoft, 2008.

[6] A. P. Sexton and V. Sorge. Abstract matrices in
symbolic computation. In Proc. of ISSAC 2006,
p. 318–325. ACM Press, 2006.

[7] A. P. Sexton, V. Sorge, and S. M. Watt. Arithmetic
on matrices with blocks of symbolic size. In ISSAC
2007 poster abstracts, 41(1-2):39–40 of ACM
Commun. Comput. Algebra. 2007.

[8] A. P. Sexton, V. Sorge, and S. M. Watt. Abstract
matrix arithmetic. In Proc. of SYNASC-2008. IEEE
Computer Society Press, 2009.

[9] S. M. Watt. Two families of algorithms for symbolic
polynomials. In Computer Algebra 2006: Latest
Advances in Symb. Algorithms, p. 193–210. World
Scientific, 2006.

[10] S. M. Watt. Functional decomposition of symbolic
polynomials. In Proc. of ICCSA 2008, p. 353–362.
IEEE Computer Society, 2008.

[11] S. Wolfram. The Mathematica book. Wolfram Media,
Inc., 5th edition, 2003.

8

