
�������� �	 �
� ���� �� ���� ��� ������ ���� ����

©� �������� ����������� 	�� 
��������� �������� �������

The Distributed Computing Column
by

Panagiota Fatourou
Department of Computer Science, University of Crete
P.O. Box 2208 GR-714 09 Heraklion, Crete, Greece

and
Institute of Computer Science (ICS)

Foundation for Research and Technology (FORTH)
N. Plastira 100. Vassilika Vouton
GR-700 13 Heraklion, Crete, Greece

faturu@csd.uoc.gr



������ �� 		
 ��� ����� ���	
��

��

Computing with Advice:
when Knowledge Helps

Stefan Dobrev
Slovak Academy of Sciences, Bratislava, Slovakia.

Stefan.Dobrev@savba.sk

Rastislav Královič
Comenius University, Bratislava, Slovakia.
kralovic@dcs.fmph.uniba.sk

Richard Královič
ETH Zurich, Switzerland.

Google Zurich, Switzerland.
riso@google.com

Abstract

In several areas of computer science the possibility and efficiency of the
solution is determined by information that is not accessible to the algorithm.
Traditionally, a qualitative approach to the study of this information has been
pursued, in which the impact of enhancing the algorithm with various spe-
cific types of information has been studied. Recently, a number of authors
have proposed a quantitative approach, where the amount of the added in-
formation is studied in relation with the improvement of the quality or effi-
ciency of the solution. We survey several recent examples of this approach
from the area of distributed and online computing.

1 Introduction

From a high-level point of view, computation is usually thought of as informa-
tion processing: The input instance contains some implicit, hidden information,
and the role of the algorithm is to make this information explicit, which usually



��� �������	 
� ��� ����

��

means to produce some specified form of output. While from the information-
theoretic point of view, all the relevant information is contained in the input, there
may be several reasons why some of this information is not available to the al-
gorithm. First, it may not be possible at all to obtain the required information
in the given model of computation, or the algorithm may have limited resources
that prevent it from extracting the required information. The questions how the
bounded resources relate to the possibility to extract information are among the
most notoriously difficult problems of computer science.

There are some cases, however, where information is inaccessible to the algorithm
not due to some limited computational resources, but from the nature of the set-
ting. A prominent example is the area of distributed computing where the global
state of the system is usually not known to the computing entities, yet it often
plays a crucial role in the efficiency (or even feasibility) of the solution. Indeed,
many works have been studying the impact of knowledge of the network topol-
ogy on the efficiency and feasibility of various distributed tasks. Other pieces of
information that influence the distributed algorithm are the knowledge of (some)
identifiers, and, possibly, the knowledge of failure patterns. In Sections 2 and
3, we survey the results that analyze the impact of topology knowledge from a
quantitative point of view: how much information has to be supplied to the com-
puting entities in order to be able to solve tasks efficiently. A similar situation
to the distributed computing comes to play in another field of computer science:
online algorithms. Here, the algorithm must make irreversible decisions based
only on partial knowledge about the input, and coping with the fact that the yet
unknown remainder of the input may be crucial for the solution. Again, there is
an extensive research concerning the augmentation of the algorithm with some a-
priori information about the input, an approach known as semi-online algorithms.
Here, too, recently effort has been made to analyze the additional information in
a quantitative way, and we survey some of the recent results in Section 4.

Results from both areas show complex behavior of the relationship between the
amount of the additional information and the increase of the solution quality: in
some cases, there are trade-off relations, where increasing the knowledge gives
better solutions, on the other hand, examples of threshold values are known, where
adding more bits of advice does not help.

2 Message based distributed computing

Let us consider distributed systems consisting of independent entities connected
in a network that can communicate by some form of exchange of messages. There



������ �� 		
 ��� ����� ���	
��

��

are two basic views on such systems, which are in essence equivalent, but yield
themselves to different types of questions – either the active components are the
nodes of the network, and messages are pieces of data send among them, or the
active components are the messages (agents) that traverse the network, and the
nodes passively provide resources for computation and communication. Typical
problems solved in the message-based systems include communication tasks such
as broadcasting, wake-up, leader election, or computational problems where some
graph-theoretic objects are to be constructed, like, e. g., various spanners, color-
ings, independent or dominating sets, etc. On the other hand, typical problems
tackled in the agent-based view include many variants of graph exploration, map
drawing, agent rendezvous, and similar.

The quantitative study of the topological information in message based systems
was introduced in the work of Fraigniaud, Ilcinkas, and Pelc [49], where a distinc-
tion has been shown between two similar problems: broadcasting, and wakeup.
Both problems are considered in an asynchronous setting where nodes have dis-
tinct identities, messages are delivered between neighboring pairs of nodes, and
in both problems there is an initiator that starts with a message that must be deliv-
ered to all other nodes. The distinction is that in the broadcast problem, control
messages may be spontaneously sent among vertices from the beginning of the
algorithm, whereas in the wakeup problem, only vertices that have previously re-
ceived a message may send a message (except for the initiator). While it has
been known that without any information about the topology, the wakeup requires
Ω(m) messages on a graph with n vertices, and m edges [5], in specific topolo-
gies (e. g., [28, 35]) wakeup can be done using O(n) messages. O(n) messages are
also sufficient when the network is equipped with the sense of direction [42]. In
[49] the authors model the topological information in the following way: a-priori,
each node knows its identity, and the local labeling of incident edges. Before the
algorithm starts, each node v is provided with a binary string f (v). The function
f : V �→ {0, 1}∗ is called an oracle, and

∑
v∈V | f (v)| is its size. The smallest num-

ber of messages, over all oracles of a given size, exchanged by the algorithm is
considered as a complexity measure. It is shown that an oracle of size Θ(n log n)
is needed to perform wakeup with linearly many messages, while linear broadcast
can be accomplished with an oracle of size Θ(n).

The same notion of oracle size has been addressed for a number of other problems
in the synchronous setting. Fusco and Pelc [52] consider wakeup in a rooted tree
in the one-port model, where each node may send in each step only one message,
and the aim is to minimize the number of steps. To evaluate the algorithm they
use the competitive analysis. The competitive ratio is the ratio of the broadcasting
time of the algorithm with oracle of size q, to the optimal (offline) algorithm with
full topological knowledge. The main result shows that with linear-sized oracle,



��� �������	 
� ��� ����

��

the broadcasting can be done optimally, and for
√

n ≤ q ≤ n the competitive ratio
is between Ω(n1−ε/q) and O(n log2 n/q) for arbitrary small ε. However, advice
smaller than

√
n does not help, since for q <

√
n, the competitive ratio is Θ(

√
n),

the same as without any advice.

A similar situation (in theLOCALmodel from [75],i. e.,, in a synchronous message-
passing system with nodes that have unique identifiers) where adding advice does
not help has been observed in [47], where the time needed for proper 3-coloring
of cycles and trees is investigated. Without any advice, cycles and oriented trees
can be 3-colored in time O(log∗ n), and oracle of size Ω(n/ log(k) n) for any con-
stant k is needed to beat the O(log∗ n) bound, where log(k) n is the k-th iteration of
the logarithm. Moreover, for unoriented trees, the same oracle size is needed for
3-coloring in time Θ(log∗ n); almost as much information as specifying the color
for each node.

In the LOCAL model, the construction of minimum spanning tree (MST) has
been studied as well: in [51], authors consider a setting where each node has
access to the weights of incident links, and the goal is to find a distributed rep-
resentation of a minimum spanning tree. Instead of the overall length of advice
strings, they studied the maximum, over all nodes. They show that with constant
advice in each vertex, the MST can be constructed in logarithmic time, whereas
without any advice, Ω(

√
n/ log n) rounds are needed [76].

Broadcasting in radio networks has been considered in [57], where a trade-off
between the size of advice and broadcasting time has been devised.

Finally, let us note that the above mentioned work is tightly connected with the
study of informative labeling schemes (see, e. g., [20, 22, 45, 62, 63, 64] and
references therein): here, the aim is to label vertices of the graph in such a way
that it is possible to extract, based solely on the labels of a subset of vertices
V ′ ⊆ V some parameter concerning V ′ (e. g., if V ′ is any two-element set, and the
parameter is distance, the scheme is called distance labelling scheme).

3 Agent based distributed computing

Alternatively to the model of distributed systems with active nodes that commu-
nicate by exchanging messages, one can consider systems where the nodes are
passive, and the computation is driven by active messages (agents). The most
studied problems in this setting comprise various variants of graph exploration:
the agents have to collaboratively explore the network, with possible goals in-
cluding visiting all vertices, drawing a map, etc. It is always assumed that the
incident links in each node are locally distinguishable; in some cases, the nodes



������ �� 		
 ��� ����� ���	
��

��

may have also unique identifiers.

The problems related to graph exploration are presumably the oldest graph-the-
oretic problems (e. g., [39]). The first studied variants concerned a single agent
with full topology knowledge, and were focused on the existence of various types
of walks. Supposedly the first algorithm for traversing unknown graphs is due to
Shannon [80]. In the late 70ties, attention has turned to the problem of a finite
automaton navigating in an unknown graph (e. g., [3, 17, 18]), which developed
into a series of results concerning the size of memory, and the number of moves of
the agent needed for successful exploration (e. g., [48, 72, 73]). At the same time,
extensive research has been conducted on teams of cooperating agents (see, e. g.,
[24, 37, 46]). If not explicitly mentioned, we shall consider undirected graphs
(i. e., the agent can always return along the link it arrived). Directed graphs have
been treated, e. g., in [2, 8, 25, 41]. Apart from the various variants of graph
exploration, problems like rendezvous (e. g., [7, 19, 27, 66]) or black hole search
(e. g., [23, 29, 30]) have been investigated.

When considering the additional information, and how it affects the exploration,
one should note that the local labelling of the incident links is a potential source
of information. On the one hand, if the agent has no means to locally distinguish
the incident links in a node, the exploration process can no longer be determin-
istic, and the adversary may force the agent to traverse a single edge back and
forth. Assigning local labels to the incident links in every node is a natural way
to circumvent this problem; another approach that is used in some cases is to as-
sign labels to nodes, and to allow the agent to see the labels of neighboring nodes.
When using the model with local link identifiers, it is assumed that the labeling
is chosen by an adversary, and the agent(s) must be able to perform the task un-
der any labelling. A series of papers [31, 53, 56, 65, 82] investigates how the
properly chosen labeling may help the algorithm. It is proven that a memoryless
agent (e. g., one using a right-hand-on-the-wall rule) can perform a fast periodic
exploration of the network when the local port labels are set appropriately.

The oracle-based approach where additional advice strings can be placed in the
nodes was applied in [21], where it is proven that 2 bits in every node are sufficient
for a finite automaton to explore all graphs, a task that is not possible without any
information.

In the problem of drawing a map of an unlabeled graph, investigated in [26], the
symmetry of the graph plays a crucial role: there is a graph invariant called multi-
plicity (μ), which in some sense expresses the symmetry properties of the graphs,
such that for graphs with μ = 1, oracle of size ϕ(n) is sufficient for any function
ϕ = ω(1). On the other hand, for graphs with μ > 1, oracle size Θ(m log μ) is
needed, where m is the number of edges. Again, without any information, the task



��� �������	 
� ��� ����

��

is not solvable.

In [50], the following problem has been investigated: the agent, starting from
a node v, has to traverse all edges of an unknown tree. Obviously, with full
information about the tree, this can be done in an optimal number of moves
Opt = 2(n − 1) − ecc(v) where ecc(v) is the eccentricity of the starting node,
i. e., the longest distance from v to another vertex w. For an algorithm A, the au-
thors consider the competitive ratio, i. e., the ratio cost(A)/Opt. It can be seen that
without any further information, the best possible ratio attainable is 2. In order to
avoid problems with information given in the port labeling, they use an oracle of
the form f : T �→ {0, 1}∗, where T is an unlabeled tree T (i. e., the advice given
to the agent by the oracle is a bit string that is the same for all labellings of a
given tree). The main result shows a tight bound of log log D bits in order to get
competitive ratio better than 2.

As we already mentioned, there are alternatives to the local port labeling. In the
so-called fixed graph scenario introduced by Kalyanasundaram and Pruhs in [59],
the nodes have identifiers, and when the agent arrives at a node v ∈ G, it learns all
incident edges, their endpoints, and, if the graph is weighted, their weights. While
learning the endpoints of the incident edges is stronger than the typical exploration
scenario, it does have a justification (see [59] and [69]); it also corresponds to the
previously studied neighbourhood sense of direction [43].

In [32], the following problem was addressed from the point of view of advice
size: the agent starts at a node v of an undirected labeled graph with n nodes,
where each edge has a non-negative cost. The agent has no knowledge about the
graph, and has to visit every node of the graph and return to v. The agent can
move only along the edges, each time paying the respective edge cost. Clearly,
the optimum corresponds to the minimum travelling salesman route (TSP) on the
metric closure of the graph (since it is allowed to visit a node more than once).
A simple and fast heuristic for the traditional offline setting which has been ex-
tensively studied is the greedy algorithm Nearest Neighbor (NN): Once at a node
u, go to the closest yet unexplored node, and repeat the process until all nodes
have been explored. This algorithm can be also performed by an agent, achieving
a competitive ratio of Θ(log n) ([78]), which is tight even on planar unit-weight
graphs ([55]). Despite many partial results ([4, 59, 70, 69]), the main question,
whether there exists a constant-competitive algorithm is still open: the best known
lower bound on the competitive ratio is 5/2 − ε ([32]), and the upper bound for
general graphs is O(log n). Moreover, in [32] the authors were able to obtain con-
stant competitive ratio with an advice of size O(n) (for optimality, Ω(n log n) bits
are needed). Reducing the advice of a constant-competitive algorithm to o(n) bits
remains an open problem.



������ �� 		
 ��� ����� ���	
��

��

The same concept of advice has been also applied to the graph searching problem
in [71].

4 Online Computing

In distributed computing, the information that is not known to the algorithm is
the information about the topology of the network. The term online is used for
problems where the input comes in parts, and the algorithm must produce output
in an incremental fashion, too. Formally, the input x is a sequence of requests x =
(x1, . . . , xn). The output y is a sequence of answers y = (y1, . . . , yn) computed by
the algorithm in such a way that each yi is a function of x1, . . . , xi (for randomized
algorithms, it is also a function of the random bits used so far). The goal is to
maximize or minimize a cost function defined over the whole output y. For an
exposition to online algorithms, we refer the reader to [15].

An archetypal online problem is paging, where the algorithm has to maintain a
buffer of k items (pages). The input is a sequence of pages; when a page is
requested that is in the buffer, the page is served, and no output is produced.
However, if the page is not in memory, the algorithm must select a victim that is
removed from the buffer, and is replaced by the requested page; this is called page
fault, and the algorithm pays a penalty of 1 for each fault.

The notion of a competitive ratio was introduced by Sleator and Tarjan [81]: a
minimization (analogous definition is for maximization) algorithm A is called c-
competitive, if it always produces an output where cost(A) ≤ c · Opt + α for
some constant α (sometimes, it is required that α = 0; this requirement is termed
strong competitiveness). Note that in online problems the main concern is not
the computational complexity, but the inherent loss of performance due to the
unknown future.

Online computation has received considerable attention over the past decades
as a natural way of modeling real-time processing of data. A classical result
from [81] states that no deterministic paging algorithm can be better than k-
competitive. In general, since the algorithm does not know the future input, and
because it is compared to the offline optimum in the worst case, many problems
have no good competitive algorithms. In order to make the situation less unfair
for the algorithm, randomization is often employed. Here, the algorithm has ad-
ditional access to a random string. In order to be c-competitive, it is sufficient that
E [cost(A)] ≤ c · Opt + α where the expectation is taken over all random strings.
Another well known result [40] states that for paging, randomization helps, since
the randomized paging is Θ(log k)-competitive. The help of randomization in the



��� �������	 
� ��� ����

��

case of paging comes, intuitively, from the fact that a particular mistake creates
a single page fault: the algorithm pays for it, but it is easy to correct it later. In
other cases, many decisions are critical: Consider, e. g., a problem when vertices
of a graph are revealed one by one, and the algorithm has to select the largest
possible independent set from the resulting graph, while seeing, at each time step,
the subgraph induced by the arrived vertices. Clearly, there are situations, where
incorrectly selecting a particular vertex prohibits the algorithm from selecting any
other vertex for the rest of the input. Hence, it is not difficult to construct a graph
and a vertex arrival sequence, where the randomized algorithm selects an expected
constant number of vertices, while the graph admits a linearly-sized independent
set.

In a way similar to the area of distributed computing, many results have been
proven about enhancing the algorithm with a particular type of information about
the input. The method of access graphs [16, 58] restricts the sequence of requests
to be a walk in an a-priori known graph. A similar approach using entropy has
been taken in [74]. Lookahead (e. g., [1]) reveals to the algorithm some limited
number of future requests. In many scheduling and graph problems, specific forms
of the input sequence have been considered (graphs with certain parameters, jobs
arriving in certain order, etc.).

The first attempt to analyze the impact of added information quantitatively was
due to Halldórsson et al [54]. The authors considered the problem of finding the
maximum independent set online, and introduced a model where the algorithm
can maintain a set of solutions. The final solution produced by the algorithm is
the best one from the set at the time of the last input request. If the algorithm is
allowed to maintain r(n) solutions, this model can be interpreted as running the
algorithm with log r(n) bits of advice describing the particular input. The results
of the paper show that when r(n) is constant, the competitive ratio is Ω(n), i. e.,
constant advice does not help. However, when r(n) is polynomial, the competitive
ratio is Θ(n/ log n).

In [34], the authors start a systematic quantitative treatment of the problem-spe-
cific information. In the proposed model, the algorithm received, in each step, a
(possibly empty) advice string, and the advice complexity was defined as the sum
of lengths of these strings. However, this model suffered from the fact that infor-
mation was encoded also in the empty requests, as pointed out in [38]. Here, the
authors used an advice string of fixed length attached to each request, and studied
the advice complexity of k-server and metrical task system problems. Using this
approach, however, it is not possible to analyze information that is sublinear in
the number of requests. Therefore, in the model from [13], the whole advice is
given to the algorithm at the beginning as a single binary string. In this way, the



������ �� 		
 ��� ����� ���	
��

��

model is equivalent to both the model from [54], and the model from agent based
systems where the advice is given to the agent. Moreover, it forms an analogy
to the model of randomized algorithms – instead of a string of random bits and
the expected outcome, the string of best possible bits and the corresponding out-
come is considered. Hence, the comparison between randomization and advice is
attractive. In the remainder of this section we shall consider the model from [13].

Obviously, there are two trivial ways to obtain an optimal algorithm: either to en-
code the whole input in the advice (recall that in the treatment of online problems,
computational resources are usually disregarded), or to encode the whole output;
hence the advice is upper bounded by the minimum of Kolmogorov complexity
of those two. In certain cases, however, significantly lower advice is sufficient. A
number of problems have been considered in this model, including paging [13],
k-server [12], knapsack [14], set cover [61], metrical task systems [38] (the results
from the paper hold in both models), buffer management [36], job shop scheduling
[13], independent sets in various classes of graphs (general graphs [54], interval
graphs [13], bipartite graphs [33]), and various variants of online coloring (bipar-
tite graphs [9], paths [44], 3-colorable graphs [79], L(2, 1) coloring [10]).

In general, there are three questions that are usually asked about a problem:

• What advice is needed to get optimal solution?

• What advice is needed to get the competitive ratio of the best possible ran-
domized algorithm?

• What is the relationship between the size of the advice and the competitive
ratio?

Usually, the first question is the easiest one to answer, and it turns out that for
many problems, large information is needed to be optimal. However, even this
large information is sometimes smaller that the trivial bound. For the paging
problem, e. g., O(n) bits of advice are sufficient to obtain an optimal algorithm
(see [13]) in the following way: with every page in the buffer, the algorithm stores
a flag indicating whether the page will be used by a reference optimal algorithm
before replacement. When a page fault occurs, the algorithm is safe to remove
any page that will not be needed by the optimal solution. The new page is inserted
into the cache, and the new flag is read from the advice. On the other hand, to
encode the input or the output, Ω(n log k) bits would be needed.

The comparison of advice and randomization is an interesting point, since the two
approaches use different properties of the solution space: to have a randomized
algorithm with good expected performance, many good witnesses for each input



��� �������	 
� ��� ����

��

instance are needed. On the other hand, for good performance of advice algo-
rithms, only one witness is sufficient for a given instance, but the space of possible
witnesses must be small. In general, it holds (see [12] for minimization problems;
analogous statement holds for maximization) that if there is a randomized algo-
rithm with expected worst case competitive ratio E(n), then for any constant ε > 0
there is an algorithm with advice of O(log n + log log |I(n)|) bits with competi-
tive ratio (1 + ε)E(n), where I(n) is the set of all input instances consisting of n
requests. However, in many cases significantly smaller advice is sufficient to be
on par with randomization. For paging, e. g., log k bits (i. e., independent of n)
of advice is sufficient to get competitive ratio O(log k) ([13]) which equals to the
randomized competitive ratio. An interesting point is that an O(log k)-competitive
randomized algorithm can be obtained with O(log k) random bits ([60]), so the
random bits and advice bits exhibit the same power in this case.

For an illustration, consider the k-server problem, which is a generalization of
paging. In a metric space (finite or infinite) there are k servers located in some
points of the space. Each request is some point xi in the space. To fulfill the
request, the algorithm must make sure that there is some server located on xi; if it
is not the case, some server must be moved there, paying the cost of the travelled
distance. In the deterministic case, the competitive ratio is known to be Θ(k),
and a famous conjecture states that the randomized competitive ratio is Θ(log k).
The closest in proving the conjecture is the breakthrough result from [6] that for
a finite metric space with β points, there is a randomized k-server algorithm with
expected competitive ratio O(log2 k log3 β log log β). From that follows that there
is an algorithm with advice O(log n+ log log β) having the same competitive ratio.
However, the algorithm from [12] runs in exponential time: it first simulates the
randomized algorithm on all inputs and all possible random strings, and produces
a dictionary of polynomial size. The advice is then a pointer to the dictionary.
Existence of a polynomial-time algorithm for k-server that achieves competitive
ratio O(log k) using O(log n) bits is an open problem.

The relationship between the size of the advice and the competitive ratio is a com-
plex one. In some cases, a trade-off relation exists, where increasing the advice
yields a better competitive ratio, as is, e. g., the case of constant competitive ratio
of paging [13]. On the other hand, there are thresholds, where increasing the ad-
vice does not help, e. g., for simple knapsack [14], no algorithm using less than
log n bits can be better than (2−ε) competitive, but with (3(ε+1)/ε) log n+o(log n)
bits, competitive ratio (1 + ε) can be achieved for any constant ε.

Notable is also the approach from [11], where an artificial problem of string guess-
ing is analyzed, and a reduction is used to prove lower bounds on the advice com-
plexity of online set cover.



������ �� 		
 ��� ����� ���	
��

��

5 Conclusion

Recently, there have been several attempts to analyze the impact of the hidden in-
formation in a quantitative way. Although they are applied in different areas, they
share a common framework: The algorithm is enhanced by some information
about the unknown part of the input, which may be of any type, but of bounded
size. This approach may deepen the understanding of the structure of the respec-
tive problems. Finally, we note that the term advice complexity has traditionally
been used as a synonym for relativized complexity (i. e., a sequential computation
where the Turing machine gets an advice that depends on the length of the input),
which may cause some confusion. Also, we note similar approaches in the treat-
ment of the problem of factorization ([68, 77]) where the number of queries to a
yes/no oracle needed to determine the factors of a number was studied.

References

[1] S. Albers. On the influence of lookahead in competitive paging algorithms. Algo-
rithmica, 18(3):283–305, 1997.

[2] S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM J. Com-
put., 29(4):1164–1188, 2000.

[3] H. Antelmann, L. Budach, and H.-A. Rollik. On universal traps. Elektronische
Informationsverarbeitung und Kybernetik, 15(3):123–131, 1979.

[4] Y. Asahiro, E. Miyano, S. Miyazaki, and T. Yoshimuta. Weighted nearest neighbor
algorithms for the graph exploration problem on cycles. Information Processing
Letters, 110(3):93 – 98, 2010.

[5] B. Awerbuch, O. Goldreich, D. Peleg, and R. Vainish. A trade-off between informa-
tion and communication in broadcast protocols. J. ACM, 37(2):238–256, 1990.

[6] N. Bansal, N. Buchbinder, A. Madry, and J. Naor. A polylogarithmic-competitive
algorithm for the k-server problem. In R. Ostrovsky, editor, FOCS, pages 267–276.
IEEE, 2011.

[7] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Rendezvous and election of
mobile agents: Impact of sense of direction. Theory Comput. Syst., 40(2):143–162,
2007.

[8] M. A. Bender and D. K. Slonim. The power of team exploration: Two robots can
learn unlabeled directed graphs. In FOCS, pages 75–85. IEEE Computer Society,
1994.

[9] M. P. Bianchi, H.-J. Böckenhauer, J. Hromkovič, and L. Keller. Online coloring of
bipartite graphs with and without advice. In Proc. of the 18th Annual International



��� �������	 
� ��� ����

��

Conference on Computing and Combinatorics (COCOON 2012), volume 7434 of
Lecture Notes in Computer Science, pages 519–530, 2012.

[10] M. P. Bianchi, H.-J. Böckenhauer, J. Hromkovič, S. Krug, and B. Steffen. On the
advice complexity of the online L(2, 1)-coloring problem on paths and cycles. In
D. Du and G. Zhang, editors, COCOON, volume 7936 of Lecture Notes in Computer
Science. Springer-Verlag, 2013. to appear.

[11] H.-J. Böckenhauer, J. Hromkovic, D. Komm, S. Krug, J. Smula, and A. Sprock. The
string guessing problem as a method to prove lower bounds on the advice complex-
ity. to appear, 2013.

[12] H.-J. Böckenhauer, D. Komm, R. Královič, and R. Královič. On the advice com-
plexity of the k-server problem. In L. Aceto, M. Henzinger, and J. Sgall, editors,
Proc. of the 38th International Colloquium on Automata, Languages and Program-
ming (ICALP 2011), volume 6755 of Lecture Notes in Computer Science, pages
207–218. Springer-Verlag, 2011.

[13] H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič, and T. Mömke. On the
advice complexity of online problems. In Y. Dong, D.-Z. Du, and O. H. Ibarra,
editors, Proc. of the 20th International Symposium on Algorithms and Computation
(ISAAC 2009), volume 5878 of Lecture Notes in Computer Science, pages 331–340.
Springer-Verlag, 2009.

[14] H.-J. Böckenhauer, D. Komm, R. Královič, and P. Rossmanith. On the advice com-
plexity of the knapsack problem. In D. Fernández-Baca, editor, Proc. of the 10th
Latin American Symposium on Theoretical Informatics (LATIN 2012), volume 7256
of Lecture Notes in Computer Science, pages 61–72. Springer-Verlag, 2012.

[15] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

[16] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality
of reference (preliminary version). In C. Koutsougeras and J. S. Vitter, editors,
STOC, pages 249–259. ACM, 1991.

[17] L. Budach. On the solution of the labyrinth problem for finite automata. Elektronis-
che Informationsverarbeitung und Kybernetik, 11(10-12):661–672, 1975.

[18] L. Budach. Environments, labyrinths and automata. In FCT, pages 54–64, 1977.

[19] J. Chalopin, S. Das, and P. Widmayer. Rendezvous of mobile agents in directed
graphs. In Lynch and Shvartsman [67], pages 282–296.

[20] V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, Y. Vaxès, and Y. Xiang. Additive
spanners and distance and routing labeling schemes for hyperbolic graphs. Algorith-
mica, 62(3-4):713–732, 2012.

[21] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg. Label-guided graph
exploration by a finite automaton. ACM Transactions on Algorithms, 4(4), 2008.

[22] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg. Labeling schemes
for tree representation. Algorithmica, 53(1):1–15, 2009.



������ �� 		
 ��� ����� ���	
��

��

[23] J. Czyzowicz, S. Dobrev, R. Královic, S. Miklík, and D. Pardubská. Black hole
search in directed graphs. In S. Kutten and J. Zerovnik, editors, SIROCCO, volume
5869 of Lecture Notes in Computer Science, pages 182–194. Springer, 2009.

[24] S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. Map construction of
unknown graphs by multiple agents. Theor. Comput. Sci., 385(1-3):34–48, 2007.

[25] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Journal of Graph
Theory, 32(3):265–297, 1999.

[26] D. Dereniowski and A. Pelc. Drawing maps with advice. In Lynch and Shvartsman
[67], pages 328–342.

[27] A. Dessmark, P. Fraigniaud, D. R. Kowalski, and A. Pelc. Deterministic rendezvous
in graphs. Algorithmica, 46(1):69–96, 2006.

[28] K. Diks, S. Dobrev, E. Kranakis, A. Pelc, and P. Ruzicka. Broadcasting in unlabeled
hypercubes with a linear number of messages. Inf. Process. Lett., 66(4):181–186,
1998.

[29] S. Dobrev, P. Flocchini, R. Kralovic, P. Ruzicka, G. Prencipe, and N. Santoro. Black
hole search in common interconnection networks. Networks, 47(2):61–71, 2006.

[30] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole in
arbitrary networks: optimal mobile agents protocols. Distributed Computing, 19(1),
2006.

[31] S. Dobrev, J. Jansson, K. Sadakane, and W.-K. Sung. Finding short right-hand-on-
the-wall walks in graphs. In A. Pelc and M. Raynal, editors, SIROCCO, volume
3499 of Lecture Notes in Computer Science, pages 127–139. Springer, 2005.

[32] S. Dobrev, R. Královic, and E. Markou. Online graph exploration with advice. In
G. Even and M. M. Halldórsson, editors, SIROCCO, volume 7355 of Lecture Notes
in Computer Science, pages 267–278. Springer, 2012.

[33] S. Dobrev, R. Královič, and R. Královič. Independent set with advice: The impact
of graph knowledge. In T. Erlebach and G. Persiano, editors, WAOA, Lecture Notes
in Computer Science, page to appear. Springer, 2012.

[34] S. Dobrev, R. Královič, and D. Pardubská. Measuring the problem-relevant infor-
mation in input. RAIRO Theoretical Informatics and Applications, 43(3):585–613,
2009.

[35] S. Dobrev and P. Ruzicka. Broadcasting on anonymous unoriented tori. In
J. Hromkovic and O. Sýkora, editors, WG, volume 1517 of Lecture Notes in Com-
puter Science, pages 50–62. Springer, 1998.

[36] R. Dorrigiv, M. He, and N. Zeh. On the advice complexity of buffer management. In
K.-M. Chao, T. sheng Hsu, and D.-T. Lee, editors, ISAAC, volume 7676 of Lecture
Notes in Computer Science, pages 136–145. Springer, 2012.

[37] M. Dynia, J. Lopuszanski, and C. Schindelhauer. Why robots need maps. In
G. Prencipe and S. Zaks, editors, SIROCCO, volume 4474 of Lecture Notes in Com-
puter Science, pages 41–50. Springer, 2007.



��� �������	 
� ��� ����

��

[38] Y. Emek, P. Fraigniaud, A. Korman, and A. Rosén. Online computation with advice.
Theoretical Computer Science, 412(24):2642–2656, 2011.

[39] L. Euler. Solutio problematis ad geometriam situs pertinentis. Novi Commentarii
Academiae Scientarium Imperialis Petropolitanque, 7:9–28, 1758-59.

[40] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young.
Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.

[41] R. Fleischer and G. Trippen. Exploring an unknown graph efficiently. In G. S.
Brodal and S. Leonardi, editors, ESA, volume 3669 of Lecture Notes in Computer
Science, pages 11–22. Springer, 2005.

[42] P. Flocchini, B. Mans, and N. Santoro. On the impact of sense of direction on
message complexity. Inf. Process. Lett., 63(1):23–31, 1997.

[43] P. Flocchini, B. Mans, and N. Santoro. Sense of direction in distributed computing.
Theor. Comput. Sci., 291(1):29–53, 2003.

[44] M. Forišek, L. Keller, and M. Steinová. Advice complexity of online coloring for
paths. In Proc. of the 6rd International Conference on Language and Automata
Theory and Applications (LATA 2012), pages 228–239, 2012.

[45] P. Fraigniaud. Informative labeling schemes. In S. Abramsky, C. Gavoille, C. Kirch-
ner, F. Meyer auf der Heide, and P. G. Spirakis, editors, ICALP (2), volume 6199 of
Lecture Notes in Computer Science, page 1. Springer, 2010.

[46] P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and A. Pelc. Collective tree exploration.
Networks, 48(3):166–177, 2006.

[47] P. Fraigniaud, C. Gavoille, D. Ilcinkas, and A. Pelc. Distributed computing with ad-
vice: information sensitivity of graph coloring. Distributed Computing, 21(6):395–
403, 2009.

[48] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a
finite automaton. Theor. Comput. Sci., 345(2-3):331–344, 2005.

[49] P. Fraigniaud, D. Ilcinkas, and A. Pelc. Oracle size: a new measure of difficulty for
communication tasks. In E. Ruppert and D. Malkhi, editors, PODC, pages 179–187.
ACM, 2006.

[50] P. Fraigniaud, D. Ilcinkas, and A. Pelc. Tree exploration with advice. Inf. Comput.,
206(11):1276–1287, 2008.

[51] P. Fraigniaud, A. Korman, and E. Lebhar. Local mst computation with short advice.
Theory Comput. Syst., 47(4):920–933, 2010.

[52] E. G. Fusco and A. Pelc. Trade-offs between the size of advice and broadcasting
time in trees. In F. Meyer auf der Heide and N. Shavit, editors, SPAA, pages 77–84.
ACM, 2008.

[53] L. Gasieniec, R. Klasing, R. A. Martin, A. Navarra, and X. Zhang. Fast periodic
graph exploration with constant memory. J. Comput. Syst. Sci., 74(5):808–822,
2008.



������ �� 		
 ��� ����� ���	
��

��

[54] M. M. Halldórsson, K. Iwama, S. Miyazaki, and S. Taketomi. Online independent
sets. Theor. Comput. Sci., 289(2):953–962, 2002.

[55] C. A. Hurkens and G. J. Woeginger. On the nearest neighbor rule for the traveling
salesman problem. Operations Research Letters, 32(1):1 – 4, 2004.

[56] D. Ilcinkas. Setting port numbers for fast graph exploration. Theor. Comput. Sci.,
401(1-3):236–242, 2008.

[57] D. Ilcinkas, D. R. Kowalski, and A. Pelc. Fast radio broadcasting with advice. Theor.
Comput. Sci., 411(14-15):1544–1557, 2010.

[58] S. Irani, A. R. Karlin, and S. Phillips. Strongly competitive algorithms for paging
with locality of reference. In G. N. Frederickson, editor, SODA, pages 228–236.
ACM/SIAM, 1992.

[59] B. Kalyanasundaram and K. R. Pruhs. Constructing competitive tours from local
information. Theoretical Computer Science, 130(1):125 – 138, 1994.

[60] D. Komm and R. Královič. Advice complexity and barely random algorithms. In
I. Černá, T. Gyimóthy, J. Hromkovič, K. G. Jeffery, R. Královič, M. Vukolic, and
S. Wolf, editors, Proc. of the 37th International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2011), volume 6543 of Lecture
Notes in Computer Science, pages 332–343. Springer-Verlag, 2011.

[61] D. Komm, R. Královič, and T. Mömke. On the advice complexity of the set cover
problem. In E. A. Hirsch, J. Karhumäki, A. Lepistö, and M. Prilutskii, editors,
Proc. of the 7th Symposium on Computer Science in Russia (CSR 2012), volume
7353 of Lecture Notes in Computer Science, pages 241–252. Springer-Verlag, 2012.

[62] A. Korman. Labeling schemes for vertex connectivity. ACM Transactions on Algo-
rithms, 6(2), 2010.

[63] A. Korman, S. Kutten, and D. Peleg. Proof labeling schemes. Distributed Comput-
ing, 22(4):215–233, 2010.

[64] A. Korman, D. Peleg, and Y. Rodeh. Constructing labeling schemes through univer-
sal matrices. Algorithmica, 57(4):641–652, 2010.

[65] A. Kosowski and A. Navarra. Graph decomposition for memoryless periodic explo-
ration. Algorithmica, 63(1-2):26–38, 2012.

[66] D. R. Kowalski and A. Malinowski. How to meet in anonymous network. Theor.
Comput. Sci., 399(1-2):141–156, 2008.

[67] N. A. Lynch and A. A. Shvartsman, editors. Distributed Computing, 24th Inter-
national Symposium, DISC 2010, Cambridge, MA, USA, September 13-15, 2010.
Proceedings, volume 6343 of Lecture Notes in Computer Science. Springer, 2010.

[68] U. M. Maurer. On the oracle complexity of factoring integers. Computational Com-
plexity, 5(3/4):237–247, 1995.



��� �������	 
� ��� ����

��

[69] N. Megow, K. Mehlhorn, and P. Schweitzer. Online graph exploration: New results
on old and new algorithms. In L. Aceto, M. Henzinger, and J. Sgall, editors, ICALP
(2), volume 6756 of LNCS, pages 478–489. Springer, 2011.

[70] S. Miyazaki, N. Morimoto, and Y. Okabe. The online graph exploration problem
on restricted graphs. IEICE Transactions on Information and Systems, 92(9):1620–
1627, 2009.

[71] N. Nisse and D. Soguet. Graph searching with advice. Theoretical Computer Sci-
ence, 410(14):1307 – 1318, 2009.

[72] P. Panaite and A. Pelc. Exploring unknown undirected graphs. J. Algorithms,
33(2):281–295, 1999.

[73] P. Panaite and A. Pelc. Impact of topographic information on graph exploration
efficiency. Networks, 36(2):96–103, 2000.

[74] G. Pandurangan and E. Upfal. Can entropy characterize performance of online al-
gorithms? In S. R. Kosaraju, editor, SODA, pages 727–734. ACM/SIAM, 2001.

[75] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Monographs on
Discrete Mathematics and Applications. Society for Industrial and Applied Mathe-
matics, 2000.

[76] D. Peleg and V. Rubinovich. A near-tight lower bound on the time complex-
ity of distributed minimum-weight spanning tree construction. SIAM J. Comput.,
30(5):1427–1442, 2000.

[77] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995.

[78] D. J. Rosenkrantz, R. E. Stearns, and P. M. L. II. An analysis of several heuristics for
the traveling salesman problem. SIAM Journal on Computing, 6(3):563–581, 1977.

[79] S. Seibert, A. Sprock, and W. Unger. Advice complexity of the online coloring
problem. In Proc. of the 8th International Conference on Algorithms and Complex-
ity (CIAC 2013), volume to appear of Lecture Notes in Computer Science, page to
appear. Springer-Verlag, 2013.

[80] C. E. Shannon. Presentation of a maze solving machine. In H. von Foerster,
M. Mead, and H. L. Teuber, editors, Cybernetics: Circular, Causal and Feedback
Mechanisms in Biological and Social Systems, Transactions Eighth Conference,
March 15–16, 1951, New York, NY, pages 169–181, New York, NY, USA, 1951.
Josiah Macy Jr. Foundation.

[81] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

[82] M. Steinová. On the power of local orientations. In A. A. Shvartsman and P. Felber,
editors, SIROCCO, volume 5058 of Lecture Notes in Computer Science, pages 156–
169. Springer, 2008.


