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Abstract. This is a survey of universality results in the area of Mem-
brane Computing (P systems), at the level of December 20001. We con-
sider both P systems with symbol-objects and with string-objects; in
the latter case, we consider systems based on rewriting, splicing, as well
as rewriting together with other operations (replication, crossingover),
with sets or with multisets of strings. Besides recalling characterizations
of recursively enumerable languages and of recursively enumerable sets
of vectors of natural numbers, we also briefly discuss the techniques used
in the proofs of such results. Several open problems are also formulated.

1 Introduction; The Basic Idea

The P systems (initially, in [28], they were called super-cell systems) were intro-
duced as a possible answer to the question whether or not the frequent state-
ments (see, e.g., [3], [19]) that the processes which take place in a living cell are
“computations”, that “the alive cells are computers”, are just metaphors, or a
formal computing device can be abstracted from the cell functioning. As we will
see below, the answer turned out to be affirmative.

Three are the fundamental features of alive cells which are basic to P systems:
(1) the complex compartmentation by means of amembrane structure, where
(2) multisets of chemical compounds evolve according to prescribed (3) rules.

A membrane structure is a hierarchical arrangement of membranes, all of
them placed in a main membrane, called the skin membrane. This one delimits
the system from its environment. The membranes should be understood as three-
dimensional vesicles, but a suggestive pictorial representation is by means of
planar Euler-Venn diagrams (see Figure 1). Each membrane precisely identifies
a region, the space between it and all the directly inner membranes, if any exists.
A membrane without any membrane inside is said to be elementary.
1 An up-to-date bibliography of the area can be found at the web address
http://bioinformatics.bio.disco.unimib.it/psystems
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In the regions of a membrane structure we place sets or multisets of objects.
A multiset is a usual set with multiplicities associated with its elements, in the
form of natural numbers; the meaning is that each object can appear in a number
of identical copies in a given region. For the beginning, the objects are supposed
to be symbols from a given alphabet (we will work with finitely many types of
objects, that is, with multisets over a finite support-set), but later we will also
consider string-objects.
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Fig. 1. A membrane structure and its associated tree

The objects evolve by means of given rules, which are associated with the
regions (the intuition is that each region has specific chemical reaction conditions,
hence the rules from a region cannot necessarily act also elsewhere). These rules
specify both object transformation and object transfer from a region to another
one. The passing of an object through a membrane is called communication.

Here is a typical rule:
cabb → caadoutdin3 ,

with the following meaning: one copy of the catalyst c (note that it is reproduced
after the “reaction”) together with one copy of object a and two copies of object
b react together and produce one copy of c, two of a, and two copies of object
d; one of these latter objects is sent out of the region where the rule is applied,
while the second copy is sent to the adjacently inner membrane with the label 3,
if such a membrane exists; the objects c, a, a remain in the same membrane (it
is supposed that they have associated the communication command here, but
we do not explicitly write this indication); if there is no membrane with label
3 directly inside the membrane where the rule is to be applied, then the rule
cannot be applied. By a command out, an object can be also sent out of the skin
membrane, hence it leaves the system and never comes back.
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Therefore, the rules perform a multiset processing; in the previous case, the
multiset represented by cabb is subtracted from the multiset of objects in a given
region, objects caa are added to the multiset in that region, while copies of d
are added to the multisets in the upper and lower regions.

The rules are used in a nondeterministic maximally parallel manner: the
objects to evolve and the rules to be applied to them are chosen in a non-
deterministic manner, but after assigning objects to rules no further rule should
be applicable to the remaining objects. Sometimes, a priority relation among
rules is considered, hence the rules to be used and the objects to be processed
are selected in such a way that only rules which have a maximal priority among
the applicable rules are used.

Other features can be considered, such as the possibility to control the mem-
brane thickness/permeability, but we will introduce them later.

The membrane structure together with the multisets of objects and the sets
of evolution rules present in its regions constitute a P system. The membrane
structure and the objects define a configuration of a given P system. By using
the rules as suggested above, we can define transitions among configurations. A
sequence of transitions is called a computation. We accept as successful compu-
tations only the halting ones, those which reach a configuration where no further
rule can be applied.

With a successful computation we can associate a result, for instance, by
counting the multiplicity of objects which have left the system during the com-
putation. More precisely, we can use a P system for solving three types of tasks:
as a generative device (start from an initial configuration and collect all vectors
of natural numbers describing the multiplicities of objects which have left the
system during all successful computations), as a computing device (start with
some input placed in an initial configuration and read the output at the end of a
successful computation, by considering the objects which have left the system),
and as a decidability device (introduce a problem in an initial configuration and
wait for the answer in a specified number of steps). Here we deal only with the
first case. Many classes of P systems turn out to be computationally universal,
able to generate exactly what Turing machines can recursively enumerate.

2 A More Formal Definition of a P System

A membrane structure can be mathematically represented by a tree, in the
natural way, or by a string of matching parentheses. The tree of the structure
in Figure 1 is given in the same figure, while the parenthetic representation of
that structure is the following:

[1 [2 ]2 [3 ]3 [4 [5 ]5 [6 [8 ]8 [9 ]9 ]6 [7 ]7 ]4 ]1.

The tree representation makes possible considering various parameters, such as
the depth of the membrane structure, and also suggests considering membrane
structures of particular types (described by linear trees, star trees, etc).
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A multiset over an alphabet V = {a1, . . . , an} is a mapping µ from V to N,
the set of natural numbers, and it can be represented by any string w ∈ V ∗ such
that ΨV (w) = (µ(a1), . . . , µ(an)), where ΨV is the Parikh mapping associated
with V . Operations with multisets are defined in the natural manner.

With these simple prerequisites, we can define a P system (of degree m ≥ 1)
as a construct

Π = (V, T, C, µ, w1, . . . , wm, (R1, ρ1), . . . , (Rm, ρm)),

where:

(i) V is an alphabet; its elements are called objects;
(ii) T ⊆ V (the output alphabet);
(iii) C ⊆ V,C ∩ T = ∅ (catalysts);
(iv) µ is a membrane structure consisting ofmmembranes, with the membranes

and the regions labeled in a one-to-one manner with elements of a given
set H; in this section we use the labels 1, 2, . . . ,m;

(v) wi, 1 ≤ i ≤ m, are strings representing multisets over V associated with
the regions 1, 2, . . . ,m of µ;

(vi) Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over V associated with the
regions 1, 2, . . . ,m of µ; ρi is a partial order relation over Ri, 1 ≤ i ≤ m,
specifying a priority relation among rules of Ri.
An evolution rule is a pair (u, v), which we will usually write in the form
u → v, where u is a string over V and v = v′ or v = v′δ, where v′ is a string
over {ahere, aout, ainj

| a ∈ V, 1 ≤ j ≤ m}, and δ is a special symbol not
in V . The length of u is called the radius of the rule u → v.

When presenting the evolution rules, the indication “here” is in general omit-
ted.

If Π contains rules of radius greater than one, then we say that Π is a system
with cooperation. Otherwise, it is a non-cooperative system. A particular class of
cooperative systems is that of catalytic systems: the only rules of a radius greater
than one are of the form ca → cv, where c ∈ C, a ∈ V − C, and v contains no
catalyst; moreover, no other evolution rules contain catalysts (there is no rule of
the form c → v or a → v1cv2, for c ∈ C).

The (m + 1)-tuple (µ,w1, . . . , wm) constitutes the initial configuration of
Π. In general, any sequence (µ′, w′

i1
, . . . , w′

ik
), with µ′ a membrane structure

obtained by removing from µ all membranes different from i1, . . . , ik (of course,
the skin membrane is not removed), with w′

j strings over V , 1 ≤ j ≤ k, and
{i1, . . . , ik} ⊆ {1, 2, . . . ,m}, is called a configuration of Π.

It should be noted the important detail that the membranes preserve the
initial labeling in all subsequent configurations; in this way, the correspondence
between membranes, multisets of objects, and sets of evolution rules is well
specified by the subscripts of these elements.

For two configurations C1 = (µ′, w′
i1

, . . . , w′
ik
), C2 = (µ′′, w′′

j1
, . . . , w′′

jl
), of Π

we write C1 =⇒ C2, and we say that we have a transition from C1 to C2, if we
can pass from C1 to C2 by using the evolution rules appearing in Ri1 , . . . , Rik

in the following manner.
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Consider a rule u → v in a set Rit
. We look to the region of µ′ associated

with the membrane it. If the objects mentioned by u, with the multiplicities
at least as large as specified by u, appear in w′

it
, then these objects can evolve

according to the rule u → v. The rule can be used only if no rule of a higher
priority exists in Rit

and can be applied at the same time with u → v. More
precisely, we start to examine the rules in the decreasing order of their priority
and assign objects to them. A rule can be used only when there are copies of the
objects whose evolution it describes and which were not “consumed” by rules of
a higher priority and, moreover, there is no rule of a higher priority, irrespective
which objects it involves, which is applicable at the same step. Therefore, all
objects to which a rule can be applied must be the subject of a rule application.
All objects in u are “consumed” by using the rule u → v.

The result of using the rule is determined by v. If an object appears in v in
the form ahere, then it will remain in the same region it. If an object appears
in v in the form aout, then a will exit membrane it and will become an element
of the region which surrounds membrane it. In this way, it is possible that an
object leaves the system: if it goes outside the skin of the system, then it never
comes back. If an object appears in the form ainq , then a will be added to the
multiset from membrane q, providing that the rule u → v was used in the region
adjacent to membrane q. If ainq appears in v and membrane q is not one of the
membranes delimiting “from below” the region it, then the application of the
rule is not allowed.

If the symbol δ appears in v, then membrane it is removed (we say dissolved)
and at the same time the set of rules Rit (and its associated priority relation)
is removed. The multiset from membrane it is added (in the sense of multisets
union) to the multiset associated with the region which was directly external to
membrane it. We do not allow the dissolving of the skin membrane, because this
means that the whole “cell” is lost, we do no longer have a correct configuration
of the system.

All these operations are performed in parallel, for all possible applicable rules
u → v, for all occurrences of multisets u in the regions associated with the rules,
for all regions at the same time. No contradiction appears because of multiple
membrane dissolving, or because simultaneous appearance of symbols of the
form aout and δ. If at the same step we have aini

outside a membrane i and
δ inside this membrane, then, because of the simultaneity of performing these
operations, again no contradiction appears: we assume that a is introduced in
membrane i at the same time when it is dissolved, thus a will remain in the
region surrounding membrane i; that is, from the point of view of a, the effect
of aini in the region outside membrane i and δ in membrane i is ahere.

A sequence of transitions between configurations of a given P system Π is
called a computation with respect to Π. A computation is successful if and only
if it halts, that is, there is no rule applicable to the objects present in the last
configuration. The result of a successful computation is ΨT (w), where w describes
the multiset of objects from T which have been sent out of the system during the
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computation. The set of such vectors ΨT (w) is denoted by Ps(Π) (from “Parikh
set”) and we say that it is generated by Π.

3 Universality Results for Systems with Symbol-Objects

In this section we recall some results about the generative power of some variants
of P systems working with symbol-objects. In many cases, characterizations of
recursively enumerable sets of vectors of natural numbers (their family is denoted
by PsRE) are obtained.

3.1 Further Features Used in P Systems

Before giving these results, we will specify some further ingredients which can
be used in a P system. They are in general introduced with the aim of obtaining
more “realistic” systems. For instance, instead of the powerful command inj ,
which indicates the target of the destination membrane, we can consider weaker
communication commands. The weakest one is to add no label to in: if an object
ain is introduced in some region of a system, then a will go to any of the adjacent
lower membranes, nondeterministically chosen; if no inner membrane exists, then
a rule which introduces ain cannot be used.

An intermediate possibility is to associate both with objects and membranes
electrical charges, indicated by +,−, 0 (positive, negative, neutral). The charges
of membranes are given in the initial configuration and are not changed during
computations, the charge of objects are given by the evolution rules, in the form
a → b+d−. A charged object will immediately go into one of the directly lower
membranes of the opposite polarization, nondeterministically chosen, the neutral
objects remain in the same region or will exit it, according to the commands here,
out associated with them.

✒✑	✏ ✒✑	✏✎✍ �✌dissolving 1 2✛ ���✏✏✏✮
���✏✏✏✶

☛ ✟ ☛ ✟
✟✠❄ ❄

✛
δ

δτ δτ

δ

ττ

Fig. 2. The effect of actions δ, τ

Moreover, besides the action δ we can also consider an opposite action, de-
noted by τ , in order to control the membrane thickness (hence permeability).
This is done as follows. Initially, all membranes are considered of thickness 1. If
a rule in a membrane of thickness 1 introduces the symbol τ , then the membrane
becomes of thickness 2. A membrane of thickness 2 does not become thicker by
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using further rules which introduce the symbol τ , but no object can enter or exit
it. If a rule which introduces the symbol δ is used in a membrane of thickness 1,
then the membrane is dissolved; if the membrane had thickness 2, then it returns
to thickness 1. If at the same step one uses rules which introduce both δ and τ
in the same membrane, then the membrane does not change its thickness. These
actions of the symbols δ, τ are illustrated in Figure 2.

No object can be communicated through a membrane of thickness two, hence
rules which introduce commands out, in, requesting such communications, can-
not be used. However, the communication has priority over changing the thick-
ness: if at the same step an object should be communicated and a rule introduces
the action τ , then the object is communicated and “afterthat” the membrane
changes the thickness.

Also a variant of catalysts can be considered, with a “short term memory”.
Such catalysts (we call them bi-stable) have two states each, c and c, and they
can enter rules of the forms ca → cv, ca → cv (always changing from c to c and
back).

3.2 The Power of the Previous Systems

Consider now some notations. The family of sets of vectors of natural numbers
Ps(Π) generated by P systems with priority, catalysts, and the actions δ, τ , and
of degree at most m ≥ 1, using target indications of the form here, out, in, is
denoted by NPm(Pri, Cat, i/o, δ, τ); when one of the features α ∈ {Pri, Cat,
δ, τ} is not present, we replace it with nα. We also write 2Cat instead of Cat
when using bi-stable catalysts instead of usual catalysts.

Proofs of the following results can be found in [28], [12], [36]:

Theorem 1. PsRE = NP2(Pri, Cat, i/o, nδ, nτ) = NP4(nPri, Cat, i/o, δ, τ)
= NP1(nPri, 2Cat, i/o, nδ, nτ).

It is an open problem whether or not systems of the type (nPri, Cat, i/o, δ, τ)
can characterize PsRE when using less than four membranes.

3.3 Conditional Use of Rules

Starting from the observation that in the biochemistry of the cell certain reac-
tions are enhanced/supressed by certain chemical compounds, such as enzymes,
catalysts, hormons, in [1] one considers P systems with the rules applicability
controlled by the contents of each region by means of certain promoters and in-
hibitors; these promoters/inhibitors are given as multisets of objects associated
with given sets of rules. A rule from such a set (as usual, placed into a region) can
be used in its region only if all the promoting objects are present, respectively,
only if not all the inhibiting objects are present in that region.

Specifically, a P system (of degree m ≥ 1), with promoters is a construct

Π = (V, µ,w1, . . . , wm, (R1,1, p1,1), . . . , (R1,k1 , p1,k1), . . . , (Rm,1, pm,1),
. . . , (Rm,km , pm,km)),
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where all components are as usual in a P system (note that we use neither a
terminal subset of V , nor catalysts) and Ri,1, . . . , Ri,ki

, ki ≥ 1, are finite sets
of rules present in region i of the system, while pi,j are strings over V , called
promoters, 1 ≤ i ≤ m, 1 ≤ j ≤ ki. The rules are of the form a → v, for a ∈ V,
v ∈ {btar | b ∈ V, tar ∈ {here, out, in}}∗.

The rules are used as usual in P systems, in the maximally parallel manner,
but the rules from a set Ri,j can be used only if the multiset represented by pi,j

is present in region i, for all 1 ≤ i ≤ m, 1 ≤ j ≤ ki.
An identical definition holds for systems with forbidding conditions, where

the rules from Ri,j are used only if the associated multiset pi,j is not included
in the multiset of objects present in the region.

The maximum of ki, 1 ≤ i ≤ m, is called the promoter diversity (resp.,
inhibitor diversity) of the system. The family of all sets Ps(Π), computed as
above by systems Π of degree at most m ≥ 1 and with the promoter diversity
not exceeding k ≥ 1, is denoted by PsPm(i/o, promk). When using inhibitors,
we replace promk by inhibk. We stress the fact that we do not use catalysts,
priorities, or actions δ, τ , while the communication commands are of the form
here, out, in. The following results are proved in [1]; they show a clear trade-
off between the number of membranes and the promoter diversity of the used
systems.

Theorem 2. PsRE = PsP6(i/o, prom2) = PsP4(i/o, prom3) = PsP3(i/o,
prom4) = PsP1(i/o, prom7) = PsP3(i/o, inhib6).

It is an open problem whether or not these results can be improved (for in-
stance, using at the same time less membranes and a smaller promoter/inhibitor
diversity).

4 P Systems with String-Objects

As we have mentioned in the Introduction, is also possible (this was considered
already in [28]) to work with objects described by strings. The evolution rules
should then be string processing rules, such as rewriting and splicing rules. As
a result of a computation we can either consider the language of all strings
computed by a system, or the number of strings produced by a system and sent
out during a halting computation. In the first case one works with usual sets
of strings (languages), not with multisets (each string is supposed to appear in
exactly one copy), while in the latter case we have to work with multisets. We
start by considering the set case.

4.1 Rewriting P Systems

We consider here the case of using string-objects processed by rewriting. Always
we use only context-free rules, having associated target indications. Thus, the
rules of our systems are of the form (X → v; tar), where X → v is a context-
free rule over a given alphabet and tar ∈ {here, out, in}∪{inj | 1 ≤ j ≤ m},
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with the obvious meaning: the string produced by using this rule will go to the
membrane indicated by tar (j is the label of a membrane). As above, we can
also use priority relations among rules as well as the actions δ, τ , and then the
rules are written in the form (X → xα; tar), with α ∈ {δ, τ}.

Formally, a rewriting P system is a construct

Π = (V, T, µ, L1, . . . , Lm, (R1, ρ1), . . . , (Rm, ρm)),

where V is an alphabet, T ⊆ V (the terminal alphabet), µ is a membrane
structure with m membranes labeled with 1, 2, . . . ,m, L1, . . . , Lm are finite lan-
guages over V (initial strings placed in the regions of µ), R1, . . . , Rm are finite
sets of context-free evolution rules, ρ1, . . . , ρm are partial order relations over
R1, . . . , Rm.

The language generated by Π is denoted by L(Π) and it is defined as follows:
we start from the initial configuration of the system and proceed iteratively, by
transition steps performed by using the rules in parallel, to all strings which can
be rewritten, obeying the priority relations; at each step, each string which can be
rewritten must be rewritten, but this is done in a sequential manner, that is, only
one rule is applied to each string; the actions δ, τ have the usual meaning; when
the computation halts, we collect the terminal strings sent out of the system
during the computation. We stress the fact that each string is processed by one
rule only, the parallelism refers here to processing simultaneously all available
strings by all applicable rules.

We denote by RPm(Pri, i/o, δ, τ) the family of languages generated by rewrit-
ing P systems of degree at most m ≥ 1, using priorities, target indications of the
form here, out, in, and actions δ, τ ; as usual, we use nPri, nδ, nτ when appro-
priate.

The following result is proved in [28] for the case of three membranes; the
improvement to two membranes was given independently in [17] and [25].

Theorem 3. RE = RP2(Pri, i/o, nδ, nτ).

The powerful feature of using a priority relation can be avoided at the price
of using membranes with a variable thickness. This was proved first in [39],
[41], without a bound on the number of membranes, then the result has been
improved in [12]:

Theorem 4. RE = RP4(nPri, i/o, δ, τ).

It is not known whether or not this result is optimal.

4.2 Splicing P Systems

The strings in a P system can also be processed by using the splicing operation
introduced in [14] as a formal model of the DNA recombination under the influ-
ence of restriction enzymes and ligases (see a comprehensive information about
splicing in [32]).
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Consider an alphabet V and two symbols #, $ not in V . A splicing rule over
V is a string r = u1#u2$u3#u4, where u1, u2, u3, u4 ∈ V ∗ (V ∗ is the set of all
strings over V ). For such a rule r and for x, y, w, z ∈ V ∗ we define

(x, y) �r (w, z) iff x = x1u1u2x2, y = y1u3u4y2, w = x1u1u4y2, z = y1u3u2x2,

for some x1, x2, y1, y2 ∈ V ∗.

(One cuts the strings x, y in between u1, u2 and u3, u4, respectively, and one
recombines the fragments obtained in this way.)

A splicing P system (of degree m ≥ 1) is a construct

Π = (V, T, µ, L1, . . . , Lm, R1, . . . , Rm),

where V is an alphabet, T ⊆ V (the output alphabet), µ is a membrane struc-
ture consisting of m membranes (labeled with 1, 2, . . . ,m), Li, 1 ≤ i ≤ m, are
languages over V associated with the regions 1, 2, . . . ,m of µ, Ri, 1 ≤ i ≤ m, are
finite sets of evolution rules associated with the regions 1, 2, . . . ,m of µ, given in
the form (r; tar1, tar2), where r = u1#u2$u3#u4 is a usual splicing rule over V
and tar1, tar2 ∈ {here, out, in}.

Note that, as usual in splicing systems, when a string is present in a region
of our system, it is assumed to appear in arbitrarily many copies.

A transition in Π is defined by applying the splicing rules from each region
of µ, in parallel, to all possible strings from the corresponding regions, and
following the target indications associated with the rules. More specifically, if
x, y are strings in region i and (r = u1#u2$u3#u4; tar1, tar2) ∈ Ri such that
we can have (x, y) �r (w, z), then w and z will go to the regions indicated by
tar1, tar2, respectively. Note that after splicing, the strings x, y are still available
in region i, because we have supposed that they appear in arbitrarily many copies
(an arbitrarily large number of them were spliced, arbitrarily many remain), but
if a string w, z, resulting from a splicing, is sent out of region i, then no copy of
it remains here.

The result of a computation consists of all strings over T which are sent out of
the system at any time during the computation. We denote by L(Π) the language
of all strings of this type. Note that in this subsection we do not consider halting
computations, but we leave the process to continue forever and we just observe
it from outside and collect the terminal strings leaving the system.

We denote by SPm(i/o) the family of languages L(Π) generated by splicing
P systems as above, of degree at most m ≥ 1.

In [35] it was proved that SP3(i/o) = RE; the result has been improved in
[26] as follows.

Theorem 5. RE = SP2(i/o).

4.3 P Systems with Rewriting and Replication

Recently, in [18] a variant of rewriting P systems was considered, where rules of
the form X → (u1, tar1)|| . . . ||(un, tarn) are used. When applying this rule to
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a string, n strings are obtained, by replacing one occurrence of the symbol X
by u1, . . . , un and replicating the remaining part of the string; the n strings are
sent to the membranes indicated by the targets tar1, . . . , tarn, respectively. The
definition of a replication rewriting system and of its generated language is as
usual in P systems area.

The family of all languages L(Π), computed as above by systems Π of degree
at most m ≥ 1 is denoted by RRPm(i/o).

The following result is from [20], where one solves the problem formulated
as open in [18] whether or not the hierarchy on the number of membranes gives
an infinite hierarchy (as expected, the answer is negative).

Theorem 6. RE = RRP6(i/o).

4.4 Rewriting P Systems with Conditional Communication

In this subsection, we recall the universality results from [2], where one con-
siders a variant of rewriting P systems where the communication of strings is
not controlled by the evolution rules, but it depends on the contents of the
strings themselves. This is achieved by considering certain types of permitting
and forbidding conditions, based on the symbols or the substrings (arbitrary, or
prefixes/suffixes) which appear in a given string, or on the shape of the string.

First, let us mention that the set of symbols appearing in a string x ∈ V ∗

is denoted by alph(x) and the set of substrings of x is denoted by Sub(x). A
regular expression is said to be elementary if it has the star height at most one
and uses the union at most for symbols in the alphabet.

A rewriting P system (of degree m ≥ 1) with conditional communication is
a construct

Π = (V, T, µ, L1, . . . , Lm, R1, P1, F1, . . . , Rm, Pm, Fm),

where the components V, T, µ, L1, . . . , Lm are as usual in rewriting P systems,
R1, . . . , Rm are finite sets of context-free rules over V present in region i of the
system, Pi are permitting conditions and Fi are forbidding conditions associated
with region i, 1 ≤ i ≤ m.

The conditions can be of the following forms:

1. empty: no restriction is imposed on strings, they exit the current membrane
or enter any of the directly inner membrane freely.

2. symbols checking: each Pi is a set of pairs (a, α), α ∈ {in, out}, for a ∈ V ,
and each Fi is a set of pairs (b, notα), α ∈ {in, out}, for b ∈ V ; a string w can
go to a lower membrane only if there is a pair (a, in) ∈ Pi with a ∈ alph(w),
and for each (b, notin) ∈ Fi we have b /∈ alph(w); similarly, for sending the
string w out of membrane i it is necessary to have a ∈ alph(w) for at least
one pair (a, out) ∈ Pi and b /∈ alph(w) for all (b, notout) ∈ Fi.

3. substrings checking: each Pi is a set of pairs (u, α), α ∈ {in, out}, for u ∈
V +, and each Fi is a set of pairs (v, notα), α ∈ {in, out}, for v ∈ V +; a
string w can go to a lower membrane only if there is a pair (u, in) ∈ Pi with
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u ∈ Sub(w), and for each (v, notin) ∈ Fi we have v /∈ Sub(w); similarly, for
sending the string w out of membrane i it is necessary to have u ∈ Sub(w)
for at least one pair (u, out) ∈ Pi and v /∈ Sub(w) for all (v, notout) ∈ Fi.

4. prefix/suffix checking: exactly as in the case of substrings checking, with the
checked string being a prefix or a suffix of the string to be communicated.

5. shape checking: each Pi is a set of pairs (e, α), α ∈ {in, out}, where e is
an elementary regular expression over V , and each Fi is a set of pairs
(f, notα), α ∈ {in, out}, where f is an elementary regular expression over
V ; a string w can go to a lower membrane only if there is a pair (e, in) ∈ Pi

with w ∈ L(e), and for each pair (f, notin) ∈ Fi we have w /∈ L(f);
similarly, for sending the string w out of membrane i it is necessary to
have w ∈ L(e) for at least one pair (e, out) ∈ Pi and w /∈ L(f) for all
(f, notout) ∈ Fi.

We say that we have conditions of the types empty, symb, subk, prefk, suffk,
patt, respectively, where k is the length of the longest string in all Pi, Fi.

The transitions in a system as above are defined in the usual way. In each
region, each string which can be rewritten is rewritten by a rule from that region.
Each string obtained in this way is checked against the conditions Pi, Fi from
that region. If it fulfills the requested conditions, then it will be immediately sent
out of the membrane or to an inner membrane, if any exists; if it fulfills both
in and out conditions, then it is sent either out of the membrane or to a lower
membrane, nondeterministically choosing the direction. If a string does not fulfill
any condition, or it fulfills only in conditions and there is no inner membrane,
then the string remains in the same region. A string which is rewritten and a
string which is sent to another membrane is “consumed”, we do not have a copy
of it at the next step in the same membrane. If a string cannot be rewritten,
then it is directly checked against the communication conditions, and, as above,
it leaves the membrane (or remains inside forever) depending on the result of
this checking.

That is, the rewriting has priority over communication: we first try to rewrite
a string and only after that we try to communicate the result of the rewriting
or the string itself if no rewriting is possible on it.

The family of all languages L(Π), computed as above by systems Π of degree
at most m ≥ 1, with permitting conditions of type α, and forbidding conditions
of type β, is denoted by RPm(α, β), α, β ∈ {empty, symb, patt} ∪ {subk, prefk,
suffk | k ≥ 1}. When we will use both prefix and suffix checking (each condition
string can be checked both as a prefix or as a suffix, that is, we do not separately
give sets of prefixes and sets of suffixes), then we indicate this by prefsuffk. If
the degree of the systems is not bounded, then the subscript m is replaced by ∗.

Proofs of the following results can be found in [2]. Again, a clear trade-
off between the number of membranes and the power of the communication
conditions is found. We do not know whether or not these results are optimal
(for instance, as the number of used membranes); in particular, we do not have a
proof of the fact that a reduced number of membranes suffice also when checking
prefixes and suffixes, but we conjecture that such a result holds true.
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Theorem 7. RE = RP2(patt, empty) = RP2(empty, sub2) = RP4(sub2, symb)
= RP6(symb, empty) = RP∗(prefsuff2, empty).

4.5 P Systems with Leftmost Rewriting

Following [7], we now consider a restriction in the use of rules of a rewriting P
system, of a language-theoretic nature: any string is rewritten in the leftmost
position which can be rewritten by a rule from its region. That is, we examine
the symbols of the string, step by step, from left to right; the first one which
can be rewritten by a rule from the region of the string is rewritten. If there are
several rules with the same left hand symbol, any one is chosen.

We denote by Lleft(Π) the language generated by a system Π in this way
and by RPm(left),m ≥ 1, we denote the family of all such languages, generated
by systems with at most m membranes. In view of the previous results, the
following theorem is expected (but whether or not it is optimal in the number
of membranes remains as an open problem):

Theorem 8. RE = RP6(left).

4.6 P Systems with Worm-Objects

In P systems with symbol-objects we work with multisets and the result of a
computation is a vector of natural numbers; in the case of string-object P systems
we work with sets of strings and the result of a computation is a string. We can
combine the two ideas: we can work with multisets of strings and consider as
the result of a computation the number of strings sent out during a halting
computation. To this aim, we need operations with strings which can increase
and decrease the number of occurrences of strings.

The following four operations were considered in [5] (they are slight variants
of the operations used in [38]): rewriting (called point mutation in [5] and [38]),
replication (as in Subsection 4.3, but always producing only two strings), splitting
(if a ∈ V and u1, u2 ∈ V +, then r : a → u1|u2 is called a splitting rule and we
define the operation x1ax2 =⇒r (x1u1, u2x2)), recombination/crossovering (for
a string z ∈ V + we define the operation (x1zx2, y1zy2) =⇒z (x1zy2, y1zx2)).

Note that replication and splitting increase the number of strings, mutation
and recombination not; by sending strings out of the system, their number can
also be decreased.

A P system (of degree m ≥ 1) with worm-objects is a construct

Π = (V, µ,A1, . . . , Am, (R1, S1,M1, C1), . . . , (Rm, Sm,Mm, Cm)),

where:

– V is an alphabet;
– µ is a membrane structure of degree m (with the membranes labeled by
1, 2, . . . ,m);
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– A1, . . . , Am are multisets of a finite support over V ∗, associated with the
regions of µ;

– for each 1 ≤ i ≤ m, Ri, Si,Mi, Ci are finite sets of replication rules, splitting
rules, mutation rules, and crossing-over blocks, respectively, given in the
following forms:
a. replication rules: (a → u1||u2; tar1, tar2), for tar1, tar2 ∈ {here, out} ∪

{inj | 1 ≤ j ≤ m};
b. splitting rules: (a → u1|u2; tar1, tar2), for tar1, tar2 ∈ {here, out} ∪

{inj | 1 ≤ j ≤ m};
c. mutation rules: (a → u; tar), for tar ∈ {here, out} ∪ {inj | 1 ≤ j ≤ m};
d. crossing-over blocks: (z; tar1, tar2), for tar1, tar2 ∈ {here, out} ∪ {inj |
1 ≤ j ≤ m}.

The transitions are defined as usual in P systems area, according to the
following specific rules: A string which enters an operation is “consumed” by
that operation, its multiplicity is decreased by one. The multiplicity of strings
produced by an operation is accordingly increased. A string is processed by only
one operation. For instance, we cannot apply two mutation rules, or a mutation
rule and a replication one, to the same string. The strings resulting from an
operation are communicated to the region specified by the target indications
associated with the used rule. (Note that when we have two resulting strings,
two targets are associated with the rule.)

The result of a halting computation consists of the number of strings sent
out of the system during the computation. A non-halting computation provides
no output. For a system Π, we denote by N(Π) the set of numbers computed
in this way. By NWPm(tar),m ≥ 1, we denote the sets of numbers computed
by all P systems with at most m membranes.

In [5] it is proved that each recursively enumerable set of natural numbers
(their family is denoted by nRE) can be computed by a P system as above; the
result is improved in [23], where it is shown that the hierarchy on the number
of membranes collapses:

Theorem 9. nRE = NWP6(tar).

It is an open problem whether or not the bound 6 in this theorem can be
improved; we expect a positive answer.

Note the resemblance of P systems with worm objects with P systems with
rewriting and replication (also Theorems 6 and 9 are similar), but also the es-
sential difference between them: in Subsection 4.3 we have used sets of strings,
while here we have worked with multisets (and we have generated sets of vec-
tors of natural numbers). Following the same strategy as in the case of using
both rewriting and replication, we can consider also other combinations of op-
erations from those used in the case of worm-objects. The case of rewriting and
crossovering was investigated in [22]. The work of such a P system is exactly as
the work of a P system with worm-objects, only the way of defining the result
of a computation is different: we consider the language of all strings which leave
the system during the halting computations.
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Let us denote by RXPm(i/o),m ≥ 1, the family of languages generated by
such systems with at mostmmembranes, using as communication commands the
indications here, out, in (but not priorities and actions δ, τ). Somewhat expected,
we get one further characterization of recursively enumerable languages (the
proof can be found in [22]).

Theorem 10. RE = RXP5(i/o).

It is an open problem whether or not the bound 5 is optimal.

5 P Systems with Active Membranes

Let us now consider P systems where the membranes themselves are involved in
rules. Such systems were introduced in [30] with also the possibility of dividing
membranes, and their universaity was proved for the general case. However,
in [25] it was proven that membrane division is not necessary. Here we will
consider this restricted case. (However, membrane division is crucial in solving
NP-complete problems in polynomial – even linear – time, by making use of an
exponential working space created by membrane division, but we do not deal
here with this aspect. A survey of results of this type can be found in [31].)

A P system with active membranes, in the restricted form, is a construct

Π = (V, T,H, µ,w1, . . . , wm, R),

where:

(i) m ≥ 1;
(ii) V is the alphabet of the system;
(iii) T ⊆ V (terminal alphabet);
(iv) H is a finite set of labels for membranes;
(v) µ is a membrane structure, consisting of m membranes labeled with ele-

ments of H and having a neutral charge (all membranes are marked with
0);

(vi) w1, . . . , wm are strings over V , describing the multisets of objects placed in
the m regions of µ;

(vii) R is a finite set of rules, of the following forms:

(a) [
ha → v]α

h
, for h ∈ H, a ∈ V, v ∈ V ∗, α ∈ {+,−, 0} (object evolution

rules),
(b) a[h]

α
h

→ [hb]β
h
, where a, b ∈ V, h ∈ H, α, β ∈ {+,−, 0} (an object is

introduced in membrane h),
(c) [ha]α

h
→ [h]

β
h
b, for h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ V (an object is sent out

of membrane h).

Also rules for dissolving and for dividing a membrane are considered in [30]
(and in other subsequent papers), but we do not use such rules here.

The rules are used as customary in a P system, in a maximally parallel
manner: in each time unit, all objects which can evolve, have to evolve. Each
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copy of an object and each copy of a membrane can be used by only one rule,
with the exception of rules of types (a), where we count only the involved object,
not also the membrane. That is, if we have several objects a in a membrane i
and a rule [

ia → v]α
i
, then we use this rule for all copies of a, irrespective how

many they are; we do not consider that the membrane was used – note that its
electrical charge is not changed. However, if we have a rule [

i
a]α

i
→ [

i
]β
i
b, then

this counts as using the membrane, no other rule of types (b) and (c) which
involves the same membrane can be used at the same time.

As any other membrane, the skin membrane can be “electrically charged”.
During a computation, objects can leave the skin membrane (using rules of type
(c)).

We denote by N(Π) the set of all vectors of natural numbers computed
as above by a P system Π. The family of all such sets of vectors, computed
by systems with at most m ≥ 1 membranes, is denoted by PsAPm; when the
number of membranes is not restricted, we replace the subscript m by ∗.

As announced above, in [25] it is proved that PsRE = PsAP∗ and the
problem is formulated whether or not the hierarchy on the number of membranes
collapses at a reasonable level. In [12] it is proved that four membranes suffice
(it is an open problem whether or not this result is optimal).

Theorem 11. PsRE = PsAP4.

6 Techniques Used in the Proofs of Universality Results

The most used tool (almost always used when dealing with P systems with
symbol-objects) for proving universality results is the characterization of re-
cursively enumerable languages by means of matrix grammars with appear-
ance checking in the binary normal form. Such a grammar is a construct
G = (N,T, S,M,F ), where N,T are disjoint alphabets, S ∈ N , M is a finite
set of sequences of the form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free
rules over N ∪ T (with Ai ∈ N,xi ∈ (N ∪ T )∗, in all cases), and F is a set
of occurrences of rules in M (N is the nonterminal alphabet, T is the terminal
alphabet, S is the axiom, while the elements of M are called matrices).

For w, z ∈ (N ∪ T )∗ we write w =⇒ z if there is a matrix (A1 → x1,
. . . , An → xn) in M and the strings wi ∈ (N ∪T )∗, 1 ≤ i ≤ n+1, such that w =
w1, z = wn+1, and, for all 1 ≤ i ≤ n, either (1) wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i ,

for some w′
i, w

′′
i ∈ (N ∪T )∗, or (2) wi = wi+1, Ai does not appear in wi, and the

rule Ai → xi appears in F . (The rules of a matrix are applied in order, possibly
skipping the rules in F if they cannot be applied – we say that these rules are
applied in the appearance checking mode.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}.
The family of languages of this form is denoted by MATac. When F = ∅ (hence
we do not use the appearance checking feature), the generated family is denoted
by MAT .

It is known that CF ⊂ MAT ⊂ MATac = RE, the inclusions being proper.



98 Carlos Mart́ın-Vide and Gheorghe Păun

A matrix grammar G = (N,T, S,M,F ) is said to be in the binary normal
form if N = N1 ∪ N2 ∪ {S,#}, with these three sets mutually disjoint, and the
matrices in M are of one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A → x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗,
3. (X → Y,A → #), with X,Y ∈ N1, A ∈ N2,
4. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A → # appearing in matrices of type 3; # is a trap-symbol, once introduced,
it is never removed. A matrix of type 4 is used only once, in the last step of a
derivation.

According to [6], for each matrix grammar there is an equivalent matrix
grammar in the binary normal form.

For an arbitrary matrix grammar G = (N,T, S,M,F ), let us denote by ac(G)
the cardinality of the set {A ∈ N | A → α ∈ F}. ¿From the construction in the
proof of Lemma 1.3.7 in [6] one can see that if we start from a matrix grammar
G and we get the grammar G′ in the binary normal form, then ac(G′) = ac(G).

Improving the result from [27] (six nonterminals, all of them used in the ap-
pearance checking mode, suffice in order to characterize RE with matrix gram-
mars), in [13] it was proved that four nonterminals are sufficient in order to
characterize RE by matrix grammars and out of them only three are used in
appearance checking rules. Of interest in the P area is another result from [13]: if
the total number of nonterminals is not restricted, then each recursively enumer-
able language can be generated by a matrix grammar G such that ac(G) ≤ 2.

Consequently, to the properties of a grammar G in the binary normal form
we can add the fact that ac(G) ≤ 2. We will say that this is the strong binary
normal form for matrix grammars.

Starting from such a grammar G, in many cases a P system is constructed
with some membranes simulating the matrices from G which do not contain rules
to be used in the appearance checking mode, and some membranes associated
with the symbols which are checked in the matrices which contain rules used in
the appearance checking mode (that is why the number of nonterminals A which
appear in rules of the form A → # is so important). This leads to a reduced
number of membranes, as seen in the theorems from the previous sections.

Other very useful tools used mainly in the proofs dealing with string-objects
are the normal forms of Chomsky grammars known to generate all recursively
enumerable languages. The most important are the Kuroda normal form and
the Geffert normal form.

A type-0 grammar G = (N,T, S, P ) is said to be in the Kuroda normal form
if the rules from P are of one of the following two forms: A → x,AB → CD,
for A,B,C,D ∈ N and x ∈ (N ∪T )∗ (that is, besides context-free rules we have
only rules which replace two nonterminals by two nonterminals).

A type-0 grammar G = (N,T, S, P ) is said to be in the Geffert normal form
if N = {S,A,B,C}, and the rules from P are of one of the following two forms:
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S → xSy, with x, y ∈ (T ∪{A,B,C})∗, and ABC → λ (that is, besides context-
free rules we have only one non-context-free rule, the erasing one ABC → λ,
with A,B,C being the only nonterminals of G different from S).

At a more technical level, the proofs of universality start by a matrix gram-
mar or a grammar in Kuroda or Gefffert normal form, and construct a P system
which simulates it; the control of the correct behavior of the system is ensured
by various tricks, directly related to the type of the system we construct. In most
cases, because only halting computations are accepted, a “wrong” choice of rules
or of communication of objects is prevented by introducing trap-symbols which
are able to evolve forever; in the string case, if a terminal alphabet is used, then
one introduces trap-symbols which just prevent the string to become terminal.
Another useful trick is to control the communication possibilities; if a rule in-
troduces an object which must be communicated to a lower membrane, then
the communication should be possible (for instance, the thickness of the lower
membranes is not increased). A nice way to control the appearance of a symbol
to be checked by a rule of a matrix grammar is provided by replication: a copy of
the string is sent to a membrane where nothing happens except that the compu-
tation goes forever in the case when the specified symbol appears in the string;
if this is not the case, then the other copy of the string will continue a “correct”
development. When we have to work on strings in the leftmost/rightmost man-
ner, then the rotate-and-simulate technique from the splicing area is useful: we
simulate the rules of the starting grammar in the ends of the strings generated
by a P system, and the strings are circularly permuted in order to make possible
such a simulation in any place of a sentential form of the grammar.

Still more precise proof techniques (for instance, for synchronizing the work
of different membranes) can be found in the literature, but we do not recall them
here.

7 Final Remarks

We have considered most of the variants of P systems with symbol-objects and
with string-objects and we have recalled characterizations of the family of re-
cursively enumerable sets of vectors of natural numbers or of the family of re-
cursively enumerable languages. Many other variants, several of them leading to
similar results, can be found in the literature. We only mention here the gener-
alized P systems considered in [8], [10], [11], the carrier-based systems (where
no object evolves, but only passes through membranes) [24], the P systems with
valuations [21] (their power is not know yet), the systems also able to create
membranes [15], which lead to a characterization of Parikh sets of ET0L lan-
guages, and the systems also taking into account the energy created/consumed
by each evolution rule [34].

Note. The work of the second author was supported by a grant of NATO Science
Committee, Spain, 2000–2001.
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