
Computing with Solitons in Bulk Media

Mariusz Hieronim Jakubowski

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Computer Science

January 1999



c© Copyright by Mariusz Hieronim Jakubowski, 1998.

All Rights Reserved



iii

Abstract

We propose a new physical medium for computation: colliding solitons. As particle-

like nonlinear waves, solitons can carry and exchange information, thus acting as

computing agents. Optical solitons have pulse widths measured in picoseconds or

femtoseconds, and this approach could ultimately offer an alternative to electronics.

This work grew from an abstract computational model called the particle machine

(PM), which uses discrete propagating and colliding particles to compute. We show

that this model is universal, and describe several efficient PM algorithms, such as

convolution, certain systolic-array computations, and linear-time, arbitrary-precision

arithmetic, including an iterative algorithm for division. This leads to the question of

physical instantiation of PMs that could do useful computation, and optical solitons

provide a natural example.

Propagating solitons carry information in their amplitudes, velocities, and phases.

We show how colliding solitons can transfer such information in nontrivial ways, thus

making computation possible. We characterize the state transformations caused by

collisions in a particular system of coupled optical solitons — the Manakov system

— and show how to implement several computations, such as a NOT processor and

certain other reversible operators.

Our results resolve some questions about computational power in different soliton

systems, and serve as first steps towards realizing a practical soliton-based computer.



iv

Acknowledgments

I thank Ken Steiglitz, my advisor, for teaching me valuable and profound lessons

on many fronts and for making this thesis possible. Thanks also to Rich Squier for

working with us and adding to the fun. I am grateful to Moti Segev and Andy Yao

for serving as readers, and to Doug Clark and Perry Cook for being on my thesis

committee. Overall, Princeton University and the computer science department have

been a great environment for learning and working, and I thank all faculty, staff and

fellow students for making it that way. Finally, I am indebted to my family and to

many people for their help and friendship — too many to list, but Dan Boneh, Pei

Cao, YuQun Chen, Stef Damianakis, Chris Dunworth, Dannie Durand, Peter Frey,

Liviu Iftode, Yefim Shuf, Alex Shum, Wim Sweldens, and Venkie and his family are

a few.



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

1.1 Standard and nonstandard computation . . . . . . . . . . . . . . . . 2

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The Particle-Machine Model of Computation 6

2.1 Characteristics of PMs . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Cellular automata . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 The PM model . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Simple computation with PMs . . . . . . . . . . . . . . . . . . 9

2.1.4 Simulation of PMs . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Compatible collision rules . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Collision rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Linear-time arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Systolic arrays and PMs . . . . . . . . . . . . . . . . . . . . . 21

2.4 Linear-time division . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Implementing Particle Machines with VLSI 28

3.1 VLSI size and performance estimate . . . . . . . . . . . . . . . . . . . 29

3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



CONTENTS vi

4 Solitons 33

4.1 Soliton systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Integrable soliton systems . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Nonintegrable soliton systems . . . . . . . . . . . . . . . . . . 37

4.1.3 Soliton behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The NLS equation and its solutions . . . . . . . . . . . . . . . . . . . 40

4.2.1 General form of NLS . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Single-soliton solutions of NLS . . . . . . . . . . . . . . . . . . 40

4.2.3 Multisoliton solutions of NLS . . . . . . . . . . . . . . . . . . 42

4.2.4 Some NLS systems and solitons . . . . . . . . . . . . . . . . . 42

4.3 Applications of the NLS equation . . . . . . . . . . . . . . . . . . . . 49

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Numerical Methods 52

5.1 Background and notation . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Finite-difference method . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Split-step Fourier method . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Derivation of the basic scheme . . . . . . . . . . . . . . . . . . 55

5.3.2 Improving accuracy of the basic scheme . . . . . . . . . . . . . 57

5.3.3 Application of the method to systems of NLS equations . . . . 58

5.4 Software for solution of NLS equations . . . . . . . . . . . . . . . . . 59

5.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.2 NLS systems and solution methods . . . . . . . . . . . . . . . 60

5.4.3 Specifying initial conditions . . . . . . . . . . . . . . . . . . . 64

5.4.4 Parameter reference . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.6 The nls interactive interface . . . . . . . . . . . . . . . . . . . 69

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Implementing Particle Machines with Solitons 74

6.1 Solitons and computation . . . . . . . . . . . . . . . . . . . . . . . . 75



CONTENTS vii

6.2 Information transfer and computation . . . . . . . . . . . . . . . . . . 78

6.2.1 Information transfer . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.2 Computational power . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Oblivious soliton machines . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.1 The OSM model . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.2 Non-universality of OSMs . . . . . . . . . . . . . . . . . . . . 84

6.4 Soliton machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.1 The SM model . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.2 Universality of SMs . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Information transfer in collisions of NLS solitary waves . . . . . . . . 90

6.5.1 The cubic-NLS equation . . . . . . . . . . . . . . . . . . . . . 90

6.5.2 Gaussons and the log-NLS equation . . . . . . . . . . . . . . . 90

6.5.3 Soliton stability and elasticity . . . . . . . . . . . . . . . . . . 98

6.5.4 The sat-NLS equation . . . . . . . . . . . . . . . . . . . . . . 98

6.6 Radiation and reusability . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 Summary and questions . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Computation in the Manakov System 108

7.1 Informational state in the Manakov system . . . . . . . . . . . . . . . 110

7.1.1 The Manakov system and its solutions . . . . . . . . . . . . . 110

7.1.2 State in the Manakov system . . . . . . . . . . . . . . . . . . 112

7.2 Properties of the collision state transformation . . . . . . . . . . . . . 117

7.3 Particle design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3.1 An i operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3.2 A −1 operator (NOT processor) . . . . . . . . . . . . . . . . . 124

7.3.3 A “move” operator . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.4 Particles that map the unit circle to itself . . . . . . . . . . . 127

7.3.5 Group structure of state LFTs . . . . . . . . . . . . . . . . . . 129

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



CONTENTS viii

8 Summary and Future Work 132



List of Tables

5.1 Equations and systems solved by nls. The numgrids parameter specifies

the number of simultaneous equations in coupled systems. . . . . . . . . 64

5.2 Speed and accuracy measurements for numerical methods solving cubic-

NLS on a grid of size 2048, with ∆x = 0.03 and ∆t = 0.003. Speed is

in propagations per second, and error is the RMS error between exact and

numerical solutions, as described in the text. . . . . . . . . . . . . . . . 70

5.3 Speed and accuracy measurements for numerical methods solving cubic-

NLS on a grid of size 1024, with ∆x = 0.06 and ∆t = 0.006. Speed is

in propagations per second, and error is the RMS error between exact and

numerical solutions, as described in the text. . . . . . . . . . . . . . . . 70

7.1 Asymptotic forms of solitons before and after collisions, as determined by

the signs of the soliton parameters kR. . . . . . . . . . . . . . . . . . . 112

7.2 State-change factors for T0 and T∞ transformations. The columns for

T0,k1 and T∞,k1 list the factors by which ρ1 is multiplied to get ρR, and

the columns for T0,k2 and T∞,k2 list the factors by which ρL is multiplied

to get ρ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



List of Figures

2.1 The basic conception of a particle machine . . . . . . . . . . . . . . . . 10

2.2 An example illustrating some typical particle collisions, and one way to

perform addition in a particle machine. What is shown is actually the

calculation 012 + 112 = 1002, implemented by having the two operands,

one moving left and the other moving right, collide at a stationary “ripple-

carry” particle. When the leading, least-significant bits collide (in the

third row from the top of the figure), the ripple-carry particle changes

its identity so that it encodes a carry bit of 1, and a right-moving sum

particle representing a bit of 0 is created. The final answer emerges as

the right-moving stream 1002, and the ripple-carry particle is reset by the

“equals” particle to encode a carry of 0. The bits of the two addends

are annihilated when the sum and carry bits are formed. Notice that the

particles are originally separated by empty cells, and that all operations

can be effected by a CA with a neighborhood size of 3 (a radius of 1). . 11

x



LIST OF FIGURES xi

2.3 Input file for simulation of a PM executing a ripple-carry addition algo-

rithm. The file’s three sections specify a PM and its input. Each line in

the “particles” section lists a particle’s symbolic name, the symbol printed

for the particle in the simulator’s output, and the particle’s velocity, in or-

der from left to right. Each line in the “rules” section specifies a collision

rule, using the symbolic particle names given earlier, and with the negation

symbol (˜) used to specify that a particle be destroyed; for example, the

second rule in the list states that when particles R0, L0 and C1 collide,

these particles are to be destroyed, and new particles R1 and C0 are to be

created in their place. The “initial configuration” section gives the initial

state of the PM’s medium, using symbolic particle names to specify the

addition problem 012 + 112. Underscores ( ) represent empty PM cells. 13

2.4 Simulator output for PM ripple-carry addition. The top line in the fig-

ure gives the initial state of the PM’s medium, representing the addition

problem 012 + 112, as described in the text. Each successive pair of lines

depicts the state of the medium after the propagation and collision phases

of each time step. The bottom line in the picture shows the stationary

0-carry particle followed by the answer, 1002, moving right. . . . . . . . 14

2.5 The particle configuration for adding by having the addends collide bit by

bit at a single processor particle. . . . . . . . . . . . . . . . . . . . . . 19

2.6 An alternate addition scheme, in which a processor travels through the

addends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Multiplication scheme, based on a systolic array. The processor particles

are stationary and the data particles collide. Product bits are stored in the

identity of the processor particles, and carry bits are stored in the identity

of the data particles, and thereby transported to neighbor bits. . . . . . 21



LIST OF FIGURES xii

2.8 Simulator output for PM multiplication. The top line in the figure gives the

initial state of the PM’s medium, representing the multiplication problem

112 ∗112, as described in the text. Each successive pair of lines depicts the

state of the medium after the propagation and collision phases of each time

step. The bottom line in the picture shows the stationary answer, 10012,

in the central computation region, along with the unchanged operands

moving away from the region. . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Initial configuration for division. . . . . . . . . . . . . . . . . . . . . . 23

2.10 Configuration just before the first multiplication. . . . . . . . . . . . . 24

2.11 Configuration just before subtraction. . . . . . . . . . . . . . . . . . . 24

2.12 Configuration just before the second multiplication. . . . . . . . . . . . 25

2.13 Configuration after the first iteration. . . . . . . . . . . . . . . . . . . 25

2.14 Output generated by a simulation of the division implementation. Each cell

is represented by a small circle whose shading depends on which particles

are present in that cell. For clarity, only every seventh generation is shown.

The example is the one described in the text, 1/7. . . . . . . . . . . . 26

3.1 The logic fragment of an implementation of the rule in eq. 2.1. The

conditions create a right-moving 0. . . . . . . . . . . . . . . . . . . . . 29

3.2 A possible layout plan for a PM. . . . . . . . . . . . . . . . . . . . . . 30

3.3 The general layout of cells in the CA for a PM. The bits in the state

vector are shown as shaded registers. Each such register supplies data to

the update logic for its own cell, and those of its nearest neighbor cells.

Connections to right neighbors are shown as dashed lines. . . . . . . . . 31

4.1 An envelope soliton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Integrand for computing a sat-NLS envelope with A = ue = 1. . . . . . . 45

4.3 The graph of fig. 4.2 after numerical integration: a sat-NLS soliton rotated

by 90 degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 The graph of fig. 4.3 after inversion (rotation by 90 degrees): a sat-NLS

soliton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



LIST OF FIGURES xiii

4.5 Highly magnified left edges of propagating sat-NLS solitons. The left

graph shows a soliton obtained by numerical integration, as described in

the text, without interpolation of the soliton’s tails. Note the amplitude

discontinuity in the initial conditions at the top of the graph. The right

graph shows the same soliton, but with its tails interpolated using an

exponentially decaying function. Note the lesser amount of radiation as

compared with the left graph. . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Sample nls input file for a two-soliton collision in the cubic-NLS system. 61

5.2 First page of the graph generated by nls with the sample input file from

fig. 5.1. The graph shows a two-soliton collision in the cubic-NLS system. 62

5.3 First page of the graph generated by nls with the sample input file from

fig. 5.1, modified as described in the text. The graph shows a two-soliton

collision in the cubic-NLS system by plotting shades of gray for the phase

values of grid points. The phase shift due to the collision is apparent as

a sudden change in the orientation of the phase contours approximately

halfway down from the top of the graph. . . . . . . . . . . . . . . . . . 63

5.4 Window shot of nls running under the X Windows system. The graph was

produced by running nls with the input file from fig. 5.1 and changing a

scaling parameter from an nls menu. . . . . . . . . . . . . . . . . . . 71

5.5 Window shot of nls running under the X Windows system. The graph

was produced by running nls with the input file from fig. 5.1 and changing

a display parameter from an nls menu. For each grid-point value, this

graph uses a shade of gray to show phase weighted by magnitude. . . . 72

6.1 Computing with solitons in a bulk medium. Solitons are injected at the

left of the diagram, computation takes place within the medium via the

interaction of the pseudoparticles, and the results exit from the right of

the diagram. The actual medium can be linear, planar, or 3-d. . . . . . . 76



LIST OF FIGURES xiv

6.2 Hierarchy of computational systems in the world of cellular automata (CA).

Particle machines (PMs) are CA designed to model particle-supporting

physical media. Soliton machines (SMs) are restricted PMs that model

general soliton systems, including PDEs such as the Klein-Gordon and log-

NLS equations. Oblivious soliton machines (OSMs) are SMs that model

integrable soliton systems, such as the KdV, cubic-NLS, and sine-Gordon

equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 The three worlds considered in this chapter. Notice that the property

oblivious applies to both CA and soliton solutions of PDEs, whereas the

properties integrable and having elastic collisions apply only to soliton

systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Gausson collisions in region 1. From left to right, velocities are 0.4 and

−0.4; phases are both 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Gausson collisions in region 1. From left to right, velocities are 0.4 and

−0.4; phases are 0 and 0.5π. . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 Gausson collisions in region 1. From left to right, velocities are 0.4 and

−0.4; phases are 0.5π and 0. . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 Gausson collisions in region 2. From left to right, velocities are 3.0 and

−3.0; phases are both 0. A cylindrical coordinate system is used here, so

that there is wrap around from the right to the left edge, and vice versa. 93

6.8 Gausson collisions in region 2. From left to right, velocities are 2.0 and

−0.1; phases are both 0. A cylindrical coordinate system is used here, so

that there is wrap around from the right to the left edge, and vice versa. 93

6.9 Gausson collisions in region 3. From left to right, velocities are 10.0 and

−15.0; phases are both 0. A cylindrical coordinate system is used here, so

that gaussons wrap around from right to left, and vice versa. . . . . . . 94

6.10 Testing for nonobliviousness using a near-elastic collision (AB) followed

by an inelastic collision (AC). If the result of the AC collision depends on

the initial phase of B, then the AB collision is nonoblivious. . . . . . . . 95



LIST OF FIGURES xv

6.11 Testing for obliviousness of the collision between the leftmost (A) and

center (B) gaussons in region 2. The center gausson’s phase is 0.05π;

the other two gaussons’ phases are both 0. The collision is nonoblivious,

since the results of the test collision between the leftmost and rightmost

gaussons (A and C) differ from those in the next figure. . . . . . . . . . 96

6.12 Testing for obliviousness of the collision between the leftmost (A) and

center (B) gaussons in region 2. The center gausson’s phase is 0.55π;

the other two gaussons’ phases are both 0. The collision is nonoblivious,

since the results of the test collision between the leftmost and rightmost

gaussons (A and C) differ from those in the previous figure. . . . . . . . 97

6.13 Trivial information transfer in collisions of 3-NLS solitons. The initial

relative phases of the solitons in the left and right graphs are 0.25π and

−0.45π, respectively; velocities are ±0.2. Phase and spatial shifts, though

not apparent from these graphs, are a function of only the constant am-

plitudes and velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.14 Nontrivial information transfer in collisions of sat-NLS solitary waves. The

initial relative phases of the waves in the left and right graphs are 0.25π

and −0.45π, respectively; velocities are ±0.2. . . . . . . . . . . . . . . . 99

6.15 Information transfer for collisions of two sat-NLS solitary waves. Here

information transfer is defined as the fractional change in the amplitude

of one solitary wave; that is, the transfer is equal to ∆A1/A1, where

A1 is the initial amplitude of the right-moving wave, and ∆A1 is the

amplitude change due to collisions. The solid, dashed, and dotted curves

show information transfer for collisions of two waves with amplitudes 1.0

and velocities ±0.5, ±1.5, and ±10.0, respectively. Relative phase is in

multiples of π. Note that in the low-velocity case (solid line) near zero

relative phase there is significant radiation and breathing in the collision

products, making the amplitude poorly-defined. What is shown is the

result of measuring the amplitude peak at a fixed time. . . . . . . . . . 100



LIST OF FIGURES xvi

6.16 Fusion of two solitons after collision. Here the two solitons approach each

other with velocities ±0.2 and amplitudes 1.0. . . . . . . . . . . . . . . 103

6.17 Radiation due to collisions in the sat-NLS system. Radiation is computed

by finding the section of the numerical-solution grid with the lowest RMS

norm of grid points, using sections of size N/10, where N is the the size

of the entire grid; radiation is taken to be this lowest RMS norm. The

solid, dashed, and dotted curves show radiation for collisions of two solitary

waves with velocities ±0.5, ±1.5, and ±10.0, respectively. Relative phase

is in multiples of π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 A general two-soliton collision in the Manakov system. The complex num-

bers ρ1, ρL, ρ2, and ρR indicate the variable soliton states; k1 and k2

indicate the constant soliton parameters. . . . . . . . . . . . . . . . . . 113

7.2 Numerical simulation of a NOT processor implemented in the Manakov

system. These graphs display the color-coded phase of ρ for solitons that

encode data and processors for two cases. In the initial conditions (top

of graphs), the two leftmost (data) solitons are an inverse pair that can

represent a 0 in the left graph, and a 1 in the right graph. In each graph,

these solitons collide with the four rightmost (processor) solitons, resulting

in a soliton pair representing a 1 and a 0, respectively. The processor soli-

tons are unchanged. These graphs were obtained by numerical simulation

of eq. 7.1 with µ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Another visualization of numerical simulation of a NOT processor imple-

mented in the Manakov system. These two graphs present the same in-

formation as either single graph of fig. 7.2, but display the magnitude of

the soliton components in both modes (0 and 1). Each single graph of

fig. 7.2 corresponds to two magnitude profiles (one for each mode), but

these magnitude graphs are the same for both graphs of fig. 7.2. This is

because the data solitons for the two NOT operations differ only in phase,

whereas the operator solitons are the same. . . . . . . . . . . . . . . . . 125



LIST OF FIGURES xvii

7.4 Numerical simulation of an energy-switching NOT processor implemented

in the Manakov system. These graphs display the magnitude of one soliton

component for the same two operations as in the previous figures. Here

the right-moving (data) particles are the inverse pair with states ∞, 0 in

the left graph, and 0,∞ in the right graph. As before, the left-moving

(operator) particles emerge unchanged, and here have initial and final

states ±1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.5 Numerical simulation of a “move” operation implemented in the Manakov

system. These graphs display the color-coded phase of ρ. In each graph,

the information contained in the middle particle in the initial conditions

(top of graphs) is moved to the middle particle in the final conditions

(bottom of graphs). The information transfer is effected by the “carrier”

particle C. These graphs were obtained by numerical simulation of eq. 7.1

with µ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.6 Another visualization of numerical simulation of a “move” operation imple-

mented in the Manakov system. These graphs show the same information

as fig. 7.5, but display the magnitude of the soliton components in both

modes. The top two graphs correspond to the left graph of fig. 7.5, and

show the magnitude of the soliton components in modes 0 and 1. The

bottom two graphs correspond to the right graph of fig. 7.5, and show

analogous information. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.7 Numerical simulation of the compound collision of two soliton braids in

the Manakov system. This graph displays the color coded phase of ρ, and

was obtained by numerical simulation of eq. 7.1 with µ = 1. . . . . . . 130



Chapter 1

Introduction

Nature offers practically limitless means of building computers. The properties of

matter and energy — for example, frequency and intensity of waves — can encode

information, and the state changes resulting from mechanical, chemical, electromag-

netic, and subatomic phenomena can do computation. One may say that physical

systems quickly and effortlessly solve the complicated differential equations we pose

to describe physical behavior; on the other hand, the ability to tap into such com-

putational power may not immediately apply to solving “practical” problems, such

as sorting a database or factoring an integer. However, transforming the inherent

computing capabilities of physics into a form usable by humans — perhaps not un-

like converting various forms of energy into electricity — can give us benefits and

capabilities far beyond our former reach.

Modern digital processors are based on essentially one physical phenomenon,

namely the propagation of electricity through wires and transistors, and have been

tremendously successful owing to the miniaturization of computing elements. Such

success, however, cannot continue for much longer — perhaps another few decades [48]

— because media that conduct electricity and light are subject to fundamental limita-

tions of signal speed and component size. It is thus worthwhile to search for alternate

methods of harnessing physics for computation, both to overcome the quickly ap-

proaching limits of traditional approaches, and to discover means of implementing

specific operations orders of magnitude faster. This dissertation studies a method

1



CHAPTER 1. INTRODUCTION 2

of nonstandard computation, namely soliton interaction in uniform media, that may

offer such benefits.

1.1 Standard and nonstandard computation

The dominant methodology for constructing modern computer processors is the “litho-

graphic” paradigm of laying out transistors and wires in several planar layers. While

this approach has worked extremely well, the abstract operation of gates is rather far

removed from the underlying physics, and components that function in a more physi-

cally “natural” manner may extract more computing power out of physical behavior.

For example, whereas physics is essentially reversible (at least microscopically), the

operation of typical gates, such as AND and OR, is not, and energy is dissipated

in the process. This places restrictions on the size and speed of components, leads

to waste heat, and often necessitates that processors be equipped with cooling de-

vices. In addition, today’s gates are macroscopic devices, far removed from the atomic

level; for example, an AND gate can be built today out of no fewer than 109 to 1012

atoms [101]. A current practical limit on the minimum number of electrons required

to store a single bit in memory is about 6 × 105 [48].

One way bring gates and wires closer to fundamental physics is to use reversible

logic. Bennett [11] proved that any Turing machine can be made reversible, thus

showing that general computation can take place with far less energy dissipation than

in traditional machines. Subsequent work [12, 72] has explored this approach, and

the general paradigm of conservative (reversible) logic was treated in [26]. However,

this approach incurs overhead in circuit speed and size, and has not found its way

into mainstream electronic processor design.

Rather than attempting to improve designs based on gates and wires, researchers

have recently broken away from this paradigm entirely, and explored more novel ways

to exploit the computational power of physics. A number of new ways to use physical

phenomena for computation have been suggested, with the hope that such approaches

could lead to faster, more efficient solution of certain problems. We briefly mention



CHAPTER 1. INTRODUCTION 3

several of the better known ideas.

• Quantum computing [17, 18, 85, 84, 95] exploits the parallelism of quantum

superposition and interference to solve certain problems, most notably factor-

ing [84], asymptotically faster than what is possible with the best known clas-

sical algorithms. In fact, problems exist which provably take exponential time

on a classical machine in a certain model, but which require only polynomial

time on a quantum computer [85]. This idea is still largely a thought experiment

rather than a practical method of computing, but recent progress in overcoming

the challenges of building a quantum computer offers some promise for future

realization of such machines.

• DNA computing [5, 54, 107] solves certain combinatorial problems by making

use of the minute size and fine-grain parallelism of interacting DNA molecules.

One application of DNA to computing essentially adds a large constant factor

of speed to the solution of some NP-complete problems, such as Hamiltonian

path and Boolean satisfiability [5, 54]. Other approaches use DNA to simulate

cellular automata [107].

• Chemical computing (for example, [62, 57]) is a general approach which uses

reactions of various compounds to do computation. Such reactions can simulate

restoring digital logic [57].

• In addition to the above, various other analog computing schemes and devices

have been proposed (for example, [19, 103, 92]), including mechanical gadgets

and electrical circuits for solving “hard” (NP-complete) problems. Although

classical analog machines in general are hypothesized not to operate asymptot-

ically faster than digital computers [103], in some cases it is a puzzling open

problem to determine the exact reason for the presumed failure of a machine to

solve an NP-complete problem.

• The general paradigm of programmable matter [100] models computation done

by large numbers of microscopic agents interacting in a uniform medium. The



CHAPTER 1. INTRODUCTION 4

topic studied in this dissertation — solitons propagating and colliding in a bulk

medium — is one instance of this idea. Other examples include neurons com-

municating in the human brain, and DNA molecules interacting in an aqueous

solution.

1.2 Outline of the thesis

This dissertation presents an abstract particle-based model of computation, and

shows how this model can be realized with physical solitons. To make this work

self-contained, we also cover some necessary background in physics and numerical

methods.

In chapter 2, we introduce the abstract particle machine (PM) model of com-

putation — a general framework, based on cellular automata (CA), for computing

with particle-based phenomena. We discuss properties of the PM, and show several

algorithms which demonstrate some efficient particle-based computations, including

a linear-time, arbitrary-precision PM division algorithm. Much of this work was

published in [89, 42].

Since prior work has shown that traditional methods (VLSI) can be used to imple-

ment CA efficiently, in chapter 3 we present and evaluate a design for building PMs

with VLSI. We find that such a design offer may offer some benefits over today’s mi-

croprocessors. However, the remainder of the thesis concentrates on more promising

nonstandard means of realizing PMs.

Before we discuss how to use solitons to implement PMs in a nontraditional man-

ner, in chapter 4 we present an overview of solitons and their properties. Soliton

theory is a rich field with an extensive history, and we do not attempt to give a full

summary; rather, we present only necessary material upon which we draw through-

out the thesis. Although much of this material is well known, we present our own

derivations of many facts, and give additional details and refinements.

In chapter 5 we describe numerical methods for solving nonlinear Schrödinger

equations, which are physical models for solitons in various media, and which are



CHAPTER 1. INTRODUCTION 5

our main platform for studying soliton-based computation. The numerical methods

we use have appeared previously in the literature, but we present our own deriva-

tions and adaptations of the methods for our purposes. In addition, we describe our

implementation of these methods in an interactive graphical program, nls.

Chapter 6 covers general issues in using solitons to do computation. We discuss the

notion of information transfer in soliton systems, and introduce a restricted version of

the PM called a soliton machine (SM), which models soliton systems more accurately

than a general PM. These results were published in [43, 44, 45].

Finally, in chapter 7 we study a specific soliton system, the Manakov system, in

which we demonstrate simple examples of actual computation. This work appears

in [41, 46].

We conclude with a summary, including a discussion of open problems and future

work.



Chapter 2

The Particle-Machine Model of

Computation

The particle machine (PM) is a model intended to capture the notion of computation

by propagating and colliding particles. Like the Turing machine (TM), the PM can do

general computation [89], and operates in discrete time and space. However, while the

TM’s tape, read-write head, and uniprocessing operations hint at mechanical, man-

made origins, the PM’s particle interactions and fine-grain parallelism are reminiscent

of physical systems. Indeed, the PM is meant as a practical computational model of

physics based on particles and particle-like phenomena.

This chapter gives an introduction to the abstract PM model, and shows several

applications. Formally, we define the PM as a cellular automaton (CA) with states

that represent idealized particles, and with an update rule that encodes the propaga-

tion and collision of such particles. While PMs can have any number of dimensions,

here we concentrate on 1-d PMs. We discuss the issue of PM rule conflict, a problem

that arises during the design of particle machines for specific computations. Finally,

we present several PM algorithms, including a detailed description of an implemen-

tation of Leighton’s Newtonian division algorithm [53] in the model.

As we describe later, 1-d PMs could be realized with solitons in 1 + 1 (one spatial

and one temporal dimension) media such as optical fibers, which have been studied

extensively and are used widely in practice [38]. Later we briefly discuss the imple-

6



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 7

mentation of higher-dimensional PMs in 2 + 1 and 3 + 1 media such as glasses and

crystals.

2.1 Characteristics of PMs

Particle machines are a method of incorporating the parallelism of systolic arrays [50]

in hardware that is not application-specific and is easy to fabricate. The PM model,

introduced and studied in [93, 89], uses colliding particles to encode computation.

A PM can be realized in VLSI as a cellular automaton, and the resultant chips are

locally connected, very regular (being CA), and can be concatenated with a minimum

of glue logic. Thus, many VLSI chips can be strung together to provide a very long

PM, which can then support many computations in parallel. What computation

takes place is determined entirely by the stream of injected particles: There are no

multipliers or other fixed calculating units in the machine, and the logic supports

only particle propagation and collisions. While many algorithms for a PM mimic

systolic arrays and achieve their parallelism, these algorithms are not hard-wired, but

are “soft” in the sense that they do not determine any fixed hardware structures.

An interesting consequence of this flexibility is that the precision of fixed-point

arithmetic is completely arbitrary and determined at run time by the user. A recent

paper [89] shows that FIR filtering (convolution) of a continuous input stream, and

arbitrarily nested combinations of fixed-point addition, subtraction, and multiplica-

tion, can all be performed in one fixed CA-based PM in time linear in the number of

input bits, all with arbitrary precision. Later in this chapter we complete this suite

of parallel arithmetic operations with an implementation of division that exploits the

PM’s flexibility by changing precision during computation.

2.1.1 Cellular automata

We briefly review the notion of the cellular automaton (CA) [92, 108], an abstract

model used for both computation and simulation of physics. The CA was invented by

von Neumann and Ulam [104] to study systems capable of universal computation and



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 8

self-reproduction. Von Neumann’s original CA was two-dimensional and contained

29 states per cell, but this construction has been simplified over the years. One of

the simplest yet most interesting CA is the 2-d Game of Life [13], which has only 2

states per cell and yet is computation-universal.

A 1-d CA consists of a sequence of sites, or cells, which evolve in discrete time

steps according to an update rule. The state of cell i of a 1-d CA at time t +

1 is determined by the states of cells in the neighborhood of cell i at time t, the

neighborhood being defined to be those cells at a distance, or radius, r or less of

cell i. Thus, the neighborhood of a CA with radius r contains k = 2r + 1 cells and

includes cell i itself. The operation of the CA is determined by the update rule, a

function that maps states of the cells in the neighborhood of cell i at time t to the

state of cell i at time t + 1. When the CA evolves from time t to t + 1, the update

rule is applied simultaneously to all cells. Higher-dimensional CA operate similarly.

2.1.2 The PM model

We define the PM formally as follows:

Definition 1 A Particle Machine (PM) is a CA with an update rule designed to

support the propagation and collision of logical particles in a one-dimensional homo-

geneous medium. Each particle has a distinct identity, which includes the particle’s

velocity. We think of each cell’s state in a PM as a binary occupancy vector, in which

each bit represents the presence or absence of one of n particle types (the same idea

is used in lattice gasses; see, for example, [28]). The state of cell i at time t+1 is de-

termined by the states of cells in the neighborhood of cell i, where the neighborhood

includes the 2r+1 cells within a distance, or radius, r of cell i, including cell i. In a

PM, the radius is equal to the maximum velocity of any particle, plus the maximum

displacement that any particle can undergo during collision.

The medium of a PM supports particles propagating with constant velocities. Two

or more particles may collide; a set of collision rules, which are encoded by the CA

update rule, specifies which particles are created, which are destroyed, and which are



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 9

unaffected in collisions. A PM begins with a finite initial configuration of particles

and evolves in discrete time steps.

For clarity when reasoning about PM operations, we can logically break up each

time step of a PM’s evolution into two separate phases:

• During the propagation phase, each particle moves from one cell to another

(zero-velocity particles stay in the same cell).

• During the collision phase, collision rules are applied to the particle group

present in each cell.

These steps are incorporated into the update rule of the CA; we do not extend the

concept of CA in any way, but introduce this abstraction to simplify thinking about

PM evolution.

Note that the definition of a PM precludes the presence of two or more identical

particles in the same cell at a given time. While the notion of a PM could be extended

to remove this limitation, the more complicated PM model does not appear to offer

many additional possibilities for computation. Also note that multiple collision rules

can apply to a particle group present in a given cell at a given time, but the order

of rule application is undefined, leading to the rule-compatibility problem studied in

section 2.2.

A PM, like a CA, can have a periodic background; that is, an infinite, periodic

sequence of nonzero state values in the medium of the CA. Periodic backgrounds

are sometimes used to add computational power to CA, as in [10]. To make this

theoretical abstraction physically realizable in a PM, we can choose a specific cell to

be a PM’s terminus, or logical end, located away from the region in which computation

occurs. We can then inject a regular, periodic sequence of particles at this cell, thus

simulating a periodic background.

2.1.3 Simple computation with PMs

Fig. 2.1 shows the general arrangement of a 1-d PM. Particles are injected at one end

of the one-dimensional CA, and these particles move through the medium provided by



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 10

to infinity

particles injected

Figure 2.1: The basic conception of a particle machine

the cells. When two or more particles collide, new particles may be created, existing

particles may be annihilated, or no interaction may occur, depending on the types of

particles involved in the collision.

Fig. 2.2 illustrates some typical collisions when binary addition is implemented by

particle collisions. This particular method of addition will be one of two described

later when we develop arithmetic algorithms. The basic idea is that each addend is

represented by a stream of particles containing one particle for each bit in the addend,

one stream moving left and the other moving right. The two addend streams collide

with a ripple-carry adder particle where the addition operation takes place. The

ripple-carry particle keeps track of the current value of the carry between collisions

of subsequent addend-bit particles as the streams collide least-significant-bit first. As

each collision occurs, a new right-moving result-bit particle is created and the two

addend particles are annihilated. Finally, a trailing “reset” particle moving right

resets the ripple-carry to zero and creates an additional result-bit particle moving

right.

We need to be careful to avoid confusion between the bits of the arithmetic oper-

ation and the bits in the state vector. The ripple-carry adder is represented by two

particle types; the bits of the right-moving addend and the right-moving result are

represented by two more particle types; the left-moving addend bits are represented

by another two types; and the reset particle is represented by one additional type.

Thus, the operations shown in fig. 2.2 use seven bits of the state vector. We’ll de-

note by Ci the Boolean state vector variable for cell i. The individual bits in the

state vector will be denoted by bracket notation: For instance, the state vector bit

corresponding to a right-moving zero particle in cell i is denoted Ci[0R]. The seven

Boolean variables representing the seven particles are:



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 11

= 0 1 1 1

= 0 1 1 10+

= 0 1

= 0 +1 0
1

= 0

+1

0

=

+1

0

0 0+1

0 0

1 0 0

0+

+1

=

0+

Figure 2.2: An example illustrating some typical particle collisions, and one way to perform
addition in a particle machine. What is shown is actually the calculation 012+112 = 1002,
implemented by having the two operands, one moving left and the other moving right,
collide at a stationary “ripple-carry” particle. When the leading, least-significant bits
collide (in the third row from the top of the figure), the ripple-carry particle changes its
identity so that it encodes a carry bit of 1, and a right-moving sum particle representing
a bit of 0 is created. The final answer emerges as the right-moving stream 1002, and the
ripple-carry particle is reset by the “equals” particle to encode a carry of 0. The bits of
the two addends are annihilated when the sum and carry bits are formed. Notice that the
particles are originally separated by empty cells, and that all operations can be effected
by a CA with a neighborhood size of 3 (a radius of 1).



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 12

Ci[0R] right-moving zero

Ci[0L] left-moving zero

Ci[1R] right-moving one

Ci[1L] left-moving one

Ci[+0] ripple-carry adder with zero carry

Ci[+1] ripple-carry adder with one carry

Ci[=R] right-moving adder reset

All the particle interactions and transformations shown in the example can be

effected in a CA with radius one; that is, using only the states of cells i − 1, i, and

i+ 1 to update the state of cell i. A typical next-state rule (as illustrated in the first

collision in Fig. 2.2) therefore looks like

Ci[0R](t+1) ⇐ (Ci−1[1R] ∧ Ci[+0] ∧ Ci+1[1L] )(t) (2.1)

which says simply that if the colliding addends are 1 and 1, and the carry is 0, then

the result bit is a right-moving 0.

Notice that using two state-vector bits to represent one data bit allows us to encode

the situation when the particular data bit is simply not present. (Theoretically,

it also gives us the opportunity to encode the situation when it is both 0 and 1

simultaneously, although the rules are usually such that this never occurs.) It can be

very useful to know a data bit isn’t present.

2.1.4 Simulation of PMs

To study the PM model and algorithms, we developed a PM simulator — a program

which reads a description of a PM, and outputs the state of the PM’s medium after

each propagation and collision. The description is a text file which specifies the



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 13

% particles

C0 0 0

C1 1 0

R0 r 1

R1 R 1

L0 l -1

L1 L -1

Eq = 1

% rules

R0 L0 C0 -> ~L0

R0 L0 C1 -> ~R0 ~L0 ~C1 R1 C0

R0 L1 C0 -> ~R0 ~L1 R1

R0 L1 C1 -> ~L1

R1 L0 C0 -> ~L0

R1 L0 C1 -> ~R1 ~L0 R0

R1 L1 C0 -> ~R1 ~L1 ~C0 R0 C1

R1 L1 C1 -> ~L1

Eq C0 -> ~Eq R0

Eq C1 -> ~Eq ~C1 R1 C0

% initial configuration

Eq R0 R1 _ C0 _ L1 L1

Figure 2.3: Input file for simulation of a PM executing a ripple-carry addition algorithm.
The file’s three sections specify a PM and its input. Each line in the “particles” section
lists a particle’s symbolic name, the symbol printed for the particle in the simulator’s
output, and the particle’s velocity, in order from left to right. Each line in the “rules”
section specifies a collision rule, using the symbolic particle names given earlier, and with
the negation symbol (˜) used to specify that a particle be destroyed; for example, the
second rule in the list states that when particles R0, L0 and C1 collide, these particles
are to be destroyed, and new particles R1 and C0 are to be created in their place. The
“initial configuration” section gives the initial state of the PM’s medium, using symbolic
particle names to specify the addition problem 012 +112. Underscores ( ) represent empty
PM cells.



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 14

.= .r .R . .0 . .L .L . .

. .= .r .R .0 .L .L . . .

. .= .r .R .0 .L .L . . .

. . .= .r .0RL.L . . . .

. . .= .r .1r .L . . . .

. . . .= .1rL.r . . . .

. . . .= .1r .r . . . .

. . . . .1= .r .r . . .

. . . . .0R .r .r . . .

. . . . .0 .R .r .r . .

. . . . .0 .R .r .r . .

. . . . .0 . .R .r .r .

. . . . .0 . .R .r .r .

Figure 2.4: Simulator output for PM ripple-carry addition. The top line in the figure
gives the initial state of the PM’s medium, representing the addition problem 012 + 112,
as described in the text. Each successive pair of lines depicts the state of the medium after
the propagation and collision phases of each time step. The bottom line in the picture
shows the stationary 0-carry particle followed by the answer, 1002, moving right.



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 15

PM’s particles, collision rules, and the initial state of the PM’s medium. All our PM

algorithms have been implemented and verified using this simulator.

Fig. 2.3 shows the simulator input file for the ripple-carry addition algorithm

described above, and fig. 2.4 is a copy of the simulator’s output for this file. For

the addition algorithm, there are seven particles, listed in the “particles” section of

fig. 2.3:

• C0 and C1 — stationary carry bits (0 and 1)

• L0 and L1 — left-moving operand bits (0 and 1)

• R0 and R1 — right-moving operand bits (0 and 1)

• Eq — particle used to convert the final carry bit into the last answer bit

The algorithm includes 10 collision rules, listed in the “rules” section of fig. 2.3. The

first eight of these handle the eight possibilities for adding two operand bits and

a carry bit; the final two rules convert the final carry particle into the last answer

particle.

2.2 Compatible collision rules

The description of a particular PM includes its collision-rule set, which determines

the results of collisions of particles. These rules only partially specify their input,

and more than one rule can be applicable to a collision of a set of particles. Thus,

there are rule sets whose rules conflict on the outcome of some collisions; that is,

one rule can state that some particle is present in the outcome, and another rule

can state the opposite. If, given a particular set of inputs to the PM, one of these

conflicting collisions occurs, we say the rule set is not compatible with respect to that

set of inputs. The PM model is Turing-equivalent [89], and the general question of

compatibility is undecidable, as we prove in this section. However, we also show that

if the set of inputs is sufficiently constrained, as is usually the case, the constraints

can be used to test compatibility in time polynomial in the number of particles and

rules.



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 16

2.2.1 Collision rules

A set of rules in a PM is a relation between preconditions that determine the rule’s

applicability to collisions and effects that give the outcome of collisions. The domain

is a set of pairs of the form (PD, AD), where PD is a set of particles that must be

present in the neighborhood in order for the rule to apply, and AD is a set of particles

that must be absent. We refer to particles in AD as particle negations, and we consider

particle negations to collide, even though the actual particles are not present. The

range is a set of pairs (PR, AR), where the sets PR and AR give the particles that are

created and destroyed, respectively.

2.2.2 Compatibility

When a set of particles collide in a cell, two or more collision rules may apply si-

multaneously to determine the results. For example, let A, B, and C denote three

particles, and consider the collision rules

A+B → Ā+ C, (2.2)

A+ C → B̄ + C̄. (2.3)

Rule 2.2 states that when A and B collide, A is destroyed, B is unaffected, and C

is created if it is not already present in the cell; rule 2.3 states that when A and C

collide, A is unaffected, C is destroyed, and B is destroyed if it is present in the cell.

When A, B, and C collide with one another, and possibly with additional particles,

both of these rules are invoked.

For our purposes the effects of collision rules should not conflict; that is, one such

rule should not destroy any particle created by another. If this condition is satisfied,

the results of the collision depend only on the colliding particles, not on the order of

rule application. We call a rule set of a PM compatible with respect to a set of inputs

(or simply compatible) if every collision that occurs is resolved without conflicts. We

use the term input to include the initial state of the PM’s medium, and all particles

subsequently injected. Note that the two collision rules given above are incompatible



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 17

for the collision of A, B, and C, since rule 2.2 creates C, whereas rule 2.3 destroys C.

Given a PM, we want to be able to determine whether or not its rule set is compat-

ible. The general problem of determining compatibility turns out to be undecidable.

However, as we will see, if the PM designer provides certain additional information

about the particles, the problem is solvable in time polynomial in the number of

particles and rules.

Rule compatibility is undecidable

Theorem 1 The rule-compatibility problem is undecidable.

Proof: A straightforward reduction from the halting problem. Given a Turing machine

M with an initial configuration of its tape, we transform M into a PM, and M ’s tape

into this PM’s input, in such a way that M halts if and only if the PM’s rule set is

not compatible.

Let S, Γ, δ, and h denote M ’s set of states, tape alphabet, transition function,

and halt state, respectively. We begin constructing the PM P from M as follows. For

each symbol x ∈ Γ, introduce a new stationary particle xp. The tape of the Turing

machine then maps directly into the medium of the PM; in particular, the initial

configuration of M ’s tape corresponds to the initial state of P ’s medium.

We simulate the transition function δ with particles and collision rules. For each

state s ∈ S, create a stationary particle, sN . This particle is designed to perform

the function of M ’s tape head. Assume that the transition function is defined as δ:

S × Γ → S × Γ ∪ {L,R}), where L and R are special symbols that indicate left and

right movement of the tape head. For all states s and tape symbols x such that δ(s, x)

is defined:

• If δ(s, x) = (t, y), introduce a rule that transforms the stationary state particle

sN to the stationary state particle tN , and transforms the symbol particle xp

into the symbol particle yp. This rule simulates M ’s changing state and writing

a symbol on its tape.



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 18

• If δ(s, x) = (t, L), introduce rules that move the state particle sN one cell to the

left and transforms sN into tN . These rules simulate M’s changing state and

moving its tape head to the left.

• If δ(s, x) = (t, R), introduce analogous rules to simulate tape head movement

to the right.

To complete the construction, add the stationary particle corresponding to M ’s

initial state to the cell corresponding to M ’s initial head position. The above rules

must be compatible, because the medium behaves exactly like M ’s tape and the rules

operate according to M ’s transition function. Finally, choose an arbitrary particle xp

and introduce two conflicting rules. One rule transforms the particle representing the

halt state of M into xp; the other rule transforms it into xp’s negation. The complete

set of rules is compatible if and only if M never halts.

Additional information makes compatibility decidable

Although deciding rule compatibility from only the rule set and the input is not

possible in general, all is not lost. If the PM designer provides complete information

about which pairs of particles can collide, we can determine compatibility with a

simple polynomial-time algorithm. The PM designer usually has a good idea of which

particles can collide and which cannot, even though computing this information is in

general an undecidable problem. For example, a binary arithmetic algorithm most

likely uses two particles representing a 0 and a 1 that never coexist in the same cell.

The information which the PM designer should provide is an exhaustive list L of

pairs of the form (α, β), where α and β are particles or negations of particles, and α

and β can collide. We assume that the designer is willing to guarantee the correctness

and completeness of this information, so that if the pair (α, β) is not in the list, then

α and β can never collide.

An easy way to check for rule compatibility is to ensure that each pair of rules

in the rule set satisfies the following condition: If the rules apply to any collision

simultaneously, then the effects of the rules do not conflict. The rule effects (P1, A1)



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 19

particle
processor

addend 2addend 1

Figure 2.5: The particle configuration for adding by having the addends collide bit by bit
at a single processor particle.

and (P2, A2) conflict if and only if one rule destroys a particle created by the other;

that is, if P1 ∩ A2 6= ∅ or P2 ∩ A1 6= ∅. Two rules with preconditions (P̂1, Â1) and

(P̂2, Â2) can be applicable simultaneously only if the following conditions hold:

• The rules do not conflict in their preconditions, that is, P̂1 ∩ Â2 = ∅ and

P̂2 ∩ Â1 = ∅.

• The combined preconditions of the rules contain only pairs (α, β) that can

collide; that is, α ∈ P̂1 ∪ Â1 and β ∈ P̂2 ∪ Â2 only if (α, β) ∈ L.

These conditions can be checked in O(p2r2) time, where p and r are the numbers

of particles and rules, respectively. An algorithm to do this can examine a pair of

rules in O(p2) time for simultaneous applicability and conflicts, and needs to perform

no more than r2 such checks (one for each pair of rules).

2.3 Linear-time arithmetic

We conclude this chapter with a description of a linear-time PM implementation of

Leighton’s division algorithm [53]. Before we discuss division, however, we briefly

review the implementations of addition and multiplication given in [89].

Note that in all of these implementations, we can consider velocities as relative

to an arbitrary frame of reference. We can always change the frame of reference by

appropriate changes in the update rules.

Fig. 2.5 shows in diagrammatical form the scheme already described in detail in

fig. 2.2. Fig. 2.6 shows an alternate way to add, in which the addends are stationary,

and a ripple-carry particle travels through them, taking with it the bit representing



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 20

particle
processor

addend 2

addend 1

Figure 2.6: An alternate addition scheme, in which a processor travels through the ad-
dends.

the carry. We can use either scheme to add simply by injecting the appropriate stream

of particles. The choice will depend on the form in which the addends happen to be

available in any particular circumstance, and on the form desired for the sum. Note

also that negation can be performed easily by sending a particle through a number

to complement its bits, and then adding one — assuming we use two’s-complement

arithmetic.

Fig. 2.6 also illustrates the use of “tracks.” In this case two different kinds of

particles are used to store data at the same cell position, at the cost of enlarging

the particle set. This turns out to be a very useful idea for implementing multiply-

accumulators for FIR filtering, and feedback for IIR filtering [89]. The idea is used

in the next section for implementing division.

Fig. 2.7 shows the particle arrangement for fixed-point multiplication. This mir-

rors a well known systolic array for the same purpose [50], but of course the structure

is “soft” in the sense that it represents only the input stream of the PM that ac-

complishes the operation. Fig. 2.8 shows a simulation of this multiplication scheme

for the product 112 ∗ 112. In that figure, the particles depicted by R and r repre-

sent right-moving 0 and 1 operand bits, respectively, and L and l similarly represent

left-moving operand bits; p represents stationary “processor” particles in the compu-

tation region where the product is formed; c represents “carry” particles propagated

during computation; and 0 and 1 represent stationary bits of the product. The top

of the figure shows two operands (112 and 112) on their way towards collisions in the

central computation region containing stationary “processor” particles; the bottom

of the figure shows the same operands emerging unchanged from the computation,

with the answer (10012) remaining in the central computation region.

This particular multiplication scheme uses 8 particle types and 23 collision rules;



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 21

particles
processor

right multiplicandleft multiplicand

Figure 2.7: Multiplication scheme, based on a systolic array. The processor particles are
stationary and the data particles collide. Product bits are stored in the identity of the
processor particles, and carry bits are stored in the identity of the data particles, and
thereby transported to neighbor bits.

we omit the simulator input file for the algorithm. The reader is referred to [90, 89] for

more detailed descriptions and a discussion of nested operations and digital filtering.

2.3.1 Systolic arrays and PMs

Systolic arrays are regular grids, usually one- or two-dimensional, of simple, intercon-

nected processors that work in parallel to speed up solutions to many problems, such

as arithmetic and digital filtering. PMs are similar to systolic arrays in that both use

fine-grain parallelism and only local communication; however, as we have explained,

fine-grain systolic arrays are “fixed” in the sense that the computing elements have

pre-assigned purposes, and the arrays are built to execute specific algorithms. On the

other hand, PMs are “soft” in that the PM medium can support general computation,

which is determined by the input stream of particles.

The multiplication scheme described above is mapped onto the PM directly from a

systolic array [50]. Some types of systolic arrays can be mapped just as directly onto

PMs; for example, we produced a straightforward PM simulation of the dynamic-

programming algorithm for the problem of determining the minimum edit distance

between two strings [73, 56]. These multiplication and minimum-edit-distance al-

gorithms are similar in that computation using both can be expressed on a two-

dimensional (space-time) grid with a linear computational wavefront [51]; moreover,

it appears that any such algorithm can be mapped directly onto a PM. However, we

leave the general question of mapping arbitrary systolic arrays onto PMs for further

work.



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 22

.R . .R . .p .p .p .p . . .L . .L .

. .R . .R .p .p .p .p . .L . .L . .

. .R . .R .p .p .p .p . .L . .L . .

. . .R . .Rp .p .p .p .L . .L . . .

. . .R . .Rp .p .p .p .L . .L . . .

. . . .R .p .Rp .p .Lp . .L . . . .

. . . .R .p .Rp .p .Lp . .L . . . .

. . . . .Rp .p .RLp .p .L . . . . .

. . . . .Rp .p .RL1 .p .L . . . . .

. . . . .p .RLp .1 .RLp . . . . . .

. . . . .p .RL1 .1 .RL1 . . . . . .

. . . . .Lp .1 .RL1 .1 .R . . . . .

. . . . .Lp .1 .RL0c.1 .R . . . . .

. . . .L .p .L1c .0 .R1 . .R . . . .

. . . .L .p .L0c .0 .R1 . .R . . . .

. . .L . .Lpc .0 .0 .1 .R . .R . . .

. . .L . .L1 .0 .0 .1 .R . .R . . .

. .L . .L .1 .0 .0 .1 . .R . .R . .

. .L . .L .1 .0 .0 .1 . .R . .R . .

.L . .L . .1 .0 .0 .1 . . .R . .R .

.L . .L . .1 .0 .0 .1 . . .R . .R .

Figure 2.8: Simulator output for PM multiplication. The top line in the figure gives the
initial state of the PM’s medium, representing the multiplication problem 112 ∗ 112, as
described in the text. Each successive pair of lines depicts the state of the medium after
the propagation and collision phases of each time step. The bottom line in the picture
shows the stationary answer, 10012, in the central computation region, along with the
unchanged operands moving away from the region.



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 23

01  1  0  0  0  0  0  0  0  0  0  0  0

0  1  1  1  0  0  0  0  0  0  0  0  0
SL SR

bits of y

path of x ’s bits

bits of x

path of y ’s bits

0

0

0

Figure 2.9: Initial configuration for division.

2.4 Linear-time division

Although division is much more complicated than the other elementary arithmetic

operations, a linear-time, arbitrary-precision algorithm is possible using the particle

model. The algorithm we present here, based on Newtonian iteration and described

by Leighton [53],1 calculates the reciprocal of a number x. We assume for simplicity

that x is scaled so that 1
2

≤ x < 1. For an arbitrary division problem, we rescale the

divisor by shifting its binary point left or right, calculate its reciprocal, multiply by

the dividend, and finally scale the result back. Since each of these steps takes only

linear time, the entire division uses only linear time.

The algorithm works as follows. Let N denote the number of bits desired in

the reciprocal. For simplicity, assume N is a power of 2. Let xi represent the i-th

approximation of the reciprocal and yi the divisor, both rounded down to 2i+1 + 4

places. Beginning with x0 = 1.1 in binary, the method iterates using xi+1 = xi(2 −
yixi), for 0 ≤ i < lgN . At the end of the i-th iteration, the error is less than 2−2i+1

.

The particle implementation of this algorithm carefully coordinates stationary and

moving particles to create a loop. The i-th iteration of the loop performs linear-time,

fixed-point additions and multiplications using 2i+1 + 4 bits of precision. Marker

particles delimit the input number and indicate the bit positions that define the

successive precisions required by the algorithm.

Fig. 2.9 illustrates this setup, giving the initial template for calculating the recip-

1The algorithm described here is actually slightly different, but it is not hard to verify its com-
plexity and correctness.



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 24

1  1  0  0  0  0  0                                                               0  1  1  1  0  0  0

0  1  1  1  0  0  0  0  0  0  0  0  0
1  1  0  0  0  0  0  0  0  0  0  0  0

Figure 2.10: Configuration just before the first multiplication.

C

1  1  0  0  0  0  0  0  0  0  0  0  0

0  1  1  1  0  0  0  0  0  0  0  0  0

1  0  1  0  1  0  0  0  0  0  0  0  0

Figure 2.11: Configuration just before subtraction.

rocal of the number 7 to 8 bits of precision, that is, with error less than 1
256

. The

outer markers enclose the binary numbers y0 = 0.111, which is 7 rescaled to fit the al-

gorithm, and x0 = 1.1, the first approximation to the reciprocal. Additional markers

are at bit places 6, 8, and 12 after the binary point, indicating that three iterations

are required, at precisions of 6, 8, and 12 bits. Two consecutive markers terminate

the number.

The only moving particles in fig. 2.9 are sender particles, denoted by SL and

SR, whose job is to travel through the medium and send data bits to the left and

right to begin an iteration of the loop. (The SL and SR particles are created by a

chain reaction of previous collisions which will not be described here.) Also present

in fig. 2.9 are mirror particles, denoted by squares, which “reflect” moving data bits;

that is, a collision of a moving bit with a mirror generates a bit moving in the opposite

direction and destroys the original bit.

An iteration of the loop proceeds as follows. First, the sender particles SL and

SR collide with the two markers, as shown in fig. 2.9, to generate two mirrors in

place of the markers. Next, SL moves right, sending bits of y0 to the left; at the

same time, SR moves left, sending bits of x0 to the right. The moving bits of the

two numbers bounce off the first mirrors, pass through the second mirrors, and finally

bounce off the mirrors represented by squares in fig. 2.9. This prepares the medium for

the multiplication y0x0. At this point all four mirrors are transformed to stationary

markers. Fig. 2.10 shows the configuration just before multiplication occurs. When



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 25

SR

1  1  0  0  0  0  0  0  0  0  0  0  0

0  1  1  1  0  0  0  0  0  0  0  0  0

0  1  0  1  1  0  0  0  0  0  0  0  0

SL

Figure 2.12: Configuration just before the second multiplication.

1  0  0  0  0  1  0  0  0  0  0  0  0

0  1  1  1  0  0  0  0  0  0  0  0  0

0  1  0  1  1  0  0  0  0  0  0  0  0

SL SR

Figure 2.13: Configuration after the first iteration.

the last bits of x0 and y0 collide with markers, the multiplication is finished, as shown

in fig. 2.11.

The next task is to calculate 2 − y0x0. We do this simply by taking the 2’s

complement of y0x0, since 0 < yixi < 2. For this purpose we generate a special

particle C when the last bit of y0 collides with a marker (see fig. 2.11). The particle

C is similar to a ripple-carry particle (see Figs. 2.2, 2.5, and 2.6). It first adds 1

to the complement of x0y0’s first bit, then moves left through the rest of the bits,

flipping them and adding the carry from the previous bits. Fig. 2.12 shows the result.

All that remains is to multiply this result by x0. This proceeds in the same

manner as the multiplication of x0 by y0. Once this is done, an iteration of the

loop is complete, and the bits of x1 replace the bits of x0. Fig. 2.13 illustrates the

configuration after completion of the first iteration.

The remaining iterations proceed exactly as described above, only with higher pre-

cisions, as determined by the markers in the template. When two consecutive markers

are encountered, the division is finished, and we send a special particle through the

template to restore the markers and mirrors for the next division.

Fig. 2.14 shows a picture generated by a simulation of the division example just

described. The simulated PM uses 38 types of particles and 79 rules, and is capable

of realizing all the applications mentioned in this chapter, including FIR and IIR

filtering.



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 26

i values of yi

m
irr

or

values of x

space

tim
e

m
irr

or

computation region

fir
st

 it
er

at
io

n

m
irr

or

se
co

nd
 it

er
at

io
n

th
ird

 it
er

at
io

n

m
irr

or

Figure 2.14: Output generated by a simulation of the division implementation. Each cell
is represented by a small circle whose shading depends on which particles are present in
that cell. For clarity, only every seventh generation is shown. The example is the one
described in the text, 1/7.



CHAPTER 2. THE PARTICLE-MACHINE MODEL OF COMPUTATION 27

2.5 Discussion

In this chapter we introduced the PM model of computation and described some of

its important properties. Then we showed that the general problem of determining

whether rules can ever conflict is undecidable, but also that this is not a serious

problem in practice. Finally, we showed how to implement a linear-time division

algorithm in a PM, complementing a suite of linear-time implementations of basic

arithmetic: addition/subtraction and multiplication/division. As pointed out in [89],

these operations can be nested and combined for parallel execution in the cells of a

PM.

In a way, a PM is a programmable parallel computer without an explicit in-

struction set: What happens in the machine is determined by the stream of input

particles. We found some methods for translating systolic arrays and other structures

into particle streams, but general problems of programming a PM, such as designing

higher-level languages and building compilers, are unexplored.

The three main advantages of PMs for doing parallel arithmetic are the ease

of design and construction, the high degree of parallelism available through simple

concatenation, and the flexibility of word length — which depends, of course, on

only the particle groups entering the machine. In the next chapter we show that

the simplicity of PMs allows us to use traditional VLSI technology to design PM

implementations more easily than traditional processors. In addition, we argue that

for certain computations, the features of PMs could make them competitive with such

processors.



Chapter 3

Implementing Particle Machines

with VLSI

In this chapter we take the first steps towards building physical machines based on

the PM model. The PM is intended for implementation in any physical system that

supports the requisite particles and collisions, but was not originally expected to

lend itself well to fast and efficient realization using traditional means. Still, the

tremendous success of VLSI technology, as well as previous work in using VLSI to

implement CA and systolic arrays [102, 50, 56], suggest that an evaluation of VLSI

for building PMs is in order.

Much like systolic arrays, CA can be realized in hardware as regular arrays, usually

one- or two-dimensional, of locally interconnected, uniform processors. Each such

processor needs only to implement the CA’s update rule and to synchronize operation

with all other processors. The simplicity of such processors, combined with their

parallel operation, can lead to CA machines, such as the MIT Cellular-Automaton

Machine (CAM) computer [102, 99], that simulate CA much faster than conventional

uni- or multiprocessors.

28



CHAPTER 3. IMPLEMENTING PARTICLE MACHINES WITH VLSI 29

S R
out

C     [1    ]i-1 R C     [1    ]Li+1

C    [+    ]i 0

C    [0    ]i R

Figure 3.1: The logic fragment of an implementation of the rule in eq. 2.1. The conditions
create a right-moving 0.

3.1 VLSI size and performance estimate

We base our estimate of VLSI size and performance on a straightforward realization

of the PM rule set as suggested by fig. 3.1. In that figure, the rule in eq. 2.1 is

implemented directly in random logic feeding the inputs to an S-R flip-flop that

stores one bit of a cell’s state vector. This makes it easy to map the rules into logic

generally; each rule that creates or destroys a particle sets or resets its corresponding

bit. Fig. 3.2 shows the general logic fanning into a state bit.

In a practical VLSI implementation the rules would probably be combined and

realized in a programmable logic array (PLA). The following area estimate assumes

this is done. If PMs prove practically useful, it may be worth investing considerable

effort in optimizing the layout of a PM for a rule set that is sufficiently powerful to

implement a wide variety of computations. After all, this design need to be done only

once, and the resulting chip would be useful in many applications. As with memory

cells, only a single cell needs to be designed, which can then be replicated. The chips

themselves can be concatenated to form very long — and hence highly parallel —

machines.

Our layout of a row of cells is shown in fig. 3.3. Here each cell has p bits in its state

vector, thus supporting p particle types, and contains a logic block, a bank of flip-



CHAPTER 3. IMPLEMENTING PARTICLE MACHINES WITH VLSI 30

S R
one bit of one cell

flip-flop storing
out

values from neighborhood cells

Figure 3.2: A possible layout plan for a PM.

flops, and wiring connecting logic inputs and outputs to flip-flop inputs and outputs.

Our estimate of the area required for these elements uses a rough approximation to

the space required to route a single signal wire in modern VLSI [106]: about α = 6λ,

where λ = 0.2µ. Thus, a wiring channel containing n wires we estimate to be n6λ

across. We allow four times as much space per signal wire for PLA signal wires, or

β = 24λ per PLA wire.

As laid out in fig. 3.3, a cell requires vertical space for two wiring channels. In

addition, we must fit in the larger of either a bank of p flip-flops or the vertical span

of the PLA. Since we assume a simple layout, the PLA is the larger structure and we

ignore the flip-flops in the vertical direction. The PLA contains p input wires, p/3

from the cell’s own flip-flops and p/3 each from the two neighbor cells, and p output

wires, giving 2p total PLA wires, counting vertically. The total height of a cell is then

(2/3)pα+ 2pβ.

Horizontally, a cell must accommodate the PLA, two wiring channels, and the flip-

flops. The PLA requires roughly as many wires as minterms. Estimating an average

of four minterms per output wire, we get 4p horizontal PLA wires. The width of the

flip-flops is about 10 PLA wires. A cell’s width is then (2/3)pα+ 4pβ + 10β.

We establish the number of particles required, p, for a general PM. Consider a

single track of data. In general for a single track we need data bits that travel in either

direction or remain stationary. This requires six particles: 0 and 1 moving left, 0 and



CHAPTER 3. IMPLEMENTING PARTICLE MACHINES WITH VLSI 31

PLA PLA

state

PLA

state

state state

PLA

Figure 3.3: The general layout of cells in the CA for a PM. The bits in the state vector
are shown as shaded registers. Each such register supplies data to the update logic for
its own cell, and those of its nearest neighbor cells. Connections to right neighbors are
shown as dashed lines.

1 moving right, and stationary 0 and 1. Three data tracks suffice for all applications

we have tried. For each data track we assume about six operator particles are needed.

This gives us p = 36 total operator and data particles. Using the above area estimates

and given a chip one centimeter on a side, we find there is room for about 300 cells

on a single chip for a PM supporting 36 particles.

Now we estimate the potential parallel performance. Using the multiplication

scheme shown earlier in fig. 2.7 we need about 2n cells to hold a single n-bit operand

moving either left or right. The processor particles require 2n cells. This gives 6n

total cells between the beginning of one multiplication and the beginning of the next

multiplication. Supposing we have 32-bit operands, this means we can fit about 1.56

multiplications operating concurrently on a single chip. The cell logic is very simple,

so a conservative estimate of clock speed is 500 Mhz. A multiplication completes in

2n clock ticks. This gives us about 12 million 32-bit integer multiplies per second

per chip. Using logic optimization and other layout and performance refinements in

the chip design, we might expect to get a factor of 5 to 10 improvement over this

estimate.

3.2 Discussion

We conclude that a PM implemented in VLSI does not offer benefits in terms of speed

or circuit size, although such a machine’s performance can be competitive with that

of today’s processors in special applications. As an example, for 32-bit multiplications

the Intel Pentium Pro processor has a latency of 4 cycles and a throughput of one



CHAPTER 3. IMPLEMENTING PARTICLE MACHINES WITH VLSI 32

operation per cycle [1]. Running at 200 MHz, such a processor is capable of executing

200 million 32-bit multiplications per second, and we have verified that this is true

in practice if all operands are in registers; however, if operands are in cache, our

tests revealed that this number falls to about 80 million multiplications per second,

and to about 50 million if the operands are in memory but not in cache. Pentium

processors with the MMX extensions, as well as specialized digital signal processors

(DSPs), can achieve speeds several times these numbers [79]. This compares with

our estimated maximum of about 120 million multiplications per second on a single

PM chip; however, we consider such chips as bulk computing elements which, if we

ignore interconnection and scalability issues, can simply be concatenated to yield

more powerful PMs.

As we noted earlier, the PM was not originally intended for implementation with

traditional technology, but rather with particle-like physical phenomena. The rest

of this dissertation is devoted to a study of one such phenomenon — the soliton —

and to its use in realizing PMs. In the next chapter, we introduce solitons, describe

their characteristics and phenomenology, and explain methods we use later to study

solitons as means of implementing PMs.



Chapter 4

Solitons

Certain nonlinear partial differential equations (PDEs) give rise to solitons [55, 76, 20]

— particle-like solitary waves that propagate without decay in homogeneous mate-

rials and survive collisions with shape and velocity intact. Soliton-supporting media

include shallow water, electrical transmission lines, chains of masses connected by

nonlinear springs, optical fibers, and plasmas [76, 20]. In addition, discrete solitons

exist in certain CA [68, 93], and behave much like the continuous solitons described

by PDEs.1

This chapter provides an overview of solitons and their phenomenology. Most of

this material is well known, but serves as background for later chapters, in which

we will use solitons as particles in PMs. Our main platform for studying soliton

properties is the nonlinear Schrödinger (NLS) equation, a model for soliton behavior

in many physical systems. After a general introduction to soliton systems, we describe

specific NLS systems in some detail.

4.1 Soliton systems

Probably the earliest recorded observation of solitons was published by J. Scott-

Russell, a Scottish scientist, in 1844. Russell’s first encounter with the “great wave of

translation,” as he named the phenomenon he witnessed, is perhaps best recounted

1To our knowledge, the precise nature of this connection between CA and PDEs is unexplained.

33



CHAPTER 4. SOLITONS 34

carrier

envelope

Figure 4.1: An envelope soliton.

in his own words:

I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped — not so the mass of
water in the channel which it had put in motion; it accumulated round the prow
of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a rounded,
smooth and well-defined heap of water, which continued its course along the channel
apparently without change of form or diminution of speed. I followed it on horseback,
and overtook it still rolling at a rate of some eight or nine miles an hour, preserving
its original figure some thirty feet long and a foot to a foot and a half in height. Its
height gradually diminished, and after a chase of one or two miles I lost it in the
windings of the channel. Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon....[77]

Scott-Russell did extensive empirical studies of solitons, but the mathematics

describing these nonlinear waves was developed some decades later. In 1895, Korteweg

and de Vries proposed their famous equation for the propagation of long waves in

shallow water [49],

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0, (4.1)

where u is the amplitude of a wave, x is space, and t is time. This equation admits

single-soliton solutions, which Scott-Russell observed empirically, and which have the

form

u(x, t) = 3c sech2[
√
c(x− ct)/2], (4.2)

where c is the soliton’s velocity, a positive real number [55].

The KdV equation (eq. 4.1) states that the rate of change of a wave’s amplitude

is determined by two physical effects:



CHAPTER 4. SOLITONS 35

• Dispersion, modeled by the term ∂3u
∂x3 , causes separation of the wave into ele-

mentary components having velocities proportional to amplitudes.

• Nonlinearity, modeled by the term u ∂u
∂x

, slows down high-amplitude wave com-

ponents, which are dragged along the shallow bottom. This phenomenon is

commonly observed at an ocean beach when waves break as they approach

land.

When these two effects cancel out, as stated by eq. 4.1, the result is a soliton — a stable

wave packet whose components all travel at the same velocity. In general, solitons

described by any nonlinear PDE arise when a dispersive effect and a nonlinearity

balance each other.

The term “soliton” was coined in 1965 by Zabusky and Kruskal [110], who per-

formed numerical studies of the KdV equation, and found particle-like waves which

retained their shapes and velocities after collisions. This work also explained a re-

markable observation made in 1955 by Fermi, Pasta, and Ulam [21], who studied

the flow of energy in a chain of equal masses connected by nonlinear springs, and

discovered that energy injected into this system was not eventually shared equally

by all modes of the system. Instead, as Zabusky and Kruskal found, such energy

decomposes into a number of solitons which propagate and collide along the chain,

and this behavior is modeled by the KdV equation. The same equation also describes

other physical systems, including electrical transmission lines [40, 69] and mechanical

systems such as the Toda lattice [98], an infinite version of the Fermi-Pasta-Ulam

chain of masses.



CHAPTER 4. SOLITONS 36

4.1.1 Integrable soliton systems

Soliton equations can be integrable, meaning that the solution spaces of such equa-

tions contain an infinite number of conserved quantities, such as energy. The term

integrable, or completely integrable, has also been used in the literature to mean solv-

able by the inverse scattering transform (IST) [30, 4, 2, 80, 20], a remarkable method

which identifies soliton and dispersive components in the initial-value problem for

certain nonlinear PDEs. It is unclear whether or not these two meanings are equiva-

lent; we use integrable to refer to systems for which exact multisoliton solutions can

be obtained with the IST.

Solitons arising from real-valued integrable PDEs, such as the KdV and sine-

Gordon equations [76, 75], are uniquely identified by their constant velocities, which

are determined by their amplitudes. Complex-valued integrable PDEs, such as the

cubic nonlinear Schrödinger (cubic-NLS) equation [76, 33], support envelope solitons,

or wave packets consisting of sinusoidal carrier waves modulated by surrounding

envelopes (see fig. 4.1). In the cubic-NLS system, a carrier wave is characterized by

an amplitude, a frequency, and a phase (a periodic value that changes according to the

wave’s phase velocity, a function of the wave’s amplitude). An envelope soliton travels

at its group velocity, which is determined by its amplitude and by the frequency of

its carrier wave.

Solitons in integrable systems can be single wave packets, as with the KdV and

cubic-NLS equations; we refer to such solitons as single-mode. In addition, integrable

solitons can consist of coupled components in two or more modes of a system, as with

the coupled Manakov equations we study in chapter 7. Compared with single-mode

solitons, multi-mode (or vector) solitons can behave in more complex ways, and can

be more suitable for implementing computation, as we explain later in detail.



CHAPTER 4. SOLITONS 37

4.1.2 Nonintegrable soliton systems

Certain nonintegrable PDEs support soliton-like waves2 with behavior more complex

than that of integrable solitons. Examples include the Klein-Gordon [3], the loga-

rithmically nonlinear Schrödinger (log-NLS) [14, 15, 66], and the saturable nonlinear

Schrödinger (sat-NLS) [59] equations. Systems described by such equations exhibit

behavior more complex, and potentially better suited for implementing computation,

than the behavior of integrable systems; however, nonintegrable systems are less an-

alytically tractable, and require the usage of numerical methods to study even simple

collision properties. In addition, collisions can generate varying amounts of radiation,

or dissipation of energy from solitons.

4.1.3 Soliton behavior

Collisions

Multisoliton solutions of various integrable systems [34, 35, 36, 4] describe the be-

havior of two or more integrable solitons in collision. Such solutions imply many

interesting properties of solitons, such as their particle-like nature: Integrable soli-

tons do not decay with time, and collide elastically.3 Single-mode integrable solitons

retain their respective energies and identities after collisions, undergoing only a phase

shift and a displacement in space (see fig. 6.13). Both phase shift and spatial dis-

placement are simple functions of amplitudes and frequencies of soliton carrier waves.

Arbitrary numbers of single-mode solitons may collide simultaneously, but the cu-

mulative phase shift and displacement of each soliton are obtained by summing the

shifts and displacements that result from the soliton’s pairwise collisions with all

2We refer to such waves as solitons, as is often done in the literature.
3We use the term elastic to mean non-radiating, or conserving total energy.



CHAPTER 4. SOLITONS 38

others; that is, phase shifts and displacements are additive. These phase shifts and

displacements can be calculated easily from multisoliton solutions.

For nonintegrable systems, numerical results show that collisions can change any

soliton parameter, including amplitude, velocity, and phase (see figs. 6.14, 6.4, 6.5,

and 6.6). Such collisions may be inelastic or near-elastic; that is, colliding solitons

can dissipate their energy by producing varying amounts of radiation (see fig. 6.7),

which erodes other solitons and may eventually lead to complete decay of useful

information in the system. To our knowledge, it is an open question whether or not

there exists a nonintegrable system with perfectly elastic, or non-radiating, collisions.

The nonintegrable systems we consider later, described by the sat-NLS and log-NLS

equations, support near-elastic collisions with negligible radiation, and may support

perfectly elastic, non-radiating collisions as well.

In the integrable multi-mode Manakov system, which we study in chapter 7, two-

soliton collisions generate no radiation, and soliton velocities do not change, as exact

two-soliton solutions [71] imply. However, the amplitudes of soliton components in

each mode can change as a result of collisions, much like in nonintegrable systems.

This makes the Manakov system an especially promising candidate for implementing

PMs, a matter we consider fully in chapter 7.

Breathers

Integrable PDEs such as the cubic-NLS and sine-Gordon equations [9, 36, 75], as well

as nonintegrable PDEs, support bound-state solitons, or breathers, which often consist

of two or more equal-velocity solitons moving close together in perpetual collision.

In general, breathers are solitons with pulsating amplitudes (see the two solitons

at the bottom of fig 6.4). In the cubic-NLS equation, two equal-velocity solitons

attract each other with a force that weakens exponentially as the distance between the



CHAPTER 4. SOLITONS 39

solitons; these solitons form a breather by alternately colliding and separating, with

the time between successive collisions, or oscillation period of the breather, increasing

exponentially as the initial separation between the solitons. According to [96], “the

interaction [between equal-velocity solitons] can effectively be avoided if the solitons

are widely separated.”

Our models ignore attraction between equal-velocity solitons. We leave it for

future work to determine exactly what happens in collisions of breathers with solitons

and with other breathers. However, numerical experiments in the cubic-NLS system

suggest that such collisions result only in additive phase shifts and displacements of

all colliding solitons. If this is true in general, then all results in this thesis hold also

for soliton systems in which breathers are allowed.

Fusion

In some nonintegrable systems, such as the sat-NLS equation, two or more colliding

solitons sometimes “fuse” into a single particle (see fig. 6.16). Such solitons typically

begin with low relative speeds, and collide to generate a breather accompanied by

radiation. Our models ignore fusion, because our numerical experiments have shown

that fused breathers are not stable enough for computation. However, further work

is required to investigate potential computational applications of fusion.

Birth

The phenomenon of birth involves extra solitons that form as a result of some collisions

in nonintegrable systems. For example, in the log-NLS system, a collision of two

gaussons can result in three gaussons after impact (see fig. 6.8). We do not account for

birth in our models, because this phenomenon is not regular and predictable enough

to be modeled with PM collisions, as our numerical studies have revealed. Further



CHAPTER 4. SOLITONS 40

study is needed to determine how useful birth of new solitons is for implementing

computation.

4.2 The NLS equation and its solutions

The 1-d nonlinear Schrödinger (NLS) equation [76, 96, 65, 38] is a model for soliton

behavior in various media, such as optical fibers, waveguides, and crystals. Various

forms of the NLS equation, both integrable and nonintegrable, describe physical sys-

tems commonly built and studied in laboratories, and the NLS system offers promise

for realization of PM models. The NLS equation is our primary system for studying

soliton-based computation.

4.2.1 General form of NLS

The 1-d NLS equation can be written as [59, 78]

−i∂u
∂t

= D
∂2u

∂x2
+N(|u|)u. (4.3)

Here x is space, t is time, u is the complex amplitude of waves described by the

equation, D is a real constant, and N(|u|) is a nonlinear function of |u|. For example,

for cubic-NLS, N(|u|) = |u|2, and for sat-NLS, N(|u|) = m+ k|u|2/(1 + |u|2), where

k and m are real constants.

4.2.2 Single-soliton solutions of NLS

The nonlinearity N(|u|) determines the integrability of eq. 4.3, and the existence

of closed-form solitary-wave solutions. To find solitary waves, either analytically or

numerically, we assume that each such wave consists of an envelope modulating a



CHAPTER 4. SOLITONS 41

sinusoidal carrier wave. Following [76], we make the ansatz

u(x, t) = Φ(x− uet)e
iθ(x−uct), (4.4)

where Φ(x−uet) is the envelope, eiθ(x−uct) is the carrier, and ue and uc are the envelope

and carrier velocities, respectively. We separate the real and imaginary parts of the

result, obtaining

DΦxx −DΦθ2
x + ucΦθx +N(|Φ|)Φ = 0, (4.5)

DΦθxx + 2DΦxθx − ueΦx = 0. (4.6)

We solve eq. 4.6 for the carrier function θ, which is given by

θ(x− uct) =
ue
2D

(x− uct) + φ0, (4.7)

where φ0 is an arbitrary constant. Substituting this value of θ into eq. 4.5 allows to

express the envelope function Φ as

ξ =
∫ Φ(ξ)

Φ(0)

dΦ
√

αΦ2

D
− 2

D

∫

N(|Φ|)ΦdΦ
, (4.8)

where ξ = x− uet and α = (u2
e − 2ueuc)/(4D).

If the integral in eq. 4.8 can be evaluated analytically and used to solve eq. 4.8 for

the envelope function Φ(ξ), then eq. 4.4 gives an exact expression for a solitary wave,

as is the case with the cubic-NLS equation. Otherwise the integral and Φ(ξ) can be

computed numerically, using boundary conditions chosen to yield solitary waves, as

we will later show by example.



CHAPTER 4. SOLITONS 42

4.2.3 Multisoliton solutions of NLS

When eq. 4.3 is integrable, exact solutions describing the behavior of multiple soli-

tons can be found using the inverse scattering transform [30, 4, 2, 80, 20]. For both

integrable and nonintegrable variants of eq. 4.3, multisoliton solutions can be con-

structed numerically by plotting two or more single solitons, well separated in space,

in a discrete 1-d grid. The weak nonlinear superposition principle for the NLS equa-

tion [14] states that a superposition of solitons in continuous space is a solution of

the equation, provided that the solitons are sufficiently distant from one another. If

the solitons have different velocities, applying a numerical method to propagate the

system forward in time allows us to observe and study multisoliton collisions. We

study such numerical methods in detail in chapter 5.

4.2.4 Some NLS systems and solitons

In this section we present the mathematical forms of several NLS systems and show

how to obtain single-soliton solutions analytically (when possible) and numerically.

These equations have been proposed as models for the behavior of light and other

forms of energy in media such as waveguides, glasses, and crystals. In the next section

we describe some applications of these equations to simulation of physical systems.

k-NLS

The one-dimensional k-NLS equation has the following form [59]:

−i∂u
∂t

= D
∂2u

∂x2
+ b|u|nu. (4.9)



CHAPTER 4. SOLITONS 43

Here k = n+ 1, and b is real and positive. When k = 3, D = 1/2, and b = 1,

eq. 4.9 is a frequently used form of the well known integrable cubic-NLS equation [38].

To find single-soliton solutions of this equation, we use the procedure from sec-

tion 4.2.1. Soliton solutions have the form of eq. 4.4, where the carrier θ is immediately

given by eq. 4.7. The envelope Φ can be found from eq. 4.8, which in this case gives

ξ =
∫ Φ(ξ)

Φ(0)

dΦ
√

α
D

Φ2 − 2b
D

∫

Φn+1dΦ
. (4.10)

Simplifying, we get

iξ =
∫ Φ(ξ)

Φ(0)

dΦ

Φ
√

2b
D(n+2)

Φn − α
D

(4.11)

=
2

n
√

α/D
sec−1

√

2b

α(n+ 2)
Φn. (4.12)

We solve this for Φ to obtain

Φ =

(

α(n+ 2)

2b

)1/n

sech2/n





n
√

α/D

2
ξ



 . (4.13)

Multiplying the envelope by the carrier, we obtain an expression for the k-NLS soliton,

u(x, t) = ei(
ue
2D

(x−uct)+φ0)

(

α(n+ 2)

2b

)1/n

sech2/n





n
√

α/D

2
ξ



 . (4.14)

Note that each k-NLS soliton is specified by three parameters: envelope velocity (ue),

carrier velocity (uc), and initial phase (φ0).



CHAPTER 4. SOLITONS 44

Sat-NLS

We consider the following form of the sat-NLS equation [59]:

−i∂u
∂t

=
∂2u

∂x2
+ (m+

k|u|2
1 + |u|2 )u. (4.15)

Here m and k are real constants. Systems of two or more sat-NLS equations can be

coupled by their nonlinear terms, as in

−i∂u
∂t

=
∂2u

∂x2
+ (m+

k(|u|2 + |v|2)
1 + |u|2 + |v|2 )u, (4.16)

−i∂v
∂t

=
∂2v

∂x2
+ (m+

k(|u|2 + |v|2)
1 + |u|2 + |v|2 )v.

This example of coupling extends to any number of equations.

We explain how to use the procedure from section 4.2.1 to obtain sat-NLS soli-

tons, which can be used in numerical simulations of both single and coupled sat-NLS

equations. For sat-NLS, the integral given by eq. 4.17 does not seem to admit a

closed-form expression, and no exact expressions have been found for these solitons,

to our knowledge. Thus, we use numerical integration in the procedure described

below.

As before, a soliton solution consists of an envelope modulating a carrier, as given

by eq. 4.4. The envelope Φ can be found from eq. 4.8, which simplifies to

ξ =
∫ Φ(ξ)

Φ(0)

dΦ
√

cΦ2 + k log(1 + Φ2)
, (4.17)

where c = α−m−k. We evaluate the above integral numerically using the boundary

conditions Φ(0) = A and Φ(±∞) = 0, where A is the maximum amplitude of the

envelope and is determined by uc and ue; note that any soliton must satisfy these



CHAPTER 4. SOLITONS 45

0 10.80.60.40.20
0

30

20

10

0

-10

-20

-30

ξ

φ(ξ)
φ(0)

Figure 4.2: Integrand for computing a sat-NLS envelope with A = ue = 1.

conditions. The integration yields ξ as a function of the envelope Φ(ξ). We invert

the result of the integration to compute the envelope Φ(ξ) as a function of ξ.

As an example of this procedure, we show how to generate a sat-NLS soliton

with amplitude A = 1 and velocity ue = 1, assuming m = − 1 and k = 1

in eq. 4.15. We obtain the soliton’s carrier immediately from eq. 4.7. To find the

soliton’s envelope, we consider the integral given by eq. 4.17. We need to evaluate

this integral only in the first quadrant, since the integration limits, which correspond

to the envelope’s amplitude at various points, are always nonnegative. Observe that

if
√

cΦ2 + k log(1 + Φ2) = 0 (4.18)

for Φ = 0 and Φ = A, then in the first quadrant, the integral is defined only

for 0 < Φ < A, and this allows us to satisfy the boundary conditions necessary

for soliton formation, as we will see. Straightforward algebra shows that eq. 4.18 is



CHAPTER 4. SOLITONS 46

0 10.80.60.40.20
0

6

4

2

0

-2

-4

-6

φ(ξ) φ(0)
ξ

Figure 4.3: The graph of fig. 4.2 after numerical integration: a sat-NLS soliton rotated
by 90 degrees.

0 6420-2-4-6

1

0.8

0.6

0.4

0.2

ξ

φ(ξ)

φ(0)

Figure 4.4: The graph of fig. 4.3 after inversion (rotation by 90 degrees): a sat-NLS
soliton.



CHAPTER 4. SOLITONS 47

t

x

t

x

Figure 4.5: Highly magnified left edges of propagating sat-NLS solitons. The left graph
shows a soliton obtained by numerical integration, as described in the text, without inter-
polation of the soliton’s tails. Note the amplitude discontinuity in the initial conditions
at the top of the graph. The right graph shows the same soliton, but with its tails inter-
polated using an exponentially decaying function. Note the lesser amount of radiation as
compared with the left graph.

always true for Φ = 0, and is true for Φ = A when

uc = 2
k
A2 log(1 +A2) − k(m+ 1) + u2

e

4

ue
. (4.19)

When A = 1 and ue = 1, this gives uc = 2 log(2) + 1/2, and fig. 4.2 shows a first-

quadrant graph of the integrand from eq. 4.17. We now integrate this numerically

from Φ(0) to Φ(ξ), where Φ(ξ) ranges from A to 0 in small samples along the Φ

axis. This integration computes the proper ξ coordinate for each amplitude sample

Φ(ξ); fig. 4.3 shows the result. Note that the integrand contains a square root; the

positive and negative values of this root produce the respective symmetric “halves”

of the soliton below and above the Φ axis. Finally, we numerically invert, or rotate

by 90 degrees, the soliton in fig. 4.3 to obtain the properly oriented soliton depicted

in fig. 4.4.



CHAPTER 4. SOLITONS 48

As Φ(ξ) approaches 0, ξ grows very quickly; that is, a soliton’s amplitude decays

slowly as the distance from the soliton’s peak increases. This is because the integrand

given by eq. 4.17 has a singularity at Φ(ξ) = 0, as fig. 4.2 shows. This singularity

introduces a numerical-accuracy issue when the integral is computed with Φ(ξ) close

to zero; if we subdivide the interval 0..A on the Φ axis into N intervals for numerical

integration, then for

Φ(ξ) = A/N, 2A/N, ..., kA/N, (4.20)

the integrals from Φ(0) to Φ(ξ) will be large and widely separated values, which are

the ξ coordinates of the envelope locations where the amplitude is A/N, 2A/N, ....

This means that while the amplitude decreases very slowly from 2A/N to A/N , the

amplitude drops instantly from A/N to 0, since A/N is the minimum interval for

numerical integration; the left half of fig 4.5 shows an example of this. Note the

discontinuity in amplitude at the top of the figure, and the radiation generated as a

result of this problem, which occurs even when N is large (A = 1 and N = 65536 in

this example). One solution is to interpolate the amplitude from N/A to 0 using an

exponential function; the right half of fig. 4.5 shows the effect when the amplitude is

interpolated with the function Φ = a(1.7ξ −1), where a is computed so that Φ = 0

at the left edge of the grid, and Φ = A/N at the grid location corresponding to

the amplitude A/N . Note that the interpolation results in less radiation generated

as a result of numerical simulation, and subsequently leads to greater accuracy of

numerical results.

We remark that sat-NLS solitary waves are characterized by four parameters:

amplitude (A), envelope velocity (ue), carrier velocity (uc), and phase (φ0). Using

eq. 4.17, it can be shown that any two of A, ue, and uc determine the third, which can

be computed with eq. 4.19. We may choose φ0 freely, so that there are three degrees



CHAPTER 4. SOLITONS 49

of freedom in choosing the initial state of a sat-NLS solitary wave.

Log-NLS

We consider the following form of the log-NLS equation [14, 15, 66]:

−i∂u
∂t

=
h

2m

∂2u

∂x2
+
b

h
ln (a|u|2)u. (4.21)

Here a and b are constants computed from two real parameters called gausson width

(l) and gausson rest energy (E0), according to

b =
h2

2ml2
, (4.22)

a = e1−E0/b. (4.23)

Soliton solutions of this equation have been called gaussons, and are given by

u(x, t) =
(

h

√

π

2mb

)− 1

2

e−
iu2

e
2mh

t+ iue
h
x− mb

h2 (x−uet/m)2+iφ0+
E0
2b . (4.24)

This single-soliton expression, which has been verified by direct substitution into

eq. 4.21, appears to correct several typos in the solution from [66].

4.3 Applications of the NLS equation

The standard model for solitons in optical fibers is the integrable cubic-NLS equation,

which describes the dispersion and nonlinearity effects whose balance leads to solitons.

In this case, the dispersion effect is the tendency for high frequencies of light to travel

faster than low frequencies, a phenomenon referred to as negative, or anomalous, group

velocity dispersion (GVD). The nonlinearity is the Kerr effect, a change in refractive



CHAPTER 4. SOLITONS 50

index related to the intensity of the optical field. When negative GVD and the Kerr

effect counteract each other so that all frequencies travel at the same velocity, the

result is an optical soliton [96, 33].

In general, the cubic-NLS equation describes soliton propagation in so-called Kerr

materials — materials in which the operative nonlinearity is due to the Kerr ef-

fect. This is the case for centrosymmetric and isotropic materials [65], and includes

optical fibers, in which soliton transmission has been demonstrated over long dis-

tances [63, 64]. In such media, the most important physical effects are dispersion

and nonlinearity, but propagation is also influenced by other effects, including fiber

loss, higher-order dispersion and nonlinearity, and the Raman effect, which leads to

a self-frequency shift [96]. To account for these effects, the cubic-NLS equation can

be extended into the nonintegrable version

−i∂u
∂t

=
1

2

∂2u

∂x2
+ |u|2u+ iΓu− iβ

∂3u

∂x3
+ α1

∂

∂x
(|u|2u) − α2u

∂|u|2
∂x

, (4.25)

where Γ, β, α1, and α2 represent the fiber loss, higher-order dispersion, higher-order

nonlinearity, and the Raman effect, respectively [96].

The nonintegrable sat-NLS and k-NLS equations are applicable to simulating var-

ious physical phenomena, including the nonlinear effects of laser beam propagation

in various media [59]. Sat-NLS also describes the recently discovered 1 + 1-dimension

(one space and one time dimension) photorefractive optical spatial solitons in steady

state [78, 83, 81], and the optical spatial solitons in atomic media in the proximity

of an electronic resonance [97]. Coupled systems of two or more sat-NLS equations

describe the interaction of incoherent light pulses, with one such pulse modeled by

each equation [78, 83, 81].

Both cubic-NLS and sat-NLS describe temporal solitons; with the transformation



CHAPTER 4. SOLITONS 51

t → z, both equations also describe spatial solitons, with x and z being the transverse

and longitudinal directions [16, 8]. In practice, spatial solitons appear better suited

for computation, because temporal solitons require long distances to propagate. In

addition, spatial solitons also exist in dimension 2+1 (two space and one time dimen-

sions) [83, 97], offering an additional degree of freedom and suggesting the possibility

of implementing two-dimensional universal systems such as the billiard-ball model of

computation [38, 61].

The log-NLS equation, which supports solitons called gaussons, was proposed as

a nonlinear model of wave mechanics [14, 15, 66], but was later found unlikely to

describe any physical system [29]. Gaussons are wave packets with gaussian-shaped

envelopes and sinusoidal carrier waves. They are analogous to the wavefunctions of

linear wave (quantum) mechanics; that is, the square of the amplitude of a gausson

at a given point x can be interpreted as the probability that the particle described

by the gausson is at x.

4.4 Discussion

In this chapter we introduced physical solitons and described a handful of 1-d soliton

systems. Myriads of such systems exist, both classical and quantum mechanical; here

we have not addressed quantum mechanical [105] or higher-dimensional solitons, be-

cause those are separate topics worthy of independent research. We have concentrated

on using 1-d classical solitons, particularly the electromagnetic solitons described by

NLS equations. In the next chapter we explain how we simulate and study such

solitons.



Chapter 5

Numerical Methods

To study the behavior of solitons in various NLS systems, we often make use of

numerical methods. Although exact multisoliton solutions of some integrable NLS

systems are known, such solutions are quite complicated for more than two or three

solitons, and numerical solution can be faster and easier to implement. The integrable

Manakov system, for example, admits a complex two-soliton solution found only

recently [71], and exact expressions for three or more colliding solitons appear as

yet undiscovered. In addition, for arbitrary initial conditions, even integrable NLS

systems must be solved numerically. To our knowledge, no multisoliton solutions have

been found for any nonintegrable NLS system, and the existence of such solutions is an

open problem. However, numerical methods can be used to study the propagation and

collision of multiple solitons efficiently in both integrable and nonintegrable systems.

In this chapter we present two types of numerical methods: an implicit finite-

difference scheme, originally devised for the linear Schrödinger equation [31], which

we adapted to solve the NLS; and several variants of the split-step Fourier method [22,

94, 6]. These methods solve the general single-mode NLS equation, as well as systems

of coupled NLS equations. In addition, we describe the implementation of these

52



CHAPTER 5. NUMERICAL METHODS 53

methods in the computer program nls — an interactive graphical tool for simulation

and analysis of NLS systems.

5.1 Background and notation

In a numerical simulation of an NLS system, we first plot two or more well separated

single-soliton solutions, obtained by the methods in chapter 4, on a discrete spatial

grid at time 0. As we explained earlier, such a superposition of solitons is a solution

of the NLS equation, provided the solitons are sufficiently separated in space [14].

We then apply a numerical method to compute the state of the system at successive

time steps, plotting the results in a space-time graph, as in figs. 6.4 through 6.12.

In this chapter we use the following notation. Let u[j, n] denote a discrete grid of

complex numbers, mapped from the continuous space u(x, t) by discretizing space and

time in small intervals of ∆x and ∆t, respectively, so that x = j∆x and t = n∆t

for j = 0, 1, 2, ..., J and n = 0, 1, 2, .... We rewrite eq. 4.3 as

∂u

∂t
= D

∂2u

∂x2
+N(|u|)u, (5.1)

where D is a complex number, and N an arbitrary operator on |u|.

5.2 Finite-difference method

The implicit finite-difference method in [31] solves the linear Schrödinger equation,

which can be written as eq. 5.1 with D = 1 and with the time-dependent nonlinearity

N(|u|) replaced by a time-independent potential. In adapting the method to solve

eq. 5.1, we ignore the time dependence of N(|u|) for small time steps ∆t. This



CHAPTER 5. NUMERICAL METHODS 54

allows us to follow the derivation in [31] with only one change — in the Schrödinger

equation, we replace the ∂2/∂x2 operator with D∂2/∂x2, where D is an arbitrary

complex number. We present the resulting finite-difference algorithm, and we refer

the reader to [31] for details of the derivation.

The algorithm begins with the initial conditions u[j, 0] for j = 0, 1, 2, ..., J , and

requires the boundary conditions u[0, n] = u[J, n] = 0 for all n. To propagate the

solution from time step t to t+ ∆t (i.e., from grid time n to n+ 1), let e[1..J −1] and

f [1..J − 1] denote two arrays of complex numbers, and compute

e[1] = 2 + (∆x)2N(|u[1, n]|)/D − iλ, (5.2)

e[j] = 2 + (∆x)2N(|u[j, n]|)/D − iλ− 1/e[j − 1], (5.3)

for 1 < j < J , where λ = 2(∆x)2/(D∆t). Next, compute

f [1] = Ωn
1 , (5.4)

f [j] = Ωn
j + f [j − 1]/e[j − 1], (5.5)

for 1 < j < J , where

Ωn
j = −u[j + 1, n] + (iλ+ (∆x)2N(|u[j, n]|)/D + 2)u[j, n] − u[j − 1, n]. (5.6)

Finally, compute

u[j, n+ 1] = (u[j + 1, n+ 1] − f [j])/e[j], (5.7)

for 1 < j < J . Recall that the boundary conditions specify u[J, n + 1] =

u[0, n + 1] = 0. This completes the prescription for propagating the solution

from one time step to the next.



CHAPTER 5. NUMERICAL METHODS 55

The boundary conditions for the finite-difference method have meanings that de-

pend on the interpretation of the Schrödinger equation. In the quantum-mechanical

interpretation, the equation describes a physical system enclosed in a 1-d “box” such

that the wavefunction vanishes at the “walls” of the box. In the classical interpreta-

tion, waves such as solitons “bounce” off these endpoints in the same way as waves

on a vibrating string tied down at both ends.

5.3 Split-step Fourier method

The split-step Fourier method [94, 6] decomposes eq. 5.1 into two equations that

describe the dispersive and nonlinear effects in a soliton-supporting medium:

∂u

∂t
= D

∂2u

∂x2
, (5.8)

∂u

∂t
= N(|u|)u. (5.9)

Dispersion (eq. 5.8) and nonlinearity (eq. 5.9) normally act simultaneously on the

optical field u. The split-step method approximates a solution of eq. 5.1 by assuming

that for small time steps ∆t, the two effects can be considered independent. Thus,

to propagate the optical field from time t to t + ∆t, eqs. 5.8 and 5.9 are solved

separately as described below. It can be shown that this procedure gives results

accurate to second order in ∆t [6].

5.3.1 Derivation of the basic scheme

To derive a method for solving eq. 5.8, fix t and let U [f, t] represent the discrete

Fourier transform (DFT) of u[j, t], where j = f = 0, 1, 2, ..., J − 1, and x = j∆x.



CHAPTER 5. NUMERICAL METHODS 56

That is, by definition of the inverse DFT,

u[j, t] =
1

J

J−1
∑

f=0

U [f, t]e2πifj/J . (5.10)

Substituting eq. 5.10 in eq. 5.8, we obtain

1

J

J−1
∑

f=0

U ′[f, t]e2πifj/J =
D

J

J−1
∑

f=0

(

2πif

J∆x

)2

U [f, t]e2πifj/J , (5.11)

where the prime (′) denotes partial differentiation with respect to t. Matching terms

on both sides of this equation, we obtain the linear differential equation

U ′[f, t] = D

(

2πif

J∆x

)2

U [f, t], (5.12)

which yields

U [f, t] = e−D( 2πf

J∆x)
2
tU [f, 0]. (5.13)

To compute the solution at time t+∆t from the solution at time t in frequency space,

the above equation gives

U [f, t + ∆t] = e−D( 2πf

J∆x)
2
∆tU [f, t]. (5.14)

To approximate the solution of eq. 5.9, we treat N(|u[k, t]|) as a constant, disre-

garding its time dependence for small steps ∆t. Thus, eq. 5.9 yields

u[j, t] = eN(|u[j,t]|)tu[j, 0], (5.15)

which gives

u[j, t+ ∆t] = eN(|u[j,t]|)∆tu[j, t]. (5.16)



CHAPTER 5. NUMERICAL METHODS 57

Combining the above steps, we obtain the basic split-step Fourier scheme for

solving eq. 5.1:

• Linear step:

– Let U = FFT(u).

– Perform the computation specified by eq. 5.14.

– Let u = inverse FFT(U).

• Nonlinear step:

– Perform the computation specified by eq. 5.16.

To compute DFT and inverse DFT, we use the fast Fourier transform (FFT) algorithm

for speed. The DFT operates on a circular domain, which implies that the boundary

conditions for the split-step Fourier method are cylindrical; waves in the numerical

grid “wrap around” from one grid edge to the other, rather than bouncing off edges,

as with the finite-difference method described earlier.

5.3.2 Improving accuracy of the basic scheme

The basic split-step scheme propagates the optical field twice over the time interval

∆t — first with dispersion only, and then with nonlinearity only. A more accurate

variant of the scheme, called the symmetrized split-step Fourier method [94, 6], first

propagates the field with dispersion over the interval ∆t/2, then applies the effect of

nonlinearity, and finally propagates the field over the remaining interval ∆t/2. That

is, the method computes half of the linear step, the full nonlinear step, and finally

another half of the linear step.

The symmetrized split-step method is simple to implement. For the scheme which

includes the full nonlinear step between two linear half-steps, we perform the com-

putation specified by eq. 5.14 over the interval ∆t/2 instead of ∆t; to effect this, we



CHAPTER 5. NUMERICAL METHODS 58

take the square root of the right side of eq. 5.14. Then we compute the nonlinear step

as specified by eq. 5.16, followed by another calculation of the initial linear half-step.

This scheme is accurate to third order in ∆t [6], but is slower because of the additional

linear step.

For faster computation, we can compute the linear step between two halves of the

nonlinear step, but this variant gives somewhat less accurate results. To gain accuracy

at the expense of computation speed, we can split up both the linear and nonlinear

steps in more complicated ways than above. In addition, we can solve eq. 5.9 more

accurately. Note that a formal solution of this equation is

u(x, t+ ∆t) = e
∫ t+∆t

t
N(x,t)dtu(x, t), (5.17)

and we can approximate the above integral using the trapezoidal rule or other tech-

niques [6]. Later in this chapter we present results on the speed and accuracy of the

various numerical schemes we implemented.

5.3.3 Application of the method to systems of NLS equations

For solving coupled NLS equations, such as the coupled sat-NLS system (eq. 4.16)

and the Manakov system (eq. 7.1), we can extend the split-step Fourier method in a

straightforward fashion. For each equation in the system, we use a separate numerical

grid. We then split up each equation into its linear and nonlinear steps, as with a

single NLS equation, and perform the computations specified by eqs. 5.14 and 5.16

on each grid. To achieve higher accuracy of solutions, for each equation we can apply

the same symmetrization technique as explained above.



CHAPTER 5. NUMERICAL METHODS 59

5.4 Software for solution of NLS equations

We implemented the finite-difference and several split-step Fourier methods in the

computer program nls, a package for studying soliton behavior in NLS systems. In

this program we also include functionality for presenting and analyzing numerical

solutions; all soliton figures and numerical results in this dissertation were generated

with nls. The software, written in C and C++, runs on several platforms, including

Unix and Windows. In this section we briefly describe the program’s functionality

and features, and we refer the reader to the WWW site

http://www.cs.princeton.edu/~mj/nls

for more detailed documentation.

5.4.1 Overview

Nls reads text input files specifying parameters for numerical simulation of a 1-d

NLS soliton system; generates initial conditions by plotting solitons on a 1-d numer-

ical grid; and applies a numerical method to propagate the initial conditions over

time. The input files give all necessary simulation parameters, such as the numerical-

solution method, type of NLS equation, grid size, ∆x, and ∆t. Nls generates both

2-d and 3-d PostScript output that shows space-time graphs of the NLS system’s

evolution, displaying variables such as magnitude, carrier, and phase. The program

also supports direct numerical output that can be easily processed by graphing and

visualization software. In addition, nls can show the output in a graphical window

that allows the user to study the simulation interactively.

The input files for nls contain lines of the form param-name = param-value, each

of which indicates that the parameter called param-name is to be set to the value

param-value. In addition, the files include lines indicating solitons to be plotted in



CHAPTER 5. NUMERICAL METHODS 60

the initial conditions for the simulation. Each such line specifies soliton parameters

such as amplitude, velocity, and initial position in the numerical grid.

As an example, fig. 5.1 shows a sample nls input file for a two-soliton collision

in the cubic-NLS system. The file specifies that the split-step Fourier method be

used for numerical solution using a grid of size 1024 points, with ∆x = 0.025, and

∆t = 0.004. The file also states that the simulation is to be run for 9000 time steps,

and that 3000 time steps are to be displayed per page of PostScript output, resulting

in 3 total pages of output. Each page displays 100 lines of output, and each line

displays the magnitude squared of every second of the 1024 grid points, as specified

by the display and space-skip parameters; in addition, three angle parameters

specify the 3-d rotation of the display plane, which is fit into a PostScript bounding

box of size 600 by 500. The last two lines of the input file specify the solitons to

be plotted, which have amplitudes 1, velocities 1 and −1, initial phases 0 and 0.5π,

and initial grid positions 256 and 768. Fig. 5.2 shows the first page of the PostScript

output generated by running nls with the sample input file. Fig. 5.3 shows the nls

PostScript output from the same file, but with the parameters display = phase,

space-skip = 8, axes = 0, and shaded-plot = 1. This figure is a visualization of

the phase shift due to a cubic-NLS soliton collision.

5.4.2 NLS systems and solution methods

Nls currently supports solution of several NLS equations, which are specified by the

input parameter equation, as in fig. 5.1. Table 5.1 gives a list of these equations as

values that can be used in nls input files for the equation parameter. The table

also lists the nls names of parameters that can be set for each equation. These

parameters correspond directly to the variable names used in the NLS equations



CHAPTER 5. NUMERICAL METHODS 61

#-------------------------------------------------------

# a sample input file for nls

# parameter values

equation = cubic-nls

solver = split-fourier

gridsize = 1024

deltaX = .025

deltaT = .004

timesteps = 9000

steps-per-page = 3000

lines-per-page = 100

PS-height = 600

PS-width = 500

display = magsqr

space-skip = 2

XYangle = 190

XZangle = 185

YZangle = 315

axes = 1

# solitons to be plotted in initial conditions

soliton: v = 1, A = 1, phi0 = 0.5, x0 = 256

soliton: v = -1, A = 1, phi0 = 0, x0 = 768

#-------------------------------------------------------

Figure 5.1: Sample nls input file for a two-soliton collision in the cubic-NLS system.



CHAPTER 5. NUMERICAL METHODS 62

Figure 5.2: First page of the graph generated by nls with the sample input file from
fig. 5.1. The graph shows a two-soliton collision in the cubic-NLS system.



CHAPTER 5. NUMERICAL METHODS 63

Figure 5.3: First page of the graph generated by nls with the sample input file from
fig. 5.1, modified as described in the text. The graph shows a two-soliton collision in the
cubic-NLS system by plotting shades of gray for the phase values of grid points. The
phase shift due to the collision is apparent as a sudden change in the orientation of the
phase contours approximately halfway down from the top of the graph.

in this dissertation; see the corresponding descriptions of the equations in chapters 4

and 7. Additionally, the parameter numgrids for the coupled sat-NLS system specifies

the number of coupled equations, and thus the number of numerical grids used in

solution.

The solution methods implemented in nls include the finite-difference method

from section 5.2 and several variants of the split-step Fourier method described in

section 5.3. The split-step methods are specified in nls input files by the solver

parameter, which can have the following values:

• finite-diff — finite-difference method;

• split-fourier — basic split-step Fourier method;

• split-fourier-NLN — symmetrized split-step method which includes the lin-



CHAPTER 5. NUMERICAL METHODS 64

Nls equation name Equation in text Nls parameter names
log-nls eq. 4.21 h, m, l, E0

cubic-nls eq. 4.9 (D = 0.5, b = 1, n = 2)
ext-cubic-NLS eq. 4.25 alpha1, alpha2, beta,

gamma

k-nls eq. 4.9 D, b, n

sat-nls eq. 4.15 D, m, k

coupled-sat-nls eq. 4.16 D, m, k, numgrids

Manakov eq. 7.1 mu

k-Manakov eq. 7.1 mu, numgrids

Table 5.1: Equations and systems solved by nls. The numgrids parameter specifies the
number of simultaneous equations in coupled systems.

ear steps between two nonlinear half-steps;

• split-fourier-LNL — symmetrized split-step method which includes the non-

linear step between two linear half-steps;

• split-fourier-LNLtrap — symmetrized split-step method with trapezoidal-

rule approximation of the nonlinear integral [6].

5.4.3 Specifying initial conditions

Analytical single-soliton solutions of NLS equations have the general form

f(x) = AΦ(x− uet)θ(x− uct), (5.18)

where A, ue (also called v) and uc denote a soliton’s amplitude, envelope velocity,

and carrier velocity, respectively. Nls allows specification of A and ue, which together

determine uc. Furthermore, each soliton has an initial phase φ0 and location x0. The

nls soliton parameters that represent these variables are the following:

• A — amplitude;



CHAPTER 5. NUMERICAL METHODS 65

• v — envelope velocity;

• phi0 — initial phase (in multiples of π radians);

• x0 — initial grid position (a number from 0 to gridsize).

In nls input files, each single soliton is specified with a line such as

soliton: A = 1, v = -1, phi0 = 0.5, x0 = 512

placed immediately after the list of equation and display parameters.

For coupled systems, single-component solitons are specified similarly, with the

additional parameter grid to indicate the grid in which the soliton component is to

be plotted; for example,

soliton: grid = 0, A = 1, v = -1, phi0 = 0.5, x0 = 512.

Two-component solitons for the Manakov system are specified with lines of the form

soliton: k = 1|1, alpha = 2|0.5, beta = 1, x0 = 512,

where the parameters k, alpha and beta are complex numbers described above. The

vertical bar (|), with no spaces, is used to separate real and imaginary parts of

numbers.

Multi-component solitons for the k-Manakov and coupled-sat-nls systems are

specified with lines such as

soliton: v = 2, A = 1, kappa = 0:0:.5, w = .5:1.2:2, x0 = 512,

where v is the velocity of all components, and A an amplitude. The real vectors kappa

= κ0, κ1, ..., κn and w = w0, w1, ..., wn, where n = numgrids - 1, specify phases and

amplitudes of individual components, with the colon (:) used to separate scalars in

the vectors (no spaces).



CHAPTER 5. NUMERICAL METHODS 66

Such multi-component solitons for coupled systems are plotted as follows. For

k-Manakov, the soliton component in grid i is generated by plotting a k-NLS soliton

with amplitude A, velocity v, and phase κi.
1 The component is then multiplied

by wi/W , where W =
√

∑

iw
2
i . For coupled-sat-nls, components are generated

similarly, except each component is initially plotted as a single, numerically computed

sat-nls soliton. It can be verified that this produces exact multi-component solitons

for these systems.

5.4.4 Parameter reference

This section gives a complete list of nls parameter names followed by brief descrip-

tions. In each description, values in parentheses indicate defaults.

General parameters

• gridsize — number of grid points in each numerical grid (1024)

• timesteps — number of propagations to compute (10000)

• deltax — ∆x (0.03)

• deltat — ∆t (0.01)

• startpt — grid index at which to begin output (0)

• endpt — grid index at which to end output (1023)

• space-skip — grid-point subsampling amount for output (1)

• equation — NLS system to solve (see table 5.1)

1Note that the k in k-Manakov refers to the number of coupled equations, whereas the k in k-NLS

refers to the exponent in the NLS equation’s nonlinear term, and is equal to 2 in this case.



CHAPTER 5. NUMERICAL METHODS 67

• solver — solution method (see section 5.4.2)

• numgrids — number of equations for coupled systems (1)

• dispgrid — number of grid to output (0), between 0 and numgrids (When

dispgrid = numgrids, the value output is the sum of corresponding values in

all grids.)

PostScript 3-d output parameters

Values indicated below as boolean can be set to 1 for true and 0 for false.

• XYangle, XZangle, YZangle — orientation of coordinate planes with respect

to viewer (180.0, 180.0, 315.0)

• viewx, viewy, viewz — absolute position of viewer (0, 0, 900)

• foreshortening-x, foreshortening-y — perspective- foreshortening amounts

(5000, 5000)

• ps-width, ps-height — PostScript width and height (611, 791) 2

• ps-origin-x, ps-origin-y — PostScript coordinates of corner of output box

(20, 20)

• x-scale, y-scale, z-scale — coordinate scaling (1.0, 3.0, 6.0)

• hidden-lines — boolean: remove hidden lines (1)

• scale-to-box — boolean: make graph fit within output box (1)

• center — boolean: center graph within output box (1)

2Standard PostScript 8.5”x11” page dimensions are 612x792.



CHAPTER 5. NUMERICAL METHODS 68

• axes — boolean: draw coordinate axes (0)

• box — boolean: draw PostScript box around graph (0)

• ps-line-width — PostScript line width (0.1)

• lines-per-page — number of contour lines per page of output (140)

Parameters for 3-d PostScript and 2-d window output

• steps-per-page — number of propagation steps to summarize in each page of

output (5000)

• display — display variable, which can be one of the following functions of grid

values (default magsqr):

– real — real part

– imag — imaginary part

– mag — magnitude

– magsqr — magnitude squared

– phase — phase angle

– color-phase — color representation of phase angle

• displaysrc — source of variables to display, which can be one of the following

(default single-grid):

– single-grid — a single grid

– coupled-grids — sum of values in all coupled grids

– manakov — quotient of corresponding complex numbers in two grids (i.e.,

the Manakov state ρ for two grids, as described in chapter 7)



CHAPTER 5. NUMERICAL METHODS 69

• shaded-plot — boolean: display gray shades instead of contours (0)

• color-shaded-plot — boolean: display color shades instead of contours (0)

Equation-specific parameters

See table 5.1 and the equation descriptions referenced therein.

5.4.5 Performance

In our implementation, the finite-diff method is generally the fastest and the least

accurate, whereas the split-fourier-LNL method is the slowest and most accurate.

Our tests revealed that the split-fourier-LNLtrap method, described in in [6] and

potentially very accurate, was by far the slowest, but had accuracy little better than

the finite-difference method. This leaves some doubts about our implementation.

Tables 5.2 and 5.3 list some speed and accuracy results for numerical methods

implemented in nls. Our tests are based on solving the cubic-NLS equation by

running nls on a Sun UltraSPARC machine. We measure speed in propagations

(time steps) per second. To estimate accuracy, we plot an exact two-soliton cubic-

NLS solution [38] at time 0, and use numerical methods to propagate the system

forward in time. After a given number n of time steps, we compare the numerical

solution with the exact solution by computing the root-mean-squared (RMS) error.

5.4.6 The nls interactive interface

The window-based graphical interface of nls offers the user a number of functions

for visualizing and analyzing soliton behavior in NLS systems. For example, one can

use an input device such as a mouse to select 1-d regions of the space-time solution

graph, “copy” such regions into a file, “paste” them anywhere in the graph, and let the



CHAPTER 5. NUMERICAL METHODS 70

Method Speed Error at n = 3000 Error at n = 6000
finite-diff 256 1.212958 × 10−2 4.066236 × 10−2

split-fourier 113 1.337030 × 10−3 1.354952 × 10−3

split-fourier-NLN 83 3.860094 × 10−5 7.965682 × 10−5

split-fourier-LNL 70 2.730716 × 10−5 5.536547 × 10−5

Table 5.2: Speed and accuracy measurements for numerical methods solving cubic-NLS
on a grid of size 2048, with ∆x = 0.03 and ∆t = 0.003. Speed is in propagations per
second, and error is the RMS error between exact and numerical solutions, as described
in the text.

Method Speed Error at n = 1500 Error at n = 3000
finite-diff 514 2.665434 × 10−2 8.344766 × 10−2

split-fourier 272 2.734989 × 10−3 2.863168 × 10−3

split-fourier-NLN 192 1.543877 × 10−4 3.185947 × 10−4

split-fourier-LNL 182 1.092079 × 10−4 2.214205 × 10−4

Table 5.3: Speed and accuracy measurements for numerical methods solving cubic-NLS
on a grid of size 1024, with ∆x = 0.06 and ∆t = 0.006. Speed is in propagations per
second, and error is the RMS error between exact and numerical solutions, as described
in the text.

numerical solution proceed from that point in time. The user can also plot additional

solitons anywhere in the graph, measure soliton parameters, such as amplitude and

velocity, and change solution parameters. Additionally, one can select regions of the

graph, and zoom in on them or magnify them; this can be useful for close examination

of radiation and artifacts of numerical solution. Nls can generate PostScript output

of any graph displayed in the window. Figs. 5.4 and 5.5 show window shots of nls

running in interactive mode.

5.5 Discussion

We now have a set of theoretical and practical tools with which we can study soliton

behavior. In the next chapter we present results on the types of PMs that arise from

various soliton systems. We examine some general issues about mapping soliton sys-



CHAPTER 5. NUMERICAL METHODS 71

Figure 5.4: Window shot of nls running under the X Windows system. The graph was
produced by running nls with the input file from fig. 5.1 and changing a scaling parameter
from an nls menu.



CHAPTER 5. NUMERICAL METHODS 72

Figure 5.5: Window shot of nls running under the X Windows system. The graph was
produced by running nls with the input file from fig. 5.1 and changing a display parameter
from an nls menu. For each grid-point value, this graph uses a shade of gray to show
phase weighted by magnitude.



CHAPTER 5. NUMERICAL METHODS 73

tems onto PMs, including information-bearing and information-transfer capabilities

of solitons. In a later chapter we demonstrate examples of PM computation in a

specific physical system, namely the Manakov system of optical solitons.



Chapter 6

Implementing Particle Machines

with Solitons

The PM is a natural computational model for soliton systems. By discretizing time

and space in physical soliton-supporting media, we model solitons as particles in PMs,

which we can try using for practical computation. However, different physical systems

give rise to PMs of varying computational capabilities. In this chapter we take steps

to characterize the power of PMs arising from various soliton systems.

The idea of using abstract solitons in a homogeneous medium for “gateless” com-

putation goes back at least to [93], where solitons in a CA1 are used to build a

carry-ripple adder. This chapter moves from the abstraction of CA and PMs to

the physical realm represented by PDEs such as the nonlinear Schrödinger (NLS),

Korteweg-de Vries (KdV), and sine-Gordon equations [76]. Our goal is to study the

general issue of information storage and transfer among solitons in various physical

1These solitons arise in the mathematical framework of a CA [23, 24, 32, 68], and have an entirely
different origin than the physically based solitons we consider here. However, CA-based and PDE-
based solitons display remarkably similar behavior. As far as we know, the connection between CA
solitons and PDE solitons is unexplained, though some authors [4, 67] have juxtaposed discussions
of both systems.

74



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 75

systems, and to determine how this could — and could not — be used for general

computation.

6.1 Solitons and computation

In recent years much effort has been expended on analyzing the properties of solitons

for purposes such as high-speed communications and optical computing gates [39,

38, 96]. To our knowledge, however, our work is the first attempt to do practical

computation via collisions of physical solitons in a bulk medium. The resulting com-

putational system would fulfill the promise of Toffoli’s “programmable matter” [100]

— offering computation that is very close to the underlying physics, and therefore

potentially providing ultra-scale parallel processing.

The most immediate physical realization of PM computation may be provided by

solitons in an optical fiber [33, 38, 96], described by the cubic nonlinear Schrödinger

equation. Other media are also possible, including Josephson junctions [80] and

electrical transmission lines [40, 69], which support solitons governed by the sine-

Gordon and Korteweg-de Vries equations, respectively.

We should emphasize that using optical solitons in this way is quite different from

what is commonly termed “optical computing” [39, 38], which uses optical solitons

to construct gates that could replace electronic gates, but which remains within the

“lithographic” paradigm of laying out gates and wires. The idea presented here

uses a completely homogeneous medium for computation – the entire computation

is determined by an input stream of particles. A general version of the structure

proposed is shown in fig. 6.1.

To use physical solitons for computation, we define restricted versions of the PM

called soliton machines (SMs). Both PMs and SMs are one-dimensional cellular



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 76

collision

transducer
output

transducer
input

solitons

Figure 6.1: Computing with solitons in a bulk medium. Solitons are injected at the left
of the diagram, computation takes place within the medium via the interaction of the
pseudoparticles, and the results exit from the right of the diagram. The actual medium
can be linear, planar, or 3-d.

SM
log-NLS (gaussons)

CA

PM

OSM

Klein-Gordon

cubic-NLS
sine-Gordon

KdV

Figure 6.2: Hierarchy of computational systems in the world of cellular automata (CA).
Particle machines (PMs) are CA designed to model particle-supporting physical media.
Soliton machines (SMs) are restricted PMs that model general soliton systems, includ-
ing PDEs such as the Klein-Gordon and log-NLS equations. Oblivious soliton machines
(OSMs) are SMs that model integrable soliton systems, such as the KdV, cubic-NLS, and
sine-Gordon equations.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 77

nonintegrable

inelastic collisions
elastic vs

oblivious vs
nonoblivious

universal vs
nonuniversal

integrable vs

model

automata
partial

equations
physics

cellular
differential

model

Figure 6.3: The three worlds considered in this chapter. Notice that the property oblivious
applies to both CA and soliton solutions of PDEs, whereas the properties integrable and
having elastic collisions apply only to soliton systems.

automata that model motion and collision of particles in a uniform medium. Oblivious

soliton machines (OSMs) are SMs further restricted to model a class of integrable

soliton systems. The hierarchy of the computational systems we consider is shown in

fig. 6.2. In general, we abstract a physical system by modeling it first with PDEs,

and then with CA, namely PMs and SMs, as shown in fig. 6.3.

We will discuss the computational power of the ideal machines we use to model

physical systems. Being able to simulate a Turing machine, or another universal

model, is neither necessary nor sufficient for being able to perform useful computa-

tion. For example, certain PMs can perform some very practical regular numerical

computations, such as digital filtering, quite efficiently, and yet such PMs are not

necessarily universal [89, 42]. Conversely, simulating a Turing machine is a very cum-

bersome and inefficient way to compute, and any practical application of physical

phenomena to computing would require a more flexible computational environment.

Nevertheless, universality serves as a guide to the inherent power of a particular

machine model.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 78

6.2 Information transfer and computation

A soliton can carry information in its envelope amplitude, width, and position; its

group and phase velocities; and its carrier phase; and this information can be ex-

changed in collisions with other solitons. This section is devoted to the question of

whether such information transfer can occur in a way that is useful as a basis for com-

putation, while still preserving particle identities. If this is possible, it suggests that

general computation can be performed via interacting waves in a uniform medium,

such as a nonlinear optical material.

In the usual conception of optical computing, one builds discrete gates based on

the propagation of light, and then essentially mimics the construction of a conven-

tional computer. We describe here an alternative approach to building an all-optical

computer, using only solitons in a homogeneous nonlinear optical medium. In our

approach, programs and data are encoded as streams of solitons, which are injected

into the medium at a boundary, and which compute via the information transfer

effected by solitary-wave collisions.

A general Turing-equivalent model for such “gateless” computation is the PM. By

exploiting the fine-grain parallelism of particle systems, this model supports fast and

efficient execution of many operations, including arithmetic and convolution. Briefly,

particle machines treat solitons as particles whose collisions can change particle states,

thus performing computation. Such computation requires that if solitons A and B

collide, then (1) some part of the resulting state of A depends on the state of B; and

(2) – this is essential — the state of B is changed by collisions. In a word, information

should be transferred from one wave to the other in “interesting” ways.

There is much already known about the phenomenology of collisions in nonin-

tegrable versions of NLS equations [66, 59, 87, 86, 25, 81]. Generally, solitons in



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 79

these systems, including the saturable NLS, can change amplitude and velocity after

collisions. We emphasize that this is not in itself sufficient to meet our criterion of

computationally “interesting.”

The properties that are useful for our computational purposes are the opposite of

those usually considered useful in communication optics: At least some of the collision

products must effect a nontrivial transformation of information in the colliding waves.

The reason for this is that general computation requires a transformation of informa-

tion in basic logic operations. Unfortunately, many commonly studied systems that

support waves do not have this behavior. For instance, because of linear superposi-

tion, colliding plane waves in a linear medium do not interact, i.e., do not undergo any

state changes, and therefore cannot support information interaction among colliding

waves.

An example of a system in which collisions do cause change of state but never-

theless cannot transform information in a nontrivial manner is the cubic nonlinear

Schrödinger equation (3-NLS). In order to do computation, solitons must carry infor-

mation from one collision to the next; such information must be coded in parameters

that are not constant. However, in the 3-NLS system, the state parameters that cause

the information transfer are themselves invariant: The only change of state occurs in

spatial (or temporal) position and carrier phase, and this change depends only on the

amplitudes and velocities of the envelopes of the incoming solitons. We conjecture

in [43, 44] that all solitary-wave collisions in integrable systems have this property,2

and we show that particle machines based on such systems are very limited in com-

putational power. In particular, these particle machines are not Turing-equivalent.

We must therefore look to solitons in nonintegrable or coupled integrable systems for

2As we will see in chapter 7, this conjecture is false for multi-mode integrable systems, but
remains unresolved for single-mode systems such as the ones considered in the current chapter.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 80

computationally useful collisions.

For solitons to carry information, they must also preserve their integrity after a

sequence of collisions, and lose negligible energy through radiation. These require-

ments are apparently antagonistic to the information-transform capability necessary

for computation, but our goal is to find systems which meet all these requirements.

The results shown here suggest that the saturable nonlinear Schrödinger equation

(sat-NLS) describes such a system.

6.2.1 Information transfer

To be more precise about the definition of information transfer, suppose that a

medium supports a set of solitons. Then a selected set of properties that can change

during a collision define a state S(A) of a wave A, whereas a set of constant wave

properties that are unaffected by collisions define an identity I(A) of A. Note that

we may define different types of states S and identities I for the same type of wave.

Denote by A′ the soliton A after a collision with wave B. Then a collision of A with B

supports transfer of information if S(A′) depends on S(B), for some S(A) and S(B);

otherwise, the collision transfers only trivial information (if S(A′) depends on only

I(B)) or no information (if S(A′) = S(A)).

We illustrate the above definition using the the cubic-NLS and the saturable-

NLS systems. The cubic-NLS equation supports solitons whose variable states are

phases, and whose constant identities are amplitudes and velocities. Collisions of

such solitons transfer only trivial information, since the phase shifts due to soliton

collisions are a function of only the amplitudes and velocities, i.e., the identities, of

the colliding solitons. On the other hand, the saturable-NLS system gives rise to

solitons whose variable state includes phases, amplitudes, and velocities. This system



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 81

supports collisions that transfer nontrivial information, since the state changes due

to collisions are a function of the states of the colliding waves.

6.2.2 Computational power

To examine how information transfer relates to computational power, we briefly re-

view the notion of Turing equivalence, or computational universality. Informally, a

Turing machine is a computational model in which programs and data are stored on

an infinite tape of discrete cells. A read-write head processes information by reading

cell contents, writing new cell contents, and moving back and forth along the tape,

all according to a transition function that considers both the state of the head and

the symbol read from underneath the head. The machine can enter a special “halt”

state, which signals the end of computation and the presence of the machine’s final

output on the tape.

It is generally accepted (by virtue of Church’s thesis [37]) that given enough time

and space, a Turing machine can implement any algorithm; that is, in terms of the

results that can be computed, a Turing machine is as powerful as any computer. A

computational system is Turing-equivalent, or computation-universal, if it can simu-

late a Turing machine. While this property is not absolutely necessary for a system

to do useful computation, universality nevertheless serves as a good measure of a

system’s computational potential.

Intuitively, in order for computation to take place in a solitary-wave system, col-

liding waves should interact and transfer information that is necessary to execute

steps of an algorithm. In [44] we show that only at most cubic-time computation

can be done on a particle machine that models a system in which collisions transfer

at most trivial information. This upper bound on such a system’s computation time



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 82

proves that this system cannot be Turing-equivalent, since universal computation can

take an arbitrarily long time. Moreover, solitary-wave interactions in this system are

computationally very limited, and designing algorithms based on these interactions

appears tedious and impractical. It is unclear whether or not collisions supporting

only trivial information transfer can encode any useful computation at all.

Solitary-wave systems in which collisions transfer nontrivial information are more

readily applicable to encoding computation. We have shown in [44] that such a

system can be Turing-equivalent, provided that the solitary-wave state changes are

sufficiently complex.

6.3 Oblivious soliton machines

The PM model is a convenient abstraction for computing with solitons. In practice,

however, the single-mode integrable soliton systems we have described are not suitable

for implementing general PMs. Specifically, these systems do not support the creation

of new solitons or the destruction of existing solitons, and soliton state changes due

to collisions are restricted. Thus, we adopt as our model a restricted PM called an

oblivious soliton machine (OSM). Like a PM, an OSM is a CA designed to support

particles propagating through a homogeneous medium, but an OSM more closely

models the integrable soliton systems under consideration.

6.3.1 The OSM model

An OSM is a PM in which each particle has a constant identity and a variable state

that are both vectors of real numbers. The velocity of a particle is part of its identity.

A typical state may consist of a phase and a position relative to a Galilean frame

of reference, whereas a typical identity may include an amplitude in addition to a



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 83

velocity. No particles can be created or destroyed in collisions, and the identities of

particles are preserved, much like the constant amplitudes and velocities of colliding

solitons. A function of the identities (not states) of the colliding particles determines

particle state changes.

Immediately after a collision, particles are displaced, much like the colliding soli-

tons discussed earlier. Let Pslow and Pfast denote two particles such that the velocity

of Pslow is (algebraically) less than the velocity of Pfast; that is, if Vslow and Vfast

are signed integers representing the velocities of Pslow and Pfast, respectively, then

Vslow < Vfast. In a two-way collision of Pslow and Pfast, Pfast is displaced by a positive

integer amount, and Pslow by a negative integer amount. In collisions involving three

or more particles, displacements are such that the relative order of the particles after

the collision is the reverse of their order before the collision, and all particles are dis-

placed into separate cells. Displacement amounts are functions of the identities of the

colliding particles. In addition, we require that once two particles collide, the same

particles can never collide again; this can be accomplished by spacing the particles

properly, or by choosing particle velocities and displacements appropriately. This

scheme models particle interaction in the integrable soliton systems described earlier.

Definition 2 An oblivious soliton machine (OSM) consists of the following elements:

• A two-way infinite one-dimensional medium M.

• A finite set P of particles, each with one of a finite set of velocities.

• A finite set S of real-number vectors called particle states.

• A collision function C.

• A post-collision displacement function D.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 84

• A finite initial configuration or input I.

M contains discrete cells, each of which can hold from 0 to |P| particles. At most

one particle of a given identity can occupy a cell. Each particle travels at a constant

velocity and has a variable state which may change as a result of collisions with other

particles in the medium. The initial configuration I is a finite section of M, and

includes the input particles present at the beginning of the OSM computation. Up

to |P| particles can occupy each cell of I. The input size is defined as the length of I

plus the number of input particles in I. During collisions, no particles are created or

destroyed, and the identities of particles remain constant, but the states of particles

change according to the function C. For each possible pair of identities of colliding

particles, C specifies two new particle states. After two or more particles collide, they

are displaced by amounts determined by the function D, as described previously.

Any pair of particles can collide at most once. The machine begins with its initial

configuration on either a quiescent or a periodic background, and evolves in discrete

time steps.

6.3.2 Non-universality of OSMs

We refer to OSMs as oblivious because the state changes in an OSM do not depend

on the variable states of colliding particles, but only on their constant identities.

Oblivious collisions in the OSM model correspond to elastic collisions in the integrable

PDEs discussed here; however, it is an open question to the authors whether or

not all elastic soliton collisions in all integrable systems are oblivious. The spatial

displacements of OSM particles after collisions occur only in the constrained fashion

described previously. The result of these properties is that OSMs cannot compute

universally.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 85

Theorem 1 OSMs are not computation-universal, either with or without a periodic

background. The maximum time that an OSM can spend performing useful computa-

tion is cubic in the size of the input.

Proof: We show that the halting problem for OSMs is decidable. More specifically, we

calculate a cubic upper bound (in terms of input size) on the amount of time taken

by an OSM to do any computation.

To execute any algorithm using an OSM, we must encode the algorithm and its

input as a finite sequence of particles in a finite-length initial configuration (input) I

of an infinite homogeneous medium. We must also be able to decode the OSM state

when the results of the algorithm are ready. Let N denote the number of particles

in I, not counting the particles in a possibly periodic background (PB), and L the

length of I. The input size |I| of the OSM is then N + L.

We first examine the case of an OSM with a quiescent background. For such an

OSM we can calculate upper bounds on the maximum number of particle collisions,

and on the maximum time before each collision occurs. The product of these two

values will give an upper bound on the maximum time that the OSM can spend

performing useful computation.

• An upper bound on the number of particle collisions is
(

N
2

)

, since each particle

can collide at most once with any other particle, by definition.

• An upper bound on the time before the collision of any two particles that do

collide is

L+N |Db| +N |Df |
|vf | − |vs|

(6.1)



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 86

where Db and Df are the largest negative (backward) and positive (forward)

displacements possible among the input particles, and |vf | and |vs| are the

largest and smallest speeds, respectively, among the input particles.

Thus, an upper bound on the time that an OSM can perform useful computation

is

(

N

2

)

L+N |Db| +N |Df |
|vf | − |vs|

. (6.2)

Since |I| = N + L, |vf | and |vs| are nonnegative integers, and Db and Df are

constants in a particular OSM, expression (6.2) is O(|I|3); that is, cubic in the input

size.

In an OSM with a PB (PB-OSM), the PB particles can displace the input particles

both left and right at regular intervals. Note that these periodic displacements cause

the velocities of the input particles to change by constant amounts, which depend

on the specific periodic configuration of PB particles. Thus, we can recalculate the

velocities of the input particles, using the displacements effected by the PB particles.

To find an upper bound on the time taken by a PB-OSM to do useful computation,

we apply a similar argument as for the quiescent background, but with the newly

calculated effective velocities.

Note that collisions in a PB-OSM can occur forever, but the collisions useful for

computation can occur only within the time bound that we can calculate. To see

this, observe that after the time given by this bound, the input particles of a PB-

OSM will stay in a fixed relative order, unable to collide again with one another.

Thus, each input particle either breaks away from the rest, as in the case with a

quiescent background, or stays close to the others in a periodic configuration. In

neither situation can the input particles do useful computation.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 87

Corollary 1 OSM-based computational systems governed by the KdV and sG equa-

tions are not universal, given that positions are used as state. OSM-based systems

governed by the cubic-NLS equation are not universal, given that positions and phases

are used as state.

Conjecture 1 All single-mode integrable systems using any choice of state are non-

universal using the OSM model.

6.4 Soliton machines

Intuitively, OSMs cannot compute universally because particles in an OSM do not

transfer enough state information during collisions. We can make a simple modifica-

tion to the OSM model so that universal computation becomes possible: We make

the results of collisions depend on both the identities and states of colliding particles.

In addition, we allow particle identities to change. We call the resulting model a soli-

ton machine (SM). In the final section of this chapter, we will describe non-integrable

equations that support soliton-like waves which we believe may be capable of realizing

the SM model.

6.4.1 The SM model

Definition 3 A soliton machine (SM) is defined in the same way as an OSM, with

the following differences. Both the collision and displacement functions can depend

on the identities and states of particles. The identities of particles can change during

collisions, so that the collision function returns both the new states and the new

identities of colliding particles.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 88

Like an OSM, an SM is also a CA and a PM (see fig. 6.2). The only difference

between an SM and a PM is that no particles can be created or destroyed in an SM.

However, we can use a periodic background of particles in special inert or blank states,

and simulate creation and destruction of particles by choosing collision rules so that

particles go into, and out of, these states.

6.4.2 Universality of SMs

SMs with a quiescent background have at least the computational power of Turing

machines (TMs) with finite tapes, as we will prove. The question of whether such

SMs are universal is open, however. Still, these SMs are more powerful than any

OSM, since OSMs can only do computation that requires at most cubic time, while

problems exist that require more than cubic time on bounded-tape Turing machines.

The class of algorithms that a finite-tape TM can implement depends on the

specific function that bounds the size of the TM’s tape; for instance, TMs with tapes

of length polynomial in the input size can do any problem in PSPACE. Although

not universal, such TMs can do almost any problem of practical significance.

Theorem 2 SMs with a quiescent background are at least as powerful as Turing

machines with bounded tapes.

Proof: We describe how SMs can simulate any finite-tape Turing machine M . Let

B(N) denote the function that bounds the size of M ’s tape, given an input of size N .

We construct an SM equivalent to M as follows. For each possible state of a cell

of M , including the blank state, we introduce a distinct, stationary state particle.

M ’s finite tape then maps directly to a length-B(N) section T of the SM’s medium.

To simulate the action of M ’s tape head, we introduce two head particles, hf and

hb, of velocities 1 and −1, corresponding to the right and left motions of the head,



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 89

respectively. Before computation, we place hf in the cell immediately to the left of

T .

The SM begins in the initial configuration described above, and operates as follows.

The head particle hf moves through T , colliding with the state particles in T . We

choose collision rules such that collisions between state particles and either hf or hb

simulate M ’s transition function. Thus, a collision between hf or hb and a state

particle s can change s to another state particle; in addition, hf can change into hb,

and vice versa. This simulates writing on M ’s tape and changing the direction of M ’s

head.

SMs with a periodic background are universal, since we can use such SMs to

simulate a Turing machine as described previously, but with a periodic background

of blank-state particles. This background maps directly to the infinite blank portion

of the Turing machine’s tape. Thus, we have proved the following theorem:

Theorem 3 SMs with a periodic background are computation-universal.

6.4.3 Discussion

Theorems 1 through 3 suggest that we should look to nonintegrable or coupled in-

tegrable systems for solitons that may support universal computation. It is an open

question whether or not there exists such a soliton system. In what follows, we

recall some soliton equations and explain the features that could enable them to

encode SMs. We also describe numerical experiments with two particular noninte-

grable PDEs, the logarithmically nonlinear Schrödinger equation (log-NLS) and the

saturable Schrödinger equation (sat-NLS).



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 90

6.5 Information transfer in collisions of NLS soli-

tary waves

6.5.1 The cubic-NLS equation

In the integrable 3-NLS system, solitary waves are true solitons whose collisions can

change only their envelope position and carrier phase; envelope amplitude and veloci-

ties are conserved. In addition, the spatial and phase shifts of colliding solitons depend

only on their constant amplitudes and velocities. Thus, such collisions transmit only

trivial information, and are computationally very limited, as we demonstrated earlier

in this dissertation and in [44]. (See fig. 6.13.)

6.5.2 Gaussons and the log-NLS equation

Our numerical simulations of gausson collisions verify a published report [66] that they

range from deeply inelastic to near-elastic, and perhaps perfectly elastic, depending on

the velocities of the colliding gaussons. In [66] an approximate range of velocities (the

resonance region) is given for which collisions are apparently inelastic; outside this

region, collisions are reportedly elastic. We confirmed these results, and investigated

in more detail to find the following three distinct velocity regions in which gaussons

behave very differently:

1. When 0 < |v| < 0.5, gausson collisions are near-elastic, and possibly perfectly

elastic, and clearly nonoblivious. We observed marked post-collision changes

in both amplitude and velocity, which strongly depend on the phases of the

colliding gaussons. These phenomena appear to be newly observed here. (See



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 91

x

t

Figure 6.4: Gausson collisions in region 1. From left to right, velocities are 0.4 and −0.4;
phases are both 0.

figs. 6.4, 6.5, and 6.6.) 3

2. When 0.5 ≤ |v| < 10, collisions are non-elastic, and possibly near-elastic. The

amount of radiation generated in collisions varies with the phases of the colliding

gaussons, and in general decreases as v increases. (See Figs. 6.7, 6.8, 6.11, 6.12.)

3. When |v| ≥ 10, collisions are near-elastic, and possibly elastic, but apparently

oblivious. They are similar to the collisions found in integrable soliton systems,

such as the cubic-NLS equation. (See fig. 6.9.)

These ranges are approximate, and gausson behavior changes gradually from one

to the next. The differences between our results and those in [66] (written ca.

1978) are likely due to our more extensive numerical experimentation, given the

faster computers available to us. In our calculations we used the split-step Fourier

method [22, 94] with a cylindrical (wrap-around) one-dimensional coordinate system;

3All gausson figures are graphs of space versus time, with time increasing from top to bottom.
The variable graphed is |u|2, that is, the square of the gausson envelope.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 92

x

t

Figure 6.5: Gausson collisions in region 1. From left to right, velocities are 0.4 and −0.4;
phases are 0 and 0.5π.

x

t

Figure 6.6: Gausson collisions in region 1. From left to right, velocities are 0.4 and −0.4;
phases are 0.5π and 0.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 93

x

t

Figure 6.7: Gausson collisions in region 2. From left to right, velocities are 3.0 and −3.0;
phases are both 0. A cylindrical coordinate system is used here, so that there is wrap
around from the right to the left edge, and vice versa.

t

x

Figure 6.8: Gausson collisions in region 2. From left to right, velocities are 2.0 and −0.1;
phases are both 0. A cylindrical coordinate system is used here, so that there is wrap
around from the right to the left edge, and vice versa.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 94

x

t

Figure 6.9: Gausson collisions in region 3. From left to right, velocities are 10.0 and
−15.0; phases are both 0. A cylindrical coordinate system is used here, so that gaussons
wrap around from right to left, and vice versa.

the authors of [66] used a finite difference scheme [31], which we also implemented,

and which confirms the results of the split Fourier method. However, this finite dif-

ference method’s treatment of boundary conditions makes a cylindrical coordinate

system difficult to use.

Nonobliviousness in region 2 is not as easily determined by visual inspection as

it is in region 1. Next, we describe a numerical experiment which demonstrates that

there is a near-elastic gausson collision that is nonoblivious in region 2. Fig. 6.10

shows the setup of this experiment. To show that the collision between two gaussons,

A and B, is nonoblivious, we begin at time 0 with three gaussons, A, B, and C,

in that order, on the x-axis. The velocities and initial distances among the three

gaussons are set so that A and B collide first, followed by a collision of A and C. We

observe the results of the AC collision for various initial phases of B’s carrier, keeping

constant the initial phases of A and C. If we find two initial phases for B that lead to



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 95

elastic
near-

collision

A

result

B C

inelastic collision

test particle

varying
phase

Figure 6.10: Testing for nonobliviousness using a near-elastic collision (AB) followed by
an inelastic collision (AC). If the result of the AC collision depends on the initial phase
of B, then the AB collision is nonoblivious.

two different results of the AC collision, then we can conclude that the AB collisions

were nonoblivious. Note that we require only that the results of the AC collisions be

different; the AC collisions can be strongly inelastic, for the C particle is used only

to probe the state of the A particle.

Figs. 6.11 and 6.12 show an example of such an experiment. In both figures,

the two leftmost gaussons move at a velocity of ±3.25, the rightmost gausson has

velocity −1, and all but the center gaussons have initial phase 0. The center gaussons

in figs. 6.11 and 6.12 have phases 0.05π and 0.55π, respectively, which cause the

different results after collisions. We conclude that the collision between A and B

is nonoblivious. Note that we cannot determine nonobliviousness merely from the

visual appearance of the AB collision, because what happens during a collision can

depend on the phases of the colliding solitons, whether the collision is oblivious or

not; it is the post-collision results that determine nonobliviousness.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 96

x

t

CA B

Figure 6.11: Testing for obliviousness of the collision between the leftmost (A) and center
(B) gaussons in region 2. The center gausson’s phase is 0.05π; the other two gaussons’
phases are both 0. The collision is nonoblivious, since the results of the test collision
between the leftmost and rightmost gaussons (A and C) differ from those in the next
figure.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 97

x

t

CA B

Figure 6.12: Testing for obliviousness of the collision between the leftmost (A) and center
(B) gaussons in region 2. The center gausson’s phase is 0.55π; the other two gaussons’
phases are both 0. The collision is nonoblivious, since the results of the test collision
between the leftmost and rightmost gaussons (A and C) differ from those in the previous
figure.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 98

6.5.3 Soliton stability and elasticity

The inelastic and near-elastic soliton collisions we observed in regions 1 and 2 are

nonoblivious, thus leaving open the possibility of using them for computation in SMs.

For example, to compute using gaussons, we can use an approach similar to the

techniques in [93]. As with the CA solitons in [93], we might first create a database

of pairwise collisions of gaussons by running a series of numerical experiments; we

would then search the database for useful collisions to encode a specific computation.

This approach was used in [93] to implement a solitonic ripple-carry adder.

One problem with such an approach is the potential connection between soliton

stability and collision elasticity. We observed that inelastic collisions often resulted

in radiation ripples emanating from collisions (fig. 6.7) and eventual disintegration

of gaussons in a cylindrical one-dimensional system. In region 2, these ripples and

the resulting instability may make the system unsuitable for sustained computation.

The more inelastic the collisions, the quicker the system decayed. However, we do

not know if stability and elasticity are necessarily correlated in general, nor do we

know if elasticity and obliviousness (and thus lack of computation universality) are

related. In fact, collisions of region-1 solitons in the log-NLS equation appear to be

both elastic and strongly nonoblivious.

6.5.4 The sat-NLS equation

The nonintegrable sat-NLS equation gives rise to solitary waves whose collisions sup-

port nontrivial information transfer via transactive collisions. (See fig. 6.14.) In

particular, phases, amplitudes, and velocities can all change as a function of the pa-

rameters of the colliding waves. We have observed that the most computationally

useful collisions occur when the solitary waves have a low relative speed (approxi-



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 99

x

t

x

t

Figure 6.13: Trivial information transfer in collisions of 3-NLS solitons. The initial relative
phases of the solitons in the left and right graphs are 0.25π and −0.45π, respectively;
velocities are ±0.2. Phase and spatial shifts, though not apparent from these graphs, are
a function of only the constant amplitudes and velocities.

x

t

x

t

Figure 6.14: Nontrivial information transfer in collisions of sat-NLS solitary waves. The
initial relative phases of the waves in the left and right graphs are 0.25π and −0.45π,
respectively; velocities are ±0.2.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 100

-1.0 -0.5 0.0 0.5 1.0

relative phase

-0.2

0.0

0.2

in
fo

rm
at

io
n 

tr
an

sf
er

Figure 6.15: Information transfer for collisions of two sat-NLS solitary waves. Here
information transfer is defined as the fractional change in the amplitude of one solitary
wave; that is, the transfer is equal to ∆A1/A1, where A1 is the initial amplitude of the
right-moving wave, and ∆A1 is the amplitude change due to collisions. The solid, dashed,
and dotted curves show information transfer for collisions of two waves with amplitudes
1.0 and velocities ±0.5, ±1.5, and ±10.0, respectively. Relative phase is in multiples of π.
Note that in the low-velocity case (solid line) near zero relative phase there is significant
radiation and breathing in the collision products, making the amplitude poorly-defined.
What is shown is the result of measuring the amplitude peak at a fixed time.

mately 4.0 and below). The magnitude of information transfer decreases gradually as

the relative speed of the waves increases. To estimate this magnitude, we measured

the amplitude and velocity changes following collisions of low-velocity waves at vari-

ous initial phases. In fig. 6.15, normalized amplitude change is plotted as a function

of the relative phase of two colliding solitary waves.

In practice it is reasonable to expect that the amplitudes of two colliding solitons

cannot be made precisely equal. To test the robustness of the results in fig. 6.15 we

ran experiments with unequal amplitudes (amplitude ratios of 1.1, 1.3 and 2.0) and

found the results to be quite similar, except that the magnitude of the effect was even



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 101

greater.

It might appear that in the perfectly symmetric case — when relative phase is zero

— there should be no amplitude change. That is, that a nonzero value of amplitude

change at zero relative phase shift would imply that energy is transferred from one

wave to another, thereby spontaneously breaking symmetry. To explain this apparent

problem, we note first that what is plotted is change in amplitude, not energy. A

nonzero value of amplitude change at zero relative phase (which is indeed a symmetric

situation) then means that the amplitudes of both solitons change. There are three

ways that this can happen: (1) Radiation can decrease the energy of both solitons,

(2) the amplitudes can change, but a change in width can compensate to preserve

energy, and (3) the collision products can breathe, which makes the amplitude poorly

defined.

6.6 Radiation and reusability

In general, computation encoded in an NLS system must reuse solitons after they

have been involved in multiple collisions. To behave like the particles of a particle

machine, these solitary waves should be stable; more specifically, collisions should

preserve the identities of solitary waves and generate negligible radiation.

Numerical results reveal that information transfer and radiation often go hand in

hand. Soliton collisions in the 3-NLS system are perfectly elastic and generate no ra-

diation, but such collisions support only trivial information transfer, as we have seen.

In the sat-NLS system, large amounts of radiation tend to accompany large magni-

tudes of information transfer. However, much like other known nonintegrable NLS

systems [59], the sat-NLS system does support collisions that transfer information

and yet generate only small amounts of radiation. More specifically, our numerical



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 102

studies have revealed the following:

• When at least one of the solitary waves is moving at a high speed (approximately

4.0 and above), their collision generates negligible radiation and supports no

measurable information transfer. (This phenomenon in generalized NLS systems

was mentioned by Snyder and Sheppard [87].)

• When the relative phase φ0 = π, the collision is the same as in the above case,

no matter what the value of the relative speed v0.

• When both waves have low speeds (below 4.0) and 0 ≤ φ0 < π, the collision is

accompanied by larger amounts of radiation and information transfer. However,

as φ0 tends towards π, both radiation and the magnitude of information transfer

decrease. For φ0 > π/2, very little or no measurable radiation is generated.

The solitary waves that emerge from collisions in the sat-NLS system may or

may not be of the form given by eq. 4.4, depending on the initial wave parameters.

As observed early on in a variety of nonintegrable systems [59, 66], and predicted

theoretically for a wide range of non-Kerr materials by Snyder and Sheppard [87],

certain regimes of operation can lead to breathers, and more dramatically, to the

fusion of colliding waves and the birth of new waves. We show examples of fusion in

the saturable NLS in fig. 6.16.

Breathers, fusion, and the birth of new particles may be useful for computation

in our context, but are more difficult to study and characterize than collisions that

conserve the shape and number of particles, especially because these phenomena often

seem to be accompanied by more radiation. In fact, our definition of information

transfer is not applicable to these situations. However, the idea of information transfer

may be generalizable to all interactions in a wide class of nonintegrable systems.4

4We thank an anonymous reviewer for this observation.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 103

t

x

Figure 6.16: Fusion of two solitons after collision. Here the two solitons approach each
other with velocities ±0.2 and amplitudes 1.0.

When wave velocities are very low (< 1.0) and relative phases are approximately

in the range 0.0 to 0.3, collisions produce “breathers,” or waves whose amplitude

pulsates regularly, which cannot arise from eq. 4.4. However, we observed that other

collisions result in waves that can be specified by eq. 4.4.

To test the hypothesis that collision products are of the same form as the original

waves, we measured the amplitudes, envelope velocities, and phases at the peaks of

waves after collisions; we then used these parameters to plot “fresh” waves and to

compare their characteristics with those of the post-collision waves. In particular, we

compared the carrier velocities of the “fresh” and post-collision waves, and observed

what happens in collisions between two “fresh” waves and between two post-collision

waves. The results do suggest that the post-collision waves have the form of eq. 4.4.

We estimated radiation for the collisions of fig. 6.15 by finding the fixed-size section

of the numerical-solution grid with the lowest root-mean-squared (RMS) norm of the

grid points.5 Ideally, this RMS norm should be very close to zero for solitary waves.

5We use circular boundary conditions in our numerical simulations, so that any radiation gener-
ated by collisions remains in the system.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 104

-1.0 -0.5 0.0 0.5 1.0

relative phase

0.00

0.02

0.04

ra
di

at
io

n

Figure 6.17: Radiation due to collisions in the sat-NLS system. Radiation is computed
by finding the section of the numerical-solution grid with the lowest RMS norm of grid
points, using sections of size N/10, where N is the the size of the entire grid; radiation is
taken to be this lowest RMS norm. The solid, dashed, and dotted curves show radiation
for collisions of two solitary waves with velocities ±0.5, ±1.5, and ±10.0, respectively.
Relative phase is in multiples of π.



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 105

Numerical error caused by the discrete nature of time and space in the grid contributes

some noise, which we measured for the analytically solvable case of the 3-NLS by

comparing numerical results with exact solutions. Based on these investigations,

it appears that our simple measure of radiation gives a good general idea of the

usefulness of various collisions for computation. In fig. 6.17, radiation is plotted as a

function of the relative phase of two colliding waves.

The sat-NLS solitary waves that appear to hold promise for encoding computation

have relative speeds from about 0.2 to 4.0, and relative phases whose absolute values

range from about 0.2π to 0.8π. Frauenkron et al. report [25] numerical studies of

a quintic perturbation of the cubic NLS, and show that radiation in that system is

O(ǫ2) while energy exchange is first order — a general indication that the phenomena

involved in information transfer can dominate radiation in nonintegrable variations

of the NLS.

6.7 Summary and questions

We have explored several soliton systems, with the goal of using them for computation

in a one-dimensional homogeneous bulk medium. We defined soliton machines (SMs)

to model integrable and nonintegrable soliton systems, and found that a class of

integrable PDEs cannot support universal computation under the OSM model. In

addition, we proved that the SM model is universal in general, and suggested that log-

NLS and sat-NLS solitons may be capable of realizing universal SMs, since collisions

of such solitons transfer information in nontrivial ways.

Many open problems remain. Foremost among these is determining whether or

not gaussons and sat-NLS solitons have behavior sufficiently complex and stable to

implement a universal SM. We found three velocity regions in which gaussons have



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 106

different behavior. Gaussons with low velocities (region 1) offer the most promise for

realizing useful computation, since their collisions appear both elastic and nonobliv-

ious. We may be able to use the phase-coding approach in [93] to implement useful

computation with gausson interactions. Collisions of gaussons with higher veloci-

ties (regions 2 and 3) appear in general to be either oblivious or radiating, though

for some combinations of velocities and phases, these collisions are nonoblivious and

very near-elastic. The search for answers is complicated by the necessity of numerical

solution of the log-NLS equation.

Although we know of no physical realization of the log-NLS equation, the sat-

NLS equation models physical systems commonly studied in experiments. Other

nonintegrable nonlinear PDEs that model physical behavior also offer possibilities for

implementing SMs. For example, the Klein-Gordon equation [3], the NLS equation

with additional terms to model optical fiber loss and dispersion, and the coupled

NLS equation for birefringent optical fibers [38, 96] all support soliton collisions with

complex behavior potentially useful for encoding SMs. Optical solitons that arise

from these more complicated equations exhibit gausson-like behavior, and are easily

realizable in physical fibers; thus, such optical solitons may be particularly useful as

practical means of computing using SMs. Near-integrable equations [58], or slightly

altered versions of integrable equations, could also offer possibilities for implementing

general SMs.

In addition, we may consider using solitons in two or three dimensions [27, 74].

Gaussons, for example, exist in any number of dimensions, and display behavior

similar to that in one dimension. The added degrees of freedom of movement in

two or more dimensions may enable implementation of universal systems such as the

billiard ball computation model [61] or lattice gas models [88].

Although we conjecture that single-mode integrable systems support only trivial



CHAPTER 6. IMPLEMENTING PARTICLE MACHINES WITH SOLITONS 107

information transfer, in the next chapter we consider the coupled integrable Manakov

system as a basis for PM computation. We find that the coupled solitons in this

system support nontrivial information transfer, and give examples of computation

using collisions of these solitons. We leave as an open problem the possibility of

useful computation in nonintegrable soliton systems.



Chapter 7

Computation in the Manakov

System

The Manakov system [60], which consists of two coupled NLS equations, is a model

for light behavior in certain nonlinear media. Radhakrishnan et al. [71] have re-

cently given a general bright two-soliton solution for this system, and derived explicit

asymptotic results for collisions in the anomalous dispersion region. Those results

are remarkable because they show large energy switching between modes in an inte-

grable system. Surprisingly, as we show in this chapter, the parameters controlling

this switching exhibit non-trivial information transformations [45], contradicting an

earlier conjecture that this was not possible in integrable systems [44]. Furthermore,

these transformations can be used to implement PM computations, or logic opera-

tions in a self-restoring discrete domain, suggesting exciting possibilities for all-soliton

digital information processing in nonlinear optical media without radiative losses.

In this chapter we use the explicit two-soliton solutions in [71] to show that in the

coupled Manakov system:

• An appropriately defined polarization state [109] which is a single complex num-

108



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 109

ber can be used to characterize a soliton in collisions. Thus, two degrees of free-

dom per soliton suffice to describe state transformations in collisions, instead of

the six degrees of freedom in a complete description of a Manakov soliton.

• The transformations of this state caused by collisions are given by explicit linear

fractional transformations of the extended complex plane. These transforma-

tions depend on the total energies and velocities of the solitons (the complex k

parameters), which are invariant in collisions, but which can be used to tailor

desired transformations.

In order to make use of the basic state transformations, we will derive some of

their features and limitations. We view a particle in state ρ1 as an operator Tρ1 that

transforms the state of any other particle by colliding with it. Then we show, among

other results, that every such operator has a simply determined inverse; that the only

fixed points of such an operator are ρ1 and its inverse; that no such operator effects

a pure rotation of the complex state for all operands; that by concatenating such

operators a pure rotation operator can be achieved; that certain sequences of such

operators map the unit circle to itself; and so on.

Finally, we discuss the application of these ideas to implementing PM-based all-

optical computation without employing physically discrete components. Such a com-

puting machine would be based on the propagation and collision of solitons, and could

use conservative logic operations [26], since the collisions we consider preserve the to-

tal energy and number of solitons. Finding a sufficiently powerful set of operators

and reusable particles in this regime would open the way for integrated computation

in homogeneous nonlinear optical media [89, 42], quite a different scheme from using

soliton-dragging gates [38] as discrete components to build a computer.



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 110

7.1 Informational state in the Manakov system

7.1.1 The Manakov system and its solutions

We review the integrable one-dimensional Manakov system [60, 47, 70] and its ana-

lytical solutions from [71]. The system consists of two coupled NLS equations,

iq1t + q1xx + 2µ(|q1|2 + |q2|2)q1 = 0, (7.1)

iq2t + q2xx + 2µ(|q1|2 + |q2|2)q2 = 0,

where q1 = q1(x, t) and q2 = q2(x, t) are the complex amplitudes of two interacting

optical modes, µ is a positive parameter, and x and t are normalized space and

time. Note that in order for t to represent the propagation variable, as in Manakov’s

original paper [60], our variables x and t are interchanged with those of [71]. The

system admits single-soliton solutions consisting of two components,

q1 =
α

2
e− R

2
+iηI sech(ηR +

R

2
),

q2 =
β

2
e− R

2
+iηI sech(ηR +

R

2
), (7.2)

where

η = k(x+ ikt), (7.3)

eR =
µ(|α|2 + |β2|)

k + k∗
, (7.4)

and α, β, and k are arbitrary complex parameters. Subscripts R and I on η and k

indicate real and imaginary parts. Note that kR 6= 0.

To study the effects of collisions on soliton states in this system, we consider



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 111

the analytical two-soliton solution given in [71]. By taking limits of this solution as

t → ± ∞ and x → ± ∞, we find asymptotic formulas for the widely separated

solitons before and after a collision. Let q(1), q(2), q(L) and q(R) denote these four

solitons:

q
(1)
1 =

α1

2
e

−R1
2

+iη1I sech(η1R +
R1

2
), (7.5)

q
(1)
2 =

β1

2
e

−R1
2

+iη1I sech(η1R +
R1

2
), (7.6)

q
(2)
1 =

α2

2
e

−R2
2

+iη2I sech(η2R +
R2

2
), (7.7)

q
(2)
2 =

β2

2
e

−R2
2

+iη2I sech(η2R +
R2

2
), (7.8)

q
(L)
1 =

1

2
eδ1−

R1+R3
2

+iη2I sech(η2R +
R3 −R1

2
), (7.9)

q
(L)
2 =

1

2
eδ

′

1
−

R1+R3
2

+iη2I sech(η2R +
R3 −R1

2
), (7.10)

q
(R)
1 =

1

2
eδ2−

R2+R3
2

+iη1I sech(η1R +
R3 −R2

2
), (7.11)

q
(R)
2 =

1

2
eδ

′

2
−

R2+R3
2

+iη1I sech(η1R +
R3 −R2

2
), (7.12)

where

eR1 =
κ11

k1 + k∗
1

, (7.13)

eR2 =
κ22

k2 + k∗
2

, (7.14)

eR3 =
|k1 − k2|2

(k1 + k∗
1)(k2 + k∗

2)|k1 + k∗
2|2

(κ11κ22 − κ12κ21), (7.15)

eδ1 =
k1 − k2

(k1 + k∗
1)(k∗

1 + k2)
(α1κ21 − α2κ11), (7.16)

eδ2 =
k2 − k1

(k2 + k∗
2)(k1 + k∗

2)
(α1κ21 − α2κ11), (7.17)

eδ
′

1 =
k1 − k2

(k1 + k∗
1)(k∗

1 + k2)
(β1κ21 − β2κ11), (7.18)

eδ
′

2 =
k2 − k1

(k2 + k∗
2)(k1 + k∗

2)
(β1κ21 − β2κ11), (7.19)



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 112

Sign of k1R Sign of k2R Solitons before collision Solitons after collision

+ + q(1), q(L) q(2), q(R)

− + q(1), q(2) q(L), q(R)

+ − q(R), q(L) q(2), q(1)

− − q(R), q(2) q(L), q(1)

Table 7.1: Asymptotic forms of solitons before and after collisions, as determined by the
signs of the soliton parameters kR.

and

κij =
µ(αiα

∗
j + βiβ

∗
j )

ki + k∗
j

. (7.20)

To determine the effects of collisions on solitons, eqs. 7.5–7.12 can be compared to

the single-soliton solution (eq. 7.2). The interpretation of these asymptotic equations

in terms of the actual motions of the solitons depends on the signs of the parameters

k1R and k2R; there are four possible cases, listed in table 7.1. Note that kjR 6= 0.

In the next subsection, we determine the effects of collisions on solitons by com-

paring these formulas with eq. 7.2.

7.1.2 State in the Manakov system

The three complex numbers α, β, and k (with six degrees of freedom) in eq. 7.2

characterize bright solitons in the Manakov system. Since k is unchanged by collisions,

two degrees of freedom can be removed immediately from an informational state

characterization. We note that Manakov [60] removed an additional degree of freedom

by normalizing the polarization vector determined by α and β by the total magnitude

(α2 + β2)1/2. However, we show that the single complex-valued polarization state

ρ = α/β, with only two degrees of freedom [109], suffices to characterize two-soliton

collisions when the constants k of both solitons are given.



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 113

time

ρ , k

space

ρL , k

ρ , k ρ , k

1 1 2

1R2 2

Figure 7.1: A general two-soliton collision in the Manakov system. The complex numbers
ρ1, ρL, ρ2, and ρR indicate the variable soliton states; k1 and k2 indicate the constant
soliton parameters.

We use the tuple (ρ, k) to refer to a soliton with variable state ρ and constant

parameter k:

• ρ = q1(x, t)/q2(x, t) = α/β: a complex number1, constant between collisions;

• k = kR + ikI : a complex number, with kR 6= 0.

Consider a two-soliton collision, and let k1 and k2 represent the constant soliton

parameters. Let ρ1 and ρL denote the respective soliton states before impact. Suppose

the collision transforms ρ1 into ρR, and ρL into ρ2 (see fig. 7.1). In the rest of this

chapter we always associate k1 and ρ1 with the right-moving particle, and k2 and ρL

with the left-moving particle. To specify these state transformations, we write

Tρ1(ρL) = ρ2, (7.21)

TρL
(ρ1) = ρR. (7.22)

The soliton velocities are determined by k1I and k2I , and are therefore constant.

To determine the state changes undergone by the colliding solitons, we take the

limits x → ±∞ and t → ±∞ in the two-soliton expression from [71], as described

1Throughout this chapter we use the complex plane extended to include the point at infinity.



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 114

earlier. These limits depend on the signs of k1R and k2R; there are four cases, each

of which yields asymptotic formulas for both components of each soliton before and

after the collision, as given by eqs. 7.5 through 7.12 and table 7.1.

We find each soliton’s state by computing the quotient of the soliton’s two com-

ponents. When k1R > 0 and k2R > 0, we obtain

ρ2 =
[(1 − g)/ρ∗

1 + ρ1]ρL + gρ1/ρ
∗
1

gρL + (1 − g)ρ1 + 1/ρ∗
1

, (7.23)

where

g =
k1 + k∗

1

k2 + k∗
1

. (7.24)

By a symmetry argument, we obtain

ρR =
[(1 − h∗)/ρ∗

L + ρL]ρ1 + h∗ρL/ρ
∗
L

h∗ρ1 + (1 − h∗)ρL + 1/ρ∗
L

, (7.25)

where

h =
k2 + k∗

2

k1 + k∗
2

. (7.26)

Note that the state changes given by eqs. 7.23 and 7.25 (and by eqs. 7.21 and

7.22) depend on the constants k1 and k2. We often omit these from expressions, as

in eqs. 7.21 and 7.22. However, when we need to specify the values of k1 and k2

explicitly, we write

Tρ1,k1(ρL, k2) = ρ2. (7.27)

For the remaining three cases of signs of k1R and k2R, we used similar methods to

find six additional state-change expressions:



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 115

• Case 2: k1R < 0, k2R > 0

ρ2 =
[(g − 1)ρ1 − 1/ρ∗

1]ρL + gρ1/ρ
∗
1

gρL + (g − 1)/ρ∗
1 − ρ1

(7.28)

ρR =
[(h− 1)ρL| − 1/ρ∗

L]ρ1 + hρL/ρ
∗
L

hρ1 + (h− 1)/ρ∗
L − ρL

(7.29)

• Case 3: k1R > 0, k2R < 0

ρ2 =
[(g∗ − 1)ρ1 − 1/ρ∗

1]ρL + g∗ρ1/ρ
∗
1

g∗ρL + (g∗ − 1)/ρ∗
1 − ρ1

(7.30)

ρR =
[(h∗ − 1)ρL − 1/ρ∗

L]ρ1 + h∗ρL/ρ
∗
L

h∗ρ1 + (h∗ − 1)/ρ∗
L − ρL

(7.31)

• Case 4: k1R < 0, k2R < 0

ρ2 =
[(1 − g∗)/ρ∗

1 + ρ1]ρL + g∗ρ1/ρ
∗
1

g∗ρL + (1 − g∗)ρ1 + 1/ρ∗
1

(7.32)

ρR =
[(1 − h)/ρ∗

L + ρL]ρ1 + hρL/ρ
∗
L

hρ1 + (1 − h)ρL + 1/ρ∗
L

(7.33)

It is a matter of algebra to verify that these six formulas can be obtained from

eqs. 7.23 and 7.25 by using the following relations:

Tρ1,k1R+ik1I
(ρL, k2R + ik2I) → T−1/ρ∗

1
,−k1R+ik1I

(ρL, k2R + ik2I), (7.34)

TρL,k2R+ik2I
(ρ1, k1R + ik1I), → T−1/ρ∗

L
,k2R−ik2I

(ρ1,−k1R − ik1I). (7.35)

Relation 7.34 states that when the sign of k1R is changed in eq. 7.23, we must also

replace ρ1 with −1/ρ∗
1 in the same equation in order to obtain the correct formula for

the state change. The particle −1/ρ∗
1 has a special significance — it acts as inverse

operator to ρ1 (see section 7.2). The same relation can also be used to obtain the



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 116

Sign of k1R Sign of k2R T0,k1 T0,k2 T∞,k1 T∞,k2

+ + 1 − g 1 − h∗ 1/(1 − g) 1/(1 − h∗)
− + 1/(1 − g) 1/(1 − h) 1 − g 1 − h
+ − 1/(1 − g∗) 1/(1 − h∗) 1 − g∗ 1 − h∗

− − 1 − g∗ 1 − h 1/(1 − g∗) 1/(1 − h)

Table 7.2: State-change factors for T0 and T∞ transformations. The columns for T0,k1

and T∞,k1 list the factors by which ρ1 is multiplied to get ρR, and the columns for T0,k2

and T∞,k2 list the factors by which ρL is multiplied to get ρ2.

proper state-change formula when the sign of k2R is changed in eq. 7.25. Relation 7.35

can be used to obtain the state-change expressions when the sign of k2R, is changed in

eq. 7.23, or when the sign of k1R is changed in eq. 7.25. Taken together, relations 7.34

and 7.35 imply

Tρ1,k1R+ik1I
(ρL, k2R + ik2I) → Tρ1,−k1R−ik1I

(ρL,−k2R − ik2I); (7.36)

that is, when the signs of both k1R and k2R are switched in either eq. 7.23 or eq. 7.25,

we must also conjugate k1 and k2 in the equations in order to obtain the correct

state-change expressions. It can also be verified that all four cases above collapse to

the first if we simply use |k1R| and |k2R| in eqs. 7.23— 7.26, although this does not

seem initially obvious.

We assume the soliton velocities are such that a collision occurs; that is, k1I > k2I .

Also, note that g, h 6= 0, since k1R, k2R 6= 0, and that g and h cannot be pure real

numbers.

In each of the four cases mentioned above, the soliton states after collision are

completely determined by the soliton states before collision, which shows that our

definition of state is complete. The k parameter of a soliton remains constant, but is

in general different for different solitons.



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 117

A special class of state transformations

The class of transformations given by T0,k and T∞,k, where k = k1 (right-moving) or

k2 (left-moving), will be useful later. They specify state changes caused by collisions

with solitons whose entire energy is contained in only one mode, and are functions of

k1 and k2. Table 7.1.2 shows the state-change factors due to these transformations.

It is not hard to verify from this table that

T0,kR+ikI
→ T∞,−kR+ikI

, (7.37)

which is a special case of the state-change relations described earlier.

7.2 Properties of the collision state transformation

For concreteness we will restrict attention in this section to the case k1R, k2R > 0,

and the transformation eq. 7.23 of the left-moving particle in state ρL to the left-

moving particle in state ρ2. All the results hold for other signs of k1R and k2R and

the other collisions with appropriate changes in the particle names and the parameter

that plays the role of g. When the signs of k1R and k2R are an issue, we will mention

that explicitly.

A state transformation can be viewed either as a mapping Tρ1(ρL) from the com-

plex ρL-plane to the complex ρ2-plane, or in general as a mapping from the complex

plane to itself, depending on the context. The state transformation is in fact a linear

fractional transformation (LFT) (or bilinear or Möbius) of the form

ρ2 =
aρL + b

cρL + d
, (7.38)



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 118

where the coefficients are functions of the right-moving particle in state ρ1,

a = (1 − g)/ρ∗
1 + ρ1

b = gρ1/ρ
∗
1

c = g

d = (1 − g)ρ1 + 1/ρ∗
1

The choice of a, b, c, and d is not unique, since we can multiply numerator and

denominator by an arbitrary nonzero number, but we will use these throughout this

chapter. The limiting versions of eq. 7.38 then give T∞(ρ) = (1/(1−g))ρ and T0(ρ) =

(1 − g)ρ.

When there is no danger of confusion we will refer to particles and their states

interchangeably, so for example we can speak of “transforming the particle ρL.” By

eq. 7.22, the collision above also results in the transformation TρL
(ρ1) of ρ1 caused by

collision with ρL, and each result we give about the properties of the transformations

of left-moving particles has its symmetrical counterpart about transformations of

right-moving particles.

It is usually assumed that an LFT must have a nonzero determinant ac − bd,

which ensures that it is nonconstant. This is always true for our class of LFTs and a

straightforward calculation shows

Property 1 (Determinant) The LFT given by eq. 7.38 has determinant

(1 − g)(ρ1 + 1/ρ∗
1), (7.39)

which cannot vanish, since g 6= 1.



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 119

Property 2 (Inverse) Every operator Tρ1 has a unique inverse Tσ, where σ =

−1/ρ∗
1 and g is the same for ρ1 and its inverse.

Proof: Replacing ρ1 by −1/ρ∗
1 in the expressions above for a, b, c, d above results in

−d, b, c,−a, which are the coefficients in the inverse of eq. 7.38. Uniqueness follows

because the set of all LFTs forms a group.

We refer to a particle ρ followed by its inverse −1/ρ∗ as an inverse pair. It follows

from the next result that collision with an inverse pair leaves any sequence of particles

unchanged.

Property 3 (Preservation of inverse pairs) If an inverse pair collides with any

particle, the two resulting particles also form an inverse pair.

Proof: Replacing ∂/∂t by −∂/∂t in the original Manakov system (eq. 7.1) shows that

if the system is run backwards in time, the same collision rules apply if solutions are

replaced by their conjugates. Thus if an inverse pair leaves a particle σ invariant, the

conjugates of the collision products of the inverse pair do also, and hence the collision

products must themselves be an inverse pair.

Property 4 (Fixed points) Every operator Tρ1 has exactly two distinct fixed points,

ρ1 and −1/ρ∗
1. It follows that a particle is transparent to itself and the particle corre-

sponding to its inverse operator, and to no other particles.

Proof: The fixed-point condition Tρ1(ρL) = ρL using eq. 7.38 leads to a quadratic

equation, since c = g 6= 0. There are therefore at most two fixed points. The stated

fixed points are always distinct and it is easy to verify that they satisfy eq. 7.38 by

direct substitution.



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 120

The following property is expected from the fact that the two components of the

Manakov system are incoherently coupled.

Property 5 (Rotational invariance of collisions) If ρ1 and ρL are both rotated

by θ, then ρ2 and ρR are also rotated by θ.

Proof: This is easily verified using the transformation eqs. 7.23 et seq.

Property 6 (Absence of pure rotations or scalars) There is no (single-collision)

operator of the form

Tρ1(ρL) = eiθρL (7.40)

for any angle θ, or

Tρ1(ρL) = KρL (7.41)

for any real K. In particular, there is no single-collision identity operator.

Proof: First consider the possibility of pure rotations. The case θ = 0 corresponds to

the identity operator, for which every point is a fixed point, contradicting property 4.

When θ 6= 0, the fixed points of a pure rotation are 0 and ∞, so any pure rotation

must be a T0 or T∞. Since every T∞ is the inverse of a T0, it suffices to consider the

case of a T0, which has the operator T0(ρL) = (1 − g)ρL. We can write

1 − g =
k2R − k1R + i

k2R + k1R + i
, (7.42)

where we normalize by setting

∆ = k2I − k1I = 1.



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 121

This normalization is allowed because the difference in kI ’s represents the difference

in envelope velocities, and so must be nonzero if there is to be a collision. The

magnitude of 1 − g in eq. 7.42 cannot be one unless either k1R = 0 or k2R = 0, which

is not allowed.

For the possibility of a scalar multiplication, we can again restrict attention to T0’s

and eq. 7.42, by the same reasoning as above. The right-hand side of that equation

cannot be real unless k1R = 0.

The composition of any number of LFTs can be written as an LFT w = L(z), and

if it has exactly two distinct fixed points z1 and z2, it can be written in the implicit

form

w − z1
w − z2

= K · z − z1
z − z2

. (7.43)

In the single-collision case this becomes

Property 7 (Implicit form) The single-collision transformation Tρ1(ρL) can be writ-

ten in the implicit form

ρ2 − ρ1

ρ2 + 1/ρ∗
1

= K · ρL − ρ1

ρL + 1/ρ∗
1

, (7.44)

where K = (1 − g) is called the “invariant” of the LFT. By symmetry, the inverse

transformation is the same except K is replaced by 1/K.

The next result is standard [7].

Property 8 (Invariant circles) The fixed points of a LFT with two distinct fixed

points determine two orthogonal families of circles in the w plane: (1) C1, which

are the circles that pass through the fixed points; and (2) C2, which are the circles

determined by the condition that the distances to the fixed points have a constant

ratio, the circles of Apollonius. These are images, respectively, of points through the



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 122

origin and concentric circles about the origin in the w plane. The circles C1 are

mapped into themselves as a set, and similarly for the circles C2. For each circle in

C1 to be mapped onto itself, we require that invariant K = 1 − g be real, which is not

possible for a single collision. (The mapping in this case is called hyperbolic.) For

each circle in C2 to be mapped onto itself, we require that |K| = 1, which is also not

possible in the single-collision case. (The mapping in this case is called elliptic.)

One consequence of this last result is that if we can design a group of particles

with a real or modulus-one invariant K, and arrange for the unit circle to be in C1 or

C2, then the net effect of collisions with these particles will be to map the unit circle

to itself. That is, the modulus-one property of particles will be preserved on collision

with these “operator” groups, and we will effectively have a state variable with one

degree of freedom in the “processed” particles.

Property 9 (Invariant of multiple collision) Consider a composite collision with

a set of particles, each of which is either a given ρ or its inverse, and each having a

possibly different invariant Kj. The fixed points are the same as those of ρ (ρ and

−1/ρ∗) and the invariant is
∏

(K±1
j ), where we use K+1

j for the ρ’s and K−1
j for the

inverses.

Proof: The fact that the fixed points are those of ρ is an immediate consequence of

Property 4. We need to consider only the two cases of collision with two copies of ρ,

and with ρ and its inverse; the general result then follows by induction on the number

of collisions. The invariant for a transformation with fixed points ρ and −1/ρ∗ can

be written [52]

K =
a− cρ

a+ c/ρ∗
, (7.45)



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 123

using the coefficients a and c in eq. 7.38. The result for these two cases follows by

straightforward algebra.

The impossibility of achieving a pure rotation with a single collision suggests

looking for multiple collisions that do have that effect. We do so in the next section,

where we exhibit pure rotation operators realized by composite particles composed

of T0’s and T∞’s. This is achieved by carefully designing the particles’ k parameters.

7.3 Particle design

We conclude with some examples which illustrate the design of groups of particles

that effect certain transformations that have potential application to embedded logic.

Future work will explore the limits of this approach, and especially the question of

the extent to which arithmetic and possibly general computation can be encoded in

this system.

7.3.1 An i operator

A simple nontrivial operator is pure rotation by π/2, or multiplication by i. This

changes linearly polarized solitons to circularly polarized solitons, and vice versa. A

numerical search yielded the useful transformations (see table 7.2)

TρL
(ρ) = T0,1−i(ρ, 1 + i) = (1 − h∗(1 + i, 1 − i))ρ =

1√
2
e− π

4
iρ, (7.46)

TρL
(ρ) = T∞,5−i(ρ, 1 + i) =

ρ

1 − h∗(1 + i, 5 − i)
=

√
2e

3π
4
iρ, (7.47)

which, when composed, result in the transformation

U(ρ, 1 + i) = iρ. (7.48)



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 124

1 -1

-11

t

1-1

-1 1
x x

t

Figure 7.2: Numerical simulation of a NOT processor implemented in the Manakov
system. These graphs display the color-coded phase of ρ for solitons that encode data
and processors for two cases. In the initial conditions (top of graphs), the two leftmost
(data) solitons are an inverse pair that can represent a 0 in the left graph, and a 1 in
the right graph. In each graph, these solitons collide with the four rightmost (processor)
solitons, resulting in a soliton pair representing a 1 and a 0, respectively. The processor
solitons are unchanged. These graphs were obtained by numerical simulation of eq. 7.1
with µ = 1.

(Here we think of the data as right-moving and the operator as left-moving.) We

refer to U as an i operator. Its effect is achieved by first colliding a soliton (ρ, 1 + i)

with (0, 1 − i), and then colliding the result with (∞, 5 − i), which yields (iρ, 1 + i).

7.3.2 A −1 operator (NOT processor)

Composing two i operators results in the −1 operator, which with appropriate encod-

ing of information can be used as a logical NOT processor. Figs. 7.2 and 7.3 show a

NOT processor with reusable data and operator solitons. The two right-moving par-

ticles represent data and are an inverse pair, and thus leave the operator unchanged;

the left-moving group comprise the four components of the −1 operator. This figure

was obtained by direct numerical simulation of the Manakov system, with initial state



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 125

x

t t

xmode 0

mode 1

Figure 7.3: Another visualization of numerical simulation of a NOT processor imple-
mented in the Manakov system. These two graphs present the same information as either
single graph of fig. 7.2, but display the magnitude of the soliton components in both
modes (0 and 1). Each single graph of fig. 7.2 corresponds to two magnitude profiles
(one for each mode), but these magnitude graphs are the same for both graphs of fig. 7.2.
This is because the data solitons for the two NOT operations differ only in phase, whereas
the operator solitons are the same.

that contains the appropriate data and processor solitons.

We may treat this NOT processor as a controlled NOT (or exclusive-or) by ob-

serving that the processor solitons can be selected so that both the data and processor

solitons are unaffected by collisions with one another. Such processor solitons encode

a “zero” control signal, which specifies that no operation be done.

This NOT processor switches the phase of the (right-moving ±1) data particles,

using the energy partition of the (left-moving 0 and ∞) operator particles. A kind of

dual NOT gate exists, with the same composite K = −1, which uses only the phase

of the operator particles to switch the energy of the data particles. In particular, if

we use the same k’s as in the phase-switching NOT gate, code data as 0 and ∞, and

use a sequence of four ±1 operator particles, the effect is to switch 0 to ∞ and ∞

to 0 — that is, to switch all energy from one component of the data particles to the



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 126

tt

xx

Figure 7.4: Numerical simulation of an energy-switching NOT processor implemented in
the Manakov system. These graphs display the magnitude of one soliton component for
the same two operations as in the previous figures. Here the right-moving (data) particles
are the inverse pair with states ∞, 0 in the left graph, and 0,∞ in the right graph. As
before, the left-moving (operator) particles emerge unchanged, and here have initial and
final states ±1.

other. This can be checked easily by setting K = −1 and ρ1 = 1 in the implicit form,

eq. 7.44, using Property 9 for this composite collision.

7.3.3 A “move” operator

Fig. 7.5 depicts a simple example of information transfer from one particle to another,

reminiscent of an assembly-language MOVE instruction. In the initial conditions of

each graph, a “carrier” particle C collides with the middle particle; this collision

transfers information from the middle particle to C. The carrier particle then transfers

its information to another particle via a collision. The appropriate particles A, B,

and C for this operation were found through a numerical search, as with the particles

for our NOT gate.

Note that “garbage” particles arise as a result of this “move” operation. In general,



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 127

x x

t

A B

A        A       C A       B        C

t

Figure 7.5: Numerical simulation of a “move” operation implemented in the Manakov
system. These graphs display the color-coded phase of ρ. In each graph, the information
contained in the middle particle in the initial conditions (top of graphs) is moved to the
middle particle in the final conditions (bottom of graphs). The information transfer is
effected by the “carrier” particle C. These graphs were obtained by numerical simulation
of eq. 7.1 with µ = 1.

because the Manakov system is reversible, such “garbage” often appears in compu-

tations, and needs to be managed explicitly or used as part of computation, as with

conservative logic [26].

7.3.4 Particles that map the unit circle to itself

By Property 8 any composite (multi-particle) operator with an invariant K that is

real will map the unit circle to itself if the operator particles are all the same and

themselves have state on the unit circle. Let the operator particles have state ρ = eiθ.

Then by eq. 7.44, the transformation from z to w is

w − eiθ

w + eiθ
= K · z − eiθ

z + eiθ
, (7.49)



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 128

x

x x

t

t t

t

x

mode 1

mode 1mode 0

mode 0

Figure 7.6: Another visualization of numerical simulation of a “move” operation imple-
mented in the Manakov system. These graphs show the same information as fig. 7.5, but
display the magnitude of the soliton components in both modes. The top two graphs cor-
respond to the left graph of fig. 7.5, and show the magnitude of the soliton components
in modes 0 and 1. The bottom two graphs correspond to the right graph of fig. 7.5, and
show analogous information.



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 129

and therefore, if z = eiφ and w = eiψ,

ψ = θ + 2 arctan(K tan
φ− θ

2
). (7.50)

Thus, if we restrict all “data” particles to the unit circle, collision (“operator”) par-

ticles of this type will preserve that property.

For an example yielding real K, consider the composition of eight identical opera-

tor particles with k2 = 1− i, colliding with a particle having k1 = 1+ i. The resulting

invariant is, using 1 − h∗ = 2−1/2e−πi/4 from eq. 7.46, K = (2−1/2e−πi/4)8 = 1/16. We

can also mix copies of an operator particle and its inverse and use Property 9 to get

a wider variety of invariant values.

7.3.5 Group structure of state LFTs

Our numerical experiments with the state LFTs given by eqs. 7.23 and 7.25 revealed

that these LFTs have an interesting algebraic structure. For example, repeated col-

lisions of two particles sometimes return the particles to their pre-collision states.

It is possible to adjust the states ρ1 and ρ2 of a particle pair so that the particles

require a given number of collisions with each other to revert back to these states;

we refer to this number as the period of the particle pair. Each particle goes through

a sequence of states during the collisions, and we can use these intermediate states

to create particle sequences whose compound collisions with each other leave the se-

quences unchanged; we call such particle sequences braids. Fig. 7.7 shows an example

collision of two braids of six particles each; note that the braids emerge unchanged

after all collisions. We found these braids through a numerical search, but algebraic

methods could probably be used to find braids and other structures. We leave this

as an interesting area for further study.



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 130

Figure 7.7: Numerical simulation of the compound collision of two soliton braids in the
Manakov system. This graph displays the color coded phase of ρ, and was obtained by
numerical simulation of eq. 7.1 with µ = 1.



CHAPTER 7. COMPUTATION IN THE MANAKOV SYSTEM 131

7.4 Discussion

The line of inquiry followed in this chapter suggests that it may be possible to perform

useful computation in bulk media by using colliding solitons alone, and leads to

many open questions. First, it would be useful to obtain a complete mathematical

characterization of the state LFTs obtainable by composing either a finite number

— or an infinite number — of the special ones induced by collisions in the Manakov

system. Second, we should like to know whether the complex-valued polarization

state used here for the Manakov system is also useful in other multimode systems,

especially those that are near-integrable and support spatial solitons [45, 8, 25, 78,

81, 83, 87, 86, 97, 82, 91]. Finally, we need to study the computational power of this

and related systems from the point of view of implementing logic of some generality.

In particular, which systems in 1 + 1 or 2 + 1 dimensions, integrable or nonintegrable,

are Turing-equivalent and therefore universal?



Chapter 8

Summary and Future Work

We have studied a nonstandard method of computation based on solitons in uniform

media. Such a computing design is one way to exploit the fine-grain parallelism of

physical systems, and potentially to build machines orders of magnitude faster and

more efficient than existing computers, at least for certain computational tasks.

This dissertation leaves many interesting directions of study to follow, both experi-

mental and theoretical. It would be instructive to implement one of the computational

examples from chapter 7 in an actual laboratory setup, with lasers and special optical

fibers, glasses, or crystals. This would provide a proof of concept and encourage fur-

ther theoretical study to encode more complicated operations in the Manakov system.

Perhaps such an experiment could be done in the more easily realizable saturable NLS

system, provided that state and state transformations could be characterized for this

nonintegrable equation.

Many unanswered questions are left about the Manakov system. Our numerical

experiments with the LFTs that describe collisions in this system reveal that the group

of these LFTs has a rich and interesting structure. Fully characterizing this structure

may open the door to easier design of arbitrary computation in the Manakov system.

132



CHAPTER 8. SUMMARY AND FUTURE WORK 133

The question of Turing universality of this system is an interesting open problem. A

less ambitious but currently more useful task is to search for particles to do other

computations in the system; since we have exact formulas for the state changes of

Manakov solitons, such a search could perhaps be automated, or novel ways could be

found to look for various computations.

Finally, there are a great number of other soliton systems, both integrable and

nonintegrable, to explore as means of implementing PMs. A question that appears

to be open is whether or not a method other than numerical simulation exists to

determine state changes of nonintegrable solitons after collision. In general, finding

analytical ways to study such systems appears to be an area with many unsolved

problems, and solutions of such problems could lead to useful computation in nonin-

tegrable systems.



Bibliography

[1] Intel Architecture Optimization Manual. Intel Corp., http://www.intel.com/,
1997.

[2] M. J. Ablowitz and P. A. Clarkson. Solitons, Nonlinear Evolution Equations,
and Inverse Scattering. Cambridge University Press, Cambridge, UK, 1991.

[3] M. J. Ablowitz, M. D. Kruskal, and J. F. Ladik. Solitary wave collisions. SIAM
Journal of Applied Mathematics, 36(3):429–437, 1979.

[4] M. J. Ablowitz and H. Segur. Solitons and the Inverse Scattering Transform.
SIAM, Philadelphia, PA, 1981.

[5] L. M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266:1021–1024, 1994.

[6] G. P. Agrawal. Nonlinear Fiber Optics. Academic Press, Inc. (Harcourt, Brace
and Co.), San Diego, CA, 1995.

[7] L. V. Ahlfors. Complex Analysis. McGraw-Hill, New York, third edition, 1979.

[8] J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E.
Leaird, E. M. Vogel, and P. W. Smith. Observation of spatial optical solitons
in a nonlinear glass waveguide. Optics Letters, 15:471, 1990.

[9] S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin. Optics of Femtosecond
Laser Pulses. American Institute of Physics, New York, 1992.

[10] J. Albert and K. Culik II. A simple universal cellular automaton and its one-way
and totalistic version. Complex Systems, 1:1–16, 1987.

[11] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research
and Development, 17:525–532, 1973.

[12] C. H. Bennett. Notes on the history of reversible computation. IBM Journal
of Research and Development, 32(1):16–23, 1988.

134



BIBLIOGRAPHY 135

[13] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your
Mathematical Plays. Academic Press, New York, NY, 1982.

[14] I. Bia lynicki-Birula and J. Mycielski. Nonlinear wave mechanics. Annals of
Physics, 100:62–93, 1976.

[15] I. Bia lynicki-Birula and J. Mycielski. Gaussons: Solitons of the logarithmic
Schrödinger equation. Physica Scripta, 20:539–544, 1979.

[16] R. Y. Chiao, E. Garmire, and C. H. Townes. Self-trapping of optical beams.
Physical Review Letters, 13, 1964.

[17] D. Deutsch. Quantum theory, the Church-Turing principle and the universal
quantum computer. Proceedings of the Royal Society of London, A400:97–117,
1985.

[18] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation.
Proceedings of the Royal Society of London, A439:553–558, 1992.

[19] A. K. Dewdney. On the spaghetti computer and other analog gadgets for prob-
lem solving. Scientific American, 250(6):19–26, June 1984.

[20] P. G. Drazin and R. S. Johnson. Solitons: An Introduction. Cambridge Uni-
versity Press, Cambridge, UK, 1989.

[21] E. Fermi, J. R. Pasta, and S. M. Ulam. Studies of nonlinear problems. In
Collected Papers of Enrico Fermi, volume 2, pages 978–988. Univ. of Chicago
Press, Chicago, IL, 1965.

[22] J. A. Fleck, J. R. Morris, and M. D. Feit. Time-dependent propagation of high
energy laser beams through the atmosphere. Applied Physics, 10:129–160, 1976.

[23] A. S. Fokas, E. Papadopoulou, and Y. Saridakis. Particles in soliton cellular
automata. Complex Systems, 3:615–633, 1989.

[24] A. S. Fokas, E. Papadopoulou, and Y. Saridakis. Coherent structures in cellular
automata. Physics Letters, 147A(7):369–379, 1990.

[25] H. Frauenkron, Y. S. Kivshar, and B. A. Malomed. Multisoliton collisions in
nearly integrable systems. Physical Review E, 54:2244R–2247R, 1996.

[26] E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theo-
retical Physics, 21(3/4):219, 1982.

[27] N. C. Freeman. Soliton interaction in two dimensions. Advances in Applied
Mechanics, 20:1–37, 1980.



BIBLIOGRAPHY 136

[28] U. Frisch, D. d’Humie’res, B. Hasslacher, P. L. Y. Pomeau, and J. P. Rivet.
Lattice gas hydrodynamics in two and three dimensions. Complex Systems,
1:649–707, 1987.

[29] R. Gähler, A. G. Klein, and A. Zeilinger. Neutron optical tests of nonlinear
wave mechanics. Physical Review A, 23(4):1611–1617, 1981.

[30] C. S. Gardner, J. M. Greene, and M. D. Kruskal. Method for solving the
Korteweg-de Vries equation. Physical Review Letters, 19:1095–1097, 1967.

[31] A. Goldberg, H. M. Schey, and J. L. Schwartz. Computer-generated motion
pictures of one-dimensional quantum- mechanical transmission and reflection
phenomena. American Journal of Physics, 35(3):177–187, 1967.

[32] C. H. Goldberg. Parity filter automata. Complex Systems, 2:91–141, 1988.

[33] H. A. Haus. Optical fiber solitons, their properties and uses. Proceedings of the
IEEE, 81(7):970–983, 1993.

[34] R. Hirota. Exact solution of the Korteweg-de Vries equation for multiple colli-
sions of solitons. Physical Review Letters, 27:1192, 1971.

[35] R. Hirota. Exact solution of the modified Korteweg-de Vries equation for mul-
tiple collisions of solitons. Journal of the Physical Society of Japan, 33(5):1456–
1458, 1972.

[36] R. Hirota. Exact solution of the sine-Gordon equation for multiple collisions of
solitons. Journal of the Physical Society of Japan, 33(5):1459–1463, 1972.

[37] J. E. Hopcroft and J. D. Ullman. Introducton to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA, 1979.

[38] M. N. Islam. Ultrafast Fiber Switching Devices and Systems. Cambridge Uni-
versity Press, Cambridge, UK, 1992.

[39] M. N. Islam and C. E. Soccolich. Billiard-ball soliton interaction gates. Optics
Letters, 16(19):1490–1492, 1991.

[40] N. Islam, J. Singh, , and K. Steiglitz. Soliton phase shifts in a dissipative lattice.
Journal of Applied Physics, 62(2):689–693, 1987.

[41] M. H. Jakubowski, K. Steiglitz, and R. Squier. State transformations of colliding
optical solitons and possible application to computation in bulk media. Physical
Review E, 58:6752–6758, 1998.



BIBLIOGRAPHY 137

[42] M. H. Jakubowski, K. Steiglitz, and R. K. Squier. Implementation of parallel
arithmetic in a cellular automaton. In 1995 Int. Conf. on Application Specific
Array Processors, Strasbourg, France (P. Cappello et al., ed.), Los Alamitos,
CA, July 24–26, 1995. IEEE Computer Society Press.

[43] M. H. Jakubowski, K. Steiglitz, and R. K. Squier. Relative computational power
of integrable and nonintegrable soliton systems. In Fourth Workshop in Physics
and Computation: PhysComp ’96, Cambridge, MA, Nov. 1996. New England
Complex Systems Institute.

[44] M. H. Jakubowski, K. Steiglitz, and R. K. Squier. When can solitons compute?
Complex Systems, 10(1):1, 1996.

[45] M. H. Jakubowski, K. Steiglitz, and R. K. Squier. Information transfer be-
tween solitary waves in the saturable Schrödinger equation. Physical Review E,
56:7267, 1997.

[46] M. H. Jakubowski, K. Steiglitz, and R. K. Squier. Embedding computation
in nonlinear optical media using collisions of Manakov solitons. In Int. Conf.
on Complex Systems: ICCS ’98, Cambridge, MA, Oct. 1998. New England
Complex Systems Institute.

[47] D. J. Kaup and B. A. Malomed. Soliton trapping and daughter waves in the
Manakov model. Physical Review A, 48(1):599, 1993.

[48] R. W. Keyes. Miniaturization of electronics and its limits. IBM Journal of
Research and Development, 32(1):24–28, Jan. 1988.

[49] D. J. Korteweg and G. de Vries. On the change of form of long waves advancing
in a rectangular canal, and on a new type of long stationary waves. Philosophical
Magazine, 39:422–443, 1895.

[50] H. T. Kung. Why systolic architectures? IEEE Computer, 15(1):37–46, Jan.
1982.

[51] S. Y. Kung, S. C. Lo, S. N. Jean, and J. N. Hwang. Wavefront array processors:
Concept to implementation. IEEE Computer, 20(2):18–32, 1987.

[52] A. Kyrala. Applied Functions of a Complex Variable. Wiley-Interscience, New
York, 1972.

[53] F. T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan
Kaufman Publishers, San Mateo, CA, 1992.

[54] R. J. Lipton. DNA solution of hard computational problems. Science, 268:542–
548, 1995.



BIBLIOGRAPHY 138

[55] P. S. Lomdahl. What is a soliton? Los Alamos Science, 10:27–31, 1984.

[56] D. Lopresti. P-NAC: A systolic array for comparing nucleic acid sequences.
IEEE Computer, 20(2):98–99, 1987.

[57] M. O. Magnasco. Chemical kinetics is Turing universal. Physical Review E,
87(6):1190–1193, Feb. 1997.

[58] V. G. Makhankov. Computer and solitons. Physica Scripta, 20:558–562, 1979.

[59] V. G. Makhankov. Soliton Phenomenology. Kluwer Academic Publishers, Nor-
well, MA, 1990.

[60] S. V. Manakov. On the theory of two-dimensional stationary self-focusing of
electromagnetic waves. Soviet Physics: JETP, 38(2):248, Feb. 1974.

[61] N. Margolus. Physics-like models of computation. Physica, 10D:81–95, 1984.

[62] Y. V. Matiyasevich. Possible nontraditional methods of establishing unsatisfia-
bility of propositional formulas. American Mathematical Society Translations,
178(2):75–77, 1996.

[63] L. F. Mollenauer and K. Smith. Demonstration of soliton transmission over
more than 4,000 km in fiber with loss periodically compensated by Raman
gain. Optics Letters, 13:675–677, 1989.

[64] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon. Experimental observation
of picosecond pulse narrowing and solitons in optical fibers. Physical Review
Letters, 45, 1980.

[65] A. C. Newell and J. V. Moloney. Nonlinear Optics. Addison-Wesley, Redwood
City, CA, 1992.

[66] J. Oficjalski and I. Bia lynicki-Birula. Collisions of gaussons. Acta Physica
Polonica, B9:759–775, 1978.

[67] P. J. Olver and D. H. Sattinger (editors). Solitons in Physics, Mathematics,
and Nonlinear Optics. Springer-Verlag, New York, NY, 1990.

[68] J. K. Park, K. Steiglitz, and W. P. Thurston. Soliton-like behavior in automata.
Physica, 19D:423–432, 1986.

[69] G. E. Peterson. Electrical transmission lines as models for soliton propagation
in materials: Elementary aspects of video solitons. AT&T Bell Laboratories
Technical Journal, 63(6):901–919, 1984.

[70] R. Radhakrishnan and M. Lakshmanan. Bright and dark soliton solutions to
coupled nonlinear Schrödinger equations. Journal of Physics A, 28:2683, 1995.



BIBLIOGRAPHY 139

[71] R. Radhakrishnan, M. Lakshmanan, and J. Hietarinta. Inelastic collision and
switching of coupled bright solitons in optical fibers. Physical Review E, 56:2213,
1997.

[72] A. L. Robinson. Computing without dissipating energy. Science, 223:1164–1166,
1984.

[73] D. Sankoff and J. B. Kruskal. Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading,
MA, 1983.

[74] J. Satsuma. N-soliton solution of the two-dimensional Korteweg-de Vries equa-
tion. Journal of the Physical Society of Japan, 40(1):286–290, 1976.

[75] A. C. Scott. The Sine-Gordon equation. AMS Lectures in Applied Mathematics,
15:211–213, 1974.

[76] A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin. The soliton: A new concept
in applied science. Proceedings of the IEEE, 61(10):1443–1483, 1973.

[77] J. Scott-Russell. Report on waves. In Proceedings of the Royal Society of
Edinburgh, pages 319–320, 1844.

[78] M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv. Steady-
state spatial screening solitons in photorefractive materials with external ap-
plied field. Physical Review Letters, 73:3211, 1994.

[79] T. Shanley. Pentium Pro Processor System Architecture. MindShare, Inc.
(Addison-Wesley), Reading, MA, 1997.

[80] S. S. Shen. A Course on Nonlinear Waves. Kluwer Academic Publishers,
Norwell, MA, 1993.

[81] M. Shih and M. Segev. Incoherent collisions between two-dimensional
bright steady-state photorefractive spatial screening solitons. Optics Letters,
21(19):1538, 1996.

[82] M. Shih, M. Segev, and G. Salamo. Three-dimensional spiraling of interacting
spatial solitons. Physical Review Letters, 78:2551, 1997.

[83] M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. DiPorto.
Observation of two-dimensional steady-state photorefractive screening solitons.
Electronics Letters, 31(10):826, 1995.

[84] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th Annual Symposium on Foundations of Computer Science,
pages 20–22. IEEE Press, 1994.



BIBLIOGRAPHY 140

[85] D. Simon. On the power of quantum computation. In 35th Annual Symposium
on Foundations of Computer Science, pages 116–123. IEEE Press, 1994.

[86] A. W. Snyder, D. J. Mitchell, and Y. S. Kivshar. Unification of linear and
nonlinear wave optics. Modern Physics Letters B, 9(23):1479–1506, 1995.

[87] A. W. Snyder and A. P. Sheppard. Collisions, steering, and guidance with
spatial solitons. Optics Letters, 18(7):482–484, 1993.

[88] R. Squier and K. Steiglitz. 2-d FHP lattice gasses are computation universal.
Complex Systems, 7:297–307, 1993.

[89] R. Squier and K. Steiglitz. Programmable parallel arithmetic in cellular au-
tomata using a particle model. Complex Systems, 8:311, 1994.

[90] R. K. Squier and K. Steiglitz. Subatomic particle machines: Parallel processing
in bulk material. Submitted to Signal Processing Letters.

[91] V. V. Steblina, Y. S. Kivshar, and A. V. Buryak. Scattering and spiraling of
solitons in a bulk quadratic medium. Optics Letters, 23:156, 1998.

[92] K. Steiglitz. Two non-standard paradigms for computation: Analog machines
and cellular automata. In Performance Limits in Communication Ttheory
and Practice (NATO Advanced Study Institutes Series E), pages 173–192, Dor-
drecht, The Netherlands, 1988. Kluwer Academic Publishers.

[93] K. Steiglitz, I. Kamal, and A. Watson. Embedding computation in one-
dimensional automata by phase coding solitons. IEEE Transactions on Com-
puters, 37(2):138–145, 1988.

[94] T. R. Taha and M. J. Ablowitz. Analytical and numerical aspects of certain
nonlinear evolution equations. Journal of Computational Physics, 55:192–202,
1984.

[95] S. Takeuchi. A simple quantum computer: experimental realization of the
Deutsch-Jozsa algorithm with linear optics. In Fourth Workshop in Physics
and Computation: PhysComp ’96, pages 299–302, Cambridge, MA, Nov. 1996.
New England Complex Systems Institute.

[96] J. R. Taylor (editor). Optical Solitons: Theory and Experiment. Cambridge
University Press, Cambridge, UK, 1992.

[97] V. Tikhonenko, J. Christou, and B. Luther-Davies. Three-dimensional bright
spatial soliton collision and fusion in a saturable nonlinear medium. Physical
Review Letters, 76:2698, 1996.



BIBLIOGRAPHY 141

[98] M. Toda. Nonlinear Waves and Solitons. Kluwer Academic Publishers, Boston,
MA, 1989.

[99] T. Toffoli. CAM: A high-performance cellular-automaton machine. Physica,
10D:195–204, 1984.

[100] T. Toffoli. Fine-grained models and massively parallel architectures: The case
for programmable matter. In 1995 SIAM Conference on Parallel Processing for
Scientific Computing, Feb. 1995.

[101] T. Toffoli, M. Biafore, and J. Leão (editors). Fourth Workshop on Physics
and Computation: PhysComp ’96. New England Complex Systems Institute,
Cambridge, MA, 1996.

[102] T. Toffoli and N. Margolus. Cellular Automata Machines. MIT Press, Cam-
bridge, MA, 1987.

[103] A. Vergis, K. Steiglitz, and B. Dickinson. The complexity of analog computa-
tion. Mathematics and Computers in Simulation, 28:91–113, 1986.

[104] J. von Neumann (edited by A. W. Burks). Theory of Self-reproducing Automata.
Univ. of Illinois Press, 1966.

[105] M. J. Werner and S. R. Friberg. Phase transitions and the internal noise
structure of nonlinear Schrödinger equation solitons. Physical Review Letters,
79:4143–4146, 1997.

[106] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design. Addison-
Wesley, Reading, MA, 1985.

[107] E. Winfree, X. Yang, and N. C. Seeman. Universal computation via self-
assembly of DNA: Some theory and experiments. In Second DIMACS Meeting
on DNA Based Computers, Princeton, NJ, 1996.

[108] S. Wolfram. Universality and complexity in cellular automata. Physica, 10D:1–
35, 1984.

[109] A. Yariv and P. Yeh. Nonlinear Waves in Crystals. Wiley, New York, 1984.

[110] N. J. Zabusky and M. D. Kruskal. Interaction of solitons in a collisionless
plasma and the recurrence of initial states. Physical Review Letters, 15(6):240–
243, Aug. 1965.


