
Computing without Clocks:

Micropipelining the ARM Processor

Steve Furber

Department of Computer Science, University of Manchester

Oxford Road, Manchester M13 9PL, England.

Abstract

High-performance VLSI microprocessors are becoming very power hungry;

this presents an increasing problem of heat removal in desk-top machines and

of battery life in portable machines. Asynchronous operation is proposed as a

route to more energy efficient computing. In his 1988 Turing Award Lecture,

Ivan Sutherland proposed a modular approach to asynchronous design based

on “Micropipelines”. The AMULET group at Manchester University has

developed an asynchronous implementation of the ARM microprocessor based

on micropipelines as part of a broad investigation into low power techniques.

The design is described in detail, the rationale for the work is presented and the

characteristics of the chip described. The first silicon from the design arrived in

April 1994 and an evaluation of it is presented here.

1 Motivation

The motivation for the work described in this chapter stems from the need for

approaches to the design of VLSI devices which result in chips with lower power

consumption, and from the potential which asynchronous logic appears to have to

meet this need.

1.1 Power Trends

VLSI techniques with lower power consumption are needed for at least two different

reasons.

Firstly, the portable equipment market is growing rapidly. Products such as lap-

top computers and personal digital assistants rely on batteries for power, hence bat-

tery life is an important specification point. Mobile telephones are increasingly using

significant computational functions, and again battery life is a key feature in the mar-

ketplace.

Secondly, the trend in CMOS VLSI is towards very high dissipation. Chips like

the DEC Alpha and the TI Viking SPARC illustrate the trend towards unmanageable

power consumption where 20 to 30 watts is not unusual for a high-performance

CMOS processor today. If current design practice were to continue, by the year 2000

we would expect to see a 0.1µm 5V CMOS processor dissipating 2kW! Of course,

there are trends towards lower supply voltages which reduce the power somewhat,

but 3v (and later 2v) operation only reduces power by a factor of 3 (and then 6). More

is needed if the technology of the next century is not to have its performance poten-

tial compromised by power issues.

The desirability of lower power consumption is now widely recognised and many

conferences have sessions and keynote speeches on the subject. There have been

workshops dedicated to low power, and manufacturers of commercial processors are

incorporating power management features into their products. The goal of more

power-efficient design is not contentious; what is contentious is the proposition that

asynchronous logic may have a role to play in achieving this goal.

1.2 Asynchronous Logic

There has recently been a resurgence of interest in asynchronous logic design tech-

niques, which had for two previous decades been largely neglected by designers. One

reason for this renewed interest is the observation that synchronous logic is beginning

to run into serious limits. As VLSI devices incorporate increasing numbers of transis-

tors it is becoming increasingly difficult to maintain the global synchrony on which

synchronous designs depend. Clock skew is already a problem at board level, and is

increasingly becoming a problem on a single chip. Most notable amongst recent vic-

tories over clock skew is the DEC Alpha [1], where the clocking system is a major

feat of engineering and the statistics of the clock drivers (such as the proportion of

silicon area they occupy, the sizes of the transistors, the peak currents, etc.) are

viewed with some awe by most ‘normal’ designers. But the fact that these feats were

needed on the Alpha serves here to demonstrate the point that synchronous design is

beginning to approach its limits.

Asynchronous logic abandons global synchrony in favour of locally generated

timing signals and is therefore unaffected by clock skew. It also displays a number of

specific advantages over clocked logic, particularly when low power consumption is

an objective:

• Power is only used to do useful work. In synchronous design the clocks are

applied to all units whether or not they are doing anything useful. Recent

developments in power management may gate off clocks from some areas of

the design, but these typically are applied at a coarse granularity. Straightfor-

ward asynchronous design only activates units when they are required to do

useful work.

• Designs can be optimised for typical conditions. When timing is defined by a

fixed clock, all operations must complete within a fixed period. Synchronous

designs therefore expend considerable silicon resource on making rare worst-

case operations fast. This usually results in complex circuits which use more

power than is necessary under typical conditions. An asynchronous design can

allow worst case operations to proceed more slowly and focus the use of

resource on operations which occur frequently.

Therefore asynchronous design appears to have considerable potential for power-effi-

cient design. However, asynchronous design is not new; in the early days of comput-

ing many designs used asynchronous approaches, but these were later abandoned in

favour of synchronous styles because of the inherent difficulties of asynchronous

operation. Are these difficulties still an obstacle to a wide acceptance of asynchro-

nous logic?

This question remains to be answered. The following observations may go some

way towards addressing it:

• Synchronous designs are getting increasingly complex and, where power-effi-

ciency is important, clock gating is used with increasingly fine granularity. In

the limit, clock gated synchronous circuits look very like fully asynchronous

circuits, so perhaps this complexity is unavoidable where power-efficiency is a

goal.

• The clock in a synchronous circuit has a role similar to a global variable in a

computer program. Object-oriented programming styles are increasingly

accepted as ways to increase programmer productivity by precluding global

variables and encapsulating data. Asynchronous logic styles with well defined

interfaces have many of the properties of object-oriented programming styles

and may show the same benefits in designer productivity for systems above a

certain level of complexity.

• Mathematical techniques are being developed and applied with increasing suc-

cess to address some of the difficulties inherent in asynchronous design, such

as proving circuits are free from deadlock.

Whilst the above arguments do not constitute conclusive proof that asynchronous

design has advantages over clocked design sufficient to justify an immediate aban-

doning of synchronous styles by all designers, they do at least suggest that asynchro-

nous design is worth investigating again to see to what extent its potential for power-

efficiency can be realised. The AMULET group at the University of Manchester was

established late in 1990 to carry out such an investigation. This chapter documents

the first work of this group, the design and evaluation of AMULET1, an asynchro-

nous implementation of the ARM microprocessor.

The chapter begins with a description of Sutherland’s micropipelines, which were

used as the basis for the asynchronous design style employed on AMULET1. Details

of the event control cells which manage the interactions between micropipelines are

presented along with discussions of various low-level VLSI design issues. The ARM

processor is introduced and the asynchronous organisation of AMULET1 described.

The results of the evaluation of the first silicon are presented, and the chapter closes

with a discussion of the conclusions which may be drawn from the work so far and

suggested directions for future work.

2 Sutherland’s Micropipelines

The asynchronous design style used in AMULET1 is based on Sutherland’s Micropi-

pelines [2] which employ a 2-phase bundled data interface for sending data between

functional units. 2-phase (or transition) signalling uses both rising and falling edges

in turn to signal the same event; rising and falling edges are equivalent and carry the

same information (figure 1).

A bundled data interface passes a binary value encoded conventionally on a bus

from sender to receiver along with a Request wire which indicates when the data is

valid and an Acknowledge wire which indicates when the data has been received (fig-

ure 2).

The communication protocol is illustrated by the timing diagram in figure 3. A

valid data value is placed on a conventional bus by the sender which then indicates

the availability of the data by causing a transition on the Request wire. The receiver

senses this transition, accepts the data and then causes a transition on the Acknowl-

edge wire, completing the transfer. The sender may then issue another data value in a

similar manner. Note that only the order of these events is significant; the delays

between them are arbitrary (though long delays will, of course, reduce performance).

Also note that the Request and Acknowledge wires use 2-phase signalling; rising and

falling edges are both significant and have the same meaning.

In order to design circuits based on micropipelines, a few event control blocks are

required. The basic set of event control blocks proposed by Sutherland is illustrated

in figure 4.

The Muller C-gate performs the rendezvous function for events; it waits until it

has received an event on both of its inputs before issuing an event on its output.

The XOR (exclusive-OR) gate performs the merge function for events; a transi-

tion on either input results in a transition on its output.

The toggle cell transfers an event from its input to its two outputs alternately; the

first event to arrive is issued to the output marked with a dot, the second to the

unmarked output, and so on.

Figure 1: Transition signalling

Figure 2: A bundled data interface

=

Data

sender receiver

Request

Acknowledge

The select block allows a boolean, usually derived from the binary data, to direct

the input event to the True or False output.

The call block allows two independent processes to share a common subprocess;

requests on r1 and r2 are routed through to r, and the completion signal on d is routed

back to the caller. The calling processes must be mutually exclusive; if they are not,

they must access the call block through an arbiter.

The arbiter accepts asynchronous requests on r1 and r2 and grants only one of

them at a time on g1 or g2. When the shared resource is given up (signalled by an

event on d1 or d2) the arbiter will then grant the other request if it is pending. The

arbiter must be designed to allow for metastability in its internal circuitry, but if this

is done correctly reliable operation is possible.

In order to construct a micropipeline circuit, it is necessary to employ event con-

Figure 3: The 2-phase bundled data convention

Figure 4: Event logic modules

Request

Acknowledge

Data

C

r1

d1

d2

r2

r

d
call

toggle

g1

d1

d2
g2

r1

r2

arbiter

T

F

select

trolled latches to hold the data stable. The high-level view of a micropipeline latch is

shown in figure 5. The latch begins in a transparent state. The C-gate has a ‘bubble’

on the lower input, indicating that in its initial state this input is primed (as though an

event has already arrived). An event on the input request wire (Rin) indicates that the

input data is valid. This event passes through the C-gate to the latch ‘capture’ input,

causing the data to be latched. When the latch has captured the data it issues an event

on ‘capture done’, which is copied back as the input acknowledge (the sender may

now remove the data) and forward as the output request (the output data is now

valid). The output data is held stable until an acknowledge is received from the out-

put channel, whereupon the latch is put back into ‘pass’ (transparent) mode and the

C-gate re-primed ready for the next input request. Note that this request may already

have arrived; the C-gate waits until the output has acknowledged and the input

requested before firing and thereby ensures the correct operation of the latch what-

ever the relative timings on the input and output sides.

The event register in figure 5 can be replicated to form a first-in first-out (FIFO)

buffer as shown in figure 6. A data value can be placed into the left event register by

signalling an event on Rin, whereupon it will be passed along to the right register at a

speed determined only by the properties of the logic technology from which it is con-

structed. The right register will then issue an event on Rout and hold the data stable

until it receives an acknowledge on Aout. In the meantime further values may be

entered from the left until the FIFO is full (i.e. each event register holds a data value),

whereupon the first stage will not acknowledge the last value entered and the input

process will stall until a value is removed by the output process.

The FIFO has two important parameters which define its performance:

• Latency - the speed at which new data passes through an empty FIFO. This

parameter may not be significant in some applications where a steady stream

of values flows through the FIFO. But when micropipelines are applied to the

design of a microprocessor, the FIFO is likely to be flushed from time to time

and then the latency will influence the speed with which a new processing

thread may be established.

Figure 5: A micropipeline event driven register

C

Rin Ain

Aout Rout

data in

data out

Capture Capture Done

Pass Done Pass

• Throughput - the maximum sustainable data rate. This parameter plays the

same role as the maximum clock rate in a synchronous pipeline.

One of the features of the micropipeline FIFO is its elasticity. Data can be entered at

any rate up to a maximum defined by the throughput parameter and limited only by

the FIFO becoming full, and it can be removed at any rate up to a similar maximum

limited only by the FIFO becoming empty. Within these limits the structure will

buffer a variable number of data values and pass new input values to the output at a

speed limited only by the process technology. Compare this with a clocked pipeline

where the input and output are regimented by the clock, and the input to output delay

is a fixed number of clock cycles.

The micropipeline FIFO is fine as a buffer, but performs no logical processing on

the data that flows through it. By interspersing logic between the event registers in a

FIFO, a micropipeline with processing functions can be built (figure 7). The logic in

the data route incurs some delay in the arrival of the input data at the next register, so

a corresponding delay must be introduced into the request line to ensure that the bun-

dling constraint is met at the input of the next register. This delay element may be

implemented in a number of ways; examples on AMULET1 include:

• A 33rd register read bit which always makes a transition whenever a register is

read. This 33rd bit is used to signal completion of the register read process.

Figure 6: A FIFO - the canonical micropipeline

Figure 7: A FIFO with processing

Rin Rout

Ain Aout

Event
Reg

Rin Rout

Ain Aout

Event
Reg

Rin Rout

Ain Aout

Event
Reg

Rin

Ain

Rin

Ain

Rin

Ain

Rout

Aout

Event
Reg

delay Rout

Aout

Event
Reg

delay Rout

Aout

Event
Reglogic logic

• A data dependent delay which follows the longest carry path in the ALU. The

time which must be allowed for the ALU to complete depends on the data val-

ues being processed (and the function being evaluated; logical functions are

much faster than addition and subtraction). The delay which is introduced to

match the ALU delay similarly is a function of the operand values, giving a

data dependent delay.

The need to produce matched delays in micropipelines is a source of concern to many

designers of clocked chips. Whilst not wishing to underplay the difficulties inherent

in this approach, it should be noted that such delay matching is not uncommon in cur-

rent synchronous designs. CMOS PLAs frequently use self-timed paths to allow

dynamic operation and to eliminate DC currents, and SRAMs use self-timed paths to

turn off sense amplifiers in order to save power. Delay matching is not particularly

difficult in a full-custom design environment where the tolerances of the target proc-

ess are well understood, but it becomes increasingly problematic where process port-

ability is important, or where automatically laid out standard cell design is to be used,

or where field programmable gate arrays are the target implementation technology.

The problem can be solved in all of these cases, but usually at the cost of increasing

margins and therefore compromising performance.

3 Micropipeline Latch Structures

Sutherland proposed a latch for use in micropipelines which operates directly from

the 2-phase capture and pass signals. The principle of this latch is illustrated in figure

8. Here the latch is shown in its initial, transparent, condition. An event on the cap-

ture wire (the output of the C-gate) switches the upper two multiplexers over, holding

the data in a feedback loop and isolating the output from the input. A subsequent

event on the ‘pass’ wire (from Aout) switches the output multiplexer over, reconnect-

ing the input through to the output.

Note in this figure how the event wires pass across the latches so that the capaci-

Figure 8: Sutherland’s ‘capture-pass’ latch

C

Rin

Aout

Ain

Rout

data in

data out

tive load of the latches affects the speed of operation of the control circuits. This is a

common factor in all the latch designs presented here and allows the event paths to

‘measure’ the latch loading to ensure correct operation under all conditions by pre-

venting the control circuits from operating faster than the latch control wires can

switch.

AMULET1 does not use the Sutherland capture-pass latch. Instead, conventional

level-sensitive transparent latches are used with a more complex control circuit as

shown in figure 9. Here the XOR gate and toggle operate as a 2-phase to 4-phase con-

version circuit. After initialisation the latch is transparent. A capture event from the

C-gate closes the latch and the toggle steers that event to Rout and Ain. The pass

event from Aout puts the latch back into its transparent state, then the toggle steers

the ‘pass done’ event back to re-arm the C-gate. Note again how the events which

change the state of the latch are ‘measured’ to ensure that the control circuits wait for

the latch to complete its operation.

This latch was used in preference to the ‘capture-pass’ latch mainly because it is

more area efficient for wide buses than Sutherland’s latch. Its operation is very safe

with respect to bundling constraints. Input data which changes very close to its

request will be latched with a good set-up time into the latches since the C-gate, XOR

and latch enable line delays all increase the input margins. Rout is delayed further by

the latch enable and toggle delays so the output bundle is well margined.

The latch has a latency (Rin to Rout time) of around 10ns on a 5V 1µm CMOS

process (worst case temperature, power supply and process parameters) and when

several such latches are built into a FIFO structure the bandwidth corresponds to a

latch cycle time of around 30ns.

The latch circuit shown in figure 9 is widely used on AMULET1. There are some

places, however, where its latency is too high. One such place is the instruction

prefetch buffer. When a branch is taken this buffer is flushed and the branch target

instruction must pass through 5 latch stages in this buffer before it can begin execu-

tion, which at 10ns per stage would add significantly to the branch cost. In such cases

a slightly modified ‘fast forward’ form of the latch is used. This latch control struc-

Figure 9: An event latch based on a conventional transparent latch

toggle

Rin

Aout

Ain

Rout

data in

data out

C
latch

ture is shown in figure 10.

The change to the control circuit is to take Rout directly from the C-gate output

rather than from the toggle. This is allowable (under certain conditions) since Rout

indicates merely that the output data is valid; it need not be delayed until the latches

have closed. This latch has a faster forward propagation time (around 2ns Rin to

Rout) than the standard latch, giving the 5-stage instruction buffer a refill latency of

10ns rather than the 50ns it would have using standard latches.

The fast-forward latch is less safe on bundling constraints and requires the latch

input to output time to be no slower than the C-gate delay. It also requires the Rout to

Aout delay to be above a minimum value. This is readily satisfied when several of

these latches are composed into a FIFO; under these conditions the latch operates

safely and has a cycle time around 20ns.

All the above latches are transparent when empty, so transients on the input data

buses will propagate through the latches, causing power to be dissipated uselessly

down the pipeline. In some cases it is highly desirable to eliminate this effect in order

Figure 10: A ‘fast forward’ event latch

Figure 11: A blocking (normally closed) event latch

toggle

Rin

Aout

Ain

Rout

data in

data out

C
latch

toggle

Rin

Aout

Ain

Rout

data in

data out

C
latch

to save power, and indeed this may be achieved by inserting a ‘blocking’ (normally

closed) latch at the top of the pipeline. A control circuit for a blocking latch is shown

in figure 11.

The blocking latch uses the first event from the C-gate to open the latches, letting

the data through to the output. The toggle returns this event to the XOR, where it then

closes the latch and is passed through the toggle to Rout and Ain. Aout simply re-

primes the C-gate. This latch is very safe with respect to the bundling constraints, but

is rather slower than the previous latches with an Rin to Rout time of around 20ns on

1µm CMOS (worst case) and around 40ns cycle time when built into a FIFO.

4 Event Control Elements

The basic library of event control elements proposed by Sutherland was introduced in

figure 4. In this section the transistor structures used for these elements in

AMULET1 will be introduced and relevant design issues raised.

The circuit used for the 2-input Muller C-gate is shown in figure 12. Series tran-

sistor stacks pull the internal node high or low when both inputs are at the same logic

level and the weak feedback inverter retains the previous state when the inputs are at

differing levels. Since the input levels are unknown at initialisation, reset circuitry

(connected to Cdn, the active-low ‘clear-down’ signal) is required to force the output

to zero independently of the inputs.

This circuit is similar to Sutherland’s dynamic C-gate, with the addition of the

weak feedback inverter to give fully static operation. It should be noted that this cir-

cuit has unusual logic thresholds on its inputs since when one input is switching the

other input will turn off one of the series transistor stacks. The switching threshold

for a rising input is therefore Vtn, and for a falling input Vtp. The C-gate therefore

switches early on the transition of the input and may detect the transition significantly

before another gate connected to the same signal. To avoid this causing any problems

it is advisable to ensure that all event signals have fast rising and falling edges.

Figure 12: Muller C-gate schematic and symbol

Out

In1

In2
C

Cdn

Out
In1

In2

Cdn

wk

The observant reader will have noted that whilst all the introduction to micropipe-

lines referred to transitions rather than levels, the implementation of the C-gate is

clearly level sensitive. This is best understood by observing that provided the C-gate

inputs are initialised to the same level (zero), they must thereafter each make the

same number of transitions and must therefore retain the same level relationship,

allowing a level-sensitive implementation of the C-gate. This also allows the primed

version of the C-gate (as used in all the latches) to be implemented by simply adding

an inverter to the ‘bubble’ input of a standard C-gate. The VLSI layout of the Muller

C-gate is shown in figure 13

Two circuits were considered in detail for the XOR gate; these are both illustrated

in figure 14. The most compact layout is achieved with the 6 transistor design. How-

ever this design exhibits ‘charge-sharing’ under certain input conditions, causing

glitches on In1. These glitches are not large, but any glitch on an event wire is a

potential source of erroneous operation (particularly if the same wire is connected to

a low threshold device such as a C-gate) so all glitches must be thoroughly investi-

gated. There is a danger that, in using circuits which are known to produce glitches,

the designer will neglect to investigate other glitches which are the source of real

problems. Therefore the 6 transistor circuit was rejected in favour of the larger 8 tran-

sistor design which is not prone to glitching (but which also requires the inverse of

both its inputs).

A circuit which does not appear in Sutherland’s cell library is a transparent latch

for events. It is used as a building block for other event control elements where its

basic role is to block events, and as it may be closed at initialisation it requires reset

circuitry to ensure the output is initialised to zero. (Transparent latches for data are

simpler as they do not require reset circuitry; they will be introduced later.)

Figure 13: Muller C-gate layout

in1 in2 Nout

in1 in2 Nout

Cdn

Cdn

Out

Out

Vss

Vdd Vdd

Vss

Figure 14: Alternative XOR schematics

Figure 15: Transparent latch schematic and icon

Figure 16: Select block schematic and icon

Out

In1

OutIn1

In2

nIn2

In1

In2

In2nIn2

nIn2

nIn1

nIn1

(a) Eight transistor XOR (b) Six transistor XOR

En

TL

In Out

Cdn

Out
En

In

Cdn

wk

False

True

False

In

Sel

SELECT

True

Cdn

Sel Cdn

In

TL

TL

The circuit used for the event transparent latch is shown in figure 15 along with

the icon used to represent this schematic at higher levels of the design. The circuit is

similar to that for the C-gate, comprising a tri-state gate, a weak feedback storage

node and reset circuitry.

The select block schematic and icon are shown in figure 16. This circuit uses the

event transparent latch to control the flow of the input event to one output or the

other. The boolean control input selects the path to be open; the input event passes to

the inputs of both latches, through the open latch, then it returns to cancel the event

on the input of the closed latch. The boolean input must not change near to the time at

which an input event occurs.

Another element which does not appear in Sutherland’s cell library but which is a

useful building block is the ‘decision-wait’. This circuit is a generalisation of the C-

gate, performing a rendezvous between one event line and either of a pair of event

lines. A circuit schematic and icon are shown in figure 17. Events can arrive in any

order on the ‘fire’ input and either ‘A1’ or ‘A2’ (but not both), then an output event is

generated on ‘Z1’ or ‘Z2’ according to which ‘A’ input made a transition. Once the

output has fired the circuit is ready to perform the next rendezvous between ‘fire’ and

either the same or the other ‘A’ input. The circuit is based around two C-gates; the

‘fire’ input is applied to both, then an ‘A’ input fires, generating the corresponding

‘Z’ output and cancelling the ‘fire’ input on the other gate via the XOR. This tech-

nique of ‘removing’ an event which has already arrived works because the C-gate

implementation is level rather than transition sensitive.

The decision-wait can be composed with an XOR gate to construct the Call block

as shown in figure 18. The two request inputs are merged through the XOR to pro-

duce the request output and the decision-wait is used to store the identity of the

source of the active request. The ‘done’ response is then steered by the decision-wait

back to the appropriate calling process. The layout of the complete Call block is

shown in figure 19

The toggle appears, in principle, to be quite simple to implement. In practice, this

was the most problematic of all the event control blocks because the circuit contains

an inherent race hazard. The principle of the toggle implementation is shown in fig-

ure 20. The input event alternately opens and closes two latches in anti-phase, allow-

Figure 17: Decision-wait schematic and icon

z2

z1

fire

C

a1

a2

C

Cdn

z1a1

a2

fire

z2

Cdn

Figure 18: Call block schematic and icon

Figure 19: Call block layout

Figure 20: Toggle principle

d

r

r1

d1

r2

d2

Cdn

C
A

L
L r

d

r1

r2

d1

d2

Cdn

nR2nR1 R R2 R1 nD1 Cdn D1 D D2 nD2

Vdd

Vss

nR1 nR2 R R2 nD1 D1 D nD2D2CdnR1

Vdd

Vss

In

Blank

Dot

TL TL

ing a boolean value to go round a closed loop with one inversion each time round the

loop. An implementation must take into account the finite rise and fall time of the

input and ensure that there is no point in the cycle where both latches are open at the

same time. A toggle which is to be used from a cell library must operate correctly

over a wide range of input and load conditions, and early implementations of the

principle of figure 20 required a non-overlapping two-phase clock generator (built

into the cell) to ensure safe operation. A more successful design was based on the

principle of the 6 NAND gate TTL D-type latch, but the final design used in

AMULET1 was developed by Jay Yantchev (at Oxford) using an algebraic approach

to derive an implementation from the specification.

The circuit of the Yantchev toggle is shown in figure 21. This circuit follows the

principle illustrated in figure 20 closely, but succeeds in minimising the race problem

by carefully interlocking the two latches. Even so, the circuit can fail if the input and

its complement are not carefully aligned to each other, but alignment can be ensured

by building the inverter which generates the complement into the cell itself rather

than allowing the external circuit to produce it; under these conditions the circuit is

very robust. It is interesting to note, in passing, that the Yantchev toggle is the most

significant contribution from ‘formal’ approaches to AMULET1.

Figure 21: The Yantchev toggle circuit

In1
nIn1

C0

C1

nC1

In1

nIn1
nC1

C0

nC0

(a) Half Toggle0 (b) Half Toggle1

Half Toggle0

Half Toggle1 Dot

Blank

In

(c) Complete Toggle

TOGGLE

In

DotBlank

Cdn

Cdn

Cdn

Cdn

Cdn

nIn1

Cdn

nIn1In1

In1

C0nC1

Cdn

Cdn

C0

nC0

In1

Cdn

In1nIn1

nIn1

C1C0

Cdn

Cdn

C1

nC1

The arbiter is required to ensure the mutual exclusivity of the grants to two asyn-

chronous requesting processes. As this amounts to making a discrete decision on a

continuous set of possible input conditions, it is fundamentally impossible to guaran-

tee that the decision will be made within a bounded time. The circuit must be

designed to cope with internal metastability under a range of input conditions. A suit-

able circuit schematic is shown in figure 22. The basic arbitration unit is a 4-phase

level-sensitive mutual exclusion element with a cross-coupled pair of NAND gates

forming an R-S flip-flop. The request inputs are normally low, but switch high to

indicate an active request. If both switch high at the same time, the R-S flip-flop may

go metastable. The output circuit will not, however, issue either grant until the differ-

ence between the internal nodes i1 and i2 exceeds Vtp, by which time the R-S flip-

flop has exited from its metastable state.

The micropipeline (2-phase) arbiter is constructed from the mutual exclusion ele-

ment by adding suitable 2-phase to 4-phase conversion circuits. The circuit shown in

figure 22 is suitable provided there is a reasonable delay between the ‘done’ input

and a subsequent ‘request’ on the same input.

It is worth noting here a fundamental difference between synchronous and asyn-

chronous circuits. In a synchronous circuit the designer must accept some residual

probability of failure whenever an asynchronous input enters the clocked domain of

the circuit. This probability can be made very small, at the cost of reduced perform-

Figure 22: Arbiter schematics

r1

r2

g2

g1

m
u

te
x

r1

r2

g1

g2

m
u
te

x

r1

r2

g1

g2

TL

TL

g1

g2

r1

r2

d1

d2

Cdn

(a) Basic arbitration unit

(b) Micropipeline arbiter

a
rb

it
e
r

r1

r2

g1

g2

d1

d2

i1

i2

ance, but can never be zero. The designer of an asynchronous circuit can, on the other

hand, use an arbiter which will never fail, though it may take a very long time to

make a decision. If the system in question is, for example, a flight control computer,

it would make little difference to the unfortunate passengers whether a failure is due

to synchronization failure in a clocked system or terminal indecision in an asynchro-

nous system. But note that the synchronous system must accept the worst-case cost of

synchronizing to the desired level of reliability on every asynchronous sampling

process, whereas the asynchronous system typically incurs the average cost and only

very rarely comes near to the worst-case cost.

The circuit used to construct pipeline data latches on AMULET1 is shown in fig-

ure 23. This circuit is the same as that used on ARM6 for data latches, comprising a

transmission gate which, when enabled, overdrives the weak feedback which at other

times retains the state on the forward inverter. A practical control circuit is illustrated

in figure 24, which shows the buffer circuits used to drive 32 latch loads and a C-gate

used to detect that both the latch enable and its complementary signal have switched

before firing the toggle.

To illustrate the use of some of the event control cells that have been introduced,

circuits are shown below for a conditional pipeline fork (figure 25) and a conditional

pipeline join (figure 26). The first of these shows the last stage of one pipeline which

Figure 23: Data latch circuit

Figure 24: A practical event register control circuit

OutIn

wk

En

nEn

T
O

G
G

L
E

x1 x4

x3
CC

x1

Rin Ain

RoutAout

nEnEn

always sends data down the left output pipeline, but only sends data down the right

output pipeline if a boolean in the current data value indicates that it should. The

select block implements the decision by steering the event appropriately. Note how

the ‘False’ select output event just bypasses the request to the right pipeline and that

both output pipelines are called in parallel, with a C-gate used to wait until both have

completed. (A simpler, but slower, circuit could be used to call first the left pipeline

and then, conditionally, the second. This would save the cost of the C-gate.)

The conditional pipeline join circuit has a boolean in the left input pipeline which

determines whether or not there should be a rendezvous with the right input pipeline

before the output pipeline is called. Again, a select block makes the decision by steer-

ing its input event. One output uses a C-gate to rendezvous with the second input

Figure 25: Conditional pipeline fork circuit

Figure 26: Conditional pipeline join circuit

C

select

T

F

R A

R A R A

Cselect

F

T

R A R A

R A

call

pipeline, the other bypasses the rendezvous. These two events could now be merged

through an XOR to form the request to the output pipeline, but that would leave the

problem of handling the acknowledge properly, which may or may not need to go to

the right hand input pipeline. A select block on the acknowledge path could be used

to achieve the required effect, but rather than taking the same decision again the cir-

cuit in figure 26 uses a call block to remember the original decision and steers the

acknowledge accordingly.

4.1 Cell Areas

The areas of various cells are shown in figure 27, with that of a standard inverter for

reference. Note that although it is possible to extend the number of outputs from a

select block, this leads to a very large cell size, so in practice selects were limited to

two outputs and several 2-way selects were cascaded where more outputs were

required.

Earlier it was stated that capture-pass latches took significantly more silicon area

than standard transparent latches, though the control for standard latches is larger. We

can now look at this in more detail. The layout areas for 24 data latches and the con-

trol circuits are shown in figure 28. From these areas it can be shown that standard

latches do, indeed, save on silicon area whenever there are more than 8 data bits in

the latch [3]. On AMULET1 latches typically are 32 bits wide, so the area saving

from using standard latches is significant.

This concludes the introduction to micropipelines and related engineering issues.

Figure 27: Layout areas of event control blocks and a standard inverter.

Xor
Xor

Select4

Select4

select3

Select3

EvtLat
EvtLat

Arbit

Arbiter

Select2

Select2

Toggle

Toggle

DWait2

DecisionWait

Call2

Call

mullc2
mullc2

T-Latch
Tlatch

mullc3
mullc3

We will now go on to see how micropipelines may be applied to the design of an

asynchronous microprocessor. The next section gives an introduction to the ARM

microprocessor, then subsequent sections describe the micropipeline implementation

of the ARM, the results from the test silicon and the conclusions that can be drawn

from the work so far.

5 The ARM Processor

AMULET1 is an asynchronous implementation of the ARM microprocessor [4]. This

section gives some background on the ARM and the company which was responsible

for developing it, Acorn Computers Limited, which is based in Cambridge, England.

In 1982 Acorn launched the BBC microcomputer, based on the 8-bit 6502 micro-

processor, which established Acorn’s education market in the UK and certain other

countries. (Over 1.5 million BBC machines have been sold worldwide.)

Design of the 32-bit ARM1 was started in 1983. This was the first implementa-

tion of the ARM, based on a 3µm CMOS process. The first ARM1 samples worked

Figure 28: Latch area comparisons

T-Latch Control Capture-Pass Control

T-Latch Data Latches

Capture-Pass Data Latches

in April 1985 after 6 man-years of development, establishing the ARM as the world’s

first commercial development of the pioneering RISC ideas from Berkeley and Stan-

ford Universities. The design was then moved onto a 2µm CMOS process, and the

first ARM2 samples were delivered, fully functional, in 1987 and went into produc-

tion in the Acorn Archimedes personal computer. The Archimedes sold in reasonable

numbers, but real volume came with the cost-reduced A3000 which brought low-cost

RISC performance into UK education in 1989. In the same year, first samples of the

ARM3 were delivered, a 1.5 micron CMOS design incorporating an ARM2 macro-

cell and 4k bytes of fully associative cache memory on the same chip.

In 1990 Advanced RISC Machines Limited was formed by Acorn, Apple and

VLSI Technology as a separate company established to deliver ARMs to a much

wider market. In 1992 the ARM610 was developed for the Apple Newton PDA prod-

uct, and since then the number of ARM licensees and chips incorporating ARM mac-

rocells has increased regularly, establishing the ARM as a world standard archi-

tecture for a range of low-cost and low-power applications.

5.1 ARM6 Programmers’ Model

The ARM has a load/store architecture with 16 visible registers available to the pro-

grammer [4,5]. Register 15 is the program counter; all other registers being general

purpose with the only special use being that subroutine return addresses are placed

into register 14. Exceptions are handled in protected modes which switch in private

registers in place of user registers 13 and 14, the former usually pointing to a private

stack in main memory and the latter containing the exception return address. Fast

interrupt mode also has some private work registers. The register organization is

shown in figure 29.

In addition to the general registers the ARM also has a Current Program Status

Register (CPSR) visible in every mode, and a Saved Program Status Register (SPSR)

for each non-user mode (figure 30). Each of these registers is used to save processor

mode, interrupt enable status and condition code flag bits (figure 31).

The ARM6 instruction set is summarised in figure 32. In common with other

RISC processors, ARM separates those instructions which perform data processing

functions from those which move data between memory and registers. The most unu-

sual features of the instructions set include:

• All instructions are conditionally executed.

• Load and store multiple register instructions are included which transfer any

subset of the currently visible registers.

The former reduces the number of branches which are required, allowing, for exam-

ple, some if-then-else clauses to be compiled without a branch instruction. The latter

improves the efficiency of procedure entry and exit, and increases the rate at which

data block moves can be carried out.

This is the architecture that is re-implemented on AMULET1 using a fully asyn-

chronous design style based on micropipelines. The AMULET1 chip has the func-

tionality of the ARM6 macrocell, omitting only the coprocessor instructions and

support for the 26-bit address space modes which ARM6 has for compatibility with

the older ARM chips.

6 A Micropipelined ARM

The design of AMULET1 [3,6,7] begins from a consideration of the environment in

which the processor will be used and the interfaces through which the processor

should communicate with that environment. For instance, should the chip be

Figure 29: ARM register organization

Figure 30: ARM program status registers

Figure 31: ARM PSR format

r0

r1
r2

r3

r4

r5
r6

r7

r8

r9
r10

r11

r12

r13
r14

r15(PC)

r14_fiq

r13_fiq

r12_fiq

r11_fiq

r10_fiq

r9_fiq

r8_fiq

r14_svc

r13_svc
r14_abt

r13_abt
r14_irq

r13_irq
r14_und

r13_und

user mode fiq
mode

svc
mode

abort
mode

irq
mode

undefined
mode

- 16 visible registers at all times

- 2 private registers for each exception

- private work registers for fast interrupt

user mode
fiq

mode

svc

mode

abort

mode

irq

mode

undefined

mode

SPSR_irqCPSR
SPSR_svc SPSR_abt

SPSR_und

SPSR_fiq

N Z C V I F Mode

31 28 6 4 07

designed to use an existing interface so that it can plug into an existing environment?

It was decided to use a micropipeline interface between the chip and its environ-

ment. This approach was chosen because the longer term plan was to build the

AMULET1 core into a larger chip as a macrocell with on-chip memory (possibly in

the form of a cache). Such an on-chip memory could benefit greatly from operating

as a micropipeline, so a micropipeline interface is a natural way to connect the mem-

ory to the processor core. (In retrospect this decision was probably a mistake, since it

made testing the AMULET1 prototypes rather difficult. Two-phase control circuits

are easy to implement in VLSI but are much harder to work with at board-level.)

The top level interface is shown in figure 33. The MMU and memory are not part

of the AMULET1 design task, but are shown here to illustrate the environment in

which the processor will be employed. The processor produces one output bundle

containing the memory address, the ‘write’ data (if any) and control bits. The control

bits include a read enable, a write enable, an opcode fetch bit (to indicate whether an

instruction or a data item is to be fetched), a privilege mode bit and two bits which

hint at sequential address behaviour. A second (input) bundle is used to transfer read

data back to the processor.

Note that at this stage no assumption is made about the pipeline depth of the

memory subsystem. Indeed, if the memory includes a cache, the effective pipeline

depth may depend on whether the cache is hit or not. The memory must, however,

return results in the same order as the requests were issued.

As the processor handles memory faults as exact exceptions, it must internally

prevent any state change after issuing a request for data from memory until it knows

that the request will succeed. Therefore a fault/no fault response from the MMU is

time critical on data transfers, and the design employs a dual-rail encoded abort

response signal from the MMU. A transition on one wire signifies ‘abort’, causing

exception entry, whereas a transition on the other wire signifies ‘no abort’, allowing

Figure 32: ARM6 instruction set

1

Opcd

CP

Rd

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

00 I S Rn Rd Operand 2

000000 Rn Rs 1001 Rm

00010 B 00 Rn Rd Rm10010000

01 I P B W L Rn Rd Offset

011

100

101

110

1110

1110

1111

L

U N W L

U S W L

x x x x x x x x x x x x x x x x x x x x

Rn register list

offset

Rn CRd CP# offset

ignored by processor

CRd CP#

Rd CP#

x x x x

CRm

CRm

CP

CP

CRnCPop

P

P

0

1L CRn

U

A S

data ops

multiply

swap mem/reg

load/store reg

undefined

block reg xfer

branch

coproc L/S

coproc op

coproc reg xfer

s/w interrupt

the processor to proceed. (For instruction prefetches a boolean flag returned with the

instruction is sufficient to indicate an unsuccessful access; the trap is then initiated

when the instruction enters the decode stage.) Conventional level-sensitive interrupt

inputs are provided for compatibility with existing peripheral chips, though this is not

really a satisfactory model for an asynchronous system as there is no control on the

timing of the release of an interrupt line. A system initialisation input completes the

top level interface.

6.1 Processor Organisation

The internal organisation of the processor is shown in figure 34. The processor state

is held in the register bank, which has two read ports for operand access. The oper-

ands are processed by the execution unit and the result written back through a write

port. The write port also allows data to be written into the register bank from mem-

ory. The third input port is used to allow the PC (which resides in the address inter-

face unit) to be available as register 15 as required by the ARM instruction set.

The address interface unit produces sequential addresses autonomously and only

requires input from the execution unit when the address sequence is changed; this

may be a temporary change for a data access or a permanent change for a branch.

Write data are copied from one of the register bank read operand buses and then

synchronised with the appropriate address for issue to memory. Values returned from

memory are split into data and instruction streams and processed accordingly.

6.2 The Address Interface

The address interface includes a PC word-increment loop (see figure 35). The ARM

instruction set specifies that (in most cases) R15 has the value PC+8 (exposing the

Figure 33: AMULET1 top-level interface

MMU

memory

async

ARM

write data

address

control

read data

aborts

interruptsinitialise

Figure 34: AMULET1 internal organization

Figure 35: The address interface

registers

address out

data out data in

multiplier

shifter

ALU

ipipe

imm. extr.

pc pipe

instr.
decode

Address

Execute
Unit

Data
Interface

Register
Bank

Interface

PC
LSM reg

arbitrating mux

incrementer

memory address

to PC

to memory

pipe

ALU

depth of the synchronous pipeline implementation in the original ARM), so for code

compatibility that behaviour is copied here. The first address, 0, is produced in the

memory address register. After passing through the incrementer, the first value

offered to the PC pipeline (which buffers PC values until they are needed as R15 dur-

ing execution of the fetched instruction; see figure 46) is therefore 4. However the

first value is ‘thrown away’, so the first value actually copied into the PC pipeline is

8. This skew between the PC pipeline and the fetched instruction stream persists and

maintains the alignment of all future instructions with PC+8. The skew causes incor-

rect pairing of the instructions immediately following a taken branch, but as these are

not executed this is of no consequence. Correct pairing is re-established by the time

the new instruction stream begins execution.

The incrementer loop operates autonomously so a new address from the ALU

arrives asynchronously. An arbiter is required to ensure safe interruption of the incre-

menter loop, and the precise point where the loop is interrupted is therefore non-

deterministic, resulting in the non-deterministic depth of prefetching beyond a

branch. The interruption may be transient (for a data access) or permanent (for a

branch). In the former case the PC value is preserved in the PC register; in the latter

case the old value is thrown away and the new one takes over the loop.

The ARM instruction set includes multiple register loads and stores of arbitrary

subsets of the visible registers. Here the memory addresses are sequential, so the

incrementer loop is temporarily usurped to produce these addresses. In this case the

PC is held in the PC register, and the looping value passes through the load/store mul-

tiple (LSM) register.

6.3 The Register Bank

A high-level view of the operation of the register bank is shown in figure 36. An

instruction specifies two source register addresses (a and b) and the destination regis-

Figure 36: High-level view of register bank operation

Instruction
Decoder

Instruction

w a b

A operand

B operand

result

Execution
Unit

Register
Bank

Figure 37: Register lock FIFO and read logic

Figure 38: Register read lock gating logic

0

0

1

0

0

0

0

memory
address

FIFO

ALU
address

FIFO

mux

ALU decoder

mem decoder

register write enables

memoryALU
write

address
write

address

Lock
FIFO

A decoder

B decoder

Lock gating

registers

Op A

Op B

locked

B read
address

A read
address

Reg 1

Write

Last

Reg 0 Reg 2

A
SEL

B
SEL

W
SEL

B
DEC

A
DEC

W
DEC

A
SEL

B
SEL

W
SEL

B
DEC

A
DEC

W
DEC

A
SEL

B
SEL

W
SEL

B
DEC

A
DEC

W
DEC

Read Lock

Lock
FIFO

Stage

Gating

Enable

ter address (w). The register bank then produces the source operands and waits for

the result to be returned before placing it in the destination. In pipelined operation,

however, the register bank may produce source operands for several instructions

before the result from the first one returns. The unit must therefore handle multiple

pending write operations register locking to prevent access to stale register values

and the asynchronous interaction between read and write operations. All these issues

Figure 39: Register bank organization

 A Done

I-Ack I - Req

B Done

Enable

Enable

P
re

 C
h

a
rg

e
 D

o
n

e

A
 &

 B
 r

e
a
d

 d
o

n
e

D-Req

Lock FIFO

Enable

D-Ack

A Decode

TOGGLE

C

Lock In FIFO

C

C

Locking Complete

T
O

G
G

L
E

C

RinAin

Aout Rout

L
a
tc

h

Rin

Ain

A Bus

B Bus

Registers

B Decode

W Decode

Rin Ain

Aout Rout

C

TOGGLE

P
re

 C
h
a
rg

e

Write Enable

Write Complete

W-Req

W-Ack

W Bus

Enabled

Enable

Remove Lock

W
ri
te

 D
o

n
e

W Latch

P
re

 C
h

a
rg

e
 D

o
n

e

Read Lock Gating

A W B

W

A

B

WL

WL

are resolved in a single regular structure,the register lock FIFO [8], as illustrated in

figure 37. (Note that in our design there are two FIFOs to allow internal results to

overtake data from - potentially much slower - memory.) Here write addresses are

queued in a fully decoded form, so each stage of the FIFO contains at most one ‘1’. A

column of the FIFO contains all the information about pending writes to a particular

register and a logical OR of the column provides the lock control. The OR function is

not normally permissible across such an asynchronous structure but is possible here

because, as data propagates through the FIFO, a ‘1’ is copied to the new latch before

it is removed from the old one and the lock output is glitch-free.

The lock information is used to delay the decoded read word lines until the cor-

rect value is available (details of the lock FIFO logic are shown in figure 38). Multi-

Figure 40: The register bank layout

Register
Cells

Lock FIFO

A Decode

B Decode

Register

Cells

Lock FIFO

A Decode

B Decode

Standard Cell
Control

ple locks on a single register are handled correctly and no arbiter is required to

manage the asynchronous interaction between reads and writes; these proceed inde-

pendently when there is no interdependency and the lock mechanism synchronises

them when a dependency occurs.

The complete organization of the register bank is shown in figure 39 and the

resulting layout is shown in figure 40.

6.4 The Execution Unit

The functional units in the execution pipeline are shown in figure 41. The register

operands first pass through a multiplier, which either passes them on immediately or

replaces them by partial product and partial carry outputs from a carry-save multipli-

cation unit. A barrel-shifter then modifies one of the operands before both are placed

into a pipeline latch. The operands are then combined in the ALU which has a data-

dependent delay and a latch to allow a dynamic structure to operate with static exter-

nal behaviour. A result latch passes the output to its next destination (either a register

or the address unit).

The sequential positioning of the function units is perhaps not ideal for perform-

Figure 41: The execution pipeline and control structures

operand latch

shift

ALU

ALU latch

result

multiplier

op B op A

decode
3

decode
2 reg

control

control
2

control
3

registers

primary decode

instruction pipe

PC pipe

ance. However the ARM instruction set supports shift and ALU operations in a single

instruction, forcing the barrel shifter to be in series with one of the ALU inputs. Mul-

tiplications also use the ALU for the carry propagate addition which is required to

combine the partial product and partial carry. When no multiplication is required, the

cost of passing the operands through the multiplier is equivalent to passing them

through the multiplexer which would be needed to bypass the multiplier, so overall

this arrangement would appear to be the best compromise for the target instruction

set.

The instruction decode and execute pipe control logic are also illustrated in figure

41. Here the pipeline latches are shaded to highlight the structure. Prefetched instruc-

tions are queued before being passed to the primary decode logic which produces

multiple pipeline bubbles for the more complex instructions, sends appropriate read

and write addresses to the register bank for each bubble and passes information on to

the secondary and tertiary decode logic. Note that although the shaded pipeline

latches are aligned to emphasise the matching of the pipeline depths of the parallel

structures, synchronisation only occurs when the pipelines interact, for instance

where ‘control 2’ connects into the multiplier and where ‘control 3’ governs the

ALU.

Figure 42: ALU size comparisons

ARM6 ALU AMULET1 ALU

As an example of an area where asynchronous logic appears to offer particular

advantages, consider the ALU [9]. Clocked ALUs (such as that on the ARM6) must

ensure that the worst case data operands can be processed within the clock cycle time

and considerable logic is added to the ALU to make these rare worst cases complete

as fast as possible. An asynchronous ALU can allow rare worst cases to take longer

and can therefore dedicate the logic resource to making typical cases go fast. A com-

parison of cell size between the AMULET1 and ARM6 ALUs is shown in figure 42.

6.5 Data Operation Datapath Activity

The operation of the datapath during a simple data processing instruction is illus-

trated in figure 43. The active buses are shaded for register-register and register-

immediate instructions. Note that in these figures the instruction does not occupy all

the shaded buses at the same time; the execution is pipelined, and at any one time dif-

ferent resources may be in use for several different instructions.

The only difference between the two illustrations in figure 43 is the source of the

second ALU operand, which comes either from the register bank or from the immedi-

ate field extractor.

Figure 43: Data operation datapath activity

registers

address out

data out data in

pass thru

as instr.

as instruction

ipipe

imm [7:0]

pc pipe

Rn

Rd PC
registers

address out

data out data in

pass thru

as instr.

as instruction

ipipe

imm. extr.

pc pipe

RnRm

Rd PC

Data Op (a) with 2 registers (b) with 1 register & immediate data

6.6 Tracking the PC

A high-level view of the mechanism which gives each instruction access to the cor-

rect PC+8 value in R15 is shown in figure 44. PC values are autonomously generated

in the address interface and issued to memory as addresses for instruction fetches. As

they are issued, the PC+8 value associated with each instruction is copied into the PC

pipeline. Instructions which return from memory are placed in the instruction FIFO

and as they are removed at the end of the FIFO to be decoded each instruction is

associated with its PC+8 value. The decoded instruction first passes its register

addresses to the register bank and the PC+8 value is passed with these to be used as

the value to be read if R15 is accessed as one of the source registers.

6.7 The Branch Mechanism.

The datapath activity for branch and branch-with-link instructions is shown in figure

45. A branch uses a single cycle to add the offset to the current PC value and then to

issue that as a new instruction fetch address. Branch-with-link has a second cycle

which constructs a return address by subtracting 4 from the R15 value, which con-

tains PC+8, and placing this return address in R14.

After taking a branch the processor must reject instructions prefetched after the

branch from the same stream, however the number of rejected instructions is non-

deterministic as the branch target is injected into the address interface asynchro-

nously to the operation of the PC incrementing loop. So how can the processor recog-

nise which instructions are to be rejected and which instructions come from the

branch target?

Figure 44: Tracking the PC

Instruction

Address

Instruction

(PC)

PC Value

ExecutionAddress

Interface

Instruction FIFO

PC Pipe

Memory
Unit

Instruction and PC
synchronize

A Operand

Write Bus

The mechanism used is described as instruction stream ‘colour’. Every instruc-

tion fetch is issued with a particular colour corresponding to the current operating

colour of the processor. If the fetch colour of an instruction which comes to be exe-

cuted does not match the current operating colour the instruction is rejected. Every

branch changes the fetch and operating colours, so the operating colour changes

immediately and the fetch colour changes from the branch target instruction.

The colour is checked at two positions inside the processor. It is checked at the

ALU result stage for precise operation, and at the entry to primary decode for effi-

cient operation. Rejecting an instruction early is efficient, since it saves the time and

power that instruction would otherwise consume, but to reject instructions only at the

decode stage would require every instruction to be held up there until it was known

that the preceding instruction would not change the operating colour. This would

compromise performance. Instead, instructions are allowed past the decode stage

speculatively if their colour is correct at that point. If a preceding instruction then

changes the operating colour after this instruction has entered decode, the instruction

will be rejected at the ALU result stage.

6.8 Exact Exceptions

The most difficult aspect of the design of most processors is the provision for excep-

tions which arise during the execution of an instruction. The processor must allow for

Figure 45: Branch datapath activity

registers

address out

data out data in

pass thru

no shift

B - A - 1

ipipe

imm. extr.

pc pipe

PC

R14 PC
registers

address out

data out data in

pass thru

left 2

A + B

ipipe

signx [23:0]

pc pipe

PC

PC

(a) B & BL- change PC (b) BL- save return address

3

the recovery of sufficient information for the exception to be handled and execution

of the original program resumed as though nothing had happened. The simplest

mechanism which allows this recovery is the exact exception, where the processor

stops at the end of the faulting instruction with at most reversible changes from its

state at the start of that instruction. Resumption of the faulting program then only

requires the reversal of the state changes and a return to re-execute the faulting

instruction. More complex mechanisms allow the processor to roll on past this

instruction before the fault is discovered and require considerably more ‘history’ to

support rewinding and recovery.

AMULET1 uses the exact exception mechanism for load and store accesses to

memory to allow an MMU to support a virtual memory system. It must therefore pre-

vent any instruction following a load or store from completing until it is known that

the load or store will complete successfully. Instructions are stalled at the ALU stage

until an abort/no abort response is returned from the MMU, and if an abort is indi-

cated the operating colour is changed immediately, causing instructions behind the

faulting one to be discarded. The abort/no abort information is also passed to the

address interface where it controls the bottom of the X pipe (figure 46 shows details

of the PC pipelines) using control logic shown in figure 47. This shows how a deci-

sion-wait is used either to throw away the bottom entry in the exception pipeline, or

to copy that value into the exception latch (X latch). Any value which is copied into

the exception latch then causes the exception entry mechanism to be initiated.

The logic which allows the exception latch to break into the instruction stream to

cause an exception entry is shown in figure 48. The normal instruction stream enters

from the top of this figure. The C-gate waits until the interrupt arbiter, the PC pipe-

Figure 46: The PC pipelines

PC pipe

X pipe

X latch

to register bank

from address interface

mux

line and the instruction pipeline are all ready (ARBrq, PCrq and IPrq respectively)

and then the instruction colour (Icol) and the current operating colour (OPcol) are

checked to see if they are the same. If not, the select block rejects the instruction by

sending the request event straight back to the acknowledge (IPack). When a data

abort happens, the operating colour is changed but no further instruction fetch

Figure 47: The Exception Latch control logic

Figure 48: The Data Abort exception entry logic

X pipe

X latch

RoutAout

RinAin

no data abort

data abort

from MMU

to primary
decode

from primary decode
(exception processing complete)

C

TL
In Out

En

OPcol ARBrq IPrq IPackIcolPCrq

XLr

XLa

Rout Aout

to primary decode

Dabt

to exception PC
holding latch

Data abort request

colour
mismatch

S1

X1

S2

SELECT
F T

SELECT
FT

requests are issued, so eventually a colour mismatch will arise. The data abort will

also copy a PC value into the exception latch, causing a request on XLr. This request

is held up by the transparent latch until the colour mismatch is detected, whereafter

no further requests will go to Rout from S1 so the XLr request can be passed safely to

Rout, along with the Dabt boolean, causing the instruction decoder to enter the data

abort exception sequence. After the sequence has been issued by the primary

decoder, the Acknowledge is passed by S2 back to XLa and clears the Dabt boolean,

re-establishing the normal instruction path. In the meantime the exception entry

sequence will have caused instruction fetching to resume so the processor will con-

tinue normally.

6.9 Chip Composition

The complete pipeline structure of AMULET1 is illustrated in figure 49. The chip

was implemented with full-custom datapath components and compiled standard cell

control circuits using tools from Compass Design Automation. The floorplan of the

chip is shown in figure 50. The control circuits included two PLAs which were gen-

erated using a tool supplied by ARM Limited and modified to give access to external

circuitry to the completion signal (which already existed inside the ARM design

where it controlled power-down and precharging). The VLSI layout of the chip is

shown in figure 51.

7 Results

AMULET1 has been fabricated on two CMOS processes: a 1µm process at ES2 and

a 0.7µm process at GEC Plessey Semiconductors. Both devices have been evaluated

on a test card which connects, via a serial line, to development tools from ARM Lim-

ited; the monitor program in the test card ROM is the same as that used in similar

evaluation cards for the ARM6. Both prototype devices are functional and execute

programs produced by standard ARM development tools such as the assembler and C

compiler. There are three minor design flaws which relate to the operation of inter-

rupts and have relatively straightforward software work-arounds. A summary of the

devices’ characteristics is shown in table 1 with those of ARM6 for comparison.

The devices have been characterised over varying voltage and temperature and

display the usual property of asynchronous devices, namely the ability to adapt auto-

matically to changing environmental conditions. The variation of performance and

power-efficiency with voltage is shown in figure 52, using the Dhrystone benchmark

as an indicator of performance and using the 1µm part. (The 0.7µm part operates at

twice the speed but does not have the facility to measure core power consumption.)

The voltage range used for these tests is limited by the other circuitry on the test card

below 3.5V; the processor appears to operate in isolation down to 2.5V.

Variation of speed with temperature has also been measured. Here the test devices

display a normal increase of their delays of 0.3% per °C and operate correctly

between -50°C and 120°C.

Figure 49: AMULET1 complete pipeline organisation

control
2

X pipe
rdgen

A pipe

dest. ctrl.

mem
ctrl

FIFO

ALU

shift

mux

arb. mux

mux

wbus
ctrl.

AddressControlData Out

Data In

CPSR

psrC

Cout

I[31:28], PcPar

pass

Cond

multiply

imm ext.

mux

primary decode

decode
3

decode
2

reg
control

ngen registers

LSMp

incrementer

PC

byte rep.

mem ctrl

address
control

mux

control
3 mux

byte alignPC pipe

instr. pipe

CPSR’

Figure 50: AMULET1 chip floorplan

SHIFT

Sh mux

W mux

Result

CPSRS

ALU output

ALU

op A
op B

MULT

B lat
A lat

SPSRs

REG
R15 lat

PC mux

X lat

X PIPE

PC PIPE

W lat

INC

MAR

A pipe

PC reg2
PC reg1

LSM reg

DOUT

DIN

IMM

MRR

I PIPE

Add Int
Control

Reg control
& lock FIFO

Decode &
Control 2

Decode &
Control 3

Write bus
control

Destination
control

Memory
control
FIFO

Memory
control

Primary
Decode

Write DataRead DataPabtMemory control

Addresses

Dabt

Fiq/

Data
Interface

Execute
Pipeline

Register
Bank

Address
Interface

IRQ

Figure 51: AMULET1 VLSI layout

AMULET1/ES2 AMULET1/GPS ARM6

Process 1µm 0.7µm 1µm

Area (mm2) 5.5 x 4.1 3.9 x 2.9 4.1 x 2.7

Transistors 58,374 58,374 33,494

Performance 20.5 kDhry. ~40 kDhry.1 31 kDhry.

Multiplier 5.3ns/bit 3ns/bit 25ns/bit

Conditions 5V, 20°C 5V, 20°C 5V, 20MHz

Power 152mW N/A2 148mW

MIPS/W 77 N/A 120

Table 1: Characteristics of AMULET1 and ARM6

1. estimated maximum performance.

2. the GPS part does not have separate core supplies for power measurement

decode 1

dec 3

ctl 3
dec 2

ctl 2

register

bank

add

i/f

execute

pipe
dat

i/f

8 Design Tools

The AMULET1 design was developed using a conventional design flow based on

proprietary tools from ARM Limited and commercial VLSI CAD tools from Com-

pass Design Automation (see figure 53). In line with standard practice, simulations

were run on transistor-level netlists extracted from the physical layout in all the proc-

ess corners to cover all four combinations of fast and slow n- and p-transistors. Any

serious difference between matched paths in their dependence on rising and falling

delays is exposed by these skewed simulations, and on AMULET1 a few paths were

adjusted it compensate for asymmetries of this sort.

Although these tools allowed the design to be developed successfully and work-

ing silicon to be produced, some aspects of asynchronous designs make conventional

simulation inadequate for verification. Asynchronous circuits are prone to deadlock

and simulation only establishes that deadlock does not arise under the simulated con-

ditions; it cannot prove that liveness is guaranteed under all conditions.

In order to increase confidence in the liveness properties of the design, random

delays were added into all the C-gate models in some simulation runs to simulate dif-

ferent time orderings of events. This only serves to increase confidence and still can-

not approach an exhaustive test of all possible event orderings.

It should be noted in passing that the tendency for incorrect circuits to deadlock

was a significant help during debugging! The behavioural simulator could be set up

to maintain a circular buffer of past events. Then, when the model deadlocked, this

buffer would contain enough history to identify the source of the problem. When

similar problems arise with a clocked design all that may emerge is the wrong answer

at the end of a long run, and it can be much harder to identify the time at which the

Figure 52: 1µm AMULET1 performance and power-efficiency against voltage

Supply voltage

0

5

10

15

20

k
D

h
ry

s
to

n
e
/s

e
c

kDhrystone/sec

3.0 4.0 5.0 6.0
0

50

100

150

200

M
IP

S
/W

MIPS/W

error arose and then the source of the error.

In addition to the standard tools, a tool was built to check that bundled data values

never changed within the Request-Acknowledge period (with added margins) to

ensure that the bundling constraints were never violated. Again, only the timing

under the simulated conditions could be checked, not all possible timings under all

possible conditions.

Though the above procedures increase confidence, they are not sufficient for gen-

eral asynchronous design work; the present design is very conservative, and as mar-

gins are reduced better tools will be needed to achieve satisfactory confidence levels

that the design will operate correctly.

8.1 Design Flaws

Though the first AMULET1 silicon is functional, there are some errors in the design

which it may be instructive to review.

• an MSR or MRS executed in a non-user mode immediately after a STM

accesses the wrong SPSR, due to an error in the design of logic which allows

supervisor code to store the user’s registers.

• if an interrupt is disabled and the flag is re-written (again to disable the inter-

rupt) the interrupt may be transiently enabled and entered.

Figure 53: The design flow used to develop AMULET1

simulation

ARM Ltd. cell
library plus

net
compare

design rule check

fabrication

netlist
extraction

ARM Ltd. tools

Compass Design
Automation tools

Foundry

layout

schematic entry

tape-out

specification

ASim behavioural
simulation

test vectors

MU async cells

• an exception which arises during the execution of a load or store which fails its

condition codes (and is therefore not, in fact, executed) saves the wrong SPSR

value if the memory system is sufficiently slow.

• an LDM which restores the CPSR, but is aborted during data transfer, does not

leave the CPSR unaffected.

In the absence of aborts, and with sufficiently fast memory, only the first two design

errors manifest themselves, and then only in non-user code. Therefore the chip will

run general compiled or hand-written user code. The first two errors were identified

and diagnosed soon after the first samples were tested. The third error is due to a

latch being wired incorrectly, and took a considerable time to diagnose due to its

dependency on the memory speed. This caused the error to manifest itself in the part

from one source, but not from the other, in the same test card, since the different sili-

con speeds made the memory in the test card look slower than the critical speed to the

former and not to the latter! The fourth error was not found whilst testing the silicon

but was discovered whilst considering the redesign for AMULET2; the silicon was

checked to confirm that the error existed in AMULET1.

None of the errors are due to problems with self-timing or the asynchronous con-

trol structure. As is frequently the case with engineering design, the errors arose not

in the areas the designers focussed on but in the peripheral detail. More thorough test-

ing of the design under simulation would have revealed these errors before fabrica-

tion.

9 Future Enhancements

The AMULET1 design was shipped for fabrication at the end of February, 1993.

Since then work has been underway to enhance the design with respect to both its

performance and its power efficiency. Significant improvements have been made in

many areas of the design. These improvements cover all aspects of the design includ-

ing the transistor structures used for data latches, the approach to event control, archi-

tectural features to reduce pipeline stalls, through to the compiler.

9.1 Compiler Optimization

As some compiler improvements also enhance the performance of AMULET1, these

will be described first.

The compiler used to evaluate AMULET1 is the standard ARM Limited C com-

piler. As the ARM6 displays no sensitivity to code order, the compiler makes no

attempt to separate dependent instructions. AMULET1, on the other hand, shows a

strong dependency of performance on code order. The register bank lock FIFO

ensures that instructions wait until their operands are available, but whenever an

instruction is forced to wait, the pipeline is stalled and performance is lost.

For example, this is the code for a standard string comparison which loads and

sign extends the bytes for each string:

strcmp

LDRB a3,[a1],#1

MOV a3,a3,LSL #24

MOV a3,a3,ASR #24

LDRB a4,[a2],#1

MOV a4,a4,LSL #24

MOV a4,a4,ASR #24

...

This code causes register locks between the first and second instruction while the

data load accesses memory and a shorter stall between the second and third instruc-

tions. The same delays are incurred again in the second group of three instructions.

Effectively there are two independent threads in these six instructions which can be

interleaved almost to double the execution speed. This interleaving fits the second

three instructions in the gaps left by stalls during the execution of the first three.

strcmp

LDRB a3,[a1],#1

LDRB a4,[a2],#1

MOV a3,a3,LSL #24

MOV a4,a4,LSL #24

MOV a3,a3,ASR #24

MOV a4,a4,ASR #24

...

There are other optimizations which improve the speed of the code running on

AMULET1 (generally without impacting the speed on ARM6), such as replacing a

single register load multiple (which passes four cycles down the execution pipeline)

with a single register load (which passes one) and being careful about which instruc-

tions are left in a branch shadow (where some instructions may take several cycles in

the execution pipeline before being annulled by the colour checking process). Pro-

ducing optimised code for AMULET1 is harder than for a clocked processor because

instruction dependencies have cost functions which are not constrained to discrete

multiples of a clock cycle and individual instruction costs can be data-dependent.

Note that the increased inter-instruction dependencies (compared with ARM6)

introduce other pressures on the compiler. Interleaving independent threads may

increase register allocation pressure, so register allocation and code ordering interact,

and ARM does not have very many registers compared with most modern RISC

architectures.

Compiler optimization for asynchronous architectures allows for some simple

improvements as outlined above, but it is not clear how far optimization can go. The

lack of a discrete cost function makes this a new research area!

9.2 Improved Latch Mechanisms

The data latch used on AMULET1 is the same as that used on ARM6. Investigations

into alternative latches suggest that there may be potential improvements to be gained

in both performance and power-efficiency from switching to latches which do not

require complementary latch enable signals. An example of such a latch is the Sven-

sson latch as used on the DEC Alpha processor [10]. The Alpha uses a dynamic form

of the latch; the transistor schematic of a variant of the latch with weak feedback to

ensure fully static operation is shown in figure 54. The advantage of the single enable

signal may be seen by comparing the latch control circuit for a conventional latch

with complementary enable signals (figure 55) with that for a Svensson latch (figure

56).

The two forms of latch are compared in table 2. A Svensson latch with carefully

sized transistors can give twice the speed of operation at one third of the energy per

cycle of the ARM6 latch currently used on AMULET1. It achieves this by removing

the need for the inverted enable signal (saving a C-gate and reducing the buffer loads)

and by minimising the load each bit places on the remaining enable line.

Figure 54: A fully static version of the Svensson latch

Figure 55: Conventional transparent latch control circuit

Figure 56: Single phase latch control circuit

En

D

Q

T
O

G
G

L
E

x1 x4

x3
CC

x1

Rin Ain

RoutAout

nEnEn

T
O

G
G

L
E

x4
C

x1

Rin Ain

RoutAout

En

9.3 Four-Phase Control

All the latches described here (apart from the Sutherland capture-pass latch) use 2- to

4-phase conversion control circuits to interface the 2-phase (transition event) control

environment to the level-sensitive latches. Clearly the control environment itself

could be converted to 4-phase (level-sensitive) operation. Although 4-phase circuitry

may appear conceptually simpler at first sight, it is in practice considerably harder to

design efficient 4-phase control circuits because the return-to-zero events have no

specific meaning so the communication protocol does not define when they should

happen. If the return-to-zero event follows the same path around the control circuitry

as the active event, the circuit tends to be very slow. Therefore the designer has to

expend considerable effort in deciding the best way to handle the recovery phase

within each part of the circuit.

Despite these difficulties, the performance advantages of 4-phase control seem to

be significant. A 4-phase control circuit suitable for use with Svensson style latches

is shown in figure 57. (Note that the C-gates do not require symmetric n- and p-tran-

sistor stacks in this circuit.)

Svensson AMULET1

Transistors per latch bit 11 6

Inversions in datapath 3 1

Clock load 2N 1N+1P

clock capacitance 1 3

Invs Rin -> Rout 8 11

FIFO cycle time 12ns 25ns

Table 2: Comparison of Svensson and AMULET1 latches

Figure 57: 4-phase pipeline latch control circuit

En

nAin

Rin

Rout

nAout

C
C

9.4 Engineering Margins

The self-timed circuits used on AMULET1 raise the question of what margin should

be allowed in a matched signal path. If the engineering margin is too small incorrect

operation could result. If the margins are too large, performance will be compro-

mised. In order to ensure the best matching between the data route and the matching

event path, the paths should be identical, close together on the chip and have the

same physical orientation.

On AMULET1 the timing margins were around 20-30% on identical layout (e.g.

the 33rd register bit) and 100% on standard cells paths with the same nominal delay.

Since no failures on the sample chips are attributable to mismatched paths, these mar-

gins appear acceptable, at least for prototype devices. Self-timed paths on clocked

chips often use much smaller margins (e.g. below 10%), but here there are usually far

fewer paths on a chip and a correspondingly lower probability of failure due to one of

them being out of tolerance.

The factors which need to be assessed are process, voltage and temperature varia-

tions, volume production yields and the number of potential failure points in the

design.

9.5 Restructuring the Pipeline

The AMULET1 pipeline is now considered to be deeper than is optimal. To reduce

the latency we propose to bypass the shifter in most cycles and to sideline the multi-

plier except when it is needed. The revised pipeline is illustrated in figure 58 along

with the existing pipeline for comparison.

To be effective the new pipeline organization requires the shifter to be used less

frequently than on AMULET1. This may be achieved by extending the immediate

operand extraction logic to align all immediate operands and by causing the control

logic to detect when the shifter is required for register operands, bypassing it in other

cases.

The benefits of this change are lower execution unit latency and reduced power

(the shifter will be activated less often). The costs are more datapath logic (a partial

shifter in the immediate extraction block) and more complex control logic.

There are other places in AMULET1 where the pipeline can be slimmed without

loss of performance. The memory control pipe can be reduced from 5 stages to 2 or 3.

The PC and instruction pipes can be reduced by 1 stage; this reduces prefetching

(saving power) and improves performance. The exception pipe is longer than is use-

ful, and reducing the A pipe by 1 stage probably will not affect performance.

Overall there are 10 stages in various pipelines which are contributing little to the

performance of the chip and are consuming power.

9.6 The Last Result Register

Register bypassing depends on different stages of the pipeline being in step and is not

directly applicable in an asynchronous pipeline. However, typical programs display

frequent dependencies between consecutive instructions. Therefore an efficient way

to feed results to the next instruction is needed. The ‘last result register’ is a proposed

mechanism which is similar to register bypassing but is usable in an asynchronous

pipeline.

The last result register operates as follows:

• when an instruction is decoded, the destination register is recorded in the

instruction decoder

Figure 58: The proposed simplification of the AMULET2 execution pipe

Figure 59: The last result mechanism

PC pipe

register bank

multiplier

shifter

ALU

PC pipe

register bank

multipliershifter

ALU

AMULET1 AMULET2

ALU

last result

muxmux

OpA OpB

• when the next instruction enters decode, it compares its source registers with

the previous destination register

• if a match is found, that instruction bypasses the read of the matching register,

thereby avoiding stalling on the register lock

• instead the operand is collected from the last result register (figure 59) in the

execution pipeline

Note that the last result mechanism is rather more restricted in its use than conven-

tional register bypassing. Only the results of unconditional instructions (i.e. instruc-

tions with the condition ALWAYS) can be used. The inclusion of this feature will

also move the optimization point for compiled code, and the last result register will

make the use of dual register read ports relatively infrequent; is their inclusion still

justified?

Figure 60: Improved register write logic

Lock FIFO
Rin Ain

Aout Rout

Write Enable
Enable

Remove Lock

Read Lock Gating

Registers

Write Complete

W Bus

W
ri

te
 D

o
n
e

P
re

 C
h

a
rg

e
 D

o
n

e

Write Enable Latch
Rin

Rout

Ain

Aout

C

C

TOGGLE

9.7 Improved Register Write Logic

The current register bank design releases a read which is stalled awaiting a pending

write by clearing the bottom entry of the lock FIFO. As the lock FIFO also controls

the register write word lines, its output must remain stable until the write has com-

pleted and the write word line disabled. The register will have been written well

before this sequence terminates, so the read will have been delayed considerably

longer than is necessary.

A modification to the register bank control logic (figure 60) adds a separate latch

to hold the register write word line stable, allowing the bottom of the lock FIFO to be

cleared as soon as the data has been written to the register. This will release the read

operation significantly earlier, improving the performance on code which causes read

stalls (which includes most existing ARM code).

10 Conclusions

The AMULET1 design demonstrates the feasibility of designing complex asynchro-

nous circuits, and whilst it does not offer a direct advantage over clocked designs at

this stage, there is a lot of room for improvement over the present design.

The architectural features which make synchronous processors go fast do not all

transfer easily to asynchronous designs (e.g. register forwarding) and there is a need

for new architectural features to be developed for asynchronous designs to replace

them (e.g. the register locking FIFO and the last result register).

Micropipelines offer a good framework for the design of high-performance asyn-

chronous circuits. They are amenable to use with conventional CAD tools, though

further tool development could assist the design process.

Asynchronous techniques are enjoying a resurgence of interest amongst the VLSI

design community because they offer the potential for high performance and low

power whilst avoiding the increasing problem of clock skew. A major objection to

asynchronous design has, until now, been the issue of the feasibility of developing

asynchronous designs at levels of complexity which are representative of commercial

circuits. The AMULET1 work overcomes this objection by demonstrating that such

circuits are now feasible. Whilst many questions still remain, this work represents a

step forward towards the commercial exploitation of asynchronous circuits.

11 Acknowledgements

The work described in this chapter involved several members of the AMULET group

at Manchester University. Paul Day and Nigel Paver were the full-time research staff

on the AMULET1 project. They contributed many of the ideas incorporated in the

design and carried out most of the design work. Without their skill and commitment,

we would not now have working silicon. Steve Temple joined the research staff

towards the end of the design phase; he made a significant contribution to the final

chip composition and designed and carried out the tests on the silicon. Viv Woods

and Jim Garside are members of academic staff associated with the project and both

made substantial contributions to the design effort.

The AMULET1 design work described in this chapter was carried out as part of

ESPRIT project 5386, OMI-MAP (the Open Microprocessor systems Initiative -

Microprocessor Architecture Project). Subsequent work has been supported as part of

ESPRIT project 6909, OMI/DE-ARM (the Open Microprocessor systems Initiative -

Deeply Embedded ARM Applications project). The author is grateful for this support

from the CEC.

The author is also grateful for material support in various forms from Advanced

RISC Machines Limited, Acorn Computers Limited, Compass Design Automation

Limited, VLSI Technology Limited and GEC Plessey Semiconductors Limited. The

encouragement and support of the OMI-MAP and OMI/DE-ARM consortia are also

acknowledged.

12 References

1. Dobberpuhl, D. W. et al., “A 200-MHz 64-b Dual-Issue CMOS Microprocessor”,

IEEE Journal of Solid-State Circuits, Vol. 27, No. 11, Nov. 1992, pp. 1555-1565.

2. Sutherland, I.E., “Micropipelines”, The 1988 Turing Award Lecture, Communi-

cations of the ACM, Vol. 32, No. 6, June, 1989, pp. 720-738.

3. Paver, N.C., “The Design and Implementation of an Asynchronous Microproces-

sor”, PhD Thesis, University of Manchester, June 1994.

4. Furber, S.B., “VLSI RISC Architecture and Organization”, Marcel Dekker Inc.,

New York, 1989.

5. van Someren, A., and Atack, C., “The ARM RISC Chip: A Programmer’s

Guide”, Addison-Wesley, 1993.

6. Furber, S.B., Day, P., Garside, J.D., Paver, N.C. and Woods, J.V., “A Micropipe-

lined ARM”, Proceedings of the IFIP TC 10/WG 10.5 International Conference

on Very Large Scale Integration (VLSI’93), Grenoble, France, September 1993.

Ed. Yanagawa, T. and Ivey, P. A. Pub. North Holland.

7. Furber, S.B., Day, P., Garside, J.D., Paver, N.C. and Woods, J.V., “AMULET1: A

Micropipelined ARM”, Proceedings of the IEEE Computer Conference, March

1994.

8. Paver, N.C., Day, P., Furber, S.B., Garside, J.D. and Woods, J.V., “Register Lock-

ing in an Asynchronous Microprocessor”, 1992 IEEE International Conference

on Computer Design: VLSI in Computers & Processors. October 1992.

9. Garside, J.D., “A CMOS VLSI Implementation of an Asynchronous ALU”, IFIP

Working Conference on Asynchronous Design Methodologies, April 1993. Ed.

Furber, S. B. and Edwards, M. D. Pub. North Holland.

10. Yuan, J., and Svensson, C., “High-Speed CMOS Circuit Techniques”, IEEE Jour-

nal of Solid-State Circuits, Vol. 24, No. 1, February 1989, pp. 62-70.

