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Abstract

The contribution of this paper is the expansion of the range of pos-
sibilities in the analysis, planning, and control of contact tasks. The
successful execution of any contact task fundamentally requires the
application of wrenches (forces and moments) consistent with the
task. We develop an algorithm for computing the entire set of exter-
nal wrenches consistent with achieving a given augmented contact
mode (e.g., sliding at contact 1, rolling at contact 2, and approaching
potential contact 3) for one fixed and one moving part in the plane.

Unfortunately, because of the problem of frictional indetermi-
nacy, it is usually not enough to determine the set of wrenches consis-
tent with achieving a contact mode. Some of the computed wrenches
may also be consistent with other undesirable contact modes. How-
ever, set operations on the cones returned by our algorithm can be
designed to find the wrenches consistent only with desired contact
modes.

In this paper we also present some applications of the algorithm to
analysis and planning problems. We show how to use set operations
to compute the set of external wrenches with respect to which a
fixtured part is ‘strongly stable’. If the applied external wrench is in
this set, the part is guaranteed not to move. We also show how the
algorithm may be used to create sensorless plans that guarantee that
a workpiece will be correctly inserted into a fixture.

KEY WORDS—fixturing, assembly, contact tasks, rigid bod-
ies, multibody dynamics, contact modes, polyhedral convex
cones, sensorless insertion, grasp analysis

1. Introduction

One of the most basic operations in manufacturing is work-
piece insertion. Consider the planar assembly task depicted
in Figure 1. The workpiece (a ratchet pawl) is to be fixtured
for assembly. The goal is to achieve all three desired contacts
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(or fixels), so that the position and orientation of the work-
piece will be uniquely determined. If the workpiece slides
on fixels 2 and 3 while rotating counterclockwise, then the
workpiece will eventually contact fixel 1.

This plan requires a device that applies specified wrenches.
If the workpiece is positioned on a tray that is tilted to achieve
the desired workpiece motion, then gravity provides the ex-
ternal wrench. If a spring is used to push the workpiece, then
the deformation of the spring provides the wrench.

Regardless of the method used to apply the force, it is
fundamental to the above plan that the set of external wrenches
consistent with achieving the desired contact mode be known.
In this paper, we present an algorithm to determine the set
of external wrenches consistent with achieving any possible
contact mode.

Unfortunately, due to the non-uniqueness problem inher-
ent in most mathematical models of dynamic rigid body sys-
tems (see, for example, Lötstedt (1982)), it is possible that the
wrenches in a calculated set may be consistent not only with
the desired mode, but also with another, undesirable mode.
Therefore, we also show how unions and intersections of
the sets of consistent external wrenches may be used to find
wrenches consistent only with desired interactions between
the workpiece and the fixture.

1.1. Relation to Previous Work

In this paper we collect and expand upon work by Balkcom,
Gottlieb, and Trinkle (2002) and Balkcom, Trinkle, and Got-
tlieb (2002). Our approach is based on previous theoretical
results in rigid body mechanics (Pang and Trinkle 2000; Trin-
kle et al. 1997) and complementarity theory (Cottle, Pang,
and Stone 1992). In Pang and Trinkle (2000), examples are
presented in which the polyhedral convex cones of external
wrenches, consistent with achieving particular contact modes,
are calculated. We develop and extend their method into an
algorithm that works with all contact modes. (We will refer
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Fig. 1. A workpiece nearly seated in a fixture.

to this algorithm as the wrench cone algorithm.) We represent
polyhedral convex cones by matrices; our primary reference
for operations on matrix representations of cones is Goldman
and Tucker (1956). The Ph.D. thesis of Hirai (1991) describes
an algorithm for conversion between representations of poly-
hedral convex cones that is somewhat more computationally
efficient than that in Goldman and Tucker (1956), and we used
Hirai’s software as a component of the implementation of our
work.

Brost (1991) and Mason (2001) provide good surveys of
previous work on manipulation planning from the perspective
of rigid body dynamics with Coulomb friction. The work of
Erdmann (1984, 1994) on generalized friction cones in con-
figuration space provided one of the first methods for com-
puting the possible motions of contacting rigid bodies under
an applied wrench.

Prattichizzo and Bicchi (1998) provide an analysis of the
dynamic equations of rigid body contact problems from the
perspective of linear controllability and observability. Like
them, we consider a linear (and therefore local) model, ana-
lyzed at the current time. However, we focus on workpiece in-
sertion (fixturing, or attaining a grasp), while Prattichizzo and
Bicchi focus on the control of the workpiece after it has been
grasped. Therefore, we consider contact interactions such as
sliding, separating, and approaching, which are indispensible
for achieving contact, but which may be undesirable when
manipulating a grasped object.

Apart from Pang and Trinkle (2000), the work most similar
to that presented here is probably that of Mason (2001). Mason
describes a graphical method for finding the set of accelera-
tion centers (and thus wrenches) consistent with achieving a
particular contact mode. Our method is based on linear alge-
bra rather than geometry; this allows more flexibility in the
definition of contact modes. For example, the set of external
wrenches consistent with maintaining contact at some point
can be found, without specifying whether the mode involves
sliding right, sliding left, or rolling. Another advantage of our
algorithm is ease of implementation; the core of our sample
implementation is about one hundred lines of simple C code.

We also use set operations on the calculated polyhedral
convex cones to derive a set of wrenches consistent only with
fixturing a planar workpiece. There have been many con-
troller designs for rigid body insertion tasks; we will men-
tion only a few characteristic approaches. As one example,
McCarragher’s petri-net controller (Austin and McCarragher
1997; McCarragher and Asada 1992) sensed contact states
by comparing sensor signals to a qualitative template derived
from rigid body dynamic equations under the frictionless as-
sumption. Then the manipulator applied controls consistent
with certain desirable state transitions, and not with other state
transitions.

Unlike McCarragher’s controller, passive (or sensorless)
controllers rely on a device designed to apply proper wrenches
regardless of the current state. Erdmann and Mason (1988)
have developed a formal framework for the design of pas-
sive controllers in a paper on sensorless manipulation. The
remote center of compliance (RCC) of Whitney (1982) and
the accommodative wrist of Schimmels and Peshkin (1994)
are both examples of this approach. In the related problem of
fixture clamp placement, Brost and Peters (1997) employed
a quasi-static analysis of the clamping process over the range
of motion of the clamp’s plunger with uncertain contact state.

Our fixturing method makes use of the presented wrench
cone algorithm and is a passive controller. Generating the
insertion strategy only requires taking unions and comple-
ments of some computed wrench cones, and is thus quite easy
to implement. Like McCarragher, we assume that the state
transitions are determined by a dynamic rather than a quasi-
static rigid body model. Our approach to the well-known non-
uniqueness problem of rigid body dynamics—for example,
see Trinkle et al. (1997) and Trinkle and Zeng (1995)—is to
find a set of external wrenches consistent only with seating
the workpiece. Although we assume that workpiece veloci-
ties are small, our method is also robust to sign changes in the
tangential contact velocities.

1.2. Structure of the Paper

In Section 2 we present a mathematical model of our system
of two planar rigid bodies, and we make necessary defini-
tions. The model is composed of two parts: the Newton–Euler
equations, and a set of constraints imposed by the choice of
contact mode. It turns out that the set of external wrenches
consistent with the equations and constraints is a polyhedral
convex cone; in Section 3 we review matrix representations
of polyhedral convex cones. In Section 4, we consider a sim-
ple example of a desired contact mode, and show (by hand)
how the implied constraints and the Newton–Euler equations
may be combined to determine the consistent cone of external
wrenches. In Section 5 we present the complete wrench cone
algorithm, and examples are given in Section 6. In Section 7
we discuss the problem of frictional indeterminacy. We then
show how the wrench cone algorithm may be used to find the
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cone of wrenches with respect to which a fixtured workpiece
is strongly stable; that is, guaranteed not to move even in the
presence of indeterminate contact forces. In Sections 8 and 9
we present an additional application of the wrench cone algo-
rithm: a fixture insertion strategy that takes into account the
problem of frictional indeterminacy.

2. Mathematical Model

The instantaneous dynamic model of a system of rigid bod-
ies with unilateral, frictional contacts can be formulated as
a linear complementarity problem (LCP; Trinkle et al. 1997)
and solved by Lemke’s algorithm (Anitescu and Potra 1997).
The model consists of five components: the Newton–Euler
equations, kinematic non-penetration constraints, a friction
law, and normal and tangential complementarity conditions.
Given the configurations and velocities of the moving bod-
ies, the current set of contacts, the coefficients of friction, the
inertia properties, and the applied external wrenches, the so-
lution of the LCP yields contact forces and body accelerations
satisfying all five components of the model.

Our problem may be seen as an inverse LCP. Given the rigid
body configurations and a set of constraints on contact forces
and accelerations imposed by the choice of contact mode,
we want to find the set of consistent external wrenches. The
derivation of our mathematical model therefore parallels that
derived for LCP formulations. We begin by assuming that the
workpiece is either touching or infinitesimally distant from
each fixel, and that velocities are small enough that velocity
product terms may be neglected from the dynamic equations.

2.1. Variables and Definitions

Let fi be the location of fixel i. Let pi be the unique closest
point on the workpiece to fi . We attach a right-handed frame
(ni (t), ti (t)) to each fixel such that the first axis points at
pi (see Figure 2). The signed distance, or gap, between the
workpiece and fixel i is 〈ni (t), (pi − fi )〉 where the angle
brackets denote the usual inner product of vectors.

Let vin(t) and vit(t) denote the components of the velocity
of p(i) in frame i:

vin(t) = 〈ṗi (t), ni (t)〉 (1)

vit(t) = 〈ṗi (t), ti (t)〉. (2)

Fig. 2. A local frame attached to fixel i.

We now state four definitions. A contact state is the set
of indices of fixels where contact has been achieved. A con-
tact interaction is the relative motion at a point of contact:
separating, rolling, sliding left, sliding right. A contact mode
is the set of interactions at all the contacts. Because we are
interested in insertion tasks, we define an additional contact
interaction, ‘approach’. We also extend the definition of a
contact mode: an augmented contact mode is the extension of
a contact mode that allows specification that the workpiece
is approaching a nearby fixel. For example, the workpiece
separates from fixel 1 and approaches fixel 2.

We may enumerate the possible contact interactions at fixel
i based on the distance of the fixel from the workpiece, and
the normal and tangential components of the velocity of the
closest point on the workpiece. For example, if the interaction
at fixel i is left sliding, then the gap is zero, vin = 0, and
vit > 0. Table 1 enumerates the cases.

Right sliding, left sliding, and rolling can occur only if con-
tact has been achieved. Approaching can only occur if there
is no contact, and would correspond to penetrating if contact
had already been achieved. Separating may occur regardless
of whether or not contact has been made.

We assume that the fixels have been ordered, and we de-
scribe the augmented contact mode by a string, using the ab-
breviations from Table 1. For example, the string ‘als’ should
be read: the workpiece is approaching fixel 1, sliding left over
fixel 2, and separating from fixel 3.

2.2. Newton–Euler Equations

The Newton–Euler equations describe the dynamics of the
system regardless of the contact mode. In this section we re-
arrange the these equations into a form that will be useful in
later sections.

The net wrench w applied to the workpiece and the gener-
alized acceleration ν̇ of the workpiece are related through the
three-by-three inertia matrix M:

w = Mν̇. (3)

Let cin and cit be the normal and tangential components of the
force applied to the workpiece by contact i. Assume there are
n contacts, and define c = [c1n...cnn c1t...cnt]T.

Table 1. Contact Interactions
Interaction Abbreviation Gap vin vit

Left sliding l 0 0 > 0
Right sliding r 0 0 < 0
Rolling n 0 0 0

Approaching a > 0 < 0 -

Separating s = 0 > 0 -
> 0 ≥ 0 -
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We partition w into the contribution of the contact forcesJc
and that of external wrenches g, and solve for the generalized
acceleration of the workpiece:

ν̇ = M−1(Jc + g), (4)

where J is the Jacobian matrix (also known as the wrench ma-
trix) that transforms the contact forces into the inertial frame
and sums their moments about the center of mass of the work-
piece.

Let v = [v1n...vnn v1t...vnt]T = JTν be the vector of normal
and tangential components of the contact velocities. Then the
contact acceleration vector can be written as (Pfeiffer and
Glocker 1996; Sarkar, Yun, and Kumar 1997):

a = d

dt
v = d

dt
(JTν) = J̇

T
ν + JTν̇. (5)

Premultiplying eq. (4) by JT, assuming velocity product
terms are negligible, and combining with eq. (5) yields the
Newton–Euler equations mapped into the contact frames:

a = Ac + Bg, (6)

where A = JTM−1J and B = JTM−1.
We rearrange eq. (6) to find a relation between external

wrenches and the accelerations and forces at the contacts:

Cy = Bg, (7)

where

C = [I2n×2n − A] (8)

is (2n × 4n) and

y =
(

a
c

)
(9)

has 4n elements. Equation (7) will be the starting point for
our algorithm to find the set of external wrenches consistent
with a given contact mode.

2.3. Constraints due to Contact Modes

In this section we will discuss how the current contact state
and the goal contact mode imply a set of constraints on y, the
vector of contact accelerations and forces.

Non-penetration Assume there is contact at fixel i. Then
ain ≥ 0; otherwise the fixel and the workpiece would
interpenetrate.

Unilateral force Contact forces are unilateral: cin ≥ 0.

Coulomb friction We denote the static and kinetic coeffi-
cients of friction by µs and µk. If the workpiece is slid-
ing to the right, then the frictional force will be on the

left edge of the friction cone: cit = µkcin. If the work-
piece is sliding to the left, then the frictional force will
be on the right edge of the friction cone: cit = −µkcin.
If the workpiece is not moving with respect to the fix-
ture, then the friction force may fall anywhere in the
static friction cone: |cit| ≤ µscin.

Separation If there is no contact between the workpiece and
fixel i or contact is breaking. Fixel i cannot support a
load, so cin = cit = 0.

There are also constraints on the contact accelerations im-
posed by the choice of desired contact interaction at a fixel. If
contact has been achieved, and we want the interaction to be
left sliding, then we should choose ain = 0 and ait < 0. We
have collected the constraints on y implied by various contact
interactions in Table 2.

If the initial velocity of the workpiece is zero, then the
constraints s, l, r, and n correspond to the usual definition of
contact modes. For example, assume we have a workpiece that
is contacting three fixels, and initially at rest. If we apply an
external wrench consistent with the constraints lls, we expect
the contact mode to be ‘sliding left over fixel 1, sliding left
over fixel 2, and separating from fixel 3’ at the next time
instant.

It is useful to define other constraints as well. Constraint
a, ‘approaching’ is similar to s, but can only occur if there is
no contact. Constraint u implies that there is no contact, but
does not constrain the part to accelerate towards or away from
the fixel in question. The constraint m, ‘maintain’, describes
the situation where the normal acceleration is constrained so
as to maintain contact, and the contact force is constrained to
lie within the friction cone.

We will use G and a subscript to denote the set of exter-
nal wrenches g satisfying a set of constraints. For example,
the notation Gss would describe the set of external wrenches
consistent with the constraint that a given workpiece separates
from two fixels. The algorithm we will describe in this paper
can calculate a matrix describing the set of external wrenches
consistent with the impending contact mode.

Table 2. Constraints on Elements of y Due to Contact
Interaction

Abbreviation ain ait cin cit

s ≥ 0 - 0 0
a < 0 - 0 0
u - - 0 0

l 0 > 0 ≥ 0 −µkcin

r 0 < 0 ≥ 0 µkcin

n 0 0 ≥ 0 |cit| ≤ µscin

m 0 - ≥ 0 |cit| ≤ µscin

 © 2002 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARNEGIE MELLON UNIV LIBRARY on August 10, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Balkcom and Trinkle / Computing Wrench Cones 1057

We will describe the current contact state by a binary num-
ber. State 00 describes the case where zero of two contacts
have been achieved, and state 10 describes the case where
contact had been achieved at the first fixel but not at the
second.

3. Matrix Representations of Polyhedral Convex
Cones

In this section, we review matrix representations of polyhedral
convex cones. Our discussion is based on the work of Gold-
man and Tucker (1956). Assume matrix F is given. The polar
of F is defined as the set of solutions to the matrix inequality
Fg ≤ 0, where the inequality applies element-by-element:

polar(F) = {g : Fg ≤ 0}. (10)

Any g ∈ polar(F) makes a non-positive dot product with
each row of F. Each row of F may be interpreted as the nor-
mal to the plane bounding a half-space. This plane contains
the origin and is included in the half-space described by the
corresponding inequality. Thus solutions lie in the intersec-
tion of the half-spaces, and polar(F) is therefore a polyhedral
convex cone with apex at the origin. We say that the inequality
Fg ≤ 0 is a face normal representation of the cone.

Similarly, assume matrix G is given and define the positive
linear span of G:

pos(G) = {g : g = Gz for some z ≥ 0}. (11)

Any vector g ∈ pos(G) is in the positive linear span of the
columns of G, and we say that the equation g = Gz together
with the inequality constraint z ≥ 0 is a span representation
of a polyhedral cone. The columns of G are referred to as
generators.

3.1. Converting between Representations

According to Goldman and Tucker (1956), Minkowski and
Farkas first showed that, for any face normal representation
of a polyhedral convex cone, there is a corresponding span
representation, and Weyl showed that the converse is true.
If F or G is non-singular, then conversion between the two
representations is easy and may be accomplished by matrix
inversion. Goldman and Tucker (1956) and Hirai (1991) have
described methods for performing the conversion if the matrix
is rectangular or otherwise singular.

We introduce some new notation, and use the superscript
‘F’ to denote conversion from a span representation of a cone
to a face normal representation. If we are given a matrix H,
then HF refers to a matrix such that pos(H) = polar(HF). This
notation is particularly useful because it allows algebraic ma-
nipulation of a matrix equation and set of constraints, even

when the matrices involved are singular. The following theo-
rem makes use of our notation.

THEOREM 1. Assume we have a matrix equation and a set
of constraints of the form:

Kz = Pg

z ≥ k

where K and P are constant matrices, k is a constant vector,
and inequalities between vectors apply element-by-element.
For a given vector g, there exists z satisfying the equation and
the inequality if and only if

KFPg ≤ KFKk.

Proof. Define a change of variables x = z − k. Then

z = x + k

K(x + k) = Pg

Pg − Kk = Kx

x ≥ 0.

The last two lines tell us that the vector Pg−Kk lies in a poly-
hedral convex cone; this is the span representation of the cone.
Therefore, we may convert to the face normal representation:

KF(Pg − Kk) ≤ 0

KFPg ≤ KFKk.

Verification of the ‘only if’ condition is similar. �

4. A Simple Example

Before presenting the complete algorithm, we present a sim-
ple example. Consider a disk-shaped workpiece (see Figure 3)
with unit radius, and inertia matrix M equal to the identity ma-
trix. Fixel 1 is at the position (0, −1), touching the workpiece
(indicated by a small filled circle), and fixel 2 is slightly to
the right of (1, 0), not quite touching the workpiece (indicated
by a small unfilled circle). We want the workpiece to roll on
fixel 1, and approach fixel 2; that is, the contact mode is ‘na’.
What external wrenches are consistent with this mode?

We first construct the Jacobian J. Each column of J may be
thought of as the wrench corresponding to a unit force applied
to the workpiece at a point near a fixel, in a local coordinate
direction.

J =
[

n1 n2 t1 t2

p1 × n1 p2 × n2 p1 × t1 p2 × t2

]

=

 0 −1 −1 0

1 0 0 −1
0 0 −1 −1


 .
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Fig. 3. A simple example.

We calculate C and B and rewrite eq. (7):



1 0 0 0 −1 0 0 1
0 1 0 0 0 −1 −1 0
0 0 1 0 0 −1 −2 −1
0 0 0 1 1 0 −1 −2


 y =




0 1 0
−1 0 0
−1 0 −1

0 −1 −1


 g. (12)

We now turn to the constraints on y. Table 2 gives con-
straints on four elements of y for each interaction; we collect
the constraints in Table 3.

We will take eq. (12), together with the constraints listed
in Table 3, and find a new equation and simpler constraints of
the form:

Gz = g, z ≥ 0.

1. Since a1n = a1t = c2n = c2t = 0, we remove these
elements from y, and we remove the first, third, sixth,
and eighth columns of C.

2. Since a2n is constrained to be less than zero, we change
the signs of the elements of the second column of C,
replace a2n by −a2n in y, and constrain −a2n ≥ 0. (For
now, we ignore the issue posed by the strict inequality.
This will be resolved in Section 5.6.)

3. Presuming that µs > 0, we replace the constraints
|c1t| ≤ µsc1n by two equivalent constraints: (µsc1n +
c1t)/2µs ≥ 0 and (µsc1n − c1t)/2µs ≥ 0. We make a
variable substitution in y, and take the appropriate lin-
ear combinations of columns five and seven of C.

Table 3. Constraints on y for Contact Mode ‘na’

y Uncon Ineq Roll Slide Zero

a1n = 0
a2n < 0
a1t = 0
a2t x
c1n ≥ 0
c2n = 0
|c1t| ≤ µsc1n

c2t = 0

4. Since a2t is unconstrained, we drop the equation involv-
ing it; we remove the fourth row of C and B. Once this
has been done, the fourth column of C is comprised
only of zeros; we remove the column from C and a2t

from y.

After applying the above steps to eq. (12), we have a new
equation and set of constraints of the form used in Theorem 1:


 0 −1 −1

−1 µs −µs
0 2µs −2µs





 −a2n

(µsc1n + c1t)/2µs
(µsc1n − c1t)/2µs


 =


 0 1 0

−1 0 0
−1 0 −1


 g


 −a2n

(µsc1n + c1t)/2µs
(µsc1n − c1t)/2µs


 ≥ 0

where the matrices on the left and right sides of the equation
are K and P, respectively, and the vector on the left-hand
side is z. If µs = 0.2, and we solve for g by inverting P and
premultiplying both sides of the equation, we arrive at the
desired form:


 1.0 −0.2 0.2

0.0 −1.0 −1.0
−1.0 −0.2 0.2


 z = g

z ≥ 0.

This result is recognizable as a span representation of a poly-
hedral convex cone. A geometric interpretation is shown in
Figure 4. The generators of G (its columns) will be denoted
by g1, g2, and g3. Each generator corresponds to a wrench,
which we may view as a directed line of force. The lines of
force corresponding to g2 and g3 lie on the edges of the fric-
tion cone of fixel 1; the positive linear combinations of these
generators are the external wrenches that may be balanced by
the contact force at fixel 1. The line of force corresponding
to g1 points to the right and is at the top of the disk; forces
along this line will cause the disk to approach fixel 2, without
breaking contact or generating a load at fixel 1.

5. The Wrench Cone Algorithm

We may generalize the procedure used in the example into an
algorithm that works for any contact mode. First, we calculate
the matrices C and B. Once a contact mode has been chosen,
Table 2 may be used to determine the set of constraints on y.
We then build a series of matrices that may be used to trans-
form the equation and constraints into a face representation
of a polyhedral convex cone.

5.1. Eliminate Equations (Matrix E)

Some elements of y may be unconstrained by the choice of
augmented contact mode. We may eliminate the equations
involving these variables by premultiplying C and B by a row
selection matrix E.
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Let E be the set of indices of unconstrained elements of y.
We form E by removing the rows of I2n×2n corresponding to
elements of E.

For the example problem discussed above, we examine the
first column of Table 3; the fourth variable a2t is unconstrained.
Therefore, E = {4}, and we form E by removing the fourth
row of I4×4.

5.2. Negative Variables (Matrix N)

The choice of augmented contact mode may constrain some
elements of y to be negative. We change the sign of columns
of C so that all inequalities may be expressed using > or ≥.

Let N be the indices of the elements of y constrained to be
negative, and let iij be the (i, j) element of an appropriately
sized identity matrix. We postmultiply C by the diagonal 4n×
4n matrix N defined as follows:

nij = −1 if i = j and i ∈ N
nij = iij otherwise.

For our example, we examine the second column of Ta-
ble 3, and see that N = {2}, since only a2n < 0. We form N
by changing the sign on the second diagonal element of I8×8.

5.3. Rolling Friction (Matrix R)

If the augmented contact mode involves ‘rolling’ interac-
tions, some elements of y must satisfy constraints of the
form |cit| ≤ µscin. We replace the variables cin and cit by
(µsc1n+c1t)/2µs and (µsc1n−c1t)/2µs, both of which are con-
strained to be non-negative. The variable substitution requires
that we take appropriate linear combinations of columns of
C. We take the linear combination by postmultiplying C by a
square matrix R.

Let R be the indices of the elements cit of y that must
satisfy rolling friction constraints. Define R to be the 4n×4n

matrix with:

rij = µs if i ∈ R and i = j

rij = 1 if j ∈ R and i = j − n

rij = −µs if i ∈ R and i = j + n

rij = iij otherwise.

For our example, we examine the third column of Table 3,
and find that the seventh element is subject to a rolling friction
constraint. We build R from an 8 × 8 identity matrix, but set
r75 = −0.2, r57 = 1, and r77 = 0.2.

5.4. Sliding Friction (Matrix S)

If the augmented contact mode involves ‘sliding’ interactions,
some elements of y must satisfy constraints of the form cit =
±µkcin. We may eliminate cit by replacing a column of C by
an appropriate linear combination of columns, and removing
a column of C. These operations may be accomplished by

postmultiplying by a square matrix S and a column selection
matrix V defined below.

Let �r be the indices of the elements of y constrained to be
a positive multiple of another element. Let �l be the indices
of the elements of y constrained to be a negative multiple of
another element. Define S to be the 4n × 4n matrix with:

sij = µk if i ∈ �l and i = j + n

sij = −µk if i ∈ �r and i = j + n

sij = iij otherwise.

For our example, we examine the fourth column of Table 3,
and find that there are no sliding friction constraints, so S =
I8×8.

5.5. Eliminate Variables (Matrix V)

We need to remove the columns of C corresponding to the
variables cit subject to sliding friction constraints. Similarly,
some elements of y will be constrained to be 0, and we may
remove the corresponding columns of C. Finally, since the
unconstrained variables are accelerations appearing only in
equations removed by the matrix E, we may eliminate them.
We may eliminate variables by postmultiplying by a column
selection matrix V.

Let Z be the indices of the elements of y constrained to
be zero. Then define V = Z ∪ �r ∪ �l ∪ E. We form V by
removing any columns of I4n×4n that have an index contained
in V.

For our example, we examine the first column of Table 3,
and find that the fourth element of y is unconstrained and
may be eliminated. The fourth column of the table tells us
that there are no sliding constraints, and the fifth column tells
us that elements one, three, six, and eight are constrained to
be zero and may be eliminated. We build V by removing the
first, third, fourth, sixth, and eighth columns of I8×8.

5.6. Cone Form

We apply all of the above matrices in order to eq. (7) to find
an equation and set of constraints of the form:

Kz = Pg (13)

z ≥ 0 (14)

where the inequality in eq. (14) applies element-by-element
and K, z, and P are defined as:

K = ECNRSV (15)

z = VTS−1R−1N−1y (16)

P = EB. (17)

We may calculate K and P; then eq. (13) and inequality (14)
‘almost’ give the cone containing the external wrench. In spe-
cial cases, we may either take an inverse or pseudoinverse to
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find a cone form, as we did in the simple example. In general,
we apply Theorem 1, choose k = 0 and define F = KFP.
Then

Fg ≤ 0. (18)

This is the face normal representation of the polyhedral con-
vex cone containing the external wrench g.

So far, we have ignored the distinction between strict and
non-strict inequalities in our discussions. Fortunately, theo-
rem 1 allows strict inequalities to be converted to non-strict
inequalities by choosing k to have small positive elements,
and considering limits as k → 0.

A related issue is that in the definitions of augmented con-
tact modes in which the workpiece approaches fixels, we only
required that accelerations towards fixels be non-negative. For
these modes, some solutions in the calculated cone may have
zero or very small accelerations. This means that it could take
a very long time for contact to be achieved. Minimum bounds
on accelerations can be chosen if desired by setting appropri-
ate elements of k.

We summarize the algorithm as follows:

1. Calculate the Jacobian J and the matrices C and B.

2. Determine the constraints on y implied by the mode.

3. Calculate the matrices E, N, S, R, and V.

4. Calculate the matrices K and P.

5. Find KF, as discussed in Section 3.

6. Calculate F = KFP.

A given wrench g is consistent with the contact mode if it
satisfies Fg ≤ 0.

6. Implementation and Examples

We implemented the algorithm in C, and used software de-
scribed in Hirai (1991) for the conversion between face nor-
mal and span representations of convex cones. Four example
problems are shown in Figure 4. For each example, the output
of the algorithm was a matrix F of the form described above.
In each case, we converted from face normal form to span
form to find and display the wrench cone generators. Genera-
tors usually (but not always) describe degenerate or boundary
solutions in the sense that a contact force or acceleration is
zero that will be strictly positive when a force from inside the
cone is applied.

Figure 4(a) shows an example for the contact mode ‘lla’.
The goal is to achieve contact at fixel 3, while maintaining
contact at fixels 1 and 2. The generators g1 and g2 saturate the
right edges of the friction cones, and g3 provides the nega-
tive torque about the center of rotation to cause contact to be
achieved at fixel 3. This example suggests how our algorithm

Fig. 4. Four examples.

might be used as part of a manipulation planner; one approach
is described in Section 8.

Figure 4(b) illustrates the problem of determining where
a frictionless finger should be placed to achieve force clo-
sure. The problem can be solved using the graphical method
of Reuleaux (1876). Our algorithm finds the solution if we
choose the contact mode ‘nnn’. The thick black line on the
surface of the workpiece shows places where the finger could
be placed.

Figures 4(c) and 4(d) show an example of the frictional
indeterminacy problem that arises in a peg-in-hole insertion.
There is a cone of wrenches consistent with seating the work-
piece through mode ‘lra’, but all of these wrenches are also
consistent with the mode ‘nn’, in which jamming occurs.
(The wrench cone for Figure 4(d) has six generators. The two
that are pure moments are drawn as arcs about the center of
gravity.)

For a typical problem with three fixels, the CPU time on
a Pentium III system at 800 MHz was about 1 millisecond,
measured over one thousand executions of the algorithm. Ta-
ble 4 shows the average CPU time for 1000 executions for
problems with between one and six fixels.

Profiling has shown exponential algorithmic complexity
underlying our cone computations (note the 6n trend in the ta-
ble). This was expected because, in the worst case, the number
of cones to be considered when converting from span form to
face normal form is known to be exponential in the number
of contacts; see Hirai (1991) and Goldman and Tucker (1956)
for details of the conversion algorithm. In the case of three
fixels, ≈99.98% of the CPU time was spent on conversions
between forms.
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Table 4. Average CPU Time, Measured Over 1000
Executions

n CPU Time

1 0.00003 s
2 0.00018 s
3 0.00101 s
4 0.00610 s
5 0.0363 s
6 0.2190 s

7. Strong Stability of a Fixtured Workpiece

In the previous section, we have discussed some examples
where individual wrench cones consistent with achieving or
maintaining a contact mode were derived. However, as we
have seen in Figures 4(c) and 4(d), wrench cones for dif-
ferent contact modes may overlap, causing an indeterminacy
problem. In this section, we present an example of how set
operations on wrench cones may be used to make guarantees
about the interaction between the workpiece and the fixture.

Pang and Trinkle (2000) make the following definitions:

Weak stability There exists a solution to the rigid body dy-
namics model for which the acceleration of the work-
piece is zero.

Strong stability The acceleration of the workpiece is zero
for all solutions of the rigid body dynamics model.

We say that a workpiece is weakly stable with respect to a
set of external wrenches if for each wrench there is a solution
with zero acceleration. Thus, weak stability is a generalization
of force closure:

Force closure The positive linear span of possible contact
wrenches is all of the wrench space.

The workpiece is in force closure if it is weakly stable with
respect to all of the wrench space.

The weak stability problem has been well studied. Take
the set of unit wrenches corresponding to the edges of the
friction cones; these wrenches are the edges of a polyhedral
convex cone in the wrench space. If the negative of the external
wrench is included in this cone, then the part is weakly stable
with respect to that wrench. Weak stability corresponds to
the constraints nn (for two fixels) and nnn for three fixels.
In Figure 5, µs is large enough that each fixel is included in
the friction cone of the other. Nguyen’s condition for force
closure is satisfied (Nguyen 1988), and thus it is possible that
any external wrench will be balanced by the contact forces.
The weakly stable cone is all of the wrench space.

If we want the part to be motionless in a rigid grasp or
fixture, it is necessary that any applied external wrench be in

Fig. 5. Computing strong stability.

the weakly stable cone. It is sufficient that the external wrench
be in the strongly stable cone. We may calculate the strong
stability cone by the following method:

1. Determine the kinematically feasible contact modes.
(See Mason (2001; chapter 8) for an algorithm based
on the method of Reuleaux (1876).)

2. For each contact mode except n...n calculate the set of
consistent wrenches. Take the complement of the union.

The workpiece is then strongly stable with respect to the
calculated wrenches. Figure 5 shows an example. The work-
piece is a disk touching two fixels. The kinematically feasible
contact modes are ss, sl, sr, sn, ls, rs, ns, ll, and rr; some
corresponding rotation centers are shown in the figure. (Rep-
resentative rotation centers corresponding to all kinematically
consistent modes fall either on the lines tangent to the contacts,
normal at the contacts, or in the cells created by the intersec-
tions of the half-spaces defined by these lines, as described in
Mason (2001).)

We calculate

Gstrong = Gss ∪ Gsl ∪ Gsr ∪ ... ∪ Grr. (19)

Figure 5 shows the places where pushing with a frictionless
finger would exert an external wrench in the strongly stable
cone. The workpiece will not move if the finger pushes along
the dark line. As shown in the figure, if µs is large enough,
each fixel will be included in the friction cone of the other;
the weakly stable cone will be all of the wrench space. The
workpiece might not move if it is pushed somewhere other
than along the dark line, but there are no guarantees!

The computation of the strongly stable cone also allows an
analysis of situations where immobilization is to be achieved
by a combination of external forces and geometric constraints
(fixels). If Gstrong has non-zero volume, and we apply a bias-
ing wrench from the interior of Gstrong, then the workpiece
will not move under small disturbance wrenches of arbitrary
direction.
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We also point out that the first step of the algorithm, in
which the kinematically feasible contact modes are deter-
mined, is only necessary from the standpoint of computational
efficiency. There are four possible interactions at each con-
tact: l, r, s, or n. So if we do not calculate the feasible contact
modes, we must calculate 4n −1 wrench cones corresponding
to each possible mode except n..n. For kinematically infeasi-
ble modes, the wrench cones computed will simply turn out
to be empty, assuming the correct analysis has been done to
preserve strict inequalities, as discussed in Section 5.6.

The computation of strong stability involves finding the
set of wrenches consistent only with the mode nn . . . n. A
similar approach can be used to find all wrenches consistent
only with any other mode (for example ll . . . l, sliding left on
all fixels), or to find wrenches consistent only with a given
contact task. In the next section we describe how unions and
complements of wrench cones can be used to find the set of
wrenches consistent only with workpiece insertion.

8. Fixturing a Workpiece

The algorithm for calculating Gstrong presented above is most
useful as a tool for analysis of motionless rigid bodies. In this
section, we consider the problem of planning an insertion task.

Consider Figure 6(a). The problem is to seat a disk-shaped
workpiece of uniform density against the two fixels. The in-
sertion process can be thought of as a finite state graph whose
nodes represent the set of desired contacts that have been
achieved. For example, if we call the desired contacts fixels
1, 2, and 3 (see Figure 1), then one of the nodes of the transi-
tion graph will correspond to the case where contact has been
achieved at fixels 2 and 3, but not at fixel 1. The goal state
corresponds to the case where there is contact at all desired
points. Transitions between the states occur when contacts are
achieved or broken. We assume that the workpiece is quite
close to both fixels initially and impacts can be ignored in
the sense that they are dissipative, so that the workpiece may
bounce off a fixel several times, but will eventually achieve
steady contact with zero normal velocity.

By choosing constraints on contact forces and accelera-
tions we may enable or disable state transitions. Consider the
state transition graph shown in Figure 7(b). If there is no con-
tact, then the initial state is 00. If additionally the constraint
au is satisfied, then the state transition 00 → 10 is likely, since
the constraint au ensures that the workpiece will accelerate
towards the first fixel. Similarly, the constraints ua, aa, na,
and an are all desirable, since they are consistent with state
transitions that bring the system closer to the goal state.

It might seem that choosing an external wrench from the
set

Gau ∩ Gua ∩ Gaa ∩ Gna ∩ Gan ∩ Gnn (20)

would guarantee that the goal would be reached. However,
the wrench cone algorithm presented above only finds the

Fig. 6. Finding the cone of wrenches that will cause a disk-
shaped workpiece to contact two fixels, regardless of initial
state.

set of external wrenches consistent with constraints on the
contact forces and accelerations. Due to the rigid body non-
uniqueness problem (see, for example, Lötstedt (1982)), it is
possible that a single external wrench may be consistent with
more than one vector of contact forces and accelerations, if
contact has been achieved.

Therefore, instead of attempting to enable forwards tran-
sitions, we disable the backwards and self-transitions by en-
suring that the external wrench is not consistent with the con-
straints shown in Figure 7(c). Consider the state 00, where no
contact has been achieved. If we apply a wrench not in the
set Gsu, then the workpiece will accelerate towards the first
fixel, and we expect the workpiece to eventually contact either
fixel 1 or fixel 2. Analysis of the remaining state transitions
is similar. If we choose an external wrench from the set

Ggoal = Gsu ∪ Gus ∪ Gsm ∪ Gms (21)

then the number of contacts achieved will increase until the
goal is achieved, regardless of the initial state.

Figures 6(b), 6(c), 6(d), and 6(e) show the external
wrenches consistent with each of the backwards and self-
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Fig. 7. State transition graphs, two fixels.

transitions. Since the workpiece is a disk, arbitrary torques
may be applied about the center without causing the work-
piece to approach or separate from the fixels. The consistent
external forces are positive linear combinations of forces act-
ing along the vectors shown. The thick gray lines show places
on the surface of the part where pushing with a frictionless fin-
ger would generate these forces. Figure 6(f) shows the union
of these undesirable places to push (gray), and the comple-
ment of the union (black). Pushing on the black region will
seat the workpiece, regardless of initial state.

It may seem surprising that we consider wrench sets in-
volving the constraint m, rather than the constraints l, r, and
n, corresponding to contact modes. It may also seem surpris-
ing that the pushing region shown in Figure 6 is smaller than
the strongly stable pushing region that could be calculated
for this workpiece and fixture configuration. (In this case, the
workpiece would be strongly stable with respect to any wrench
generated by pushing with a frictionless finger anywhere in
the third quadrant.)

The reason for these differences from what we might ex-
pect is that, in the analysis of strong stability, we have as-
sumed that all velocities were zero, while for the fixture in-
sertion strategy we only assume velocities are small enough to
neglect velocity product terms from the Newton–Euler equa-
tions. Even if velocities are small, we must still consider the
possibility that sign changes in the tangential velocities may
change the direction of frictional forces.

The constraint m implies that the normal component of
acceleration be zero for the fixel in question, but does not
constrain the direction of the tangential acceleration or of the

Fig. 8. Spinning disk example.

tangential contact force. Therefore, for a single fixel with pos-
itive friction coefficient,

Gm ⊃ Gl ∪ Gr ∪ Gn. (22)

Calculating Gsm and Gms rather than Gsl, Gsr, Gsn, Gls,
Grs, and Gns saves some computation. There is an additional
advantage: using the constraint m makes the algorithm robust
to sign changes in the tangential velocities. As a concrete ex-
ample, consider Figure 6(c). It might seem that a force applied
along g1 would ensure that contact would be made at fixels 1
and 2 since

g1 /∈ Gsl ∪ Gsr ∪ Gsn (23)

g1 ∈ Gstrong. (24)

However, if there are non-zero velocities, then there is a case
where applying a force g1 will not cause acceleration of the
workpiece towards fixel 1. Figure 8 shows an example, con-
structed from Figure 6 (c). The workpiece is initially spinning
clockwise slowly. Therefore, the force applied by fixel 2 is
along an edge of the friction cone, labelled f in the figure.
If we apply a force along g1, the total wrench may be just a
positive torque n around the center of the disk; the workpiece
will not accelerate towards fixel 1. Since calculating the sets
Gsm and Gms does not require an assumption about what
side of the friction cone the contact force will lie on, this case
is correctly handled and the sensorless plan described above
is robust to sign changes in the tangential contact velocities.

What will happen once the goal has been reached? Exam-
ining the component polyhedral convex cones of Ggoal and
Gstrong shows that for any number of fixels

Ggoal ⊂ Gstrong. (25)

Therefore, a wrench from the interior of Ggoal can act as a
biasing wrench that will guarantee that the workpiece will
not move after fixturing. If the workpiece is seated by a con-
stant wrench (applied by gravity or a spring-loaded finger,
for example), then disturbance wrenches of less than a cer-
tain magnitude will not move the workpiece after it has been
seated. The magnitude of the permitted disturbance wrench
may be calculated from the biasing wrench applied and the
shape of the strongly stable cone. A conservative estimate of
the magnitude might be calculated by considering the radius
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Fig. 9. State transition graph, three fixels.

of the largest ball that would fit in the cone, centered on the
biasing wrench.

9. Achieving Three Contacts

A similar strategy may be applied if three contacts are to be
achieved. Figure 9 shows a state transition graph that guaran-
tees that the workpiece will be seated. In order to ensure that
the wrench applied is consistent only with this state transition
graph and with no others, we consider all possible state tran-
sitions. We summarize the results in tabular form in Table 5.

Some of the constraints listed are redundant. For example,
if a wrench is in the set Gsuu, then it is also in the set Gsss.
In all, twelve sets must be computed, corresponding to the
constraints shown in bold. Wrenches in the complement of
the union of these sets ensure that the goal will be reached.
Figure 10 shows two examples generated by our sample im-
plementation of the algorithm. The friction coefficient µ was
chosen to be 0.2 in each case. As long as the velocity product
terms in the dynamic equations are negligible, pushing along
the thick black curve with a frictionless finger will seat the
workpiece, regardless of initial state.

Figure 11 shows the dependency of Ggoal on the fric-
tion coefficient. For this example, Ggoal is fairly large when
µ = 0.01, but quite small when µ = 0.6. This is what we
might expect, since the workpiece seems more likely to be-
come jammed in the fixture in the presence of high friction.
Unfortunately, since the conversion between span and face

Table 5. Constraints Consistent with Transitions Out of
Each Contact State

State Constraints

000 sss

100 suu, mss
010 usu, sms
001 uus, ssm

110 ssu, msu, smu, mms
101 sus, mus, sum, msm
011 uss, ums, usm, smm

111 sss, mss, sms, mss, mms, smm, msm

Fig. 10. A frictionless finger seating a workpiece against three
fixels.

Fig. 11. Sensorless plans for friction coefficients 0.01, 0.20,
0.40, and 0.60.

representations of polyhedral convex cones used in the last
step of the wrench cone algorithm is numerical, it is difficult
to determine the dependence analytically unless either K or
P is nonsingular.

Finally, we point out that the fixturing approach described
is quite conservative. The state transition graphs shown in
Figures 7 and 9 are not the only state transition graphs that
guarantee that all desired contacts will be achieved. A com-
plete approach would enumerate all acyclic state transition
graphs with one sink (the goal state) and 2n − 1 sources (the
non-goal states). The corresponding wrenches would be cal-
culated for each graph and the result would be the union of
the wrenches.

10. Limitations and Future Work

In this section, we describe some of the limitations of the al-
gorithms presented, and discuss how they might be addressed
by future work. We discuss three primary issues: the worst-
case computational complexity, assumptions that may cause
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the algorithms to be overly conservative, and other limiting
assumptions.

The wrench cone algorithm has exponential complexity,
since the underlying conversion between representations of
polyhedral convex cones is exponential. This fundamentally
limits the number of fixels. From the perspective of fixture
design and other similar problems, this may not be a signifi-
cant limitation. If there are more than three fixels in the planar
case, or more than six fixels in a three-dimensional case (not
discussed in this paper), then the system is overconstrained,
and it is not possible to guarantee that all contacts are simul-
taneously achieved without a model of compliance.

Nonetheless, more efficient algorithms might be useful
for an analysis of general contact problems. One possible
approach might be to calculate whether specific individual
wrenches were contained in a desired polyhedral convex cone.
Such an algorithm could probably be made particularly effi-
cient in the case where K or P were sparse and non-singular.
Although the wrench cone algorithm is itself exponential, we
point out that the number of wrench cones that must be cal-
culated to find the strongly stable cone is only polynomial in
the number of contacts; see, for example, Mason (2001).

Another limitation is the possibly over-conservative nature
of the sensorless insertion strategy. The intended use of our
algorithm was fixture design; the goal was to design fixtures
in such a way that a very simple control strategy could be
applied to insert parts in a robust fashion. There are many
workpiece shapes and fixel locations for which Ggoal is in fact
empty. More complicated control strategies involving sensing
or time-varying wrenches could probably also be designed or
analyzed using the wrench cone algorithm.

Finally, we point out that our algorithm is only suitable
for local, instantaneous analysis of planar contact tasks. We
have neglected velocity product terms for simplicity. It turns
out that velocity product terms only shift the cones computed,
and could be easily handled by the wrench cone algorithm.
The extension to three dimensions is more difficult, since the
friction cones become non-linear. The typical approach (used
in LCP formulations, for example) is to linearize the fric-
tion cones. Although a slight extension of the wrench cone
algorithm could calculate the wrenches consistent with a lin-
earized contact mode, the large number of modes would make
computing Gstrong computationally infeasible. Finding com-
putationally efficient ways to calculate a conservative subset
of Gstrong is a possible direction of future work.

11. Conclusion

We have developed an algorithm to find the polyhedral convex
cone of external wrenches consistent with achieving a contact
mode between two rigid bodies, one fixed and one movable.
The formulation of the model closely follows the formulation
of the rigid body dynamics problem as a linear complemen-
tarity problem, and we have also used results from the theory

of polyhedral convex cones. We implemented the algorithm
and presented some example results.

Additionally, we have shown how to compute the cone
of external wrenches with respect to which two contacting
rigid bodies are strongly stable. Finally, we have presented
a method to determine a set of external wrenches consis-
tent only with state transitions that increase the number of
contacts. This method explicitly avoids the problem of non-
uniqueness of solutions to the rigid body dynamics problems
with Coulomb friction. The wrench set derived to seat the
workpiece is a subset of the strongly stable cone.

Acknowledgment

The authors wish to thank Jong-Shi Pang, Matthew T. Ma-
son, and Eric J. Gottlieb for their technical guidance and
suggestions. Devin J. Balkcom was supported by a Depart-
ment of Energy Computational Sciences Graduate Fellow-
ship. J. C. Trinkle was partially supported by the Laboratory
Directed Research and Development program of Sandia Na-
tional Laboratories. Sandia is a multi-program laboratory op-
erated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under Contract
DE-AC04-94AL85000.

References

Anitescu, M., and Potra, F. 1997. Formulating multi-rigid-
body contact problems with friction as solvable linear com-
plementarity problems. ASME Journal of Nonlinear Dy-
namics, 14:231–247.

Austin, D. and McCarragher, B. September 1997. Robust dis-
crete event controller synthesis for constrained motion sys-
tems. In Symposium on Robot Control, Elsevier. pp. 801–
807.

Balkcom, D., Gottlieb, E., and Trinkle, J. 2002. A sensorless
insertion strategy for rigid planar parts. In Proceedings,
IEEE International Conference on Robotics and Automa-
tion, pp. 882–887.

Balkcom, D., Trinkle, J., and Gottlieb, E. 2002. Comput-
ing wrench cones for planar contact tasks. In Proceed-
ings, IEEE International Conference on Robotics and
Automation, pp. 869–875.

Brost, R. and Peters, R. January 1997. Automatic design of 3D
fixtures and assembly pallets. Technical Report SAND95-
2411, Sandia National Laboratories.

Brost, R. C. January 1991. Analysis and Planning of Planar
Manipulation Tasks. Ph.D. thesis, Carnegie Mellon Uni-
versity School of Computer Science.

Cottle, R. W., Pang, J., and Stone, R. E. 1992. The Linear
Complementarity Problem. New York: Academic Press.

Erdmann, M. A. August 1984. On motion planning with un-
certainty. Master’s thesis, MIT Department of Electrical
Engineering and Computer Science.

 © 2002 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARNEGIE MELLON UNIV LIBRARY on August 10, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


1066 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

Erdmann, M. A. June 1994. On a representation of friction
in configuration space. International Journal of Robotics
Research, 13(3):240–271.

Erdmann, M. A. and Mason, M. T. August 1988. An ex-
ploration of sensorless manipulation. IEEE Journal of
Robotics and Automation, 4(4):369–379.

Goldman, A. J. and Tucker, A. W. 1956. Polyhedral convex
cones. In H. W. Kuhn and A. W. Tucker, editors, Linear
Inequalities and Related Systems, pp. 19–40. Princeton,
NJ: Princeton Univ. Press.

Hirai, S. March 1991. Analysis and Planning of Manipula-
tion Using the Theory of Polyhedral Convex Cones. Ph.D.
thesis, Kyoto University.

Lötstedt, P. 1982. Mechanical systems of rigid bodies subject
to unilateral constraints. SIAM Journal of Applied Mathe-
matics, 42(2):281–296.

Mason, M. T. 2001. Mechanics of Robotic Manipulation.
Cambridge, MA: MIT Press.

McCarragher, B. and Asada, H. 1992. A discrete event con-
troller using petri nets applied to assembly. In Proceedings,
IEEE International Conference on Intelligent Robots and
Systems, pp. 2087–2094.

Nguyen, V. June 1988. Constructing force-closure grasps. In-
ternational Journal of Robotics Research, 7(3):3–16.

Pang, J. and Trinkle, J. 2000. Stability characterizations
of rigid body contact problems with Coulomb friction.

Zeitschrift für Angewandte Mathematik und Mechanik,
80(10):643–663.

Pfeiffer, F. and Glocker, C. 1996. Multibody Dynamics with
Unilateral Contacts. New York: Wiley.

Prattichizzo, D. and Bicchi, A. April 1998. Dynamic analy-
sis of mobility and graspability of general manipulation
systems. IEEE Transactions on Robotics and Automation,
14(2):241–258.

Reuleaux, F. 1876. The Kinematics of Machinery. London:
Macmillan. (republished in 1963 by Dover, New York).

Sarkar, N., Yun, X., and Kumar, V. 1997. Dynamic control of
3D rolling contacts in two-arm manipulation. IEEE Trans-
actions on Robotics and Automation, 13(3):364–376.

Schimmels, J. M. and Peshkin, M. A. 1994. Force assembly
with friction. IEEE Transactions on Robotics and Automa-
tion, 10(4):465–497.

Trinkle, J., Pang, J., Sudarsky, S., and Lo, G. 1997. On dy-
namic multi-rigid-body contact problems with Coulomb
friction. Zeitschrift für Angewandte Mathematik und
Mechanik, 77(4):267–279.

Trinkle, J. and Zeng, D. April 1995. Prediction of the quasi-
static planar motion of a contacted rigid body. IEEE Trans-
actions on Robotics and Automation, 11(2):229–246.

Whitney, D. E. March 1982. Quasi-static assembly of compli-
antly supported rigid parts. Journal of Dynamic Systems,
Measurement, and Control, 104:65–77.

 © 2002 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARNEGIE MELLON UNIV LIBRARY on August 10, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com

