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Abstract. First, we give complete description of the comultiplication modules over a
Dedekind domain. Second, if R is the pullback of two local Dedekind domains, then we
classify all indecomposable comultiplication R-modules and establish a connection between
the comultiplication modules and the pure-injective modules over such domains.
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1. Introduction

One of the aims of the modern representation theory is to solve classification prob-

lems for subcategories of modules over a unitary rings R. The reader is referred to

[1] and [19, Chapters 1 and 14] for a detailed discussion of classification problems,

their representation types (finite, tame, or wild), and useful computational reduc-

tion procedures, see also a recent paper [20] for a discussion of the notion of wild

representation type for module classification problems.

Modules over pullback rings have been studied by several authors (see for exam-

ple, [3], [16], [13], [20], [11], [23]). In the present paper we consider a new class of

R-modules, called comultiplication modules, the dual notion of multiplication mod-

ules, (see Definition 1.2), and we study it in detail from the classification problem

point of view. We are mainly interested in the case that either R is a Dedekind

domain or R is a pullback of two local Dedekind domains. Let R be the pullback

of two local Dedekind domains over a common factor field. The main purpose of

this paper is to give a complete description of the indecomposable comultiplication

modules over R. The classification is divided into two stages: the description of
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all indecomposable separated comultiplication R-modules and then, using this list

of separated comultiplication modules we show that non-separated indecomposable

comultiplication R-modules are factor modules of finite direct sums of separated

comultiplication R-modules. Then we use the classification of separated comulti-

plication modules from Section 3, together with results of Levy [14], [15] on the

possibilities for amalgamating finitely generated separated modules, to classify the

non-separated indecomposable comultiplication modules M (see Theorem 4.8). We

will see that the non-separated modules may be represented by certain amalgamation

chains of separated indecomposable comultiplication modules (where infinite length

comultiplication modules can occur only at the ends) where adjacency corresponds

to amalgamation in the socles of these separated comultiplication modules.

For the sake of completeness, we state some definitions and notation used through-

out. In this paper all rings are commutative with identity and all modules unitary.

Let v1 : R1 → R and v2 : R2 → R be homomorphisms of two local Dedekind domains

Ri onto a common field R. Denote the pullback R = {(r1, r2) ∈ R1 ⊕R2 : v1(r1) =

v2(r2)} by (R1
v1−→ R

v2←− R2), where R = R1/J(R1) = R2/J(R2). Then R is a ring

under coordinate-wise multiplication. Denote the kernel of vi, i = 1, 2, by Pi. Then

Ker(R → R) = P = P1 × P2, R/P ∼= R ∼= R1/P1
∼= R2/P2, and P1P2 = P2P1 = 0

(so R is not a domain). Furthermore, for i 6= j, the sequence 0→ Pi → R→ Rj → 0

is an exact sequence of R-modules (see [13]).

Definition 1.1. An R-module S is defined to be separated if there exist Ri-

modules Si, i = 1, 2, such that S is a submodule of S1 ⊕ S2 (the latter is made into

an R-module by setting (r1, r2)(s1, s2) = (r1s1, r2s2)).

Equivalently, S is separated if it is a pullback of an R1-module and an R2-

module and then, using the same notation for pullbacks of modules as for rings,

S = (S/P2S → S/PS ← S/P1S) [13, Corollary 3.3] and S 6 (S/P2S) ⊕ (S/P1S).

Also, S is separated if and only if P1S ∩ P2S = 0 [13, Lemma 2.9].

If R is a pullback ring, then every R-module is an epimorphic image of a separated

R-module, indeed every R-module has a “minimal” such representation: a separated

representation of an R-moduleM is an epimorphism ϕ : S →M of R-modules where

S is separated and, if ϕ admits a factorization ϕ : S
f
→ S′ → M with S′ separated,

then f is one-to-one. The module K = Ker(ϕ) is then an R-module, since R = R/P

and PK = 0 [13, Proposition 2.3]. An exact sequence 0 → K → S → M → 0

of R-modules with S separated and K an R-module is a separated representation

of M if and only if PiS ∩ K = 0 for each i and K ⊆ PS [13, Proposition 2.3].

Every moduleM has a separated representation, which is unique up to isomorphism

[13, Theorem 2.8]. Moreover, R-homomorphisms lift to separated representation,

preserving epimorphisms and monomorphisms [13, Theorem 2.6].
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IfR is a ring andN is a submodule of anR-moduleM , the ideal {r ∈ R : rM ⊆ N}

is denoted by (N : M). Then (0 : M) is the annihilator of M . A proper submodule

N of a moduleM over a ring R is said to be a prime submodule if whenever rm ∈ N

for some r ∈ R, m ∈ M , then m ∈ N or r ∈ (N : M), so (N : M) = P is a

prime ideal of R, and N is said to be a P -prime submodule. The set of all prime

submodules in an R-module M is denoted Spec(M).

Definition 1.2. (a) An R-module M is a comultiplication module provided for

each submodule N of M , N = (0 :M J) for some ideal J of R (see [2]).

(b) An R moduleM is defined to be a weak multiplication module if Spec(M) = ∅

or for every prime submodule N ofM , N = IM for some ideal I of R. An R-module

M is defined to be a multiplication module if for each submodule N , N = IM for

some ideal I of R [4].

(c) An R-submodule N of M is pure in M if any finite system of equations over

N which is solvable in M is also solvable in N . A submodule N of an R-module M

is called an RD-submodule if rN = N ∩ rM for all r ∈ R (note that an important

property of modules M, N over a Dedekind domains is that N is pure in M if and

only if N is an RD-submodule of M [22], [17]).

(d) A module M is pure-injective if it has the injective property relative to all

pure exact sequences [22], [12].

2. Comultiplication modules over a dedekind domain

In this section we collect some basic properties concerning comultiplication mod-

ules. Our starting point is the following lemma.

Lemma 2.1. Let M be a comultiplication module over a commutative ring R. If

N is a direct summand of M , then M/N is a comultiplication R-module.

P r o o f. There exists a submodule N ′ of M such that M = N ⊕ N ′. Suppose

that K is a non-zero submodule of N ′, so K = (0 :M I) for some ideal I of R.

Therefore, K = (O :M I) = (0 :N ′ I). Thus N ′ is a comultiplication submodule, and

the proof is complete. �

Lemma 2.2. Every comultiplication module over an integral domain R is a tor-

sion R-module.

P r o o f. Let M be a comultiplication R-module, T (M) the torsion submodule

of M , and N any R-submodule of M . Then N = (0 :M J) for some ideal J of R.

Clearly, N ⊆ T (M). Therefore, we have M =
∑

m∈M

Rm = T (M). �
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Proposition 2.3. Let M be a module over a Dedekind domain R. Then M is

a comultiplication if and only if the RP -module MP is a comultiplication for every

maximal ideal P of R.

P r o o f. Assume that M is a comultiplication R-module and let G be a sub-

module of MP , where P is a maximal ideal of R. There exists a submodule N

of M such that G = NP , so N = (0 :M J) for some ideal J of R. Therefore,

G = NP = (0 :M J)P = (0 :MP
JP ) by [21, Exercise 9.13]. Conversely, let K be a

submodule ofM . By assumption, there is an idealQ ofR such thatKP = (0 :MP
QP )

for every maximal ideal P of R; we will show that (K/(0 :M Q))P = 0 for every

maximal ideal. To see that, we have KP = (0 :MP
QP ) = ((0 :M Q))P . Hence

K/(0 :M Q))P = 0, so K = (0 :M Q), as required. �

Reduction to the local case. Let R be a Dedekind domain. Our aim here is to

classify the comultiplication R-modules. By Proposition 2.3, it suffices to consider

the case where R is a local Dedekind domain (e.g. a discrete valuation domain) with

a unique maximal ideal P = Rp.

Lemma 2.4. Every non-zero comultiplication module over a discrete valuation

domain R is indecomposable.

P r o o f. Assume that P = Rp is the unique maximal ideal of R and let M be a

comultiplication R-module such thatM = N ⊕K with N 6= 0 and K 6= 0. There are

positive integers m, n with m < n such that M = (0 :M Pn) + (0 :M Pm) = (0 :M

Pm) and this contradicts N ∩K = 0. Thus either N = 0 or K = 0, as required. �

Theorem 2.5. Let R be a discrete valuation domain with a unique maximal ideal

P = Rp. Then the comultiplication modules over R are:

(i) R/Pn, n > 1;

(ii) E(R/P ), the injective hull of R/P .

P r o o f. First we discuss the modules listed in (i)–(ii) and show that they are

comultiplications. Next we show that there are no more comultiplication R-modules.

Since for each i, 1 6 i 6 n, we have P i/Pn = (0 :R/P n Pn−i), so R/Pn (n > 1) is a

comultiplication module. It remains to show that E = E(R/P ) is a comultiplication

module. Set An = (0 :E Pn) for all positive integers n. If 0 6= N is a proper

submodule of E, then N = Am for some m by [10, Lemma 2.6]. Therefore, E is a

comultiplication R-module.

Let M be a comultiplication R-module. Choose 0 6= a, a ∈M . Define the height

of a, h(a) = sup{n : a ∈ PnM} (so h(a) is either an integer n > 0 or “∞”). If

(0 : a) = Pn+1 = pn+1R with n + 1 > 2 then we have pna 6= 0 and (0 : pna) = P .
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So, replacing a if necessary, we may suppose that (0 : a) is P since a 6= 0 and M is

a torsion R-module by Lemma 2.2. We split the proof into two cases.

C a s e 1. h(a) = n, (0 : a) = P .

Since h(a) = n, there is an element b ∈ M such that pnb = a. So pnb 6= 0 and

the maximal power of p dividing pnb is just pn. Moreover, (0 : b) = pn+1R gives

Rb ∼= R/Pn+1. By assumption, Rb = (0 :M P s) for some ideal P s 6= R, and so

psb = 0; hence R/Pn+1 ∼= Rb = (0 :M 0) = M .

C a s e 2. h(a) =∞, (0 : a) = P .

Since h(a) =∞, there is an element a1 of M such that a = a0 = pa1 with a 6= a1,

since a 6= 0 and pa = 0. If h(a1) < ∞, then by case (i), M is a module of finite

length, and this contradicts the fact that the height of a is ∞. So a1 = pa2 for some

a2 ∈M . By this process, one can show that M ∼= E(R/P ) (see [9, Theorem 2.12]).

�

3. The separated case

Throughout this section we shall assume unless otherwise stated that

(3.1) R = (R1
v1−→ R

v2←− R2)

is the pullback of two local Dedekind domain R1, R2 with maximal ideals P1, P2

generated respectively by p1, p2, P denotes P1⊕P2 and R1/P1
∼= R2/P2

∼= R/P ∼= R

is a field. In particular, R is a commutative noetherian local ring with a unique

maximal ideal P . The other prime ideals of R are easily seen to be P1 (that is

P1 ⊕ 0) and P2 (that is 0⊕ P2).

Proposition 3.1. Let R be the pullback ring as described in (3.1), and let S =

(S/P2S = S1
f1

−→ S = S/PS
f2

←− S2 = S/P1S) be any separated R-module. Then

S is a comultiplication R-module if and only if Si is a comultiplication Ri-module,

i = 1, 2.

P r o o f. Assume that S is a separated comultiplication R-module and let 0 6= L

be a non-zero submodule of S1. Then there exists a separated submodule T =

(T/P2S = T1
g1

−→ T
g2

←− T2 = T/P1T ), where gi is the restriction of fi over Ti,

i = 1, 2, such that L = T1. We split the proof into two cases.

C a s e 1. S 6= 0. By assumption, for each i, Si 6= 0 and T = (0 :S Pn
1 ⊕ Pm

2 ) for

some integers m, n; we will show that T1 = (0 :S1
Pn

1 ). Let s1 ∈ (0 :S1
Pn

1 ). Then

Pn
1 s1 = 0, so (Pn

1 ⊕ Pm
2 )(s1, 0) = 0; hence (s1, 0) ∈ T . Therefore, (0 :S1

Pn
1 ) ⊆ T1.

Now suppose that x ∈ T1. Then there is an element y ∈ T2 such that g1(x) = g2(y), so
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(x, y) ∈ T ; hence Pn
1 x = 0, and so we have equality. Similarly, S2 is a comultiplication

R2-module.

C a s e 2. S = 0. Then by [5, Lemma 2.7], S = S1 ⊕ S2; hence for each i, Si is

comultiplication by Lemma 2.1.

Conversely, assume that S1, S2 are comultiplication Ri-modules and let T be a

non-zero submodule of S. If T 6= 0, then for each i, Ti 6= 0 and there exist positive

integers n, m such that T1 = (0 :S1
Pn

1 ), T2 = (0 :S2
Pm

2 ), and so T = (0 :S Pn
1 ⊕Pm

2 ).

If T = 0, then T = T1 ⊕ T2 = (0 :S1
Pn

1 )⊕ (0 :S2
Pm

2 ) = (0 :S Pn
1 + Pm

2 ). Therefore,

for any case S is a comultiplication R-module. �

Lemma 3.2. Let R be the pullback ring as described in (3.1). Then the inde-

composable separated comultiplication modules over R are:

(1) S = (E(R1/P1) → 0 ← 0), (0 → 0 ← E(R2/P2) where E(Ri/Pi is the Ri-

injective hull of Ri/Pi for i = 1, 2;

and, for all positive integers n, m,

(2) S = (R1/Pn
1 → R← R2/Pm

2 ).

P r o o f. By [5, Lemma 2.8], these modules are indecomposable. By Proposi-

tion 3.1 and Theorem 2.5 they are comultiplication modules. �

We refer to modules of type (1) in Lemma 3.2 as P1-Prüfer and P2-Prüfer, re-

spectively.

Proposition 3.3. Let R be the pullback ring as described in (3.1), and let S be

a separated comultiplication R-module. Then S is of the form S = M ⊕ N , where

M is one of the modules as described in (1) and N is one of the modules described

in (2) of Lemma 3.2. In particular, every separated comultiplication R-module is

pure-injective.

P r o o f. Let T denote an indecomposable summand of S. Then we can write

T = (T1 → T ← T2), and T is a comultiplication R-module by Lemma 2.1. First

suppose that T = PT . Then by [5, Lemma 2.7 (i)], T = T1 or T2 and so T is an

indecomposable comultiplication Ri-module for some i and, since T = PT , is of type

(1) in the list of Lemma 3.2, So we may assume that T/PT 6= 0.

By Theorem 2.5 and Proposition 3.1, Ti is an indecomposable comultiplication Ri-

module, for each i = 1, 2. Hence, by the structure of comultiplication modules over

a discrete valuation domain (see Theorem 2.5), we have Si = E(Ri/Pi) or Ri/Pn
i

(n > 1). Since T/PT 6= 0 it follows that for each i = 1, 2, Ti is a torsion module

and it is not a divisible Ri-module. Then there are positive integers m, n and k

such that Pm
1 T1 = 0, P k

2 T2 = 0 and PnT = 0. For t ∈ T , let o(t) denote the least

positive integer m such that Pmt = 0. Now choose t ∈ T1 ∪ T2 with t̄ 6= 0 and
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such that o(t) is maximal (given that t̄ 6= 0). There exists a t = (t1, t2) such that

o(t) = n, o(t1) = m and o(t2) = k. Then for each i = 1, 2, Riti is pure in Ti (see

[5, Theorem 2.9]). Thus, R1t1 ∼= R1/(0 : t1) ∼= R1/Pm
1 is a direct summand of T1

since R1t1 is pure-injective; hence T1 = R1t1 since T1 is indecomposable. Similarly,

T2 = R2t2 ∼= R2/P k
2 . Let M be the R-subspace of T generated by t̄. Then M ∼= R.

Let M = (R1t1 → M ← R2t2). Then T = M , and T satisfies case (2) (see [5,

Theorem 2.9]). �

Theorem 3.4. Let R be the pullback ring as described in (3.1), and let S be an

indecomposable separated comultiplication R-module. Then S is isomorphic to one

of the modules listed in Lemma 3.2.

P r o o f. Apply Proposition 3.3 and Lemma 3.2. �

Theorem 3.5. Let R be the pullback ring as described in (3.1), and let S be a

separated comultiplication R-module. Then S has a finite-dimensional top.

P r o o f. Apply Proposition 3.3 (note that S = U ⊕X , where dimR(U/PU) 6 1

and X/PX = 0). �

4. The non-separated case

We continue to use the notation already established, so R is a pullback ring as

in (3.1).

In this section we find the indecomposable non-separated comultiplication module

modules. We begin by describing one indecomposable non-separated comultiplica-

tion, namely the injective hull of the unique simple module.

For each i = 1, 2, let Ei be the Ri-injective hull of Ri/Pi regarded as an R-module

(so E1, E2 are the modules listed under (1) in Lemma 3.3). Set An = AnnE1
(Pn

1 )

and Bn = AnnE2
(Pn

2 ) (n > 1). Then An is a cyclic R1-module, say An = R1an,

and we may choose the elements an so that an = p1an+1 for each n > 0. Also,

p1a0 = 0 and R1a0
∼= R/P . Similarly, Bn is a cyclic R2-module with Bn = R2bn,

where we may suppose that bn = p2bn+1, p2b0 = 0 and R2b0
∼= R/P . Then F =

(E1 ⊕ E2)/ < a0 − b0 > is the injective hull of Ra0 = Rb0
∼= R/P and it is a non-

separated R-module (see [5, p. 4053]). Consider the R-module F with a0 = b0 and

let Cn = AnnF (Pn). Moreover, we identify An (Bn) with the submodule A′

n (B
′

n)

of F , consisting of all elements of the form a + 〈a0, b0〉 (b + 〈a0, b0〉), where a ∈ An

(b ∈ Bn). The above notation will be kept in the first two results.
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Proposition 4.1 [8, Proposition 3.1]. Let R be the pullback ring as described in

(3.1). Then the following assertions hold:

(i) For each n, Cn = An+Bn, C0 = R/P = Ra0 = Rb0, Cn ⊆ Cn+1 and F =
⋃

Cn.

(ii) The non-zero proper R-submodules of F are E1, E2, An, Bm, E1 +Bn, Am +E2

and Am + Bn for all n > 1, m > 1.

Proposition 4.2. Let R be the pullback ring as described in (3.1). Then F , the

injective hull of R/P , is a non-separated comultiplication R-module.

P r o o f. Let L be a non-zero submodule of F , say An + Bm; we will show

that An + Bm = (0 :F Pn
1 + Pm

2 ). If x ∈ (0 :F Pn
1 ⊕ Pm

2 ), then (Pn
1 + Pm

2 )x = 0

and x = x1 + x2, where xi ∈ Ei, i = 1, 2. It follows that Pn
1 x = Pm

2 x = 0

and 0 = Pn
1 (x1 + x2) = Pn

1 x1. Similarly, Pm
2 x2 = 0, so x ∈ An + Bm; hence

(0 :F Pn
1 ⊕ Pm

2 ) ⊆ An + Bm. The proof of the other inclusion is similar. �

Proposition 4.3. Let R be the pullback ring as described in (3.1) and let M be

any R-module. Let 0 → K
i
−→ S

ϕ
−→ M → 0 be a separated representation of M .

Then the following assertions hold:

(i) for every positive integer n, 0 → K → PnS → PnM → 0 is a separated

representation of PnM . In particular, K ⊆ PnS.

(ii) If T is a non-zero submodule of M , then K ⊆ T .

P r o o f. (i) Since ϕ−1(PnM) = PnS, the result follows from [6, Lemma 3.1].

(ii) If (T : S) = P , then [13, Proposition 2.3] gives K ⊆ PS ⊆ T . So suppose that

(T : S) = P1 ⊕ 0 and x ∈ K. Then (P1 ⊕ 0)2S ⊆ (P1 ⊕ 0)T and P 2
i S ∩K = 0 for

every i and K ⊆ P 2S by (i). Then K ⊆ (P1⊕0)T +(0⊕P2)
2S; hence x = (x1, x2) =

(p1t1, p
2
2s1) for some t1 ∈ T1 and s1 ∈ S1. Therefore, x2 = 0 and K ⊆ T . Likewise,

if (T : S) = 0⊕ P2, then K ⊆ T . �

Theorem 4.4. Let R be the pullback ring as described in (3.1) and letM be any

R-module. Let 0→ K
i
−→ S

ϕ
−→M → 0 be a separated representation of M . Then

S is a comultiplication module if and only if M is a comultiplication module.

P r o o f. Suppose thatM is a comultiplication R-module and let T be a non-zero

submodule of S. Then by Proposition 4.3, K ⊆ T and T/K is a submodule of S/K.

SinceM ∼= S/K is comultiplication, we have T/K = (0 :S/K Pn
1 ⊕Pm

2 ) for somem, n;

we show that T = (0 :S Pn
1 ⊕Pm

2 ). Let t ∈ T . Then (Pn
1 ⊕Pm

2 )(t+K) = 0, so (Pn
1 ⊕

Pm
2 )t = 0 since PiS ∩K = 0; hence T ⊆ (0 :S Pn

1 ⊕ Pm
2 ). For the reverse inclusion,

assume that s ∈ (0 :S Pn
1 ⊕ Pm

2 ), so (Pn
1 ⊕ Pm

2 )s = 0; hence (Pn
1 ⊕ Pm

2 )(s + K) = 0.

Therefore s ∈ T , so we have equality. Thus S is comultiplication. Conversely, assume

that S is a comultiplication and let N be a non-separated submodule of M . Then
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ϕ−1(N) = U is a submodule of S, so U = (0 :S Pn
1 ⊕ Pm

2 ) for some integers m, n.

By [6, Lemma 3.1], U/K ∼= N is a submodule of S/K ∼= M , so an inspection shows

that N = U/K = (0 :S/K Pn
1 ⊕ Pm

2 ), as required. �

Proposition 4.5. Let R be the pullback ring as described in (3.1) and let M be

an indecomposable comultiplication non-separated R-module. Let 0 → K → S →

M → 0 be a separated representation of M . Then S is pure-injective.

P r o o f. Apply Proposition 3.3 and Theorem 4.4. �

Let R be the pullback ring as described in (3.1) and let M be an indecomposable

comultiplication non-separated R-module. Consider the separated representation

0 → K → S → M → 0. By Proposition 4.5, S is pure-injective. Moreover, M

has finite-dimensional top by [5, Proposition 2.6 (i)] and Theorem 3.5. So in the

proofs of [5, Proposition 3.2 and Proposition 3.4] (here the pure-injectivity of M

implies the pure-injectivity of S by [5, Proposition 2.6 (ii)]) we can replace the

statement “M is an indecomposable pure-injective non-separated R-module” by “M

is an indecomposable comultiplication non-separated R-module”, because the main

key in those results are the pure-injectivity of S, and indecomposability and non-

separability of M . So we have the following results:

Corollary 4.6. Let R be the pullback ring as described in (3.1), let M be an

indecomposable comultiplication non-separated R-module and let 0 → K → S →

M → 0 be a separated representation of M . Then S is a direct sum of finitely many

indecomposable comultiplication modules.

Corollary 4.7. Let R be the pullback ring as described in (3.1), let M be an

indecomposable comultiplication non-separated R-module and let 0 → K → S →

M → 0 be a separated representation of M . Then at most two copies of modules of

infinite length can occur among the indecomposable summands of S.

Before we state the main theorem of this section let us explain the idea of proof.

LetM be an indecomposable comultiplication non-separated R-module, and let 0→

K → S → M → 0 be a separated representation of M . Then by Corollary 4.6,

S is a direct sum of just finitely many indecomposable separated comultiplication

modules and these are known by Theorem 3.4. In any separated representation

0 → K
i
−→ S

ϕ
−→ M → 0 the kernel of the map ϕ to M is annihilated by P ,

hence it is contained in the socle of the separated module S. Thus M is obtained

by amalgamation in the socle of the various direct summands of S. So the questions

are: does this provide any further condition on the possible direct summands of S?

How can these summands be amalgamated in order to form M?
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In [15], Levy shows that the indecomposable finitely generated R-modules are of

two non-overlapping types which he calls deleted cycle and block cycle types. It is

the modules of deleted cycle type which are most relevant to us. Such a module

is obtained from a direct sum S of indecomposable separated modules by amalga-

mating the direct summands of S in pairs to form a chain but leaving the two ends

unamalgamated [15], see also [14, section 11].

Recall that, by Lemma 3.2 and Theorem 4.4, every indecomposable R-module

of finite length is a comultiplication one. So by Corollary 4.7, the infinite length

non-separated indecomposable comultiplication modules are obtained in just the

same way as the deleted cycle type indecomposable ones are except that at least

one of the two “end” modules must be a separated indecomposable comultiplica-

tion module of infinite length (that is, P1-Prüfer and P2-Prüfer). Note that one

cannot have, for instance, a P1-Prüfer module at each end (consider the alterna-

tion of primes P1, P2 along the amalgamation chain). So, apart from any finite

length modules, we have amalgamations involving two Prüfer modules as well as

modules of finite length (the injective hull E(R/P ) is the simplest module of this

type), a P1-Prüfer module and a P2-Prüfer module. If the P1-Prüfer and the P2-

Prüfer modules are direct summands of S then we will describe these modules

as doubly infinite. Those where S has just one infinite length summand we will

call singly infinite (see [4, Section 3]). It remains to show that the modules ob-

tained by these amalgamation are, indeed, indecomposable comultiplication mod-

ules.

Theorem 4.8. Let R = (R1 → R← R2) be the pullback of two discrete valuation

domains R1, R2 with a common factor field R. Then the indecomposable non-

separated comultiplication modules are the following ones:

(i) the indecomposable modules of finite length (apart from R/P which is sepa-

rated);

(ii) the doubly infinite comultiplication modules as described above;

(iii) the singly infinite comultiplication modules as described above, apart from the

two Prüfer modules (1) in Lemma 3.3.

P r o o f. We know already that every indecomposable comultiplication non-

separated module has one of these forms so it remains to show that the modules

obtained by these amalgamation are, indeed, indecomposable comultiplication mod-

ules. LetM be an indecomposable non-separated comultiplication R-module and let

0→ K
i
−→ S

ϕ
−→M → 0 be a separated representation of M .

(i) Since M is of finite length, then M is a comultiplication R-module. Indecom-

posability follows from [15, 1.9].
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(ii) and (iii) (involving one or two Prüfer modules): M is a comultiplication module

(see Proposition 3.3 and Proposition 4.2) and indecomposability follows from [5,

Theorem 3.5]. �

Corollary 4.9. Let R be the pullback ring as described in Theorem 4.8. Then

every indecomposable comultiplication R-module is pure-injective.

P r o o f. Apply [5, Theorem 3.5] and Theorem 4.8. �

Remark 4.10. For a given field k, the infinite-dimensional k-algebra T = k[x, y :

xy = 0](x,y) is the pullback (k[x](x) → k ← k[y](y)) of the local Dedekind domains

k[x](x), k[y](y). This paper includes the classification of indecomposable comultipli-

cation modules over T .
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