
SOFTWARE Open Access

Conbase: a software for unsupervised
discovery of clonal somatic mutations in
single cells through read phasing
Joanna Hård1*† , Ezeddin Al Hakim1†, Marie Kindblom1†, Åsa K. Björklund2†, Bengt Sennblad2†, Ilke Demirci1,
Marta Paterlini1, Pedro Reu1, Erik Borgström3, Patrik L. Ståhl1, Jakob Michaelsson4, Jeff E. Mold1† and Jonas Frisén1*†

Abstract

Accurate variant calling and genotyping represent major limiting factors for downstream applications of single-cell
genomics. Here, we report Conbase for the identification of somatic mutations in single-cell DNA sequencing data.
Conbase leverages phased read data from multiple samples in a dataset to achieve increased confidence in somatic
variant calls and genotype predictions. Comparing the performance of Conbase to three other methods, we find
that Conbase performs best in terms of false discovery rate and specificity and provides superior robustness on
simulated data, in vitro expanded fibroblasts and clonal lymphocyte populations isolated directly from a healthy
human donor.
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Background

Single-cell DNA sequencing has substantial untapped

potential for understanding genomic diversity in both

health and disease [1, 2]. A particularly interesting target

application for single-cell genomics is lineage tracing of

human cells, where the distributions of somatic variants

among cells in a population reflect their phylogenetic

relationships. In this context, minimizing the number of

falsely predicted somatic variants is of utmost import-

ance as these introduce noise or misleading signals,

severely reducing the power of phylogenetic analyses.

Current methods for single-cell DNA sequencing typic-

ally require a whole genome amplification (WGA) step

to yield enough DNA for sequencing. WGA is widely

recognized to introduce technical artifacts including al-

lelic dropout, amplification bias and amplification errors

leading to false negative and false positive genotype

predictions [3–6]. However, while WGA may introduce

amplification errors, which in turn may result in false

positive variant calls, amplification errors will most likely

affect only one cell because of the low likelihood that

exactly the same error arises in more than one WGA

reaction. Error rates in WGA have been estimated to

correspond to one error per 105–106 bases in multiple

displacement amplification (MDA) and three errors per

104 bases in multiple annealing and looping-based

amplification cycles (MALBAC) [7]. A more abundant

source of false positive variant calls in whole genome

sequencing data results from failed realignment and the

limitation of using a reference genome with respect to

the genome of the donor, giving rise to 1 error in 10–15

kb in raw variant calling output [2, 4, 8–10]. The typical

effect of these alignment artifacts is that a locus may be

covered by reads originating from multiple locations in

the genome, for instance due to paralogous sequences,

structural variants that are not present in the reference

genome, or a location in low-complexity regions [2, 4,

8–10]. While it is recommended to discard variant calls

present in regions in which alignment artifacts occur [2,

4, 8–10], it can be extremely difficult to detect their

presence just based on the reads of a given cell. Somatic

mutations in normal, non-malignant, cells are generally

estimated to be infrequent, corresponding to approxi-

mately three somatic mutations per cell division [2].
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Thus, the expected number of false positive variant calls

far exceeds the predicted number of true somatic muta-

tions. Moreover, expected observations in WGA data are

sites covered by reads originating from only one of the

two alleles, due to allelic dropout [3–6]. Sites displaying

reads originating from only one allele may result in false

negatives if dropout occurs only for the mutated allele.

Taken together, alignment artifacts, amplification errors,

and allelic dropout result in false positive variant calls

and incorrect genotype predictions, hampering the use

of variant calling to define phylogenetic relationships at

the single-cell level [4, 5].

In order to address artifacts in whole genome sequencing

data from related cells, we developed a computational

strategy for the unsupervised discovery of somatic single

nucleotide variants (sSNVs) in single cells. Accurate geno-

typing of the individual single cells is achieved independ-

ently of the global rate of allelic dropout. Conbase is a

multistep algorithm that confirms the allelic origin of bases

through read phasing, by using the abundant signal from

germline single-nucleotide variants (gSNVs) across the

genome. The discovery of sSNV sites is based on analysis

of observed haplotype concordance within individual single

cells, across the population of cells and in an unamplified

bulk sample. By further exploiting the phasing information,

locus-specific allelic dropout is determined per sample

individually, enabling exclusion of false negative genotypes

resulting from dropout of the mutated allele. Thus,

Conbase is an ideal tool for detecting mutations in closely

related cells from the same individual. However, it is not

designed for the analysis of unrelated cells that do not

share any somatic mutations.

We evaluate the performance of Conbase on simulated

data and two different real datasets containing single-cell

DNA libraries from healthy human cells with known

phylogenetic relationships prepared using different WGA

techniques. For comparative reasons, we evaluate the

performance of three additional methods for variant

calling in single cells, including Monovar [4], SCcaller [5],

and Linked Read Analysis (LiRA) [11]. Monovar leverages

data across a single-cell dataset to detect sSNV sites and

predicts the presence or absence of mutations in individ-

ual samples. This is done by modeling the effects of errors

arising from WGA and assuming that data from different

loci are independent. SCcaller models amplification bias

using read depth observations in gSNV sites to estimate

likelihoods that a variant call is an artifact or a sSNV.

SCcaller calls variants independently per sample and does

not predict the absence of mutations in unmutated sam-

ples. Like Conbase, LiRA utilizes read phasing to correct

for errors and allelic dropout. In contrast to Conbase and

Monovar, and in accordance with SCcaller, LiRA does not

perform joint variant calling across the population of cells.

While read phasing, as used by Conbase and LiRA, can

enable lower false discovery rate (FDR) and higher specifi-

city, it comes with the cost of only enabling analysis of

bases in proximity to gSNVs, whereas SCcaller and Mono-

var has the potential to detect sSNVs in all bases covered

by reads. It is worth noting that LiRA and SCcaller only

predicts the presence of variants in cells, while absence of

a variant (the ancestral, unmutated state) is conflated with

missing prediction. In contrast, Conbase and Monovar

predict both mutated and unmutated states of cells.

Information about the absence of somatic mutations

in unmutated cells in a dataset is required for many

downstream applications for single-cell genomics,

including phylogenetic analysis and high-resolution

lineage tracing at the single-cell level.

In summary, we demonstrate the effectiveness of Con-

base for identifying true sSNVs in single-cell DNA sequen-

cing libraries exhibiting varying degrees of allelic dropout,

generated from biologically relevant populations of human

cells. We believe that Conbase will be an increasingly

valuable tool for applications ranging from phylogenetic

analysis of single eukaryotic cells on the basis of acquired

sSNVs to the characterization of the mutational landscape

of single cells in healthy and diseased tissues.

Results
Overview of Conbase variant calling

Allelic dropout, amplification errors, and alignment arti-

facts can result in false negative and false positive geno-

type calls, respectively (illustrated in Fig. 1). Conbase aims

to circumvent these problems by integrating phasing and

analysis of observed haplotype concordance during variant

calling (Fig. 1, Additional file 1 Figure S1). Phasing puta-

tive sSNVs to gSNVs allows for the determination of ma-

ternal or paternal origin of variants, because true sSNVs

are expected to be observed only on either the maternal

or the paternal allele in the population of cells. The allele

that harbors a variant in mutated samples is here defined

as the informative allele. The informative allele is distin-

guished from the non-informative allele by the base obser-

vation in gSNVs present in the same sequenced molecule

(Fig. 1, Additional file 1 Figure S1). The genotypes of sam-

ples that only display reads originating from the non-in-

formative allele are unknown (Fig. 1, Additional file 1

Figure S1). False negative variant calls, resulting from

allelic dropout, are eliminated by requiring that a sample

have reads originating from the informative allele in order

to be assigned a genotype (Fig. 1, Additional file 1 Figure

S1). False positive variant calls result from amplification

errors and systematic errors, including alignment artifacts.

These are to a large extent excluded by analyzing multiple

aspects of observed data during variant calling and

genotyping, including monitoring observed haplotypes in

putative sSNV loci (Fig. 1, Additional file 1 Figure S1),

maximal expected read depth in an unamplified bulk
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sample, and the density of mismatches against the refer-

ence genome in the region in which variant calls are

present (“Methods” section: “Algorithm description” and

“gSNV filtering”). The fraction of the genome that can be

phased by gSNVs depend on the frequency and distribu-

tion of gSNVs in the genome of the donor, as well as on

the average insert size of the single-cell sequencing librar-

ies (Additional file 1 Figure S2). With an average sequen-

cing library of 650 bp, ~ 50% of the genome can be phased

by Conbase (Fig. 1b, Additional file 1 Figure S2). LiRA

only takes gSNVs that are present in dbSNP into account;

hence, the phasable proportion for LiRA is slightly lower

(Fig. 1b). Since Monovar and SCcaller are not dependent

on read phasing, these methods have the advantage of

enabling detection of sSNVs in all bases covered by reads

(Fig. 1b, c). Like Monovar, Conbase utilizes data from

multiple samples in a dataset to perform joint variant

calling, and both these methods predict the absence of

mutations in unmutated samples, in contrast to SCcaller

and LiRA that only predicts the mutated state and does

not distinguish missing data from unmutated states

(Fig. 1c). In contrast to the other three methods, Conbase

only calls clonal somatic variants (Fig. 1c); hence, it

requires the presence of a mutation in at least two cells.

Different features of the methods included in our com-

parative analyses are summarized in Fig. 1c.

Performance evaluation on simulated data

We first evaluated the performance of the tested methods

using simulated datasets. The advantage of using simulated

data generated from a statistical model is that we control

the important parameters, which allows us to properly

estimate relevant statistics. However, a problematic issue is

how to design a generative model that reasonably well

reflects biological reality. Here, we simulated data from a

model allowing us to control the proportion of two main

causes for errors when calling clonal somatic variants in

single-cell whole genome sequencing data: errors from

alignment artifacts (EAL) and allelic dropout. To address

the problem of biological reality, we based our simulation

model on loci, reads, and coverage distributions in bulk

and single-cell data obtained from a CD8+ T cell donor

and a primary human fibroblast donor, later used in our

analyses of experimental data. For each set of simulation

experiments, we performed two variants with respect to

coverage distribution. In our main variant, we used the

a b

c

Fig. 1 a Somatic mutations are present in a subset of a population of cells and can be identified by DNA sequencing of whole genome
amplified single cells. WGA may result in allelic dropout, which in turn may result in false negative variant calls if dropout has occurred of the
mutated allele. False positive variant calls may arise from amplification errors or alignment artifacts among molecules with high sequence
similarity, resulting in conflicting haplotype observations. Conbase circumvents these problems by determining locus-specific allelic dropout
individually per sample and analyzes concordance of the observed haplotypes across the cell population. b The percentage of genomic positions
that are analyzable by Conbase, Monovar, SCcaller, and LiRA. Genomic positions analyzable for Monovar and SCcaller were defined as the fraction
of bases covered by at least one read in an unamplified bulk sample sequenced at 40x coverage. Genomic positions analyzable for Conbase and
LiRA were defined as the fraction of unique genomic positions present within 650 bp of gSNVs. c Overview of some features of Conbase,
Monovar, SCcaller, and LiRA
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empirical coverage distributions observed in single cells, to

simulate data exhibiting amplification bias. To also investi-

gate the impact of an even coverage distribution, our

second variant used a flat coverage of 30 reads per site,

representing optimal data quality with uniform amplifica-

tion on both alleles in all loci. In the simulations, we fo-

cused on sSNV sites with phased data available. As noted

above, methods based on phasing, including Conbase and

LiRA, will fail to predict sSNVs that are not present in the

same read or read pair as at least one gSNV, whereas

Monovar and SCcaller has the potential of calling variants

in all genomic positions covered by reads (Fig. 1b). This

means that the sensitivity for variant calling, as defined

below, would be lower if unphased data were included,

while it would likely be unaffected for Monovar and SCcal-

ler. Moreover, it is reasonable to assume that the specificity

and FDR for all methods would not deviate substantially

from those estimated on the phased data.

We performed two separate experiments testing differ-

ent prediction targets, first focusing on the detection of

clonal mutations across a population of cells and sec-

ondly on correct genotyping in each individual site. In

our first experiment, we investigated the effect of EAL in

combination with allelic dropout, on the correct and in-

correct classification of loci as clonal sSNVs in a popula-

tion of cells. We therefore simulated a population of

cells consisting of two clones with 10 cells each and a

set of loci (n = 306) comprising sSNV sites as well as an

increasing fraction of sites that were homozygous for the

reference allele and affected by EAL. In the sSNV sites,

the true genotype for all cells of a randomly selected

clone was heterozygous, representing a clonal sSNV, and

all cells in the other clone were homozygous for the ref-

erence allele, representing the ancestral, unmutated

state. No homozygous sSNVs were included in the simu-

lations testing the accuracy of variant calling, because of

the low likelihood that the same mutation occurs on

both alleles in a diploid genome. The sites that were

homozygous for the reference allele represent positions

harboring the ancestral, unmutated state.

Variant calling was performed on the simulated read

data using Conbase, Monovar, LiRA, and SCcaller to obtain

classification of the loci as clonal sSNVs, defined as sites in

which at least two cells shared a variant. Sensitivity, specifi-

city, and FDR was computed for each method under vary-

ing degree of EAL and dropout. The results show that

Conbase, Monovar, and LiRA performs comparably in

terms of sensitivity to detect sSNV sites, while the sensitiv-

ity of SCcaller is lower (Fig. 2a, Additional file 1 Figure

S3a). When evaluating the accuracy of variant calling in

data exhibiting even read depth coverage, we found that

the sensitivity of SCcaller was substantially improved, indi-

cating that data quality affects the sensitivity of SCcaller

(Additional file 1 Figure S3b). The sensitivity, determined

for SCcaller and Monovar in this simulation, correspond

well with findings presented in another study comparing

these methods [5]. Conbase outperforms Monovar, SCcal-

ler, and LiRA in terms of the specificity to distinguish arti-

facts, except when the dropout probability is close to 1, in

which case all methods approach a specificity of 0.5 (Fig. 2b,

Additional file 1 Figure S3c). At low dropout probability,

LiRA enables detection and exclusion of artifacts resulting

from EAL, but its specificity then deteriorates rapidly with

increasing dropout probability (Fig. 2b, Additional file 1

Figure S3c). For all tested methods, except for Conbase,

FDR increases linearly with EAL. Conbase consistently

achieves very low FDR except at extremely high dropout

probability (Fig. 2c, Additional file 1 Figure S3d).

In the second experiment, we focused on the accuracy of

the tested methods to correctly predict genotypes in individ-

ual cells in sSNV sites. We therefore simulated only sSNV

loci without EAL, but with varying degree of allelic dropout,

and generated reads from these. Here, we also simulated a

population of cells consisting of two clones with 10 cells each

with mutations occurring in one of the clones in the same

manner as described above, but focused on extracting geno-

type prediction statistics from each individual site in each

cell. Again, no homozygous sSNVs were included in the sim-

ulations, due to the low likelihood that the same mutation

occurs on both alleles in a diploid genome. Conbase, Mono-

var, SCcaller, and LiRA were applied to the simulated data,

and we recorded their classification of loci in individual cells

as heterozygote (presence of a sSNV), homozygote (ances-

tral, unmutated state), or no prediction. We next evaluated

the number of correctly and incorrectly predicted genotypes

per site (Fig. 2d). In Conbase, Monovar, and LiRA output,

we observe similar distributions of correctly predicted het-

erozygous genotypes, whereas SCcaller predicts a lower

number of true heterozygotes. Notice that SCcaller and LiRA

only predicts the presence of mutations, and therefore, no

predictions are observed in the samples with simulated

homozygous genotypes (Fig. 2d). Monovar detects a higher

number of true homozygotes, as compared to Conbase

(Fig. 2d). However, Monovar also predicts a higher number

of false homozygotes as compared to Conbase (Fig. 2d). The

false homozygotes predicted by Monovar are to a large ex-

tent mutated samples with dropout of the mutated allele.

This scenario is distinguished from true homozygotes by

Conbase, which makes no predictions in samples exhibiting

dropout of the mutated allele. Also here, we performed a

second variant of the simulation using even read depth

coverage, in which all four methods perform better, in par-

ticular SCcaller (Additional file 1 Figure S3e).

Performance evaluation on real data obtained from in

vitro expanded human fibroblasts

To evaluate the performance on real data, we first made

time-lapse recordings of primary human fibroblasts as
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they divided on polymer slides allowing us to subse-

quently identify and isolate single fibroblasts with known

phylogenetic relationships by laser capture microscopy.

We isolated 11 cells derived from clone 1, three cells de-

rived from clone 2, and two unrelated cells. All these

single cells were whole genome amplified by MALBAC

[12]. The single-cell libraries were sequenced to obtain

an average of 385 million reads per single cell, corre-

sponding to approximately 12x coverage of the human

genome on unamplified genomic DNA (Additional file 2

Table S1). We first estimated amplification efficiency

relative to allelic dropout and locus dropout, by analyz-

ing the fraction of genomic bases covered by reads and

the fraction of gSNV sites covered by reads originating

from the maternal allele, the paternal allele or from both

alleles (Additional file 1 Figure S4a–c). On average, 26%

of genomic bases were covered by at least one read, with

a 70% allelic dropout rate at the covered gSNV sites

(Additional file 1 Figure S4b, c). Although varying de-

grees of allelic dropout has been reported for MALBAC

data [6, 12], the rates of allelic dropout observed in this

experiment is likely to reflect the fact that the cells were

harvested by laser capture microscopy, and thus, part of

the genomic material may be lost in the isolation

process.

We next performed variant calling on bulk genomic

DNA and single fibroblast libraries using FreeBayes [13]

and computed the fraction of sites in which an alternative

genotype was observed in single-cell libraries but not in

the bulk sample (Additional file 1 Figure S4d). These sites

include a combination of true sSNVs and false positive

variant calls. The unrealistically high number of variants

uniquely called in single cells (551,971–1,220,408 unique

variant calls per single cells) is suggestive of the presence

of a large number of false positive variant calls. This is ex-

pected as MALBAC is reported to have a relatively high

error rate due to the lack of proofreading by the Bst poly-

merase in the initial amplification steps, coupled with ex-

ponential amplification in the final steps of the protocol

[12]. Moreover, variant callers designed for bulk data,

including FreeBayes, do not account for the unique prop-

erties of WGA-amplified single-cell data and may result in

inaccurate SNV calling [4, 5].

We next performed variant calling with Monovar and

Conbase, which are designed to account for the errors

and biases in WGA single-cell data. To estimate the

a b c

d

Fig. 2 a–c The accuracy of variant calling was evaluated for Conbase, Monovar, SCcaller, and LiRA, reflecting the ability of the methods to detect
clonal sSNV loci a population of cells. The sensitivity (a) and specificity (b) of Conbase, Monovar, SCcaller, and LiRA to detect clonal mutations in
at least two cells in simulated data at increasing dropout probabilities (pDO) at different levels of alignment artifact probabilities (pEAL). c The
false discovery rate of Conbase, Monovar, SCcaller, and LiRA when detecting clonal mutations in simulated data at increasing alignment artifact
probabilities (pEAL) at different levels of dropout probabilities (pDO). d The accuracy of genotyping was evaluated for Conbase, Monovar,
SCcaller, and LiRA, reflecting the ability of the methods to correctly predict genotypes in each sSNV loci and each cell at increasing dropout
probabilities (pDO). In each simulation, representing one bar, the true genotype in 50% of the samples were heterozygous, representing samples
harboring a sSNV. The remaining samples were homozygous for the reference allele, representing the ancestral unmutated state
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FDR of these methods, we computed the fraction of sites

in which the distribution of genotypes was biologically im-

plausible in our clonal populations of fibroblasts. True

sSNVs are expected to be shared by closely related clonal

cells and not distributed between cells of different clones.

Under the assumption that the probability of two mutations

occurring independently in the same site twice is extremely

low [14], we defined implausible genotype distributions as

sites where a variant call was observed in both clones and

at least one cell displayed the reference genotype. Variants

that are restricted to a single clonal population represent a

biologically plausible genotype distribution. Variants ob-

served in both clones, without observing individual cells

harboring the reference genotype, may however be gSNVs

incorrectly interpreted as sSNVs due to the absence of vari-

ant supporting reads in the bulk sample since bulk sequen-

cing data may also suffer from allelic dropout due to

insufficient sequencing coverage. However, requiring that at

least one single-cell sample harbors the reference genotype

increases the confidence that the site is not a gSNV; hence,

only sites where at least one sample had the reference

genotype were included in the analysis. FDR was estimated

as the number of sites displaying implausible genotype

distributions through the total number of sites displaying

plausible and implausible genotype distributions. On raw

Monovar output, we applied the recommended filtering [4],

including removal of sites overlapping with raw variant call-

ing output of a bulk sample (obtained by FreeBayes), as well

as sites present within 10 bases of another site. Parsing pu-

tative sSNVs from raw Monovar output yielded an unrealis-

tically high number of sites and a high FDR (Fig. 3a,

Additional file 3 Table S2).

To obtain only high confidence genotypes from Mono-

var output, we applied filters for the genotype quality

(GQ). Applying quality filters is a common approach

aimed at removing errors in variant calling output [15].

The GQ score is calculated for each predicted genotype,

reflecting the probability that the genotype prediction is

correct. To compute FDR, we again analyzed sites where a

variant call was observed in multiple cells and at least one

cell was predicted to be unmutated. Genotypes in individ-

ual samples which did not pass the evaluated GQ score

cutoffs were defined as unknown. When applying GQ fil-

ters, > 99% of sites were filtered out, as compared to when

no GQ score filters were applied (Fig. 3b, Additional file 3

Table S2). However, the FDR was comparable regardless

of filters for GQ and read depth (DP), when requiring for

a variant to be called in > 3 samples (Fig. 3, Additional file 3

Table S2). Following variant calling with Conbase, no fur-

ther quality filtering is required and called genotypes can

be used directly in downstream analysis. Also for Conbase

output, we computed FDR by analyzing sites where a vari-

ant call was observed in multiple cells and at least one cell

was predicted to be unmutated. Here we found that Con-

base achieved low FDR, when a variant was required to be

observed in > 3 cells (Fig. 3). While the FDR is higher for

Monovar compared to Conbase, Monovar detects more

sites in absolute numbers when no threshold for genotype

quality was applied. This may be explained by the fact that

Monovar is not restricted to calling variants in proximity

to gSNVs and can thereby detect sSNVs in a larger frac-

tion of the genome as compared to Conbase. Of note, sites

displaying a plausible distribution of genotype predictions

can occur by chance when genotype data is missing for

Fig. 3 Biologically plausible and implausible distributions of genotypes called by Monovar and Conbase in clonal populations of fibroblasts.
Values above bars represent false discovery rates. Biologically plausible genotype distributions were defined as sites where the variant call is
exclusively observed within cells belonging to the same clone. Biologically implausible genotype distributions were defined as sites where the
variant call is observed within both clones and at least one cell displayed the reference genotype
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multiple samples in the dataset due to dropout, as is the

case for this dataset.

Performance evaluation on real world data obtained from

in vivo expanded human CD8+ T cells

We next generated a dataset using MDA, a WGA method

using the proofreading polymerase Phi29, which is associ-

ated with lower error rate and increased amplification effi-

ciency [6]. In accordance with MALBAC data, varying

degrees of allelic dropout has been reported for MDA data

[12, 16]. To evaluate Conbase on data generated from cells

harvested directly from healthy human subjects, we exam-

ined CD8+ T cell clones that had been expanded in vivo

after yellow fever virus vaccination (YFV-17D). Clonally

related cells were defined by sequencing of genomically

rearranged T cell receptor (TCR) genes. Vaccination trig-

gers the activation of individual naive T cells in lymphoid

organs, leading to their expansion to large numbers of ef-

fector cells in the lymphoid tissues, which subsequently

enter the circulation where they are detectable for at least

several months after vaccination [17]. Expanded virus-spe-

cific CD8+ T cells can be identified and sorted from per-

ipheral blood by labeling cells with fluorescently labeled

dextramers which are streptavidin-linked HLA Class I

complexes bound to a single viral epitope (Additional file 1

Figure S5) [18]. For this study, we selected CD8+ T cells

which had responded to a previously identified

HLA-B7-restricited viral epitope for YFV (HLA-B7:R-

PIDDRFGL), which we observed to exhibit a reduced di-

versity of responding cells relative the dominant HLA-A2

epitope [18, 19]. Single CD8+ T cells sorted by

fluorescence-activated cell sorting (FACS) from longitu-

dinal peripheral blood samples were amplified by MDA

and subsequently screened by PCR against either the TCR

α and/or β chains to identify clonally related T cells shar-

ing the same TCR. Libraries from two clones, clone A

(seven single cells) and clone B (nine single cells), as well

as two unrelated cells (UR) were subjected to whole gen-

ome sequencing (Additional file 2 Table S1). As compared

to MALBAC data, the percentage of bases covered by

reads was higher in MDA data and the error rate was

lower (Additional file 1 Figure S6).

For this dataset, we evaluated the performance of Con-

base with Monovar and LiRA. When running SCcaller on

this dataset, no variant calls passed the defined confidence

thresholds recommended to use for SCcaller. This finding

is explained by the high amplification bias observed in this

dataset, which prevents SCcaller to distinguish true sSNVs

from artifacts. Following variant calling with Conbase, no

further quality filtering is required, although cutoffs for

read depth were evaluated (Additional file 3 Table S2). For

Monovar output, we attempted a range of cutoffs for DP

and GQ, and the required number of cells in which a vari-

ant call was observed, in order to obtain putative sSNVs

from Monovar output. Decreased DP cutoffs resulted in in-

creased number of variant sites (Additional file 3 Table S2).

In agreement with results from fibroblast data, applying no

filters for GQ resulted in an unrealistically high number of

variant sites. When applying GQ cutoffs on Monovar out-

put, > 99% of sites were filtered out, as compared to apply-

ing no cutoffs for GQ (Additional file 3 Table S2). In

contrast to Conbase and Monovar, LiRA does not perform

genotyping across the cell population, and variants are

called individually per sample. To identify putative clonal

somatic variants, we merged output from the individual

samples and required that a somatic variant (classified as

“PASS” in LiRA output) was observed in > 1 sample (Add-

itional file 3 Table S2).

To investigate if variants called by Conbase, Monovar,

and LiRA enable separation of clonal populations of cells,

we performed unsupervised hierarchical clustering using

shared genotype calls in sSNV sites to define distances be-

tween cells (Fig. 4). Hierarchical clustering based on geno-

types called by Conbase demonstrated unambiguous

identification of each T cell clonal population, regardless

of read depth cutoffs (Fig. 4a, Additional file 1 Figure S7).

For Monovar output, we attempted a range of combina-

tions of filters to parse putative sSNVs from the vcf out-

put. However, no combination of cutoffs for DP or GQ, or

when requiring for a variant to be present in increasing

number of samples, enabled separation of the clonal

populations (Fig. 4b, Additional file 1 Figure S8). The

somatic variants predicted by LiRA enabled separation of

the clonal populations by hierarchical clustering (Fig. 4a,

Additional file 1 Figure S9). However, the total number of

sites passing filters was smaller in LiRA output compared

to the number of sites called by Conbase with a read

depth cutoff ≥ 2 and ≥ 5 (Additional file 3 Table S2).

To estimate FDR in the T cell dataset, we computed

the fraction of sites displaying a biologically plausible

and implausible distribution of genotypes in our clonal

populations. Estimating FDR for clonal somatic variant

calling in this way is only possible in output from Con-

base and Monovar, since LiRA does not predict the ab-

sence of mutations in unmutated samples. The fraction

of sites displaying biologically implausible genotype dis-

tributions in the T cell clones was small in Conbase out-

put (Fig. 5a). By default, Conbase filter sites in which at

least one sample display conflicting genotypes, with sup-

port for both a mutated and an unmutated genotype.

When allowing samples with conflicting genotypes in

the final output from Conbase, we observed that 90% of

sites in which at least one sample displayed conflicting

genotypes also displayed a biologically implausible distri-

bution of genotypes (data not shown). In accordance

with observations in the fibroblast dataset, we found

that, in absolute numbers, Monovar detects more sites

than Conbase when no thresholds for GQ is applied
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(Fig. 5a, b) and that Conbase achieves a low FDR while

the FDR is very high for Monovar, regardless of a range

of evaluated sets of filters on variant calling output

(Fig. 5a–d). These findings support the notion that there

is a tradeoff between FDR and the absolute number of

detected sSNVs.

Validation of sSNVs identified by Conbase

We validated a selection of the sSNVs called in T cells by

Conbase, through PCR screening of additional MDA

libraries generated from single CD8+ T cells isolated in

parallel and determined to be clonally related by TCR

sequence to the cells subjected to high-coverage whole

genome sequencing. As a control, we included single CD8+

T cells identified as a third clonal population (Clone C,

Additional file 2 Table S1) that was not included in the

whole genome sequencing experiment. We designed PCR

primers flanking regions containing both gSNVs and

sSNVs in order to determine whether allelic dropout or

amplification bias led to loss of informative alleles in our

PCR products. Gel-purified PCR amplicons from each sin-

gle cell were subsequently subjected to Sanger sequencing

to establish the presence or absence of the informative

allele, as determined by the gSNV, and the presence of ab-

sence of the sSNV called in whole genome sequencing

data. Here, we could confirm the presence of sSNVs in

cells belonging to the same clones, but never in unrelated

cells, providing definitive evidence that the sSNVs called by

a

b

c

d

Fig. 4 a–c Hierarchical clustering using genotypes called by Conbase, Monovar, and LiRA to define distances between cells. The obtained clusters
are compared to the known clonal relations, shown below each plot. d The total number of clonal variant calls, defined as a call being present in
at least two cells, obtained by Conbase, LiRA, and Monovar (GQ≥ 5)
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Conbase represent true somatic mutations in each clonal

lineage in vivo (Fig. 6). In the Sanger results, we observed

two sSNV sites (3:106210015 and 8:55449214), displaying

heterogeneity within the clones, with some cells harboring

the reference genotype and some cells harboring the

alternative genotype. This could indicate that these two

mutations appeared later during clonal expansion.

Discussion

Conbase is to our knowledge the first available software

capable of leveraging phased read data from multiple

samples in a dataset, thereby improving confidence in

variant calls and genotype predictions in single-cell data.

Variant calling and genotyping are based on analysis of

observed haplotype concordance, enabling exclusion of

false positive variants resulting from alignment artifacts

and WGA errors. False negative genotype calls are elimi-

nated through analysis of locus-specific allelic dropout,

determined individually per sample. As such, Conbase ana-

lysis is not dependent on global estimates of allelic dropout,

and genotypes can be predicted in samples exhibiting high

rates of allelic dropout. The strength of Conbase is that it

considers compatibility among related cells in a population

and at the same time uses read phasing. This makes Con-

base less sensitive to errors, including PCR, base calling,

and alignment artifacts, and genotypes can be predicted at

low read depth. One limitation of Conbase is that read

phasing restricts the analysis to bases present in the same

read or read pair as heterozygous gSNVs, corresponding to

~ 50% of the genome with an average insert size of the

sequencing library corresponding to 650 bp.

We have compared Conbase to Monovar, SCcaller, and

LiRA, which are variant callers designed to account for er-

rors and biases in single-cell DNA sequencing data [4, 5,

11]. On simulated phased data, comprising sSNV sites dis-

playing both heterozygous (mutated) and homozygous

a b

c d

Fig. 5 a–d Biologically plausible and implausible distributions of predicted genotypes in putative sSNV sites called by Conbase and Monovar in
clonal populations of T cells. Values above bars represent false discovery rates. Biologically plausible genotype distributions were defined as sites
where the variant call is exclusively observed within cells belonging to the same clone. Biologically implausible genotype distributions were
defined as sites where the variant call is observed within both clones and at least one cell displayed the reference genotype
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(unmutated) states over the population of cells, Conbase

achieved the best performance overall of the tested

methods. On simulated data displaying amplification bias,

Conbase, Monovar, and LiRA performed comparably in

terms of sensitivity, whereas SCcaller performed worse

(Fig. 2a). The sensitivity of SCcaller was substantially im-

proved in simulated data exhibiting even read coverage

(Additional file 1 Figure S3b).

In simulations, Conbase outperformed Monovar, SCcal-

ler, and LiRA in terms of specificity and FDR, displaying

superior ability to detect and exclude artifacts (Fig. 2b, c,

Additional file 1 Figure S3c, d). These results are sup-

ported by our analysis of real data of clonal populations of

cells, where FDR could be estimated using the biological

plausibility of the predicted genotype distribution for a de-

tected sSNV among clones. Since only Conbase and

Monovar predict both mutated and unmutated genotype

states, FDR in clonal somatic variant calling on real data

was only computed for these two methods. While Mono-

var detected more sites in absolute numbers, this was

achieved at the expense of a substantially higher FDR

(Figs. 3 and 5). The high FDR estimated for Monovar in

our simulations and real data is supported by findings

reported in another study [5]. The low FDR achieved by

Conbase can likely be attributed to its ability to effectively

detect and filter false positive variant calls through a com-

bination of read phasing and joint variant calling.

In real data, variants predicted by Conbase and LiRA

enabled separation of clonally related populations of single

cells from human donors, indicating that the called sSNVs

represent true somatic mutations (Fig. 4a, b). Of these two

methods, Conbase provided better robustness than LiRA

by detecting a higher number of sSNV sites. In sheer num-

bers, Monovar detected more sites than Conbase and

LiRA when no thresholds for GQ were applied (Figs. 3

and 5, Additional file 1 Figure S7–S9). However, the geno-

types called by Monovar did not enable separation of the

clonal populations (Fig. 4, Additional file 1 Figure S8). Ap-

plying filters for GQ on Monovar output did not improve

separation of the clonal populations and, moreover, re-

sulted in fewer number of sites passing filters, in

comparison to Conbase and LiRA (Figs. 4 and 5, Add-

itional file 1 Figure S7–S9). The failure to identify the

clonal populations using genotypes predicted by Monovar

may be attributed to the fact that the distinction between

true sSNVs and false positives is primarily based on mod-

eling amplification errors, but does not directly account

for the extent of ambiguous read mapping (EAL) during

variant calling and genotyping. Conversely, the ability of

Conbase and LiRA to call clonal variants that enable

separation of the clonal cell populations may be explained

by the use of read phasing, which is employed by both of

these methods and enable exclusion of variants supported

by reads derived from discordant alleles. It was surprising

a b

c

Fig. 6 a Genotype predictions by Conbase in 11 sSNV sites. Primers spanning sSNVs and gSNVs were designed against these sites for PCR
screening and Sanger sequencing. b, c Sanger sequencing results for the selected sSNV sites in amplified DNA from single CD8+ T cells identified
by TCR sequencing as belonging to clones A, B, or an unrelated clone C

Hård et al. Genome Biology           (2019) 20:68 Page 10 of 18



that LiRA, while achieving identification of sSNVs that en-

able separation of clonal populations in real data, exhibited

a high FDR in simulated data (Fig. 2c, Additional file 1 Fig-

ure S3d). In theory, analysis of the concordance of phased

gSNVs provided by SHAPEIT2 [20] and implemented in

LiRA should enable exclusion of artifacts present in regions

where alignment artifacts occur. One possible explanation

is that our simulations could not fully represent the com-

plexity of the effects of alignment artifacts, given that the

distribution and frequency of structural variation and

low-complexity DNA in the human genome is not well

characterized [21]. Possibly, our simulations failed to provide

phasing information over larger genomic regions, required

for LiRA to detect alignment artifacts in simulated data.

Further investigating the variant calling with Conbase,

we were able to experimentally validate that identified

sSNVs represented true somatic mutations by PCR

screening of additional single cells sorted from the same

donor and identified as being clonally related to the two

clonal populations used for whole genome sequencing

(Fig. 6). We did not detect these variants in any cells

isolated in parallel from a third unrelated clone. Indeed,

we believe that this approach will provide a useful plat-

form for expanding the analysis to hundreds or thousands

of cells using targeted screening after identification of high

confidence mutations in single-cell whole genome sequen-

cing data by Conbase.

Lastly, it is interesting to compare how well the different

methods predict actual genotypes in different cells in sim-

ulated sSNV sites (Fig. 2d, Additional file 1 Figure S3e).

Conbase, Monovar, and LiRA performed comparably in

terms of correctly predicting heterozygous mutated geno-

types, whereas SCcaller predicted fewer true heterozygous

mutated genotypes in data exhibiting amplification bias.

However, while Monovar detected a higher number of

true homozygous unmutated genotypes than Conbase,

this was achieved at the expense of a higher number of

incorrectly predicted homozygous unmutated genotypes.

Notably, Conbase predicted no false unmutated homozy-

gotes. SCcaller and LiRA only predicted the presence of

variants, and therefore, no correct or incorrect predictions

in homozygous samples were made by these methods.

The choice of only predicting the presence of variants

conflates homozygous (unmutated) states with failed pre-

dictions (missing data) and is a serious drawback for a

number of applications, notably phylogenetic analysis.

It is clear that sSNV calling is a balance between the

number of variants called and the proportion of false dis-

coveries. For example, Monovar, which do not integrate

read phasing, predicts substantially more sSNV sites in ab-

solute numbers than do Conbase (Fig. 1b). However, this

is done at the expense of a very high FDR and a very low

specificity, meaning that there is a large probability that a

predicted variant is erroneously called. Conbase uses

phasing information and joint variant calling across a

population of related cells to address the FDR problem

and calls variants with very low probability of being

wrong, but the total number of predicted variants are

fewer than that of Monovar. It should be emphasized that

Conbase is designed to be used on data from related cells

and that it requires a variant to be present in at least two of

these cells. LiRA also uses phasing information and pro-

vides a certain amount of clonal variants, but suffer from

the inability to predict unmutated genotypes. A user’s

choice of which variant caller to use will depend on the ap-

plication of the resulting data. When high-quality variant

calls are more important than the sheer number of calls,

for example, as in phylogenetic analysis and high resolution

lineage tracing at the single-cell level, Conbase is likely to

be the best choice. If the aim requires a large total number

of variant calls regardless of the abundance of false calls or

if the data at hand comprise a single cell or a set of unre-

lated cells, then Conbase may not be the optimal choice.

Conclusion

We present Conbase, a new software for somatic variant

calling in single-cell data. We show that by exploiting

phased read data in multiple cells, Conbase retrieves

confident variant calling with low false discovery rate

that provide more robustness in downstream analyses.

Methods
Algorithm description

Conbase requires whole genome sequencing data from re-

lated WGA-amplified single cells and an unamplified bulk

sample to predict sSNV sites and genotypes. The identifi-

cation of clonal somatic variants is unsupervised, such

that no prior information about clonal relationships is

provided. Conbase takes three inputs: single cell and bulk

bam files, a human reference genome in fasta format, and

gSNV coordinates to be used for phasing. The gSNV coor-

dinates and gSNV base observations are obtained from vcf

output previously generated from variant calling in a bulk

sample by FreeBayes (or another variant caller). The ana-

lysis is split up in two subprograms: stats and analyze.

Stats outputs a json-file with unfiltered variant calls, which

is used as input to analyze. The output of analyze are

phased filtered variant calls. Conbase variant calling is

based on assumptions associated with expected observa-

tions in true sSNV sites, including concordance of base

observations in independent positions in reads and

read pairs within samples and across the dataset

(Additional file 1 Figure S1). The assumptions are coded as

adjustable parameters with values reflecting how much

read observations may deviate from the expected attributes

of a true variant site. The parameter values generating the

data presented in the current report are specified in paren-

theses in the algorithm description below.
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Stats

The initial step consists of identifying sites supporting an

alternative (potentially mutated) base as compared to the

bulk sample. This is done by only considering bases

present in the same read or read pair as at least one gSNV

using a BAM reader (pysam). The genomic windows in

which the analysis will take place are determined by defin-

ing the longest distance upstream and downstream of

each gSNV, covered by read pairs within the dataset.

Because of sequencing errors, amplification errors, or

alignment artifacts, more than one alternative base may

be observed in the same position, despite a diploid gen-

ome. In order to determine the most probable alternative

base in a site, we utilize the accumulative information

given by all qualified samples in the following way:

Let R be the reference base in the bulk and let b ∈ B = {A,

C,G,T}∖ {R}. Let N s
b be the read depth of b in sample s at

a given position and let and N s
R be the read depth of R.

Let V s
b define the voting result for a base b by a sample s

V s
b ¼

1 if
N s

b

N s
R

≥α;N s
b þ N s

R≥β 1ð Þ

1 if
N s

b

N s
R

< α;N s
b≥β 2ð Þ

0 otherwise

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

where α (0.2) and β (10x) are parameters for variant

allele fraction and total read depth, determining which

samples are qualified to vote. In the first case (1), reads

from two alleles are observed, displaying sufficient vari-

ant allele fraction and total read depth. In the second

case (2), the variant allele fraction is not sufficient; how-

ever, the sample displays sufficient read coverage sup-

porting the alternative base, which represents another

indication for a potentially true variant since amplifica-

tion bias may result in dropout of the reference base.

Let Vb be the number of samples that voted for an al-

ternative base b. If Vb > 0, we may define the most prob-

able alternative base A as

A ¼
argmaxb V bj∀b∈Bð Þ if

V b

Vj j ≥γ; Vj j≥ε

undefined otherwise

8

>

>

<

>

>

:

where γ (0.9) and ε (2) define the fraction of samples

required to vote for the same base and the number of

samples required to vote at a given position, respectively.

∣V∣ is the number of samples that were qualified to vote.

Analyze

The previous processing identified potential sSNV sites

in near distance of gSNVs where multiple cells shared

strong support for the same alternative base A. If we

consider the alternative base A in the sSNV site in rela-

tion to the base observed in a gSNV site in the same

read or read pair, we denote it as the following relation:

XmutYgsnv

where the sSNV site Xmut either displays the same base

observed in the reference genome (and the bulk sample)

or the alternative base, and Y either displays the same

base as the reference genome or the alternative base in

the gSNV site (obtained from vcf output from variant

calling in the bulk sample). For simplicity, we will fur-

ther denote these relationships as RR, RA, AR, and AA

where the first letter refers to the observation in the

sSNV site and the second letter refers to the observation

in the gSNV site (in both cases, we let R and A denote

the reference and the alternative base, respectively).

From here on, we will denote a given pair as a tuple.

Furthermore, a tuple pair, tp, denotes the possible com-

bination of tuples on a chromosome pair.

Considering both the maternal and paternal pair, there

are only two plausible tuple pairs that could equal a true

heterozygous genotype. Likewise, there is only one single

type of tuple pair that constitutes a true homozygous

genotype. Hence, only three tuples are relevant, namely

Heterozygous genotype ¼ RR;AAf g; RA;ARf g

Homozygous genotype ¼ RR;RAgf

Given that we expect a clonal mutation to be present

in a subpopulation of the analyzed cells, we can collect-

ively determine the expected coupling representing a

true heterozygous genotype, either {RR, AA} or {RA,

AA}, by analyzing tuple pairs in all the samples that

qualifies for voting.

All samples that display reads covering the tuple (i.e.,

the reads contain the specific gSNV in mind and the

sSNV) with a total read depth >φ (see individual figures

for the examined read depth cutoffs, Figs. 3, 4, and 5,

Additional file 1 Figure S7) are allowed to vote if they

fulfill the following criteria: Let tpmax, tpmin be the tuple

pairs with the highest and lowest depth out of the two

possible tuple pairs for heterozygous positions. A sample

is allowed to vote for tpmax if (i) the ratio between the

read depth of tpmax and tpmin < ρ (0.01) and (ii) either

the ratio for the tuples in tpmax > λ (0.1) or if the tuple

covering the variant {AR or AA} is the maximum out of

all tuples for that sample. Out of the entitled samples

that voted for their local tps, the most probable tuple

pair across all samples tp∗ is finalized if at least κ (see

individual figures for the examined number of samples
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required to harbor the variant, Figs. 3, 4, and 5, Add-

itional file 1 Figure S7) samples voted and if tp∗ held a

majority of at least ω% (90%) of the votes. If the voting

samples do not manage to conclude the final tuple pair

for a sSNV in connection to a specific gSNV that will

dictate across all samples, the allelic origin of the alter-

native base is simply unknown.

By knowing the designated tp∗, we also know which of

the two alleles we expect to observe the variant on, ei-

ther {AA} or {AR}. Consider the following: while we may

jump to the conclusion of having found a variant as

soon as we observe, e.g., tuple AA in a sample, if the tp∗

actually consists of tuples {AR, RA}, we actually know for

certain that this cannot be a true variant as such obser-

vation would be contradictory. Moreover, given this tp∗,

if a sample only display reads supporting the tuple RA,

we obviously cannot determine the genotype since RA is

expected to be observed in both heterozygous and

homozygous genotypes.

Let Nx be the read depth of the tuple x and Ntot the

total read depth for all tuples. Consider the case when

tp∗ = {RR, AA} and let

dhet
I ¼ minðNRR;NAAÞ

NRR þ NAA

dhet
E ¼ NRR þ NAA

N tot

dhom
I ¼ minðNRR;NRAÞ

NRR þ NRA

dhom
E ¼ NRR þ NRA

N tot

where dx
I is the (internal) ratio for the tuples and dx

E

is the (external) ratio for a given tuple pair in relation to

all of the tuples for a site from a homozygous and het-

erozygous perspective. These ratios will be used to deter-

mine the confidence in the allelic origin of the sSNV for

a given site. The case when tp∗ = {RA, AR} is treated

analogously.

If tp∗ is {RR, AA}, reads displaying A in the gSNV site

is the informative allele, and reads originating from the

informative allele are required for genotyping. If tp∗ is

{RA, AR}, reads displaying R in the gSNV site is the

informative allele.

Genotypes are classified as being supported by reads

originating from both alleles or supported by reads ori-

ginating from only the informative allele. This enables

genotyping despite 100% allelic dropout, if reads origin-

ating from the informative allele are observed.

A genotype determination GT s
SNV for any of these two

classes of genotypes (either supported by reads originating

from two alleles or only supported by reads originating

from the informative allele) for a given position in relation

to a specific gSNV for a sample s will only be possible if

there is a given tp∗ and total read depth of all tuples >φ

(see individual plots for the examined read depth cutoffs,

Figs. 3, 4, and 5, Additional file 1 Figure S7). If these initial

conditions are met, GT s
gSNV is computed as follows:

GT s
gSNV ¼

hetC1 if dhet
E ≥θ; dhet

I ≥τ

homC1 if dhom
E ≥θ; dhom

I ≥τ

hetC2 if dhet
I ; dhom

I > τ; dhet
E ≥θ; dhom

E < 1−θ

homC2 if dhet
I ; dhom

I < τ; dhom
E ≥θ; dhet

E < 1−θ

conflict if conditions met for hetC1; homC1

conflict if tps≠tp
�

8

>

>

>

>

>

>
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>
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>

:

where τ (0.1) is the internal ratio parameter and θ (0.9)

is the external ratio parameter.

The reads covering the sSNV may cover multiple

gSNVs, which is why a collectively decided final geno-

type can be defined by letting all qualified GT s
SNV vote

for the final genotype. GT s
max is therefore the genotype

with the most votes. Let Nmax be the number of gSNVs

that voted for GT s
max , and Nvot is the number of gSNVs

that were qualified to vote (tp∗ is defined for this gSNV).

Let Ntot be the number of gSNVs that were present in

the same read or read pairs as the sSNV and let GTs be

defined as

GT s ¼

GT s
max if

Nmax

Nvot

≥ψ;
Nvot

N tot

≥σ

conflict if
Nmax

Nvot

< ψ

8

>

>

>

>

<

>

>

>

>

:

where ψ (0.9) is the fraction of gSNVs voting for the

same genotype and σ (0.9) is the fraction of gSNVs quali-

fied to vote for a genotype.

If Nvot = 0, any available read information is used to

infer genotypes for samples displaying insufficient read

depth. Support for an unmutated genotype is defined as

either when the tp∗ = {AA, RR} and the sample displays a

read depth supporting the tuple RA > χ (1x) or when the

tp∗ = {AR, RA} and the sample displays a read depth

supporting the tuple RR > χ, resulting in GTs = homC3. If

there is no support for an unmutated genotype and the

sample displays a read depth supporting the alternative

base with a value >ξ (1x), then GTs = hetC3. Samples dis-

playing support for both a mutated and an unmutated

genotype are considered GTs = conflict.
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In the current report, zero samples displaying conflict-

ing genotypes were allowed per site. A common artifact

in variant calling output is regions with clusters of false

positive mutations, correlating with areas in the genome

regions with poor mappability. In the current report, a

maximum of one mutation per kilobase was allowed.

Sequence alignment and data processing

Following whole genome sequencing and demultiplex-

ing, the reads were trimmed from Illumina adapters

using Cutadapt [22]. WGA adapters were trimmed from

MALBAC amplified samples using Cutadapt [22]. Read

pairs were aligned to the human genome (human g1k

v37 with decoy) using Burrows-Wheeler aligner (BWA--

MEM) [23]. Processing of the mapped reads and sequen-

cing data quality evaluation was performed using Picard

Tools and FastQC. Read processing included removal

PCR duplicates, optical duplicates, and reads with a

mapping quality below 2, including multimappers. Indel

realignment was performed with GATKs IndelRealigner

[24]. Variant calling was performed using FreeBayes with

default settings [13].

gSNV filtering

Following variant calling in bulk samples using Free-

Bayes, variants were filtered by vcffilter (https://github.

com/vcflib/vcflib) to identify gSNVs. False gSNVs will re-

sult in false variant calls in the downstream analysis with

Conbase. As such, we applied stringent filters on the vcf

output from FreeBayes. With an average read depth of ≈

40x in our bulk samples, we estimated a conservative

maximum depth threshold of 55x at any position, as

d þ 2:5
ffiffiffi

d
p

;

where d is the average read depth across the genome.

We filtered variants on autosomes with a 15–55-fold

read depth, quality score above 10 (QUAL), and reads

originated from both strands (SAF and SAR); at least two

reads were balanced on each side of the site (RPR & RPL),

and the alternative allele observation count was required

to range between 20 and 80% (AO). The variants were fur-

ther filtered to remove gSNVs present in suspected errone-

ous regions in the reference genome. This was done by

running a separate script included in the Conbase package,

which screens the bulk bam file around each gSNV, and

excludes gSNVs present within a 1-kb window containing

> 10 “heterozygous” positions. A heterozygous position

was defined as a position where > 10% of the reads sup-

ported a non-reference base. In the fibroblast donor

(donor 1), 1,634,933 gSNVs passed filters. In the T cell

donor (donor 2), 1,789,830 gSNVs passed filters. Approxi-

mately 70% of gSNVs are present within 1200 bases of

another gSNV (Additional file 1 Figure S2). Given the

observed distribution of gSNVs in the two donors, ~ 50%

(unique) genomic bases are present within 650 bases of a

gSNV and can thus be phased with an average sequencing

library insert size of 650 bp (Fig. 1b, Additional file 1

Figure S2).

Generation of simulated data

We here provide a summary description of the simula-

tions used to generate reads data for a set of loci in a

population of cells. For a more formal and detailed

description, please refer to Additional file 4 We aimed

to make our simulation as similar to real experimental

conditions as possible, and we therefore based our gen-

erative model on experimental bulk DNA sequencing

data from two human cell populations, the CD8+ T cells,

and the primary human fibroblast cell line C5RO (nor-

mal) used in our analyses of real experimental data. We

identify a set of loci comprising two sites G and S such

that for each locus, (1) G is a heterozygous gSNV in

both the CD8+ T cell data and the fibroblast data. (2) S

is a heterozygous gSNV in the CD8+ T cell data, but is

homozygous for the reference allele in the fibroblast

data. (3) G and S are on the same chromosome and are

situated 11–50 bp apart. In the simulations, we let G

represent a gSNV, while S represents a potential sSNV.

We then collect all allele-specific reads from the CD8+

T cell data covering S and G for the different loci, into

one read set for each allele and similarly for the fibro-

blast data. We refer to the pairs of allele-specific read

sets from the CD8+ T cell data and from the fibroblast

data as hetReads and homReads, respectively. Moreover,

to be able to simulate realistic numbers of reads from

different alleles, we obtain allele-specific read coverage

distributions, dCOV from single-cell DNA sequencing

data from the CD8+ T cell population. Here, we sampled

coverage distributions in sites where at least 12 cells

were covered by reads.

We now describe the generative model and the input

variables used in the simulations. Read data is generated

from a set L of loci in a population C of cells. A clonal

population structure of C is modeled as a simplified tree T

comprising two clones of 10 cells each. For a locus l, the

parameter snvl determines if l is a sSNVs, For a locus, l, if

snvl = 1, we set S as a sSNV, displaying heterozygote

variants (with reads sampled from hetReads) in all cells of

a randomly sampled clone from T (remaining cells are

homozygous for the reference state), while if snvl = 0, all

cells are homozygous (with reads sampled from hom-

Reads) for the reference state. Except in the case of align-

ment errors (EAL) (see below), we set snvl = 1 for all loci.

The input parameter pEAL determines the probability

of EAL, by generating a variable eall, such that eall = 1

with probability pEAL; otherwise, eall = 0. For any locus l

with eall = 1, we include an additional “paralogous” locus
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l’ with the opposite state, from which reads may also be

sampled. Notice that in the case of EAL, there is gener-

ally no way to know whether the reads from l or l’ are

the correct ones. To simplify evaluation, we arbitrarily

choose to always simulate an EAL locus l such that snvl
= 0. Hence, reads for l are sampled from homReads and

those for l’ from hetReads. Notice that the opposite case

would yield the same read distribution.

The input parameter pDO determines the frequency of

allelic dropout among cells at a locus. For each cell c and

locus l, it generates a variable doc, l, a where a is an allele of

either l or l’ (the latter only if eall = 1), such that doc, l, a = 1

with probability pDO; otherwise, doc, l, a = 0. Only alleles a

for any allele l and l’ in c, such that doc, l, a = 0, are valid

read sampling (i.e., doc, l, a = 1 prevents all read sampling

from that allele).

Finally, we generate reads; for each cell c ∈C and for

each valid allele of each l and l’, as determined by eall and

adoa, we randomly sample N reads covering G and S from

the corresponding read set determined by snvl, where N is

sampled randomly and i.i.d. from dCOV. All reads from

individual cells are stored in separate bam files, which are

then used as input to the tested methods.

We performed two different experiments with differ-

ent statistics being recorded. In the first experiment, we

focused on prediction of sSNVs in the population of

cells, where we consider a sSNV as predicted if it is

found in two or more cells. Here, we simulated read

data, as described above, using all value combinations of

pEAL ∈ {0.1, 0.2,…0.9} and pDO ∈ {0.1, 0.2, … , 0.9}. We re-

corded loci correctly predicted as sSNVs (“true posi-

tives;” TP), correctly predicted not being sSNVs (“true

negatives;” TN), incorrectly predicted as sSNVs (“false

positives;” FP), and incorrectly predicted as not being

sSNVs (“false negatives;” FN). Using these definitions,

we calculated sensitivity (TP/(TP + FN)), specificity (TN/

(TN + FP)), and FDR (FP/(FP + TP)). In the second ex-

periment, we focused on genotype prediction in individ-

ual cells in sSNV sites. Hence, we set pEAL = 0, but used

the same range of pDO values as in experiment 1. Here,

we recorded loci correctly predicted as heterozygous

(true heterozygous), correctly predicted as homozygous

(true homozygous), incorrectly predicted as heterozy-

gous (false heterozygous), incorrectly predicted as homo-

zygous (false homozygous), and finally loci where a

genotype was not predicted (no prediction—for gener-

ated heterozygous or homozygous genotypes, respect-

ively). Since one of the tested methods, SCcaller, is

sensitive to uneven read coverage (personal communi-

cation with authors of SCcaller), we performed add-

itional simulations, where we repeated experiments 1

and 2, but instead of using the empirical dCOV, we

enforced a coverage of 30 reads for each allele in all

simulated loci.

Clonal human fibroblast isolation and analysis

Single cells isolated from a primary human fibroblast cell

line C5RO (normal) were expanded in vitro on a Leica

frame slide. Clonally related cells (determined by

time-lapse movie recording) were isolated by LCM.

Eleven cells from clone1, three cells from clone2, and

two unrelated cells were next subjected to WGA using

MALBAC (Yikon Genomics). Samples were individually

inspected using a bioanalyzer (Agilent), and library prep-

aration was done using KAPA HTP Library Preparation

kit Illumina Platform (KR0426,KAPABIOSYSTEMS) and

whole genome sequencing. The cells belonging to clone

1 were sequenced to an average depth of 15x. The single

cells belonging to clone 2 and unrelated cells were se-

quenced to an average depth of 10x. An unamplified

bulk sample from the same primary cell line was se-

quenced to an average depth of 40x.

T cell sample preparation and cell sorting

Study participants were recruited into an ongoing

study to monitor immune responses to the yellow

fever virus vaccine YFV-17D (approved by the Re-

gional Ethical Review Board in Stockholm, Sweden:

2008/1881-31/4, 2013/216-32, and 2104/1890-32). A

female subject was identified based on being positive

for HLA-B7 and having a detectable T cell response

to a minor peptide (RPIDDRFGL) presented by

HLA-B7. Cryopreserved peripheral blood mono-

nuclear cell (PBMC) samples taken at days 10, 30,

and 148 post-vaccination were thawed at 37 °C and

quickly washed in FACS buffer (PBS with 2% BSA/2

mM EDTA). Negative selection with magnetic beads

was performed for each sample to purify CD8+ T cells

(Miltenyi Human CD8 Negative Selection kit,

130-096-495). Purified CD8+ T cells were first incu-

bated with an HLA-B7/RPIDDRFGL dextramer conju-

gated to Alexa fluor 647 (Immudex) for 15 min. Cells

were subsequently incubated with a panel of anti-

bodies to identify live CD3+CD8+ T cells (CD3–Alexa

Fluor 700 (UCHT1, BD Biosciences), CD8-APC-Cy7 (SK1,

BD Biosciences), CD4-PE-Cy5 (RPA-T4, eBioscience),

CD14–Horizon V500 (MΦP9, BD Biosciences), CD19–

Horizon V500 (HIB19, BD Biosciences), and Live/Dead

Fixable Aqua Dead Cell staining kit (Invitrogen,

L34957)). Live, lineage-negative CD3+CD8+Dextramer+

cells were sorted into 96 well PCR plates (Thermo

Scientific, AB-0800) containing lysis buffer (200 mM

KOH, 40 mM DTT, 5 mM EDTA). Single cells were

incubated on ice for 10 min in lysis buffer; after

which, neutralization buffer (400 mM HCL, 600 mM

Tris-HCL pH 7.5) was added followed by an add-

itional 10-min incubation on ice. Lysed cells were

subsequently stored at − 80 °C until amplification re-

actions were performed.
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WGA by MDA

Lysed single T cells were subjected to multiple displace-

ment amplification (MDA) as previously described [25].

A mixture containing dNTPs (Invitrogen, 2 mM), ran-

dom hexamer primers with 3′ thiophosphate linkers

(5′-dNdNdNdN*dN*dN-3′, IDT (50uM)), and repliPHI

polymerase (40 U) in phi29 reaction buffer (Epicenter)

was added to each well to bring total volume to 20uL.

Cells were incubated at 30 °C for 10 h followed by a

3-min incubation at 65 °C to inactivate the phi29 poly-

merase. The resulting libraries were diluted in H2O to

50uL and concentrations of double-stranded DNA were

measured (Qubit, Broad Range dsDNA kit).

Identification T cell receptors from single-cell MDA material

We adopted a previously published method [26] so that we

could screen large numbers of single-cell libraries to iden-

tify clonally related T cells by TCR rearrangements. Ap-

proximately 100 ng of amplified DNA was taken from each

sample and touchdown PCR (Tm: 72 to > 55 °C) was per-

formed using a panel of primers designed upstream of each

variable region and downstream of the joining regions for

the human TCR α or β chain locus (Additional file 5 Table

S3). A dilution of each reaction was subsequently used to

perform a second, nested-touchdown PCR with internal

primers designed against each variable and joining region

of the human TCR α or β chain locus. The internal primers

contained handles which were used to index each well for

the 96-well plate so that they could be pooled into a single

reaction. Each plate was then prepared according to the

Truseq (Illumina) protocol for sequencing on an Illumina

Miseq (2 × 150bp reads). After demultiplexing of Illumina

sample indexes, the reverse read (R2, 150bases) Fastq file

was converted to Fasta format. Identical sequences were

clustered using the FASTX-Toolkit (http://hannonlab.cshl.

edu/fastx_toolkit/) FASTA Collapser. Then, sequences were

sorted by our 96-well indexes using the FASTX barcode

splitter, and the first 44 bases were finally trimmed off using

the FASTA trimmer to facilitate downstream sequence

analysis. Because the internal primers targeting the joining

regions were within 50 bp of the CDR3 region of the TCR,

it was possible to identify clonal T cells based on shared

CDR3 nucleotide sequences. All samples were individually

analyzed using the IMGT database to identify the CDR3

sequence [27].

Selecting high-coverage libraries for Illumina sequencing

Clonal T cells were grouped, and high-quality libraries

were identified using a panel of chromosome-specific PCR

primers as described previously [10]. High-quality T cell li-

braries were considered to be samples with detection at

the majority of loci and were subsequently processed

using a PCR-free TruSeq library preparation kit (Illumina)

and sequenced with a HiSeq X using a theoretical cover-

age of 30x per sample (SciLifeLab, Karolinska Institute).

Screening related clonal T cells by Sanger sequencing

Single-cell libraries that were included in the original

screening which matched clones A or clone B were identi-

fied to be used for verifying selected mutants (summarized

in Additional file 6 Table S4). An additional clone (Clone

C (TCRα: CAAHSPYSGNTPLVF, TCRβ: CASSSGTAY-

NEQFF) was used as a control to determine whether

mutations could be found as artifacts in unrelated T cells.

Primers were designed to span both the gSNV, and the

putative variants and samples were subjected to 35 cycles

of PCR (Tm: 67 °C) (PCRBIO HiFi Polymerase, PCR

Biosystems) yielding approximately 1000 bp amplicons

(Additional file 6 Table S4). Additionally, primers

contained handles (similar to those used for TCR

screening) so that secondary amplification cycles

could be used to index samples if necessary. Ampli-

fied samples were analyzed by gel electrophoresis, and

bands were excised for DNA isolation (Nucleospin

Gel Clean Up, Techtum). Gel-purified DNA samples

were sent for Sanger sequencing (KI Gene Facility,

CMM, Karolinska Institute) using primers specific for

the universal handle incorporated onto each Forward

primer (Additional file 6 Table S4). Sanger sequencing

results were analyzed visually using the software pack-

age 4peaks and are summarized in Additional file 6

Table S4.

Comparisons of single-cell variant calling algorithms

Monovar was run on single T cell amplified with MDA

with default settings including consensus filtering. From

the raw Monovar output, sites present within 10 bp of an-

other site were removed. Sites overlapping with raw vari-

ants called in an unamplified bulk sample by FreeBayes

were removed. Potential sSNVs were filtered on auto-

somes by requiring that at least two samples shared a vari-

ant (0/1 or 1/1) while at least one sample displayed the

reference genotype (0/0). Samples in the same site which

did not pass these cut offs were assigned an unknown

genotype. We attempted to call variants in real data using

SCcaller [5]. The rate of amplification bias observed in the

T cell dataset and the Fibroblast dataset resulted in

eta-values that were too low to enable distinction between

true mutations and artifacts (personal communication

with authors of SCcaller [5]). Thus, we did not move for-

ward with variant calling using the SCcaller. LiRA [9] was

run with default settings, with minor fixes to allow us to

run it on our server. dbSNP b151_GRCh37p13 was used

and 1000 genomes haplotype reference panel from https://

mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.tgz. Prior to

LiRA the bam files were processed with GATK Haplotype

caller with settings (--emitRefConfidence GVCF
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--variant_index_type LINEAR --variant_index_parameter

128,000). Joint variant calling was done for bulk and single

cells using GATK GenotypeGVCFs.

For simulation data, a Snakemake pipeline was used to

run all the four methods (Conbase, Monovar, SCcaller,

and LiRA), see https://github.com/joannahard/Genome_

Biology_2019. All methods were run as described above

for real data. For LiRA however, some fixes to the code

were required, as the program could not handle chro-

mosomes with no sSNVs. Hence, checkpoints were added

at several points in the code and chromosomes with miss-

ing data were omitted at subsequent steps. In addition,

our simulations did not involve larger regions with sur-

rounding gSNVs, so we created a bulk with all reads 10Kb

upstream/downstream of the gSNV and sSNV of interest

and borrowed phasing information of the gSNV of interest

to surrounding gSNVs from that bulk. The time to run

these methods on our simulated data (20 cells for each of

100 different parameter combinations) using 50 cpus in

parallel was as follows: 44min for Monovar, 128min for

SCcaller, 129min for Conbase, and 63 h for LiRA, not in-

cluding preprocessing with GATK or Freebayes for LiRA

and Conbase, respectively. The SHAPEIT2 [20] step in

LiRA is very time-consuming, hence the long run times.

Hierarchical clustering

Clonal somatic variants called by Conbase, Monovar,

and LiRA in real data were used to define distances be-

tween cells. For Conbase and Monovar, distances be-

tween cells were defined as unknown if no shared sites

were detected. For shared sites, the distance was de-

creased with − 1 for each site where cells have the same

call (mutated or non-mutated) and increased with + 1

for sites where the cells have different calls. Since LiRA

only predicts the presence of variants, the distance was

decreased with − 1 if cells shared a variant; otherwise,

the distance was defined as not available. The distance

matrix was then clustered using standard hclust with

the distance “ward.D2.” For Monovar matrices with

more than 45 K sites (no applied GQ filtering), 45 K

randomly selected sites were included in the clustering

analysis.

Conbase output

The final output from Conbase includes a tsv file with

phased variant calls and a complementary interactive

html file where genotype predictions are color coded

based on presence or absence of mutation, presence or

absence of allelic dropout, and read depth support as

well as summarized statistics about concordance of base

observations in phased reads in the predicted variant

sites for each sample.

Software

Conbase is implemented in python and is only dependent

on the pysam module. Conbase is licensed under the MIT

license.
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