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ABSTRACT

This paper investigates methods that create models
to specify both speaker and phonetic information accu-
rately by using only a small amount of training data for
each speaker. For a text-dependent speaker recognition
method, in which arbitrary key texts are prompted from
the recognizer, speaker-specific phoneme models are nec-
essary to identify the key text and recognize the speaker.
Two methods of making speaker-specific phoneme mod-
els are discussed: phoneme-adaptation of a phoneme-
independent speaker model and speaker-adaptation of
universal phoneme models. Moreover, we also investi-
gate supplementing these methods by adding a phoneme-
independent speaker model to make up for the lack of
speaker information. This combination achieves a rejec-
tion rate as high as 98.5% for speech that differs from the
key text and a speaker verification rate of 100.0%.

1 INTRODUCTION

In text-dependent speaker recognition, the key text is
usually fixed. The speaker recognition key, however, can
easily be cracked by recording the registered speaker’s voice
uttering the key text. It would be better, therefore, if the
key text could be changed every time the recognizer was
used and the voice was accepted only when the true speaker
utters the prompted text.

Some studies [1]-[3] have reported speaker recognition
methods using sequences that consist of keywords such as
digits and some fixed words for recognition. The sequences
can be changed every time the recognizer is used. Mod-
ern digital recorders, however, can play back an arbitrary
sequence of keywords.

Our recent studies [4][5] reported a speaker recognition
method in which an arbitrary key text can be used at each
recognition. The recognition system accepts the input ut-
terance only when it decides that the true speaker correctly
uttered the prompted sentence. Reference [4] reported
three basic structures for implementing the method, and [5]
reported some experimental results for one of them. That
method [5] used speaker-specific phoneme HMMs (hidden
Markov models), made by using only training utterances
for each speaker, as basic acoustic units. As only a limited
number of training utterances were used for each speaker,
the number of phoneme models was limited by the size of
training utterances to 25. The rejection rate for speech ut-
tered by the true speaker that differs from the key sentence
was 48.5% and the verification rate was 96.7% without like-
lihood normalization methods. With normalization, tke re-
Jjection rate was 80.7% and the verification rate was 99.9%.

Therefore, phonetic information could not be represented
sufficiently in that method.

In this paper, two methods (I and II) of making speaker-
specific phoneme HMMs are discussed. Method I is based
on phoneme-adaptation of a phoneme-independent speaker
HMM, whereas Method II is based on speaker-adaptation
of universal phoneme HMMs. Universal phoneme HMMs
are also used in Method I to make up for the small amount
of training data. Moreover, we also investigate supple-
menting these methods by adding a phoneme-independent
speaker HMM to make up for the lack of speaker informa-
tion.

2 METHODS

2.1 Main Procedure

The main procedure is shown in Figurel. The system
creates speaker-specific phoneme models for each reference
speaker. The following sections show two methods of mak-
ing speaker-specific phoneme models.

In the speaker verification procedure, the phoneme-
concatenation model corresponding to the key text is made,
and the accumulated likelihood of the HMM for input
speech frames is used to confirm the text and to accept or
reject the speaker. The thresholds of the likelihood value
are set for the text confirmation and the speaker verifica-
tion.
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Figure 1. Block diagram of main procedure.
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2.2 Method I

Method I is based on phoneme-adaptation of a phoneme-
independent speaker HMM. In this method, a phoneme-
independent speaker HMM is trained to give it phonetic
information by using training data of each speaker and uni-
versal phoneme HMMs.

Figure2 shows a block diagram of this method. A
phoneme-independent speaker model is first created for
each speaker as a 1-state 64-mixture Gaussian HMM. Then
each state in universal (speaker-independent) phoneme
models, which are made as 3-state 4-mixture Gaus-
sian HMMs using a large amount of speech data ut-
tered by many speakers, is represented using a phoneme-
independent speaker HMM. A set of data is artificially cre-
ated so as to satisfy the 4-mixture Gaussian distribution of
each state in universal phoneme HMMs. The data set is ap-
plied to phoneme-independent speaker 1-state 64-mixture
HMMs and the mixture weighting factors are adapted (es-
timated) for the distribution of each state in universal
phoneme HMMs. (The multiple-speaker data can be ap-
plied to phoneme-independent speaker 1-state 64-mixture
HMMs, but the amount of calculation becomes enormous.)
Then initial models for speaker-specific phoneme HMMs
are made as 3-state 64-mixture HMMs using the 1-state
64-mixture HMMs and transition probabilities of universal
phoneme HMMs.

The phoneme HMMs are concatenated in the sequence of
phonemes in the training text. The training speech data is
applied to the phoneme-concatenation HMM and then the
mixture weighting factors are estimated for each phoneme
[6]. The mean and covariance values of the mixtures are
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Figure 2. Block diagram of Method I.

fixed to the initial values. Finally, the speaker-specific
phone . : models are created as 3-state 64-mixture HMMs.

In the above, only the mixture weighting factors are
adapted in order to keep speaker information in a phoneme-
independent speaker HMM.

2.3 Method II

Method II is based on universal phoneme HMMs and
adapts them to the training speech of each speaker. Fig-
ure3 shows a block diagram of Method II. Universal
phoneme HMMs are used as the initial models for each
speaker. Universal phoneme HMMs are concatenated in
the sequence of phonemes in the training text. The train-
ing speech data is applied to the phoneme-concatenation
HMM, and then the mixture weighting factors and the
mean values of the mixtures are adapted (estimated) for
each phoneme [6]. Finally, the speaker-specific phoneme
models are created as 3-state 4-mixture HMMs.

In the above, the covariance values of the mixture are not
estimated because of the small amount of training data.
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Figure 3. Block diagram of Method II.

2.4 Combination of Speaker Models

We investigated supplementing the main procedure in
Figurel by adding a phoneme-independent speaker HMM
to make up for the lack of speaker information. The
weighted summed likelihood L,um, which is used for
speaker decision, is given by

Lym=wxLsp+(l—w)xLpr 0<w<l,
where Lsp is the likelihood of speaker-specific phoneme
HMMs and Lp; is the likelihood of a phoneme-independent
speaker HMM. The value of weight w is set experimentally.

3 EXPERIMENTAL CONDITIONS
3.1 Database

The database consisted of sentence data uttered by 10
male and 5 female talkers. This database was recorded on
three sessions (A, B, and C) over six months. Cepstral
coefficients were calculated by LPC analysis with the order
of 16, a frame period of 8 ms, and a frame length of 32 ms.
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Ten sentences from session A were used for training, and
five sentences from session B or C were used for testing.
150 utterances (15 people x 5 sentences X 2 sessions) were
used for evaluation. The duration of each sentence was
about 4 s.

3.2 Evaluation

The performance of our method was evaluated by the fol-
lowing two measures. One is the speaker verification rate.
The threshold was set a posteriori to equalize the probabil-
ity of false acceptance and false rejection. In these exper-
iments, speech data of key texts uttered by each speaker
correctly was used.

The other measure is the false acceptance rate for speech
uttered by the true speaker that differs from the key text.
The threshold for rejecting speech was set a posteriori so
as not to reject any speech of any correct key texts uttered
by the true speaker.

4 RESULTS
4.1 Speaker Verification

Figure4 shows speaker verification error rates. PI, MO,
M1, M2, M1+ PI and M2+ PI have the following mean-
ings:

PI: method using a phoneme-independent speaker HMM
(1-state 64-mixture HMM, 1 phoneme model)

M0: previous method [5]
(1-state 64-mixture HMM, 25 phoneme models)

M1: Method I
(3-state 64-mixture HMM, 65 phoneme models)

M?2: Method I1
(3-state 4-mixture HMM, 65 phoneme models)

M1+ PI: combined method of Method I and a phoneme-
independent speaker HMM (weight w = 0.5)

M2+ PI: combined method of Method II and a phoneme-
independent speaker HMM (weight w = 0.625)

Method I achieves a lower error rate for speaker verifi-
cation than the phoneme-independent speaker HMM. This
rate is slightly lower than the previous method and sig-
nificantly lower than Method II. Thus, Method I keeps
speaker information better than Method II, because it
uses a phoneme-independent speaker HMM with sufficient
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Figure 4. Verification error rates.
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speaker information as an initial model. The error rate
for the method combining Method I (or Method II) and a
phoneme-independent speaker HMM was almost one-tenth
that using a phoneme-independent speaker HMM. Thus,
the combination method is very effective for speaker veri-
fication.

Figure 5 shows speaker verification error rates using the
combination method with different values of weighting fac-
tor w. The value is not very sensitive and can be set to
approximately 0.5.
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Figure 5. Verification error rates as functions of the values
of weighting factor w

4.2 Rejection of Incorrect Speech

Figure 6 shows the false acceptance rates for speech that
differs from the key text. The rate using Method I was
roughly half that using the previous method [5]. The
rate using Method II was only 3% of that using the pre-
vious method. This result indicates that speaker-specific
phoneme HMMs in Method II have sufficient phonetic
information, because Method II uses universal phoneme
HMMs with sufficient phoneme information as initial mod-
els.
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Figure 6. False acceptance rates for incorrect speech.

5 LIKELITHOOD NORMALIZATION
As the likelihood has a wide range for different input

speech data, it is difficult to set stable thresholds for




speaker verification and for rejection of incorrect speech
using speech recorded on several sessions that have differ-
ent texts. We investigated the effects of using likelihood
normalization methods for speaker verification and for re-
jection of incorrect speech.

5.1 Likelihood Normalization for Speaker Verifi-
cation

Higgins et al.[3] have reported a normalization method
for similarity values (corresponding to the likelihood of
HMMs in this paper) that uses the similarity values be-
tween input speech and models of other reference speakers.
On the other hand, in our method, the likelihood value
is normalized by subtracting the average value of the n
highest likelihoods [5]. Figure 7 shows speaker verification
error rates using Method I, Method II, and the two com-
bined methods. For each method, the smallest error rate
{n = 3) was 0%. These results confirm the effectiveness of
this normalization method.
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Figure 7. Likelihood normalization for speaker verification.

5.2 Likelihood Normalization for Rejection of In-
correct Speech

The likelihood value for rejection of incorrect speech
was normalized by subtracting the likelihood value cal-
culated using a text-independent model for the speaker.
Here a phoneme-independent speaker HMM (1-state 64-
mixture) for the speaker was used as the text-independent
model. Figure 8 shows the results for the false acceptance
rates using or not using the normalization method. For
the previous method [5], the rate with the normalization
method was roughly half that without the normalization
method. For Method I, the rate with the normalization
method was roughly 70% of that without the normaliza-
tion method. For Method II, the rate with the normaliza-
tion method is larger than that without the normalization
method. This is probably because a phoneme-independent
speaker HMM used as a text-independent model for the
normalization method has a different structure from the
universal phoneme HMMs.

6 CONCLUSION

This paper investigated two methods for making
speaker-specific phoneme models: one is based on
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Figure 8. False acceptance rates for incorrect speech.

phoneme-adaptation of a phoneme-independent speaker
model (Method I) and the other is based on speaker-
adaptation of universal phoneme models (Method 1I). For
speaker verification, Method I was more efficient than
Method II, and for rejection of incorrect speech, the re-
verse was true. Moreover the combination of either of
these methods and a phoneme-independent speaker model
was very effective for speaker verification. To set stable
thresholds for speaker verification and speech rejection,
normalization methods for the likelihood values were inves-
tigated. When combining the speaker-adaptive phoneme
models and a phoneme-independent speaker model, and
normalizing the likelihood values, the rejection rate was as
high as 98.5% for speech uttered by the true speaker that
differs from the key text and the speaker verification rate
was 100.0%.

We are still investigating methods for making speaker-
specific phoneme models and are studying methods for set-

ting thresholds of speaker verification and speech rejection
beforehand.
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