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Abstract 

One of the main problems for the future of practical quantum com- 
puting is to stabilize the computation against unwanted interactions 
with the environment and imperfections in the applied operations. Ex- 
isting proposals for quantum memories and quantum channels require 
gates with asymptoticaIIy zero error to store or transmit an input quan- 
tum state for arbitrarily long times or distances with fked error. In 
this report a method is given which has the property that to store or 
transmit a qubit with maximum error E requires gates with error at 
most CE and storage or channel elements with error at most E ,  inde- 
pendent of how long we wish to store the state or how far we wish to 
transmit it. The method relies on using concatenated quantum codes 
with hierarchically implemented recovery operations. The overhead of 
the method is polynomial in the time of storage or the distance of the 
transmission. Rigorous and heuristic lower bounds for the constant c 

are given. 

1 Introduction 

Practical quantum computing and communication (QCC) requires protect- 

ing the desired states from unwanted interactions with the environment and 

errors in the applied operations. This requirement already exists in classi- 

cal computing and communication. There it is solved by the use of error 

correcting codes for memory and channels and by exploiting (explicitly or 
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implicitly) very reliable majority logic for fault tolerant operations. Ful- 

filling this requirement for QCC appears to be substantially more difficult, 

but no longer impossible. There are now methods for error correcting quan- 

tum memories and channels [9, 2, 111, a general technique for fault tolerant 

quantum computing [lo], and a practical method for correcting for domi- 

nant operational errors in one proposed device [3]. It is now conceivable 

that a combination of device dependent methods and general error correc- 

tion techniques will lead to practical applications of QCC. 

A common feature of the currently understood error correction methods 

is that to achieve a given error in the output state requires arbitrarily low 

error in the applied operations, depending on the number of time steps 

and operations required to accomplish the desired transformation. The best 

result to date is Shor’s method [lo] requiring polylogarithmically small error. 

Here we demonstrate a method based on concatenated coding for storing or 

transmitting a qubit with error E. This method only requires that storage 

or channel elements have error amplitude at most E and operational error 

amplitudes are bounded by CE for some constant c independent of the number 

n of time steps involved. This result holds for all E 5 1/120 with c 2 1/180. 

The method requires O(ns) many additional qubits per qubit transmitted, 

with 6 dependent on the actual operational accuracy. A consequence of our 

concatenated coding method is that if it is possible to implement operations 

with maximum error bounded by a constant (to be determined), then the 

apparent time and distance limitations of quantum communication protocols 

based on independently transmitted qubits can be overcome. In principle the 

method can be implemented by simple quantum repeaters spaced at regular 

intervals in a quantum channel with sufficiently many parallel paths. 

The paper is organized as follows: In Section 2 the basic concepts re- 

quired for understanding concatenated quantum codes are reviewed. These 

include the fundamentals of quantum coding, a formalism for discussing 
operational errors and their propagation based on superoperators, and suf- 

ficient assumptions for proving the main property of concatenated quantum 

codes. In Section 3 the concatenated coding procedure is defined. Analysis 

of the procedure is given in Section 4. 

2 Preliminaries 

2.1 Quantum Codes 

Our treatment of quantum codes is based on [6]. The basic system of interest 

is the qubit Q, which is a two dimensional complex Hilbert space spanned 
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by the cZussScuZ (orthonormal) states (0) and 11)'. The system consisting of 

n qubits is denoted by the n-fold tensor product of &. Its classical 

basis consists of states of the form Ib) with b an n-bit binary string. 

A quantum code for & of length n is a two-dimensional subspace C of 

QBn. The preferred basis of C is denoted by 1 0 ~ )  and 11~). For the purposes 

of error correction, an abstract decomposition QBn N C@S@R is given. Let 

the syndrome space S be spanned by lis). The decomposition is instantiated 

by the unitary map p : C @S + &Qn, where we assume that p(C 8 10s)) = C. 
C and p are e-error correcting if for every operator U of the form @LIUi 
with at most e of the Vi different from the identity, 

for some state I$) in the syndrome space. See [6] for representation inde- 

pendent characterizations of error correcting quantum codes. 

There are three types of operations that involve quantum codes: En- 

coding, recovery and decoding. All of these operations may involve ancilla 

qubits. The encoding operation E unitarily transfers a state of a qubit 

to C. The recovery operation R is defined by R(p( l i~ ) I$ ) ) )  = p ( l i ~ ) l O s ) ) .  

The recovery operation is not unitary on QBn, but can be extended to a 

unitary operation by using ancilla qubits in a fixed initial state to which 

the syndrome information can be transferred. For efficiency, measurement 

operations (in the classical basis) can be used on the ancilla qubits. The 

decoding operation D can be described as a recovery operation followed by 

a unitary map which transfers the state of C to a qubit. Each of these op- 

erations is to be implemented using primitive one and two qubit operations 

subject to operational errors. 

For concatenated quantum coding it suffices to have a short one-error 

correcting code with efficient implementations of the three operations on 

the codes. An example of a length five one-error correcting code is given 

in [l, 71. 

2.2 Superoperators and Error Propagation 

Errors in applying an intended unitary operation U to a system X involve 

over-rotation as well as entanglement with the environment (e.g. deco- 

herence and relaxation). Instead of basing our discussion on superopera- 

tors [S, 61 or error operators [5],  we use a more direct approach. The actual 

'Generalizing this work to larger dimensional basic systems is straightforward. 
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unitary operation Ua acts on E @ 7L for some environment &, with E in a 

pure initial state 1 0 ~ ) .  Thus we can write 

where the ai are non-normalized states of & and the Ai are linear operators. 

A superoperator representation of the effect of U, on 31 is obtained by 

requiring that the are orthonormal. An error operator representation 

is obtained by requiring that the Ai are members of a suitable orthogonal 

operator basis. 

We define a generdzed operator to be any sum of the form A = Xi aiAi. 

A is generalized unitarg if it is derived from a unitary operator acting on 

1 0 ~ )  @Z. Applying A to a state I$) yields A($) = Xi aiAil$). The environ- 

ment is explicitly represented in this expression. This is primarily to allow 

manipulating linear expressions in I$) and A. The basis of the environment 

is irrelevant. This is usually made explicitly by considering density matrices 

rather than ensembles of states. The effect of A on a density matrix p is 

given by 

A(p) = aiajAjpA!. 

Two operators are considered equivalent if they have the same effect on 

density matrices. In particular, if V is unitary on X, then xi +V is equiv- 

alent to a scalar multiple of V .  In general xi aiAi is equivalent to xi biBi 

iff there is a unitary map U such that Ci(Uai)kAi = Ci(bi)& for each 

k. The environment spaces may need to be extended by additional dimen- 

sions. Here, the subscript IC refers ot the k’th component of the subscripted 

expression, and the sum is interpreted as a sum of matrices. 

The strength (AI of A is the maximum length of AI$). An explicit 

expression for the length is given by 

i ,j 

l4+)I2 = Cafaj($lAfAjI+) * 

i,j 

A is derived from a unitary operator iff I-Rl$)I = 1 for each I$). Operators 

can be compared on the basis of fidelity. For our analysis of concatenated 

quantum coding it is more convenient to use another definition of error. Let 

A and B two generalized unitary operators. The error amplitude E ( A ,  B) 
of A compared to B is the smallest E such that we can write A = AB’ + E ,  
with B‘ equivalent to B and l & l  5 e .  For dimension two, the squared error is 

related by a constant to the various notions of errors based on fidelity [S,  61. 
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The need for considering error amplitudes rather than probabilities arises 

from the possibility of errors adding coherently. This implies that to ex- 

ploit additive error propagation bounds requires using amplitudes. This 
yields correct worst case estimates. In many practical situations, errors add 

nearly classically and in fact, many algorithms are designed to avoid inter- 

ference between errors. Thus it is not unreasonable to use the dissipated 

error heuristic, according to which we can consider error probabilities and 

use essentially classical reasoning to analyze the different error possibilities. 

However, it is important to realize that this is a heuristic which is strictly 

true only in special circumstances. 

To discuss errors of operators on codes, we need to be able to compare 

the restrictions of operators to subspaces. Let C be a subspace of 3-1. The 

restriction of A to C is denoted by A [ C. The restriction’s range may 
not agree with the domain and is usually larger. However, the notions of 

strength and error amplitude still apply. 

In the remainder of this section we state the properties of error am- 

plitudes and propagation required for the formal analysis of concatenated 

quantum coding. 

In the definition of error amplitude, we can assume that X 5 1. 

Lemma 2.1. Let A and B be generalized unitarg operators with identical 

domains. Suppose that A = At3 + & where [&I 5 E .  Then A = X‘B + I’ with 
lX’l _< 1 and IC( 5 E .  

Proof. Suppose that 1x1 > 1 and I$} is in the common domain of A and 

A$B = X(1 - m ) $ ~ ,  $E = &I$} and $E) = &’I$}. (States without the 

surrounding I} notation are potentially not normalized.) Because A and B 
are generalized unitary, I$Al = I $ B ~  = 1. We have $E, = $E + A$B = 

$A - $B. It sufEices to show that I $ H I  5 I$EI to deduce that I&‘/ 5 E .  A 
simple geometric argument can be used. 

B. Let A’ = fi y d  E‘ = E + X ( l -  A)”. Let $A = A[$), $B = i$%% 

Since ( $ A I  = 1, the real part of the last expression is non-negative. Conse- 

0 quently l $ ~ 1 ~  2 I + ! J E I ~ ~ ,  as desired. 
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Let A = xi and B = xi  bi. Composition of generalized operators is 

defined by 

AB = ai 8 bjA& . 
id 

This assumes that the two environments associated with the operators axe 

independent. 

Lemma 2.2. Let A, Bi, i = 1,2 be generalized unitary operators and C a 
subspace of 3c. If C is an invariant subspace of B1 and E(& C ,  Bi C )  5 q, 
then 

E(A2A1 f c, B1B2 r C) I €1 + €2 * 

Proof. Write & r C = 1 CI 5 ci and lX i l  5 1. 
By choosing &i appropriately on the orthogonal complement of C, we can 

assume that & = XiBi + &i. Using B1C = C, we get 

1 C + &i 1 C with 

A2Al r c = (XlX2B;B: + A 2 E l +  XlE2B1)  r c 
= XlX2B;B; r c + A2&1 1 c + x1l52,a; 1 c 

XlX2B;B: r c + A2(El r C)  + X1(&2 1 C)(B{ r C) . = 

B&B{ is equivalent to B2B1, /&(&I 1 C)l 5 €1 (since A2 is generalized uni- 

tary), and lAl(&z C)(Bl r C)l 5 €2 (since B1 is generalized unitary and 
1x11 5 1). 0 

Lemma 2.3. Let A, B1, B2 and R be generalized unitary operators. Sup- 
pose that E(&,&) < E and E(B1A ! C,R ! C) 5 s. Then E(f32A ! C , R  ! 
C) 5 E + s, 

Proof. Write ,132 = 

111 1 CI 5 6. Then 

+ €2 with 14 5 e and B1A = AIR' + E1 with 

B2A = (x,B:+&)A 

= X2B',A+&2A. 

BiA is equivalent to &A. Using the characterization of equivalence, one 

can see that BiA = X I R N  + E: with R" equivalent to R and E{ equivalent 

to &I.  Thus 

B2A = X1X2R" + X2€{ + &A . 

The result follows by bounding the strength of the last two summands. 

elimination of ancilla systems. 

0 

We will also make use of the fact that the error is decreasing under 
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Lemma 2.4. Let A. and B be generalized unitary operators on ?tl 18 3-12. 

Let A1 and Bl be the generalized operators induced on 311 by considering 312 

as part of the environment and restricting the operators to a subspace of the 

form 3c1@ IO). Then E(A, L3) 5 E inpEies E(A1, L31) 5 E .  

Proof. It sates to observe that the strength of an operator is non-increasing 

under restriction. 0 

2.3 Assumptions 

Without making assumptions on how errors occur it is not possible to prove 

nontrivial results on error correction. To obtain the main result for concate- 

nated quantum codes we make three assumptions. The first is embedded in 

the qubit formalism and requires that for all practical purposes, the physi- 

cal system which implements a qubit has access to only the two dimensional 

Hilbert space described by the qubit. This is called the no leakage assump- 

tion. An example of a system which without modification does not usually 

satisfy this assumption is a photon, with 10) and 11) represented by horizon- 

tal and vertical polarizations, respectively. Photon's tend to be scattered or 

absorbed and thus lost to the computation. If the actual systems have more 

than two degrees of freedom and leakage does occur, this can in principle 

be fixed by returning the leaked amplitude to the qubit before each coding 

operation. This does not need to be done perfectly, provided the other two 

assumptions are satisfied. Consequently, the no leakage assumption is useful 

primarily for simplifying the analysis of errors of specific codes. 

The second assumption is that in each time step, independent qubits 

evolve independently. This is called the local independence assumption. 

This means that in each time step, we can partition the qubits into disjoint 

sets Pi of one or two qubits (according to the primitive operations we wish 

to apply in parallel), where the qubits in Pi are operated on by a generalized 

unitary operator A. The overall effect of the step is to apply &A. 
The third assumption is that errors of sequential operations are indepen- 

dent. This is called the sequentid independence assumption, and is implicit 

in using composition of the generalized operators of each time step to obtain 

the final state. 

Weakenings of these assumptions are possible but complicate the analy- 

sis. 
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3 Concatenated Quantum Codes 

Although quantum error correcting codes can reduce the effect of local in- 

teractions such as decoherence, a onetime use of such a code cannot recover 

a state after an arbitrary amount of time. The problem is that most inter- 

actions which destroy the state are time-dependent with a typical time scale 
for total loss. The effective error amplitude introduced by the interaction 

can be approximately modeled by a function of the form 1 - If t >> T ,  

then there is no hope of recovering the state by any single use of a quantum 

error correcting code. 

One method for extending the lifetime of a state is by applying recovery 

operations to the coded state su6ciently frequently. Suppose that an error 

free recovery operation is applied every t time units and that the code is 

e-error correcting. The error rate after t time is 1 - e-t/r, which is reduced 

by recovery to at most c( l  - e-t/r)e+l for some constant c. Provided that 

the total time T satisfies Tc(1 - e-t/r)e+l << 1, the state still has high 

fidelity after T time. Clearly, to increase the survival time of the state, the 

interval t has to be reduced or a code correcting more errors must be used. 

Furthermore, if the recovery operation is not error free, residual errors will 

accumulate and limit the total time for which the state can be maintained. 

See [lo] for a method of minimizing, but not eliminating the residual errors. 

Concatenated quantum coding provides a simple method for eliminating 

the requirement for arbitrarily small operational errors during recovery o p  

erations. They are a demonstration of the ability to chain many error-prone 

operations in such a way that the final error is not much larger than that 

of a single operation. The basic idea is to hierarchically code each qubit 

and interlace the procedure with recoveries in such a way that errors do not 

propagate as they would using simple repeated recovery operations. 

Concatenated quantum coding depends on a hierarchical implementation 

of a fixed error correcting code. Let C Q@' be a two dimensional e- 
error correcting code of length I 2 2 with encoding operation &, recovery 

operation R and decoding operation D. Assume without loss of generality 

that € , D , R  : Q@' + Q@' with €li)lO) = l i ~ ) ,  and for every correctable 

operator A, RAI~L) 0: ( i ~ )  and DAlih) = 1 i ) lO) .  Note that R and 2, must 

be generalized unitary operators. Let T- be a repetition factor, r 2 2. The 

repetition factor is taken as large as reasonable subject to constraints to 

be determined by the analysis. The length of the code is largely irrelevant 

(except for overhead considerations), what matters is how much error per 

qubit can be corrected with a good overall error after recovery. 

We recursively define concatenated coding procedures CCP,,I, for each 
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level h. The lowest level procedure CCP,,1 consists of simple iterated re- 

coveries between an encoding and a decoding operation. That is, CCP,,1 

begins with one qubit, encodes it to I qubits using C, applies a recovery 

procedure to the code r - 1 times and finally decodes it back to a single 

qubit2. In between recovery operations, we can either just wait for a certain 

time interval, or transmit each qubit over some distance. 

C P PT,1(9) 
Input: A qubit q, in a state which may be entangled with other systems. 

Output: The qubit - q in a state close to the input state. 

a t IO} E f2Bl-l 

C:  The underline notation 3; is used to explicitly indicate 

that the register x may be in a non-classical state and 

entangled with other systems. 

C :  Apply the encoding operation to - q and a. The new 

state is in c E Q@'. 

Wait or transmit each qubit of - qa. 

qp) 

E (ga) 

f o r i = l t o r - l  

Wait or transmit each qubit of - qa. 

dissipate a 
q@) 

C :  The state o f a  can be measured or simply discarded. 

The qubits of a can be reset and used again if so desired. 

To satisfy the independence assumption, it is important 

that the (former) contents ofa  have no effect on the re- 

mainder of the computation. 

return q - 

The higher level procedures CCP,,h+l are defined recursively, using a 

procedure like CCP,,l, but with the next lower level applied to each qubit 

between recoveries. That is CCP,.,h+l starts with one qubit, encodes it using 

the code, applies CCP,,h to each of the qubits of the code and recovers the 

code T - 1 times, applies CCP,,h to each qubit again and finally decodes the 

'The repetition factor is r because the final decoding operation is a special form of the 
recovery operation, so in effect, r recovery operations are used. 

. 
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state to one qubit. 

CPPrJL+l@) 
Input: A qubit q, in a state which may be entangled with other systems. 

Output: The qubit - q in a state close to the input state. 

- a t 10) E Q@'-' 

E(!@) 
b qg 

6: b is defined to refer to the 1 qubits consisting of - q and 

- a. 

foreach i E { 1,. . . , 1 )  
for i = 1 to T - 1 

cppr,h(&) 
C :  & refers to the i'th qubit ofb. 

W b )  

c p  Pr ,h  (h) 
foreach i E { 1, . . . , I} 

%4 
dissipate a 
return q - 

A possible modification of ccP,,h includes adding waiting periods before 

and/or after each call to the next lower level procedure. The maximum 

length of these waiting periods is determined by the errors introduced by 

these periods and the correction capability of the implementation of the 

code. 

4 Analysis 

4.1 Error Propagation 

Theorem 4.1. Let & I ,  72' and VI be implementations of the encoding, re- 
cover9 and decoding operations. Assume the following: 

(1) E(&',&) I E,. 

(2) If Z is a generalized unitary operator on one qubit with E(Z, I )  5 Q, 

then E(R'Z@z r C, I 1 C )  I ec and E(DIZ@z r C,D r C )  5 E ~ .  
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(3) The error operator acting during the waiting or transmission period in 

with E(Z, I )  5 Ed.  M is called the ccP,,h is of the form M = 
channel error. 

(4) r + 1 I E&. 

Then the error amplitude of CcP,,h compared to the identity is at most 

(T + 1)Ec. 

The fact that codes with the requisite properties exist is discussed in 

Section 4.3. A more detailed error analysis for a specific code is given in 

Section 4.4. 

Prouf. The proof is by induction on the level of the procedure. By the error 

propagation properties, the errors in the encoding operation, each of the 

r - 1 compositions of channel error and recovery operation, and the final 

channel error followed by decoding can be added to get the error in the 

overall operation on the input qubit. Thus the error amplitude of CCP,,1 

is at most (r + l)ec 5 Ed.  

The procedure CCPr,h+l behaves exactly like CCP,,h except that the 

waiting time or channel transmission is replaced by an application of CCP,,h. 

We assume inductively that the error of CCP,,h is at most Ed. By the lo- 

cality assumption, it follows that the error between each of the recovery 

operations is of the right form to deduce that the overall error is again 

0 bounded by (T + l ) ec  5 Ed. 

4.2 Overhead Requirements 

Suppose that we wish to use concatenated quantum coding for storing or 

transmitting a state for n multiples of the time or distance for which a 

qubit is subject to an interaction with the environment of error amplitude 

Ed. The most important resource requirements are the maximum number of 

qubits that are stored or transmitted, the total number of encoding, recovery 

or decoding operations and the number of parallel encoding, recovery or 

decoding steps. Consider CCP,,h. By induction on h, it can be seen that 

the number n of waiting/transmission periods is given by rh. This requires 

c(h) = Zh many qubits (not including ancillas that may be required for 

some of the operations). The number of parallel operations p(h)  satisfies 

p(1) = r+l, andp(h+l) = r+l+rp(h). Thusp(h) = ( r+l)(rh-1) / (~- l )  < 
rh(r + l)/(r - 1). The total number e(h) of operations satisfies e(1) = r + 1 

and e(h + 1) = T + 1 + rle(h). Thus e(h)  = (r + l)((rZ)h - l) /(rl  - 1) 5 
. 
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( T Z ) ~ .  By expressing these relationships in terms of n the following result is 

obtained: 

Theorem 4.2. To implement ccP,,h with n waiting/transrnission peri- 

ods using a code of length l requires n l o g r 1  qubits, less than s n  parallel 

operations and less than nl+logr( l )  basic encoding, recovery and decoding op- 

erations. 

4.3 Existence of Suitable Codes 

Any e-error correcting quantum code can be used for the code underlying the 

CPP,  provided the basic operations can be implemented accurately enough. 

The critical requirement that must be met is r + 1 5 E ~ / E ~ .  The smallest T 

of interest is 2, so that it is necessary to use codes where E ~ / E ~  2 3. 

Let C be an e-error correcting code of length I, with e 2 1. Assume first 

that the basic operations on the code are implemented perfectly. It can be 

shown that a local error of amplitude E per qubit is reduced to O(E"+~)  by 

the code. 

Theorem 4.3. Let Z be a generalized unitary operator with E(Z, I) 5 E .  If 
R is the recovery or the decoding operator for C, then 

There are two important differences between this bound and the usual 

one obtained for classical error correction. The first is that we are concerned 

with error amplitudes rather than probabilities. The second is that in the 

classical bound for the error probability, the factor ei is replaced by ~ ~ ~ ( 1  - 
€2)1-i 

Proof. Write Z = a1 + & with la1 5 1 and [ € I  <_ E.  For U (1 ,... , I } ,  
let Tu = @{=,Ai with Jz, = a1 for i @ U, and Ai = & otherwise. Then 

12 
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The strength of Zu is bounded by dUi, by the usual tensor product rules for 

the strength of operators. Since the strength is subadditive, it follows that 

The second inequality in the statement of the theorem follows by bounding 

0 
If the the local error per qubit is ~ d ,  and the error amplitude in the 

implementation of the recovery or decoding operation is E,. on Q@l, then the 

total error after recovery or decoding is at most ec = E,. + O(eZ+'), with the 

constants determined by the parameters of the code. Clearly for sufficiently 

small e,. and ~ d ,  ed/ec 2 3. 

A nice feature of concatenated coding is that any code implemented with 

sufficiently high fidelity can be used; it does not need to correct any one type 

of error perfectly, only with low final error amplitude. 

the sum by a geometric series. 

4.4 

Here is an explicit analysis of the behavior of concatenated quantum coding 

if the one-error correcting five qubit code of [7] is used. The analysis is based 

rigorously on amplitude errors. An analysis using the dissipation heuristic 

is obtained by replacing all the error amplitudes by error probabilities. 

The number of primitive operations required to implement the recovery 

operator of the five qubit code is at most 30 [4]. The primitive operations 

required are controlled nots, Hadamard transforms, sign flips and bit flips. 

This is also an upper bound on the operations for encoding and decoding. 

Suppose that the error amplitude for the implemented primitive operation 

is ep. Then the error amplitude for the basic operations on the code is at 

most 3 0 ~ ~ .  If each qubit is subjected to local error of amplitude at most Q 

(the memory or channel error), then the error after recovery is bounded by 

Example: The Five Qubit Code 

ec = 306, + 2 0 4 ,  

13 
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provided that Ed 5 112. Ignoring the overhead, we can achieve final error 

3ec over any distance provided that Ec/Ed 5 1/3.  If the final error to be 

achieved is e, this gives the following set of constraints to be satisfied by ep 

and Ed: 

We determine the maximum eP for which these inequalities can be solved. 

Given ~ d ,  the maximum E~ is determined by 

E ~ ( E ~ )  = min((E - 60~:)/90, ~ ( 1 -  6 0 ~ d ) / 9 0 ) .  

Since the first expression in the minimum is decreasing, the maximum is 

either at the maximum of Ed(1 - 6 0 ~ d ) ,  given by Ed = 1/120, or at the 

solution of E - 60.~2 = Ed(1 - 6 0 ~ d ) ,  given by Ed = E.  The former holds if 

E 2 1/120. Thus we obtain the following result: 

Theorem 4.4. A qubit can be stored for arbitrary amounts of time or trans- 

mitted over arbitrary distances with polynomial overhead in time or distance 

and with a final error amplitude of E provided that one of the following holds: 

(1)  E 2 11120, the basic storage or channel element has error amplitude 

at most 11120 and the primitive one and two qubit operations can be 

implemented with error amplitude at most 1/21600. 

(2)  E < 1/120, the basic storage or channel element has error at most E 

and the primitive one and two qubit operations can be implemented 
with error amplitude a t  most ~ ( 1 -  60e2)/90. 

5 Conclusion 

We have shown that under local and sequential independence assumptions, 

there is a threshold gate error which sufFices for storing or transmitting a 

qubit for arbitrary times/distances at an overall error no larger than the 

error of a single memory or channel element and with polynomial overhead. 

The minimum error amplitude requirement for success of the method 

translates to an error probability of about .25 which is out of reach of 

any foreseeable technology. However, the dissipation heuristic gives a more 

optimistic estimate of .5 lo-*, which seems more accessible. It should be 
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possible to improve the error estimate for concatenated quantum coding by 

performing a more detailed analysis. An improvement may be obtainable by 

a more careful anaIysis of errors in the recovery operator, maybe exploiting 

the fault tolerant methods of 110, 41. Another approach is to explicitly 

exploit knowledge of the physics of the implementation device to reduce 

error in operations. An example of this approach is 131. 

Although the overhead of nc is not completely impractical, reduction of 

the constant c in the exponent imposes more stringent accuracy requirements 

on the gates. Future work will be directed at reducing the overhead, ideally 

to a function polylogarithmic in n with reasonable constants and exponents. 
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