
Concave Convex Adaptive Rejection Sampling

Dilan Görür and Yee Whye Teh

Gatsby Computational Neuroscience Unit,
University College London

{dilan,ywteh}@gatsby.ucl.ac.uk

Abstract. We describe a method for generating independent samples
from arbitrary density functions using adaptive rejection sampling with-
out the log-concavity requirement. The method makes use of the fact
that a function can be expressed as a sum of concave and convex func-
tions. Using a concave convex decomposition, we bound the log-density
using piecewise linear functions for and use the upper bound as the sam-
pling distribution. We use the same function decomposition approach to
approximate integrals which requires only a slight change in the sampling
algorithm.

1 Introduction

Probabilistic graphical models have become popular tools for addressing many
machine learning and statistical inference problems in recent years. This has
been especially accelerated by general-purpose inference toolkits like BUGS [1],
VIBES [2], and infer.NET [3], which allow users of graphical models to spec-
ify the models and obtain posterior inferences given evidence without worrying
about the underlying inference algorithm. These toolkits rely upon approximate
inference techniques that make use of the many conditional independencies in
graphical models for efficient computation.

By far the most popular of these toolkits, especially in the Bayesian statistics
community, is BUGS. BUGS is based on Gibbs sampling, a Markov chain Monte
Carlo (MCMC) sampler where one variable is sampled at a time conditioned on
its Markov blanket. When the conditional distributions are of standard form,
samples are easily obtained using standard algorithms [4]. When these condi-
tional distributions are not of standard form (e.g. if non-conjugate priors are
used), a number of MCMC techniques are available, including slice sampling
[5], adaptive rejection sampling (ARS) [6], and adaptive rejection Metropolis
sampling (ARMS) [7].

Adaptive rejection sampling, described in Section 2, is a rejection sampling
technique that produces true samples from a given distribution. In contrast, slice
sampling and ARMS are MCMC techniques that produce true samples only in
the limit of a large number of MCMC iterations (the specific number of iterations
required being unknown in most cases of interest). Though this is not a serious
drawback in the Gibbs sampling context of BUGS, there are other occasions



2

Fig. 1. The piecewise exponential upper and lower bounds on a multi-modal function,
constructed by using CCARS. The two points where the upper and lower bounds touch
the function are the abscissae.

when true samples are desirable, e.g. in the sequential Monte Carlo inference for
coalescent clustering [8].

The major drawback of ARS is that it can only be applied to so-called log-
concave distributions—distributions where the logarithm of the density function
is concave. This is because ARS constructs and uses proposal distributions whose
log densities are piecewise linear upper bounds on the log density of the given
distribution of interest. [9] and [10] generalized ARS to T -concave distributions—
where the density transformed by a monotonically increasing function T is con-
cave.

In this paper we propose a different generalization of ARS to distributions
whose log densities can be expressed as a sum of concave and convex functions.
These form a very large class of distributions—as we shall see, almost all densities
of interest have decompositions into log concave and log convex functions, and
include multimodal densities as well. The only requirements we need are that the
densities are differentiable with derivatives of bounded variation and tails that
decay at least exponentially. We call our generalization concave-convex adaptive
rejection sampling (CCARS).

The basic idea of CCARS, described in Section 3, is to upper bound both
the concave and convex components using piecewise linear functions. These up-
per bounds are used to construct a piecewise exponential proposal distribution
for rejection sampling. The method for upper bounding the concave and con-
vex components can be applied to obtain lower bounds as well. Whenever the
function is evaluated at a sample, the information is used to refine and tighten
the bounds at that point. This ensures higher acceptance probabilities in future
proposals. In Section 4 we exploit both bounds to approximate the true density
function in an adaptive and efficient manner.

In Section 5 we present experimental results on generating samples from
several different probability distributions. In Section 6 we discuss using CCARS



3

to efficiently construct accurate proposal distributions for sequential Monte Carlo
inference in coalescent clustering [8]. We conclude with some discussions on the
merits and drawbacks of CCARS in Section 7.

2 Rejection and Adaptive Rejection Sampling

In this section we review rejection sampling and adaptive rejection sampling for
completeness’ sake. Our description of adaptive rejection sampling will also set
the stage for the contributions of this paper in the coming sections.

Rejection Sampling

Suppose we wish to obtain a sample from a distribution with density p(x) on the
real line. Rejection sampling is a standard Monte Carlo technique for sampling
from p(x). It assumes that we have a proposal distribution with density q(x) from
which it is easy to obtain samples, and for which there exists a constant c > 1
such that p(x) < cq(x) for all x. Rejection sampling proceeds as follows: obtain
a sample x ∼ q(x); compute acceptance probability α = p(x)/cq(x); accept x
with probability α, otherwise reject and repeat the procedure until some sample
is accepted.

The intuition behind rejection sampling is straightforward.Obtaining a sam-
ple from p(x) is equivalent to obtaining a sample from a uniform distribution
under the curve p(x). We obtain this sample by obtaining a uniform sample
from under the curve cq(x), and only accept the sample if it by chance also falls
under p(x). We repeat this procedure until we have obtained a sample under
p(x). This intuition also shows that the average acceptance probability is 1/c
thus the expected number of samples required from q(x) is c.

Adaptive Rejection Sampling

When a sample is rejected in rejection sampling the computations performed to
obtain the sample are discarded and thus wasted. Adaptive rejection sampling
(ARS) [6] addresses this wastage by using the rejected samples to improve the
proposal distribution so that future proposals have higher acceptance probability.

ARS assumes that the density p(x) is log concave, that is, f(x) = log p(x)
is a concave function. Since f(x) is concave, it is upper bounded by its tangent
lines: f(x) ≤ tx0(x) for all x0 and x, where tx0(x) = f(x0) + f ′(x0)(x − x0) is
the tangent at abscissa x0. ARS uses proposal distributions whose log densities
are constructed as the minimum of a finite set of tangents:

f(x) ≤ gn(x) = min
i=1...n

txi(x) (1)

qn(x) ∝ exp(gn(x)) (2)

where x1, . . . , xn are the abscissae of the tangent lines. Since gn(x) is piecewise
linear, qn(x) is a piecewise exponential distribution that can be efficiently sam-
pled from. Say xn+1 ∼ qn(x). If the proposal xn+1 is rejected, this implies that



4

xn+1 is likely to be located in a part of the real line where the proposal distri-
bution qn(x) differs significantly from p(x). Instead of discarding xn+1, we add
it to the set of abscissae so that qn+1(x) will more closely match p(x) around
xn+1.

In order for qn(x) to be normalizable it is important that gn(x) → −∞ when
x →∞ and when x → −∞. This can be guaranteed if the initial set of abscissae
includes a point x1 for which f ′(x) > 0 for all x < x1, and a point x2 for which
f ′(x) < 0 for all x > x2. These two points can usually be easily found and
ensure that the tails of p(x) are bounded by the tails of qn(x) which are in turn
exponentially decaying.

[6] proposed two improvements to the above scheme. Firstly, there is an al-
ternative upper bound that is looser but does not require evaluations of the
derivatives f ′(x). Secondly, a lower bound on f(x) can be constructed based on
the secant lines subtended by consecutive abscissae. This is useful in accepting
proposed samples without the need to evaluate f(x) each time. Both improve-
ments are useful when f(x) and f ′(x) are expensive to evaluate. In the next
section we make use of such secant lines for a different purpose: to upper bound
the log convex components in a concave-convex decomposition of the log density.

3 Concave Convex Adaptive Rejection Sampling

In this section we propose a generalization to ARS where the log density f(x) =
f∩(x)+f∪(x) can be decomposed into concave f∩(x) and convex f∪(x) functions.
As we will see, such decompositions are natural in many situations and many
densities of interest can be decomposed in this way1. The approach we take is to
upper bound f∩(x) andf∪(x) separately using piecewise linear upper bounds, so
that the sum of the upper bounds is itself piecewise linear and an upper bound
of f(x). For simplicity we start with the case where the support of the density
is a finite closed interval [a, b], and discuss changes needed for the open interval
case in Section 3.1. In the following we shall describe our upper bounds in more
detail; see Figure 2 for a pictorial depiction of the algorithm.

As in ARS, the upper bound on the concave f∩(x) is formed by a series of
tangent lines at a set of n abscissae, say ordered a = x0 < x1 · · · < xn = b. At
each abscissa xi we form the tangent line

txi
(x) = f∩(xi) + f ′∩(xi)(x− xi),

and the upper bound on f∩(x) is:

f∩(x) ≤ g∩(x) = min
i=0...n

txi
(x) (3)

Consecutive tangent lines txi , txi+1 intersect at a point yi ∈ (xi, xi+1):

yi =
f∩(xi+1)− f ′∩(xi+1)xi+1 − f∩(xi) + f ′∩(xi)xi

f∩(xi)− f∩(xi+1)
1 Note that such decompositions are not unique; see Section 5.1.



5

f∩(x)

f∪(x)

f(x)

g(x)

g∩(x)

g∪(x)

x′

x0 x1 x2

upper bound

lower bound

Bounds on functions Refined bounds

x0 x1 x2x′

co
nc

av
e 

pa
rt

co
nv

ex
 p

ar
t

Fig. 2. Concave-convex adaptive rejection sampling. First column: upper and lower
bounds on functions f(x), f∪(x) and f∩(x). Second column: refined bounds after pro-
posed point x′ is rejected.

and g∩(x) is piecewise linear with the yi’s forming the change points.
On the other hand, the upper bound on the convex f∪(x) is formed by a

series of n secant lines subtended at the same set of points x0 . . . xn. For each
consecutive pair xi < xi+1 the secant line

sxixi+1(x) =
f∪(xi+1)− f∪(xi)

xi+1 − xi
(x− xi) + f∪(xi)

is an upper bound on f∪(x) on the interval [xi, xi+1], and the upper bound on
f∪(x) is:

f∪(x) ≤ g∪(x) = max
i=0...n−1

sxixi+1(x) (4)

Finally the upper bound on f(x) is just the sum of both upper bounds:

f(x) ≤ g(x) = g∩(x) + g∪(x) (5)

Note that g(x) is a piecewise linear function as well, with 2n segments. The pro-
posal distribution is then a piecewise exponential distribution with 2n segments:

q(x) ∝ exp(g(x)) (6)



6

Algorithm 1 Concave-Convex Adaptive Rejection Sampling
inputs: functions f∩, f∪, domain (a, b), numsamples
initialize: abscissae
if a = −∞ then {bound the left tail}

search for a point x0 on the left tail of f∩ + f∪, add x0 as left abscissa.
else

add a as the left abscissa.
end if
if b = ∞ then {bound the right tail}

search for a point x1 on the right tail of f∩ + f∪, add x1 as right abscissa.
else

add b as the right abscissa.
end if
initialize: bounds g∩ and g∪, numaccept = 0.
while numaccept < numsamples do {generate samples}

sample x′ ∼ q(x) ∝ exp(g∩(x) + g∪(x)).
sample u ∼ Uniform[0, 1].
if u < exp(g∩(x′) + g∪(x′)− f∩(x′)− f∪(x′)) then

accept the sample x′.
numaccept := numaccept +1.

else
reject sample x′.
include x′ in the set of abscissae.
update the bounds.

end if
end while

Pseudocode for the overall concave-convex ARS (CCARS) algorithm is given
in Algorithm 1. At each iteration a sample x′ ∼ q(x) is drawn from the proposal
distribution and accepted with probability exp(g(x) − f(x)). If rejected, x′ is
added to the list of points to refine the proposal distribution, and the algorithm
is repeated. The data structure maintained by CCARS consists of the n + 1
abscissae, the n intersections of consecutive tangent lines, and the values of g∩,
g∪ and g evaluated at these 2n + 1 points.

3.1 Unbounded Domains

Let p(x) = exp(f(x)) be a well-behaved density function over an open domain
(a, b) where a and b can be finite or infinite. In this section we consider the
behaviour of f(x) near its boundaries and how this may affect our CCARS
algorithm.

Consider the behaviour of f(x) as x → a (the behaviour near b is symmet-
rically argued). If f(x) → f(a) for a finite f(a), then f(x) is continuous at
a and we can construct piecewise linear upper bounds for f(x) such that the
corresponding proposal density is normalizable. If f(x) → ∞ as x → a (and
in particular a must be finite for p(x) to be properly normalizable), then no
piecewise linear upper bound for f(x) exists. On the other hand, if f(x) → −∞



7

then piecewise linear upper bounds for f(x) can be constructed, but such upper
bounds consisting of a finite number of segments with normalizable proposal
densities exist only if f(x) is log concave near a.

Thus for CCARS to work for f(x) on domain (a, b) we require one of the
following situations for its behaviours near a and near b (in the following we
consider only case of a; the b case is similar): either f(x) is continuous at a finite
a, or f(x) → −∞ as x → a and f(x) is log concave on an open interval (a, c). In
case a is finite and f(x) is continuous at a, we simply initialize CCARS with a as
an abscissa. Otherwise, we say f(x) has a log concave tail at a, and use c as an
initial abscissa. Further, the piecewise linear upper bounds of vanilla adaptive
rejection sampling can be applied on (a, c), while CCARS can be applied to the
right of c.

3.2 Lower Bounds

Just as in [6] we can construct a lower bound for f(x) so that it need not be
evaluated every time a proposed point is to be considered for acceptance. This
lower bound can be constructed by reversing the operations on the concave and
convex functions: we lower bound f∩(x) using its secant lines, and lower bound
f∪ using its tangent lines. This reversal is perfectly symmetrical and the same
code can be reused.

3.3 Concave-Convex Decomposition

The concave-convex adaptive rejection sampling algorithm is most naturally
applied when the log density f(x) = log p(x) can be naturally decomposed into
a sum of concave and convex parts, as seen in our examples in Section 5. However
it is interesting to observe that many densities of interest can be decomposed in
this fashion.

Specifically, suppose that f(x) is differentiable with derivative f ′(x) of bounded
variation on [a, b]. The Jordan decomposition for functions of bounded variations
[11] shows that f ′(x) = h∩(x)+h∪(x) where h∪ is monotonically increasing and
h∩ is monotonically decreasing. Integrating, we get f(x) = f(a) +

∫ x

a
h∩(x) +

h∪(x)dx = f(a) + g∩(x) + g∪(x) where g∩(x) =
∫ x

a
h∩(x)dx is concave, and

g∪(x) =
∫ x

a
h∪(x)dx is convex.

Another important issue of such concave-convex decompositions is that they
are not unique—adding a convex function to g∪(x) and subtracting the same
function from g∩(x) preserves convexity and concavity respectively, but can alter
the effectiveness of CCARS, as seen in Section 5. We suggest using the “minimal”
concave-convex decomposition—one where both are as close to linear as possible.

4 Approximation of Integrals

The sampling method described in the previous section uses piecewise expo-
nential functions for bounding the density function. The upper bound is used as



8

Algorithm 2 Concave Convex Integral Approximation
inputs: f∩, f∪, domain (a, b), threshold
initialize: abscissae as in Algorithm 1
initialize: upper and lower bounds g∩, g∪, l∩ and l∪
initialize: calculate the areas under the bounds in each segment, {Ag

i , Al
i}

while (
P

i Al
i)/(

P
i Ag

i ) < threshold do {refine bounds}
i = argmaxi=1,...,nAg

i −Al
i

if i = a log concave tail segment then
sample x′ ∼ q(x) ∝ exp(g∩(x) + g∪(x))

else
x′ = argmaxx∈{zu

i ,zl
i}

gi(x)− li(x)

end if
include x′ in the set of abscissae.
update the bounds.

end while

the sampling function and the lower bound is used to avoid the expensive func-
tion evaluation when possible. What seem to be a byproduct of the sampling
algorithm can be used for evaluating the area (or normalizing constant) of the
density function. Generally speaking, the adaptive bounds can be used for eval-
uating the definite integral of any positive function satisfying the conditions of
Section 3.3 that can be efficiently represented as a concave convex decomposition
(modulo tail behaviour issues in unbounded case).

The area under the upper (lower) bounding piecewise exponential function
gives an upper (lower) bound on the area under the unnormalized function
exp{f(x)}. A measure of the approximation error is the ratio of the areas under
the upper and lower bounds. This measure is of interest in case of CCARS as
it is the probability that we need to evaluate f(x) when considering a sample
for acceptance. Some changes to CCARS make it more efficient for integral ap-
proximation, which is discussed in detail below. We call the resulting algorithm
concave-convex integral approximation (CCIA).

Note that Algorithm 1 described in the previous section is optimized for re-
quiring as few function evaluations as possible for generating samples from the
distribution, therefore ideally it would sample points that have high probabil-
ity of being accepted. The bounds are updated only if a sampled point is not
accepted at the squeezing step, that is, when the acceptance test requires evalu-
ating the function. For integral evaluation, this view is reversed. Since the goal is
to fit the function as fast as possible, sampling points with high acceptance prob-
ability would waste computation time. As the bound should be adjusted where
it is not tight, a better strategy would be to sample those points where there is
a large mismatch between the upper and the lower bounds. Therefore, instead
of sampling from the upper bound, we can sample from the area between the
bounds. Since the bounds are piecewise exponential, this means sampling from
the difference of two exponentials. In fact, since we are only interested in op-



9

0 0.19 0.46 0.55 0.65

Fig. 3. Evolution of integral approximation bounds on the overall function f(x) (top),
the concave part f∩(x) (middle) and the convex part f∪(x) (bottom). The segment
with the largest area between the bounds is selected deterministically. If one of the end
segments is chosen, the new abscissa is sampled from the upper bound, otherwise the
point is chosen to be one of the change points. The numbers above the plot show the
lower and upper bound area ratio.

timally placing the abscissae rather than generating random samples, sampling
can be avoided altogether if we keep the bound structure in mind.

Both upper and the lower bounds touch the function at the same set of
abscissae, as seen in Figure 2. Between each pair of consecutive abscissae, two
tangents intersect, possibly at different x values for the upper and the lower
bound. It is optimal to add to the set of abscissae one of these intersection
points for which the bounds are furthest apart.

CCIA, summarized in Algorithm 2, starts similarly to CCARS by initializing
the abscissae and the upper and lower bounds g(x), l(x), and calculating the area
under both bounds. At each iteration, we find the consecutive pair of abscissae
with maximum discrepancy between g(x) and l(x) and add the intersection point
with largest discrepancy to the set of abscissae.

The evolution of the bounds over iterations for a bounded function is depicted
in Figure 3. The ratio of the upper and lower bounds on the areas are reported
above the plots. Initially with one abscissa, the bounds are so loose that the
ratio is practically zero. However the bounds get tight reasonably quickly. In



10

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

number of accepted samples

nu
m

be
r 

of
 a

bs
ci

ss
ae

 

 

Naive

Sensible

Fig. 4. Demonstration of the difference of a naive versus a sensible function decom-
position. The (sensible) dotted curve shows the number of abscissae used as a func-
tion of generated samples. The same concave function (a polynomial) was added and
subtracted to the concave and convex functions to preserve the original function to
produce the (naive) solid curve. The naive decomposition requires much more function
evaluations for generating the same number of samples.

the next section, we present experiments on CCIA on densities with unbounded
domains.

5 Experiments

As described in the previous sections, adaptively bounding the concave convex
function decomposition provides an easy and efficient way to generate indepen-
dent samples from arbitrary distributions, and to evaluate their normalizing
constants. In the following, we present experiments to give an insight about
the performance of the algorithms. We start with demonstrating the effect of
careless function decomposition on the computational cost. We then apply the
algorithms for sampling from some standard but non-log-concave density func-
tions and evaluating their normalization constants.

5.1 Function Decomposition

One important point to keep in mind is that the concave-convex function de-
composition is not unique, as discussed in Section 3. Adding and subtracting
the same concave function to both f∩(x) and f∪(x) preserves the function f(x)
and the method is still valid. However, redundancy in the formulation of f∩ and
f∪ reduce the efficiency of the method, as demonstrated in Figure 4. Although



11

the same function is being sampled from, the naive decomposition utilizes many
more abscissae.

5.2 Random Number Generation

In this section, we demonstrate the methods on the generalized inverse Gaussian
(GIG) distribution and Makeham’s distribution, for which there is no standard
specialized method of sampling. For both distributions, the log densities are con-
cave for some parameter settings and are naturally expressed as a sum of concave
and convex terms otherwise. Since our algorithm reduces to standard ARS for
log-concave density functions, we can efficiently sample from these distributions
using CCARS for all parameter values.

The generalized inverse Gaussian (GIG) distribution is ubiquitously used
across many statistical domains, especially in financial data analysis and geo-
statistics. It is an example of an infinitely divisible distribution and this property
allows the construction of nonparametric Bayesian models based on it. The GIG
density function is

p(x) =
(a/b)λ/2

2Kλ(
√

ab)
xλ−1 exp

{
−1

2
(ax + bx−1)

}
,

where Kλ(·) is the modified Bessel function of the third kind, a, b > 0 and x > 0.
Sampling from this distribution is not trivial, the most commonly used method
being that of [12]. The unnormalized log density is

f(x) = (λ− 1) log(x)− 1
2
(ax + bx−1),

which is log-concave for λ > 1, therefore ARS can be used to sample from it.
However, when λ < 1, the log density is a sum of concave and convex terms.
Thus, the function decomposition necessary for CCARS falls out easily;

f∩(x) = −1
2
(ax + bx−1), f∪(x) = (λ− 1) log(x)

for λ < 1.
The second distribution we consider is Makeham’s distribution, which is used

as a representation of the mortality process at adult ages. The density is

p(x) = (a + bcx) exp
{
−ax− b

ln(c)
(cx − 1)

}
where b > 0, c > 1, a > −b, x ≥ 0. No specialized method for efficiently sampling
from this distribution exists. Similar to the GIG distribution, this function is
log-concave for some parameter settings, but not all. Specifically, the density is
log-concave for a < 0. However for a > 0, the log of the first term is convex and
the last term is concave which makes it hard for standard algorithms to deal
with this distribution. Since it is a sum of a concave and a convex term, the log
density is indeed of the form that CCARS can easily deal with:

f∩(x) = −ax− b

ln(c)
(cx − 1), f∪(x) = log(a + bcx).



12

10
0

10
1

10
2

10
3

10
4

10

20

30

40

50

60

70

80

90

number of accepted samples

nu
m

be
r 

of
 a

bs
ci

ss
ae

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25

30

35

40

45

number of accepted samples

nu
m

be
r 

of
 a

bs
ci

ss
ae

Fig. 5. Generating samples: The change in the number of abscissae while generating
several samples for the GIG distribution (left) and Makeham’s distribution (right). The
number of abscissae increases slowly.

Generating many samples We assume that evaluating the function f(x) is
generally expensive. Therefore, the number of function evaluations gives a mea-
sure of the speed of the algorithm. For both CCARS and CCIA, an abscissa is
added to the bound every time the functions f∩(x) and f∪(x) are evaluated.
There is also an overhead of two for checking domain boundaries so that the
number of function evaluations will be two plus the number of abscissae. There-
fore, to give an intuition about the efficiency of the methods, we report the
change of number of abscissae. See Figure 5.

Efficiency for single sample generation As demonstrated by Figure 5, the
algorithm efficiently generates multiple independent samples. Generally when
the method is used within Gibbs sampling, one only needs a single sample from
the conditional distribution at each Gibbs iteration. Therefore it is important to
assess the cost of generating a single sample. We did several runs to generate a
single sample from the distributions to test the efficiency. The average number
of abscissae used in 1000 runs for GIG with λ = −1 was 7.7, which can also be
inferred from Figure 6(a), noting that the bounds get somewhat closer after 7
abscissae. As the convex part gets more dominant with decreasing λ, the number
of abscissae necessary to have a good representation of the density increases.
See Table 1 for the average number of abscissae for a list of λ values. For all
runs, the abscissae were initialized randomly. Note that usually the conditional
distributions do not change drastically within a few Gibbs iterations. Therefore
the abscissae information of the previous run can be used to have a sensible
initialization, decreasing the cost.

Integral estimation The algorithms for refining the bounds when approximat-
ing integrals and generating samples is slightly different; the algorithms differ in
the manner that they choose a point to add to the bound structure. Figure 6



13

0 20 40 60 80 100

10
−2

10
−1

10
0

number of abscissae

lo
w

er
 b

ou
nd

 a
re

a 
/ u

pp
er

 b
ou

nd
 a

re
a

0 5 10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

number of abscissae

lo
w

er
 b

ou
nd

 a
re

a 
/ u

pp
er

 b
ou

nd
 a

re
a

Fig. 6. Approximating integrals: The change in the integral evaluation accuracy as
a function of the number of abscissae for the GIG distribution (left) and Makeham’s
distribution (right). Integral estimates get more accurate as more abscissae are added.

shows the performance of the algorithm for approximating the area under the
unnormalized density (the normalization constants) for GIG and Makeham’s dis-
tributions. We see that a reasonable number of abscissae are needed to estimate
the normalization constants accurately. Since the concavity of the distributions
depends on the parameter settings, we repeated the experiments for several dif-
ferent values and obtained similar curves.

6 Sequential Monte Carlo on Coalescent Clustering

Another application of CCARS, and in fact the application that motivated this
line of research, is in the sequential Monte Carlo (SMC) inference algorithm for
coalescent clustering [8]. In this section we shall give a brief account of how
CCARS can be applied in the multinomial vector coalescent clustering of [8].

Coalescent clustering is a Bayesian model for hierarchical clustering, where
a set of n data items (objects) is modelled by a latent binary tree describing
the hierarchical relationships among the objects, with objects closer together
on the tree being more similar to each other. An example of such a problem
is in population genetics, where objects are haplotypic DNA sequences from a

Table 1. Change in the number of abscissae for different parameter values for GIG.

λ 1.5 1.1 1 0.99 0.9 0.5 0 -0.5 -1

avg 3.1(.6) 3.0(.6) 3.0(.6) 4.1(.8) 4.7(.8) 5.6(1) 6.5(1) 7.1(1.2) 7.7(1.2)
min 2 2 2 2 3 3 3 4 4
max 6 5 5 7 7 9 10 11 13
median 3 3 3 4 5 6 6 7 8



14

number of individuals, and the latent tree describes the genealogical history of
these individuals.

The inferential problem in coalescent clustering is in estimating the latent
tree structure given observations of the objects. The SMC inference algorithm
proposed by [8] operates as follows: starting with n data items each in its own
(trivial) subtree, each iteration of the SMC algorithm proposes a pair of subtrees
to merge (coalesce) as well as a time in the past at which they coalesce. The
algorithm stops after n− 1 iterations when all objects have been coalesced into
one tree. Being a SMC algorithm, multiple such runs (particles) are used, and
resampling steps are taken to ensure that the particles are representative of the
posterior distribution.

At iteration i, the optimal SMC proposal distribution is,

p(t, l, r|θi−1) ∝ e
−
(
n−i+1

2

)
(t−ti−1)

∏
d

{
1− eλd(2t−tl−tr)(1−

∑
k qdkMldkMrdk)

}
where the proposal is for subtrees l and r to be merged at time t < ti−1, θi−1

stores the subtrees formed up to iteration i − 1, ti−1 is the time of the last
coalescent event, tl, tr are the coalescent times at which l and r are themselved
formed, d indexes the entries of the multinomial vector, k indexes the values
each entry can take on, λd and qdk are parameters of the mutation process, and
Mldk, Mrdk are messages representing likelihoods of the data under subtrees l
and r respectively.

It can be shown that Ldlr = 1−
∑

k qdkMldkMrdk ranges from −1 to 1, and
the term in curly braces is log convex in t if Ldlr < 0 and log concave if Ldlr > 0.
Thus the SMC proposal density has a natural log concave-convex decomposition
and CCARS can be used to efficiently obtain draws from p(t, l, r|θi−1). In fact,
what is actually done is that CCIA is used to form a tight upper bound on
p(t, l, r|θi−1), which is used as the SMC proposal instead. This is because the
area under the upper bound can be computed efficiently, but not the area under
p(t, l, r|θi−1), this area being required to reweigh the particles appropriately.

7 Discussion

We have proposed a generalization of adaptive rejection sampling to the case
where the log density can be expressed as a sum of concave and convex functions.
The generalization is based on the idea that both the concave and the convex
functions can be upper bounded by piecewise linear functions, so that the sum of
the piecewise linear functions is a piecewise linear upper bound on the log density
itself. We have also described a related algorithm for estimating upper and lower
bounds on definite integrals of functions. We experimentally verified that our
concave-convex adaptive rejection sampling algorithm works on a number of well-
known distributions, and is an indispensable component of a recently proposed
SMC inference algorithm for coalescent clustering.

The original adaptive rejection sampling idea of [6] has been generalized in a
number of different ways by [9] and [10]. These generalizations are orthogonal to



15

our approach and are in fact complementary—e.g. we can generalize our work
to densities which are sums of concave and convex functions after a monotonic
transformation by T .

The idea of concave-convex decompositions have also been explored in the
approximate inference context by [13]. There the problem is to find a local min-
imum of a function, and the idea is to upper bound the concave part using a
tangent plane at the current point, resulting in a convex upper bound to the func-
tion of iterest which can be minimized efficiently, producing the next (provably
better) point and iterating until convergence. We believe that concave-convex
decompositions of functions are natural in other problems as well and exploiting
such structure can lead to efficient solutions for such problems.

We have produced software downloadable at http://www.gatsby.ucl.ac.uk/
∼dilan/software , and intend to release it for general usage. We are currently
applying CCARS and CCIA to a new SMC inference algorithm for coalescent
clustering with improved run-time and performance.

Acknowledgements

We thank the Gatsby Charitable Foundation for funding.

A Sampling from a Piecewise Exponential Distribution

The proposal distribution q(x) ∝ exp(g(x)) is piecewise exponential if g(x) is
piecewise linear. In this section we describe how to obtain a sample from q(x).

Suppose the change points of g(x) are z0 < z1 < · · · zm, and g(x) has slope
mi in (zi−1, zi). the area Ai under each exponential segment of exp(g(x)) is:

Ai =
∫ zi

zi−1

exp(g(x))dx = (exp(g(zi))− exp(g(zi−1)))/mi (7)

We obtain a sample x′ from q(x) by first sampling a segment i with probability
proportional to Ai, then sampling an x′ ∈ (zi−1, zi) using the inverse cumu-
lative distribution transform, resulting in: sample u ∼ Uniform[0, 1] and set
x′ = 1

mi
log(uemizi + (1− u)emizi−1).

References

[1] Spiegelhalter, D.J., Thomas, A., Best, N., Gilks., W.R.: BUGS: Bayesian inference
using Gibbs sampling (1999, 2004)

[2] Winn, J.: Vibes: Variational inference in Bayesian networks (2004)
[3] Minka, T., Winn, J., Guiver, J., Kannan, A.: Infer.NET (2008)
[4] Devroye, L.: Non-uniform Random Variate Generation. Springer, New York

(1986)
[5] Neal, R.M.: Slice sampling. The Annals of Statistics 31(3) (2003) 705–767
[6] Gilks, W.R., Wild, P.: Adaptive rejection sampling for Gibbs sampling. Applied

Statistics 41 (1992) 337–348



16

[7] Gilks, W.R., Best, N.G., Tan, K.K.C.: Adaptive rejection metropolis sampling
within Gibbs sampling. Applied Statistics 44(4) (1995) 455–472

[8] Teh, Y.W., Daumé III, H., Roy, D.M.: Bayesian agglomerative clustering with
coalescents. In: Advances in Neural Information Processing Systems. Volume 20.
(2008)

[9] Hoermann, W.: A rejection technique for sampling from T-concave distributions.
ACM Transactions on Mathematical Software 21(2) (1995) 182–193

[10] Evans, M., Swartz, T.: Random variate generation using concavity properties of
transformed densities. Journal of Computational and Graphical Statistics 7(4)
(1998) 514–528

[11] Hazewinkel, M., ed.: Encyclopedia of Mathematics. Kluwer Academic Publ.
(1998)

[12] Dagpunar, J.: An easily implemented generalised inverse Gaussian generator.
Communications in Statistics - Simulation and Computation 18(2) (1989) 703–
710

[13] Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Computation
15(4) (2003) 915–936


