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Abstract. Concavely-priced probabilistic timed automata, an extension of prob-
abilistic timed automata, are introduced. In this paper we consider expected reach-
ability, discounted, and average price problems for concavely-priced probabilis-
tic timed automata for arbitrary initial states. We prove that these problems are
EXPTIME-complete for probabilistic timed automata with two or more clocks
and PTIME-complete for automata with one clock. Previous work on expected
price problems for probabilistic timed automata was restricted to expected reach-
ability for linearly-priced automata and integer valued initial states. This work
uses the boundary region graph introduced by Jurdziński and Trivedi to analyse
properties of concavely-priced (non-probabilistic) timed automata.

1 Introduction

Markov decision processes [27] (MDPs) extend finite automata by providing a prob-
ability distribution over successor states for each transition. Timed automata [1] ex-
tend finite automata by providing a mechanism to constrain the transitions with real-
time. Probabilistic timed automata (PTAs) [20,15,3] generalise both timed automata
and MDPs by allowing both probabilistic and real-time behaviour.

Priced timed automata are timed automata with (time-dependent) prices attached
to locations. Optimisation problems on priced timed automata are fundamental to the
verification of (quantitative timing) properties of systems modelled as timed automata.
In linearly-priced timed automata [2,24] the price information is given by a real-valued
function over locations which returns the price to be paid for each time-unit spent in the
location. Jurdziński and Trivedi [18] have recently proposed a generalisation to concave
prices, where the price of remaining in a location is a concave function over time,
and demonstrated that, for such prices, a number of optimisation problems including
reachability-price, discounted-price, and average-price are PSPACE-complete.

In this paper we present concavely-priced probabilistic timed automata, that is,
probabilistic timed automata with concave prices. Concave functions appear frequently
in many modelling scenarios such as in economics when representing resource utiliza-
tion, sales or productivity. Examples include:

1. when renting equipment the rental rate decreases as the rental duration increases [11];
2. the expenditure by vacation travellers in an airport is typically a concave function

of the waiting time [28];
3. the price of perishable products with fixed stock over a finite time period is usually

a concave function of time [12], e.g., the price of a low-fare air-ticket as a function
of the time remaining before the departure date.
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Contribution. We show that finite-horizon expected total price, and infinite-horizon ex-
pected reachability, discounted price and average price objectives on concavely-priced
PTAs are decidable. We also show that the complexity of solving expected reachability
price, expected discounted price and expected average price problems are EXPTIME-
complete for concavely-priced PTAs with two or more clocks and PTIME-complete for
concavely-priced PTAs with one clock. An important contribution of this paper is the
proof techniques which complement the techniques of [18]. We extend the boundary
region graph construction for timed automata [18] to PTAs and demonstrate that all the
optimisation problems considered can be reduced to similar problems on the boundary
region graph. We characterise the values of the optimisation problems by optimality
equations and prove the correctness of the reduction by analysing the solutions of the
optimality equations on the boundary region graph. This allows us to obtain an efficient
algorithm matching the EXPTIME lower bound for the problems. Complete proofs can
be found in the technical report version of this paper [16].

Related Work. For a review of work on optimisation problems for (non-probabilistic)
timed automata we refer the reader to [18]. For priced probabilistic timed automata
work has been limited to considering linearly-priced PTAs. Based on the digital clocks
approach [13], Kwiatkowska et. al. [19] present a method for solving infinite-horizon
expected reachability problems for a subclass of probabilistic timed automata. In [6]
an algorithm for calculating the maximal probability of reaching some goal location
within a given cost (and time) bound is presented. The algorithm is shown to be par-
tially correct in that if it terminates it terminates with the correct value. Following this,
[5] demonstrates the undecidability of this problem. We also mention the approaches
for analysing unpriced probabilistic timed automata against temporal logic specifica-
tions based on the region graph [20,15] and either forwards [20] or backwards [21]
reachability. The complexity of performing such verification is studied in [23,17].

2 Preliminaries

We assume, wherever appropriate, sets N of non-negative integers, R of reals and R⊕ of
non-negative reals. For n ∈ N, let JnKN and JnKR denote the sets {0, 1, . . . , n}, and {r ∈
R | 0≤r≤n} respectively. A discrete probability distribution over a countable set Q is a
function µ : Q→ [0, 1] such that

∑
q∈Q µ(q)=1. For a possible uncountable setQ′, we

define D(Q′) to be the set of functions µ : Q′ → [0, 1] such that the set supp(µ)def={q ∈
Q |µ(q)>0} is countable and, over the domain supp(µ), µ is a distribution. We say that
µ ∈ D(Q) is a point distribution if µ(q)=1 for some q ∈ Q.

A set D ⊆ Rn is convex if θx+(1−θ)y ∈ D for all x, y ∈ D and θ ∈ [0, 1]. A
function f : Rn → R is concave (on its domain dom(f) ⊆ Rn), if dom(f) ⊆ Rn is
a convex set and f(θ·x+(1−θ)·y) ≥ θ·f(x)+(1−θ)·f(y) for all x, y ∈ dom(f) and
θ ∈ [0, 1]. We require the following well known [8] properties of concave functions.

Lemma 1. 1. If f1, . . . , fk : Rn → R are concave and w1, . . . , wk ∈ R⊕, then∑k
i=1 wi·fi : Rn → R is concave on the domain

⋂k
i=1 dom(fi).

2. If f : Rn → R is concave and g : Rm → Rn linear, then x 7→ f(g(x)) is concave.
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3. If f1, . . . fk : Rn → R are concave, then x 7→ minki=1 fi(x) is concave on the
domain

⋂k
i=1 dom(fi).

4. If fi : Rn → R is concave for i ∈ N, then x 7→ limi→∞ fi(x) is concave.

Lemma 2. If f : (a, b)→ R is a concave function and f is the (unique) continuous ex-
tension of f to the closure of the interval (a, b), then infx∈(a,b) f(x) = min{f(a), f(b)}.

A function f : Rn → Rm is Lipschitz-continuous on its domain, if there exists a con-
stant K≥0, called a Lipschitz constant of f , such that ‖f(x)−f(y)‖∞ ≤ K‖x−y‖∞
for all x, y ∈ dom(f); we then also say that f is K-continuous.

3 Markov Decision Processes

In this section we introduce Markov decision processes (MDPs), a form of transition
systems which exhibit both probabilistic and nondeterministic behaviour.

Definition 3. A priced Markov decision process is a tupleM = (S,A, p, π) where:

– S is the set of states;
– A is the set of actions;
– p : S×A→ D(S) is a partial function called the probabilistic transition function;
– π : S×A → R is a bounded and measurable price function assigning real-values

to state-action pairs.

We write A(s) for the set of actions available at s, i.e., the set of actions a for which
p(s, a) is defined. For technical convenience we assume that A(s) is nonempty for all
s ∈ S. We sayM is finite, if the sets S and A are finite.

In the priced MDP M, if the current state is s, then a strategy chooses an action
a ∈ A(s) after which a probabilistic transition is made according to the distribu-
tion p(s, a), i.e., state s′ ∈ S is reached with probability p(s′|s, a) def= p(s, a)(s′).
We say that (s, a, s′) is a transition of M if p(s′|s, a)>0 and a run of M is a se-
quence 〈s0, a1, s1, . . .〉 ∈ S×(A×S)∗ such that (si, ai+1, si+1) is a transition for all
i≥0. We write RunsM (RunsMfin ) for the sets of infinite (finite) runs and RunsM(s)
(RunsMfin (s)) for the sets of infinite (finite) runs starting from state s. For a finite run
r=〈s0, a1, . . . , sn〉 we write last(r)=sn for the last state of the run. Furthermore, let
Xi and Yi denote the random variables corresponding to ith state and action of a run.

A strategy in M is a function σ : RunsMfin → D(A) such that supp(σ(r)) ⊆
A(last(r)) for all r ∈ RunsMfin . Let RunsMσ (s) denote the subset of RunsM(s) which
correspond to the strategy σ when starting in state s. Let ΣM be the set of all strategies
inM. We say that a strategy σ is pure if σ(r) is a point distribution for all r ∈ RunsMfin .
We say that a strategy σ is stationary if last(r)=last(r′) implies σ(r)=σ(r′) for all
r, r′ ∈ RunsMfin . A strategy σ is positional if it is both pure and stationary. To analyse
the behaviour of an MDP M under a strategy σ, for each state s of M, we define a
probability space (RunsMσ (s),FRunsMσ (s),Probσs ) over the set of infinite runs of σ with
s as the initial state. For details on this construction see, for example, [27]. Given a
real-valued random variable over the set of infinite runs f : RunsM → R, using stan-
dard techniques from probability theory, we can define the expectation of this variable
Eσs {f} with respect to σ when starting in s.
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Performance objectives. For a priced MDPM = (S,A, p, π), under any strategy σ
and starting from any state s, there is a sequence of random prices {π(Xi−1, Yi)}i≥1.
Depending on the problem under study there are a number of different performance
objectives that can be studied. Below are the objectives most often used.

1. Expected Reachability Price (with target set F ):

EReachM(F )(s, σ) def= Eσs
{∑min{i |Xi∈F}

i=1 π(Xi−1, Yi)
}
.

2. Expected Total Price (with horizon N ):

ETotalM(N)(s, σ) def= Eσs
{∑N

i=1π(Xi−1, Yi)
}
.

3. Expected Discounted Price (with discount factor λ ∈ (0, 1)):

EDisctM(λ)(s, σ) def= Eσs
{
(1−λ)

∑∞
i=1λ

i−1π(Xi−1, Yi)
}
.

4. Expected Average Price:

EAvgM(s, σ) def= lim sup
n→∞

1
n

Eσs {
∑n
i=1π(Xi−1, Yi)} .

For an objective ECostM and state s we let ECost∗M(s) = infσ∈ΣM ECostM(s, σ). A
strategy σ ofM is optimal for ECostM if ECostM(s, σ) = ECost∗M(s) for all s ∈ S.
Note that an optimal strategy need not exist, and in such cases one can consider, for each
ε>0, a ε-optimal strategy, that is, a strategy σ such that ECost∗M(s) ≥ ECostM(s, σ)−ε
for all s ∈ S. For technical convenience we make the follows assumptions for reacha-
bility objectives [9].

Assumption 1. If s ∈ F , then s is absorbing and price free, i.e. p(s|s, a)=1 and
π(s, a)=0 for all a ∈ A(s).

Assumption 2. For all σ ∈ ΣM and s ∈ S we have limi→∞ Probσs (Xi ∈ F ) = 1.

Optimality Equations. We now review optimality equations for determining the objec-
tives given above.

1. Let P : S → R and F ⊆ S; we write P |= OptFR(M), and we say that P is a
solution of optimality equations OptFR(M) if, for all s ∈ S, we have:

P (s) =
{

0 if s ∈ F
infa∈A(s)

{
π(s, a) +

∑
s′∈S p(s

′|s, a) · P (s′)
}

otherwise.

2. Let T0, . . . , TN : S → R; we say that 〈Ti〉Ni=0 is a solution of optimality equations
OptNT (M) if, for all s ∈ S, we have:

Ti(s) =

{
0 if i = 0
infa∈A(s)

{
π(s, a) +

∑
s′∈Sp(s

′|s, a) · Ti−1(s′)
}

otherwise.
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3. Let D : S → R; we write D |= OptλD(M), and we say that D is a solution of
optimality equations OptλD(M) if, for all s ∈ S, we have:

D(s) = inf
a∈A(s)

{
(1−λ) · π(s, a) + λ ·

∑
s′∈Sp(s

′|s, a) ·D(s′)
}
.

4. Let G : S → R and B : S → R; we write (G,B) |= OptA(M), and we say that
(G,B) is a solution of optimality equations3 OptA(M), if for all s ∈ S, we have:

G(s) = inf
a∈A(s)

{∑
s′∈Sp(s

′|s, a) ·G(s′)
}

B(s) = inf
a∈A(s)

{
π(s, a)−G(s) +

∑
s′∈Sp(s

′|s, a) ·B(s′)
}

The proof of the following proposition is routine and for details see, for example, [10].

Proposition 4. LetM be a priced MDP.

1. If P |=OptFR(M), then P (s)=EReach∗M(F )(s) for all s ∈ S.

2. If 〈Ti〉Ni=0|=OptNR (M), then Ti(s)=ETotal∗M(i)(s) for all i ≤ N and s ∈ S.

3. If D|=OptλD(M) and D is bounded, then D(s)=EDisct∗M(λ)(s) for all s ∈ S.

4. If (G,B)|=OptA(M) andG,B are bounded, thenG(s)=EAvg∗M(s) for all s ∈ S.

Notice that, for each objective, if, for every state s ∈ S, the infimum is attained in the
optimality equations, then there exists an optimal positional strategy. An important class
of MDPs with this property are finite MDPs, which gives us the following proposition.

Proposition 5. For every finite MDP, the existence of a solution of the optimality equa-
tions for the expected reachability, discounted and average price implies the existence
of a positional optimal strategy for the corresponding objective.

For a finite MDPM a solution of optimality equations for expected reachability, total,
discounted, and average price objectives can be obtained by value iteration or strategy
improvement algorithms [27].

Proposition 6. For every finite MDP, there exist solutions of the optimality equations
for expected reachability, total, discounted, and average price objectives.

Proposition 5 together with Proposition 6 provide a proof of the following well-known
result for priced MDPs [27].

Theorem 7. For a finite priced MDP the reachability, discounted, and average price
objectives each have an optimal positional strategy.

Notice that the total price objective need not have an optimal positional strategy since,
unlike the other objectives, it is a finite horizon problem. However, for this reason, its
analysis concerns only finitely many strategies.

3 These optimality equations are slightly different from Howard’s optimality equations for ex-
pected average price, and correspond to Puterman’s [27] modified optimality equations.
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4 Concavely-Priced Probabilistic Timed Automata

In this section we introduce concavely-priced probabilistic timed automata and begin
by defining clocks, clock valuations, clock regions and zones.

4.1 Clocks, clock valuations, regions and zones.

We fix a constant k ∈ N and finite set of clocks C. A (k-bounded) clock valuation is a
function ν : C → JkKR and we write V for the set of clock valuations.

Assumption 3. Although clocks in (probabilistic) timed automata are usually allowed
to take arbitrary non-negative values, we have restricted the values of clocks to be
bounded by some constant k. More precisely, we have assumed the models we consider
are bounded probabilistic timed automata. This standard restriction [7] is for technical
convenience and comes without significant loss of generality.

If ν ∈ V and t ∈ R⊕ then we write ν+t for the clock valuation defined by (ν+t)(c) =
ν(c)+t, for all c ∈ C. For C ⊆ C and ν ∈ V , we write ν[C:=0] for the clock valuation
where ν[C:=0](c) = 0 if c ∈ C, and ν[C:=0](c) = ν(c) otherwise.

The set of clock constraints over C is the set of conjunctions of simple constraints,
which are constraints of the form c ./ i or c−c′ ./ i, where c, c′ ∈ C, i ∈ JkKN, and
./ ∈ {<,>,=,≤,≥}. For every ν ∈ V , let SCC(ν) be the set of simple constraints
which hold in ν. A clock region is a maximal set ζ ⊆ V , such that SCC(ν)=SCC(ν′)
for all ν, ν′ ∈ ζ. Every clock region is an equivalence class of the indistinguishability-
by-clock-constraints relation, and vice versa. Note that ν and ν′ are in the same clock
region if and only if the integer parts of the clocks and the partial orders of the clocks,
determined by their fractional parts, are the same in ν and ν′. We write [ν] for the clock
region of ν and, if ζ=[ν], write ζ[C:=0] for the clock region [ν[C:=0]].

A clock zone is a convex set of clock valuations, which is a union of a set of clock
regions. We write Z for the set of clock zones. For any clock zone W and clock valua-
tion ν, we use the notation ν /W to denote that [ν] ∈W . A set of clock valuations is a
clock zone if and only if it is definable by a clock constraint. For W ⊆ V , we write W
for the smallest closed set in V containing W . Observe that, for every clock zone W ,
the set W is also a clock zone.

4.2 Probabilistic timed automata

We are now in a position to introduce probabilistic timed automata.

Definition 8. A probabilistic timed automaton T = (L, C, inv ,Act , E, δ) consists of:

– a finite set of locations L;
– a finite set of clocks C;
– an invariant condition inv : L→ Z;
– a finite set of actions Act;
– an action enabledness function E : L×Act → Z;
– a transition probability function δ : (L×Act)→ D(2C×L).
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When we consider a probabilistic timed automaton as an input of an algorithm, its size
should be understood as the sum of the sizes of encodings of L, C, inv , Act , E, and δ.
A configuration of a probabilistic timed automaton T is a pair (`, ν), where ` ∈ L is a
location and ν ∈ V is a clock valuation over C such that ν/inv(`). For any t ∈ R, we let
(`, ν)+t equal the configuration (`, ν+t). Informally, the behaviour of a probabilistic
timed automaton is as follows. In configuration (`, ν) time passes before an available
action is triggered, after which a discrete probabilistic transition occurs. Time passage
is available only if the invariant condition inv(`) is satisfied while time elapses, and
the action a can be chosen after time t if the action is enabled in the location `, i.e., if
ν+t / E(`, a). Both the amount of time and the action chosen are nondeterministic. If
the action a is chosen, then the probability of moving to the location `′ and resetting all
of the clocks in C to 0 is given by δ[`, a](C, `′).

Formally, the semantics of a probabilistic timed automaton is given by an MDP
which has both an infinite number of states and an infinite number of transitions.

Definition 9. Let T = (L, C, inv ,Act , E, δ) be a probabilistic timed automaton. The
semantics of T is the MDP [[T]] = (ST, AT, pT) where

– ST ⊆ L×V such that (`, ν) ∈ ST if and only if ν / inv(`);
– AT = R⊕×Act;
– for (`, ν) ∈ ST and (t, a) ∈ AT, we have pT((`, ν), (t, a)) = µ if and only if
• ν+t′ / inv(`) for all t′ ∈ [0, t];
• ν+t / E(`, a);
• µ(`′, ν′) =

∑
C⊆C∧(ν+t)[C:=0]=ν′ δ[`, a](C, `

′) for all (`′, ν′) ∈ S.

We assume the following—standard and easy to syntactically verify—restriction on
PTAs which ensures time divergent behaviour.

Assumption 4. We restrict attention to structurally non-Zeno probabilistic timed au-
tomata [29,17]. A PTA is structurally non-Zeno if, for any run 〈s0, (t1, a1), . . . , sn〉,
such that s0=(`0, ν0), sn=(`n, νn) and `0=`n (i.e., the run forms a cycle in the finite
graph of the locations and transitions of the automaton) we have

∑n
i=1 ti ≥ 1.

4.3 Priced probabilistic timed automata

We now introduce priced probabilistic timed automata which extend probabilistic timed
automata with price functions over state and time-action pairs.

Definition 10. A priced probabilistic timed automaton T = (T, π) consists of a proba-
bilistic timed automaton T and a price function π : (L×V )× (R⊕×Act)→ R.

The semantics of a priced PTA T is the priced MDP [[T ]] = ([[T]], π) where π(s, (t, a))
is the price of taking the action (t, a) from state s in [[T]]. In a linearly-priced PTA [19],
the price function is represented as a function r : L ∪ Act → R, which gives a price
rate to every location `, and a price to every action a; the price of taking the timed move
(a, t) from state (`, ν) is then defined by π((`, ν), (t, a)) = r(`)·t+r(a).

In this paper we restrict attention to concave price functions requiring that for any
location ` ∈ L and action a ∈ Act the function π((`, ·), (·, a)) : V×R⊕→R is concave.
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However, the results in this paper for PTAs with more than 1 clock, also hold for the
more general region-wise concave price functions of [18]. Notice that every linearly-
priced PTA is also concavely-priced.

Considering the optimisation problems introduced for priced MDPs in Section 3,
the following is the main result of the paper.

Theorem 11. The minimisation problems for reachability, total, discounted, and aver-
age cost functions for concavely-priced PTAs are decidable.

In the next section we introduce the boundary region graph, an abstraction whose size is
exponential in the size of PTA. In Section 6 we show that to solve the above mentioned
optimisation problems on concavely-priced PTAs, it is sufficient to solve them on the
corresponding boundary region graph.

5 Boundary Region Graph Construction

Before introducing the boundary region graph we review the standard region graph
construction for timed automata [1] extended in [20] to probabilistic timed automata.

5.1 The region graph

A region is a pair (`, ζ), where ` is a location and ζ is a clock region such that ζ ⊆
inv(`). For any s=(`, ν), we write [s] for the region (`, [ν]) andR for the set of regions.
A set Z ⊆ L×V is a zone if, for every ` ∈ L, there is a clock zoneW` (possibly empty),
such that Z = {(`, ν) | ` ∈ L ∧ ν / W`}. For a region R=(`, ζ) ∈ R, we write R for
the zone {(`, ν) | ν ∈ ζ}, recall ζ is the smallest closed set in V containing ζ.

For R,R′ ∈ R, we say that R′ is in the future of R, or that R is in the past of R′,
if there is s ∈ R, s′ ∈ R′ and t ∈ R⊕ such that s′ = s+t; we then write R −→∗ R′.
We say that R′ is the time successor of R if R −→∗ R′, R 6=R′, and R −→∗ R′′ −→∗ R′
implies R′′=R or R′′=R′ and write R −→+1 R

′ and R′ ←−+1 R. Similarly we say that
R′ is the nth successor of R and write R −→+n R′, if there is a sequence of regions
〈R0, R1, . . . , Rn〉 such that R0=R, Rn=R′ and Ri −→+1 Ri+1 for every 0≤i<n.

The region graph is an MDP with both a finite number of states and transitions.

Definition 12. Let T = (L, C, inv ,Act , E, δ) be a probabilistic timed automaton. The
region graph of T is the MDP TRG = (SRG, ARG, pRG) where:

– SRG = R;
– ARG ⊆ N×Act such that if (n, a) ∈ ARG then n ≤ (2·|C|)k;
– for (`, ζ) ∈ SRG and (n, a) ∈ ARG we have pRG((`, ζ), (n, a)) = µ if and only if
• (`, ζ) −→+n (`, ζn);
• ζn / E(`, a);
• µ(`′, ζ ′) =

∑
C⊆C∧ζn[C:=0]=ζ′ δ[`, a](C, l

′) for all (`′, ζ ′) ∈ SRG.

Since the region graph abstracts away the precise timing information, it can not be used
to solve expected reachability, total, discounted, and average price problems for the
original probabilistic timed automaton. In the next section, we define a new abstrac-
tion of probabilistic timed automata, called the boundary region graph, which retains
sufficient timing information to solve these performance objectives.
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5.2 The boundary region graph

We say that a region R ∈ R is thin if [s] 6= [s+ε] for every s ∈ R and ε>0; other
regions are called thick. We writeRThin andRThick for the sets of thin and thick regions,
respectively. Note that if R ∈ RThick then, for every s ∈ R, there is an ε > 0, such that
[s] = [s+ε]. Observe that the time successor of a thin region is thick, and vice versa.

We say (`, ν) ∈ L×V is in the closure of the region (`, ζ), and we write (`, ν) ∈
(`, ζ), if ν ∈ ζ. For any ν ∈ V , b ∈ JkKN and c ∈ C such that ν(c)≤b, we let
time(ν, (b, c)) def= b−ν(c). Intuitively, time(ν, (b, c)) returns the amount of time that
must elapse in ν before the clock c reaches the integer value b. Note that, for any
(`, ν) ∈ L×V and a ∈ Act , if t = time(ν, (b, c)) is defined, then (`, [ν+t]) ∈ RThin
and supp(pT(· | (`, ν), (t, a))) ⊆ RThin. Observe that, for every R′ ∈ RThin, there is a
number b ∈ JkKN and a clock c ∈ C, such that, for every R ∈ R in the past of R′, we
have that s ∈ R implies (s+(b−s(c)) ∈ R′; and we write R −→b,c R

′.
The motivation for the boundary region graph is the following. Let a ∈ A, s = (`, ν)

and R = (`, ζ)→∗ R′ = (`, ζ ′) such that s ∈ R and R′ / E(`, a).

– If R′ ∈ RThick, then there are infinitely many t ∈ R⊕ such that s+t ∈ R′. One
of the main results that we establish is that in the state s, amongst all such t’s,
for one of the boundaries of ζ ′, the closer ν+t is to this boundary, the ‘better’ the
timed action (t, a) becomes for each performance objective. However, since R′ is
a thick region, the set {t ∈ R⊕ | s+t ∈ R′} is an open interval, and hence does
not contain its boundary values. Observe that the infimum equals b−−ν(c−) where
R →b−,c− R− −→+1 R

′ and the supremum equals b+−ν(c+) where R →b+,c+

R+ ←−+1 R
′. In the boundary region graph we include these ‘best’ timed action

through the actions ((b−, c−, a), R′) and ((b+, c+, a), R′).
– IfR′ ∈ RThin, then there exists a unique t ∈ R⊕ such that (`, ν+t) ∈ R′. Moreover

since R′ is a thin region there exists a clock c ∈ C and a number b ∈ N such that
R→b,c R

′ and t = b−ν(c). In the boundary region graph we summarize this ‘best’
timed action from region R via region R′ through the action ((b, c, a), R′).

With this intuition in mind, let us present the definition of a boundary region graph.

Definition 13. Let T = (L, C, inv , A,E, δ) be a probabilistic timed automaton. The
boundary region graph of T is defined as the MDP TBRG = (SBRG, ABRG, pBRG) such that:

– SBRG = {((`, ν), (`, ζ)) | (`, ζ) ∈ R ∧ ν ∈ ζ};
– ABRG ⊆ (JkKN×C×Act)×R;
– for any state ((`, ν), (`, ζ)) ∈ SBRG and action ((b, c, a), (`, ζa)) ∈ ABRG we have
pBRG((`, ν), (`, ζ), ((b, c, a), (`, ζa))) = µ if and only if

µ((`′, ν′), (`′, ζ ′)) =
∑
C⊆C∧νa[C:=0]=ν′∧ζa[C:=0]=ζ′δ[`, a](C, l

′)

for all ((`′, ν′), (`′, ζ ′)) ∈ SBRG where νa = ν+time(ν, (b, c)) and one of the fol-
lowing conditions holds:
• (`, ζ) −→b,c (`, ζa) and ζa / E(`, a)
• (`, ζ) −→b,c (`, ζ−) −→+1 (`, ζa) for some (`, ζ−) and ζa / E(`, a)
• (`, ζ) −→b,c (`, ζ+)←−+1 (`, ζa) for some (`, ζ+) and ζa / E(`, a).
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Although the boundary region graph is infinite, for a fixed initial state we can restrict
attention to a finite state subgraph, thanks to the following observation [18].

Proposition 14. For every state s ∈ SBRG of a boundary region graph TBRG, the reach-
able sub-graph TsBRG is a finite MDP.

Proposition 15. If s = ((`, ν), (`, ζ)) ∈ SBRG is such that ν is an integer valuation,
then the MDP TsBRG is equivalent to the digital clock semantics [19] of T and extends
the corner point abstraction of [7] to the probabilistic setting.

Definition 16. Let T = (T, π) be a priced probabilistic timed automaton. The priced
boundary region graph of T equals the priced MDP TBRG = (TBRG, πBRG) where for any
state ((`, v), (`, ζ)) ∈ SBRG and action ((b, c, a), (`, ζ ′)) ∈ ABRG available in the state:

πBRG

(
((`, v), (`, ζ)), ((b, c, a), (`, ζ ′))

)
= π

(
(`, ν), (time(ν, (b, c)), a)

)
.

6 Correctness of the Reduction to Boundary Region Automata

For the remainder of this section we fix a concavely-priced PTA T . Proposition 14
together with Proposition 6 yield the following important result.

Proposition 17. For the priced MDP TBRG there exist solutions of the optimality equa-
tions for expected reachability, total, discounted, and average price objectives.

We say that a function f : SBRG → R is regionally concave if for all (`, ζ) ∈ R the
function f(·, (`, ζ)) : {(`, ν) | ν ∈ ζ} → R is concave.

Lemma 18. Assume thatP |= OptFR(TBRG), 〈Ti〉Ni=1 |= OptNT (TBRG), andD |= OptλD(TBRG)
We have that P , TN , and D are regionally concave.

Proof. (Sketch.) Using an elementary, but notationally involved, inductive proof we
can show that TN is regionally concave. The proof uses closure properties of concave
functions (see Lemma 1), along with the fact that price functions π are concave. The
concavity of P andD follows from the observation that they can be characterised as the
limit (concave due to Lemma 1) of certain optimal expected total price objectives. ut

For any function f : SBRG → R, we define f̃ : ST → R by f̃(`, ν) = f((`, ν), (`, [ν])).

Lemma 19. If P |= OptFR(TBRG), then P̃ |= OptFR([[T ]]).

Proof. Assuming P |= OptFR(TBRG), to prove this proposition it is sufficient to show that
for any s=(`, ν) ∈ ST we have:

P̃ (s) = inf
(t,a)∈A(s)

{π(s,(t,a)) +
∑

(C,`′)∈2C×L
δ[`,a](C,`′)·P̃ (`′,(ν+t)[C:=0])}. (1)

We therefore fix a state s=(`, ν) ∈ ST for the remainder of the proof. For any a ∈
Act , let RaThin and RaThick denote the set of thin and think regions respectively that are
successors of [ν] and are subsets of E(`, a). Considering the RHS of (1) we have:

RHS of (1) = min
a∈Act

{TThin(s, a), TThick(s, a)}, (2)
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where TThin(s, a) (TThick(s, a)) is the infimum of the RHS of (1) over all actions (t, a)
such that [ν+t] ∈ RaThin ([ν+t] ∈ RaThick). For the first term we have:

TThin(s,a) = min
(`,ζ)∈RaThin

inf
t∈R∧
ν+t∈ζ

{
π(s,(t,a)) +

∑
(C,`′)∈2C×L

δ[`,a](C,`′)·P̃ (`′,νtC)

}

= min
(`,ζ)∈RaThin

inf
t∈R∧
ν+t∈ζ

{
π(s,(t,a)) +

∑
(C,`′)∈2C×L

δ[`,a](C,`′)·P ((`′,νtC),(`′,ζC))

}

= min
(`,ζ)∈RaThin

{
π(s,(t(`,ζ),a)) +

∑
(C,`′)∈2C×L

δ[`,a](C,`′)·P ((`′,νt
(`,ζ)

C ),(`′,ζC))

}
where νtC denote the clock valuation (ν+t)[C:=0], t(`,ζ) the time to reach the region R
from s and ζC the region ζ[C:=0]. Considering the second term of (2) we have

TThick(s,a) = min
(`,ζ)∈RaThick

inf
t∈R∧
ν+t∈ζ

{
π(s,(t,a)) +

∑
(C,`′)∈2C×L

δ[`,a](C,`′)·P̃ (`′,νtC)

}

= min
(`,ζ)∈RaThick

inf
t∈R∧
ν+t∈ζ

{
π(s,(t,a)) +

∑
(C,`′)∈2C×L

δ[`,a](C,`′)·P ((`′,νtC),(`′,ζC))

}

= min
(`,ζ)∈RaThick

inf
tsR−

<t<tsR+
R←+1R−
R→+1R+

{
π(s,(t,a)) +

∑
(C,`′)∈2C×L

δ[`,a](C,`′)·P ((`′,νtC),(`′,ζC))

}

From Lemma 18 we have that P ((`′, ·), (`′, ζC)) is concave and, from Lemma 1, since
νtC is an affine mapping and δ[`,a](C,`′)≥0 for all 2C×L, the weighted sum over (C, `′)
of the functions P ((`′, νtC), (`′, ζC)) is concave on the domain {t | ν+t ∈ ζ}. From
the concavity assumption of price functions, π(s, (·, a)) is concave over the domain
{t | ν+t ∈ ζ}, and therefore, again using Lemma 1, we have that the function:

π(s, (t, a)) +
∑

(C,`′)∈2C×L
δ[`, a](C, `′)·P ((`′, νtC), (`′, ζC))

is concave over {t | ν+t ∈ ζ}. Therefore using Lemma 2 we have TThick(s, a) equals

min
(`,ζ)∈RaThick

min
t=tsR−

,tsR+
(`,ζ)←−+1R−
(`,ζ)−→+1R+

{
π(s,(t,a)) +

∑
(C,`′)∈2C×L

δ[`,a](C,`′)·P ((`′,νtC),(`′,ζC))

}

Substituting the values of TThin(s, a) and TThick(s, a) into (2) and observing that for any
thin region (`, ζ) ∈ RaThin there exist b ∈ Z and c ∈ C such that ν+(b−ν(c)) ∈ ζ, it
follows from Definition 13 that RHS of (1) equals:

min
(α,R)∈ABRG(s,[s])

{
πBRG((s,[s]),(α,R)) +

∑
(s′,R′)∈SBRG

pBRG((s′,R′)|(s,[s]), (α,R))·P (s′,R′)

}
which by definition equals P̃ (s) as required. ut
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Lemma 20. If 〈Ti〉Ni=1 |= OptNT (TBRG), then 〈T̃i〉Ni=0 |= OptNT ([[T ]]).

Lemma 21. If D |= OptλD(TBRG), then D̃ |= OptλD([[T ]]).

Since it is not known to us whether there exists a solution (G,B) |= OptA(TBRG) such
that both G and B are regionally concave, we can not show that (G,B) |= OptA(TBRG),
implies (G,B) |= OptA([[T ]]). Instead, we use the following result to reduce the aver-
age price problem on PTA to that over the corresponding boundary region graph.

Lemma 22. If (G,B) |= OptA(TBRG), then G̃ = EAvg∗[[T ]].

The proof of this result follows from Lemma 24 and Corollary 26 below.

Lemma 23. For an arbitrary priced MDP M = (S,A, p, π) and state s ∈ S, the
following inequality holds:

inf
σ∈ΣM

lim sup
n→∞

1
n
·Eσs {

∑n
i=1π(Xi−1, Yi)} ≥ lim sup

n→∞
inf

σ∈ΣM

1
n
·Eσs {

∑n
i=1π(Xi−1, Yi)}

Lemma 24. For every state s ∈ ST we have EAvg∗[[T ]](s) ≥ EAvg∗TBRG
(s, [s]).

Proof. Consider any s ∈ ST, using Lemma 23 we have:

EAvg∗[[T ]](s) ≥ lim sup
n→∞

inf
σ∈Σ[[T ]]

1
n
· Eσs {

∑n
i=1π(Xi−1, Yi)}

= lim sup
n→∞

1
n
· ETotal∗[[T ]](n)(s) by definition of ETotal∗[[T ]](n)

≥ lim sup
n→∞

1
n
· ETotal∗TBRG

(n)((s, [s])) by Lemma 20 and Proposition 4

= lim sup
n→∞

1
n
· inf
σ∈ΣTBRG

Eσ(s,[s]){
∑n
i=1π(Xi−1, Yi)} by definition

= inf
σ∈ΣTBRG

lim sup
n→∞

1
n
· Eσ(s,[s]){

∑n
i=1π(Xi−1, Yi)} since [TBRG, (s, [s])] is finite

= EAvg∗TBRG
(s, [s]) as required ut

Using the Lipschitz-continuity of price functions and a slight variant of Lemma 3 of [7]
we show that the following proposition and corollary hold.

Proposition 25. For every ε>0, σ ∈ ΣTBRG and s ∈ ST, there exists σε ∈ Σ[[T ]] such
that |ETotalTBRG(N)((s, [s]), σ)− ETotal[[T ]](N)(s, σε) | ≤ N ·ε for all N ∈ N.

Corollary 26. For every ε>0 and s ∈ ST we have EAvg∗[[T ]](s) ≤ EAvg∗TBRG
(s, [s])+ε.

7 Complexity

To show EXPTIME-hardness we present a reduction to the EXPTIME-complete prob-
lem of solving countdown games [17]. The lemma concerns only expected reachability
price problem as similar reductions follow for the other problems.
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Fig. 1. Countdown Game and the corresponding probabilistic timed automata

Lemma 27. The expected reachability problem is EXPTIME-hard for concavely-priced
PTA with two or more clocks.

Proof. Let G = (N,M, πG , n0, B0) be a countdown game. N is a finite set of nodes;
M ⊆ N×N is a set of moves; πG : M → N+ assigns a positive integer to every move;
(n0, B0) ∈ N×N+ is the initial configuration. From (n,B) ∈ N×N+, a move consists
of player 1 choosing k ∈ N+, such that k≤B and πG(n, n′)=k for some (n, n′) ∈ M ,
then player 2 choosing (n, n′′) ∈ M such that πG(n, n′′)=k; the new configuration is
(n′′, B−k). Player 1 wins if a configuration of the form (n, 0) is reached, and loses
when a configuration (n,B) is reached such that πG(n, n′)>B for all (n, n′) ∈M .

Given a countdown game G we define the PTA TG = (L, C, inv ,Act , E, δ) where
L = {?}∪N∪Nu whereNu = {nu |n ∈ N}; C = {b, c}; inv(n) = {ν | 0≤ν(b)≤B0∧
0≤ν(c)≤B0} and inv(nu) = {ν | ν(c)=0} for any n ∈ N ; Act = {?,u} ∪ {k | ∃m ∈
M.πG(m)=k}; for any ` ∈ L and a ∈ Act :

E(`, a) =


{ν | ∃n′ ∈ N. (πG(`, n′)=k ∧ ν(c)=k)} if ` ∈ N and a=k ∈ N+

{ν | ν(b)=B0} if ` ∈ Nu and a = ?
{ν | ν(c) = 0} if ` ∈ Nu and a = u

∅ otherwise

and for any n ∈ N , a ∈ Act(n), C ⊆ C and `′ ∈ L:

δ(n, a)(C, `′) =
{ 1
|{n′′ |πG(n,n′′)=a}| if a ∈ N+, C={c}, `′ = n′u and πG(n, n′)=a

0 otherwise

δ(nu, a)(C, `′) =

1 if C = ∅, `′ = n and a = u
1 if C = ∅, `′ = ? and a = ?
0 otherwise.

An example of a reduction is shown in Figure 1. For the price function πG(s, (t, a)) = t,
it routine to verify that the optimal expected reachability price for target F = {?}×V
equals B0 when starting from (n0, (0, 0)) in the concavely-priced PTA (TG , πG) if and
only if player 1 has a winning strategy in the countdown game G. ut

On the other hand, we can solve each problem in EXPTIME because:

– we can reduce each problem on probabilistic timed automata to a similar problem
on the boundary region graph (see Lemmas 19–22);
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– the boundary region graph has exponential-size and can be constructed in exponen-
tial time in the size of the PTA;

– on the boundary region graph (a finite state MDP) we can solve each minimisation
problem using a polynomial-time algorithm (see, e.g., [27]) in the size of the graph.

For one clock concavely-priced PTAs expected reachability, discounted, and average-
price problems are PTIME-hard as these problems are PTIME-complete [26] even for
finite MDPs (i.e. PTAs with no clocks). To show PTIME-membership one can adapt the
construction of [22]—which shows the NLOGSPACE-membership of the reachability
problem for one clock timed automata—to obtain an abstraction similar to the boundary
region graph whose size is polynomial in the size of probabilistic timed automata, and
then run polynomial-time algorithms to solve this finite MDP.

Theorem 28. The exact complexity of solving expected reachability, discounted and
average price problems is EXPTIME-complete for concavely-priced PTA with two or
more clocks and PTIME-complete for concavely-priced PTA with one clock.

8 Conclusion

We presented a probabilistic extension of the boundary region graph originally defined
in the case of timed automata for PTAs. We characterize expected total (finite horizon),
reachability, discounted and average price using optimality equations. By analysing
properties of the solutions of these optimality equations on boundary region graphs,
we demonstrated that solutions on the boundary region graph are also solutions to the
corresponding optimality equations on the original priced PTA. Using this reduction,
we then showed that the exact complexity of solving expected reachability, discounted,
and average optimisation problems on concavely-priced PTAs is EXPTIME-complete.

Although the computational complexity is very high, we feel motivated by the suc-
cess of quantitative analysis tools like UPPAAL [4] and PRISM [14]. We wish to de-
velop more efficient symbolic zone-based algorithms for the problems considered in
this paper. Another direction for future work is to consider more involved objectives
like price-per-reward average [7,18] and multi-objective optimisation [25].
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4. G. Behrmann, A. David, K. Larsen, O. Möller, P. Pettersson, and W. Yi. UPPAAL - present

and future. In Proc. CDC’01, volume 3. IEEE, 2001.
5. J. Berendsen, T. Chen, and D. Jansen. Undecidability of cost-bounded reachability in priced

probabilistic timed automata. In Proc. TAMC’09, volume 5532 of LNCS, 2009.



Concavely-Priced Probabilistic Timed Automata 15

6. J. Berendsen, D. Jansen, and J-P. Katoen. Probably on time and within budget - on reacha-
bility in priced probabilistic timed automata. In Proc. QEST’06. IEEE, 2006.

7. P. Bouyer, E. Brinksma, and K. Larsen. Optimal infinite scheduling for multi-priced timed
automata. Formal Methods in System Design, 32(1), 2008.

8. S. Boyd and L. Vandenberghe. Convex Optimization. CUP, 2004.
9. L. de Alfaro. Computing minimum and maximum reachability times in probabilistic systems.

In Proc. CONCUR’99, volume 1664 of LNCS. Springer, 1999.
10. E. Dynkin and A. Yushkevich. Controlled Markov Processes. Springer, 1979.
11. J. Falk and J. Horowitz. Critical path problems with concave cost-time curves. Management

Science, 19(4), 1972.
12. Y. Feng and B. Xiao. A Continuous-Time Yield Management Model with Multiple Prices

and Reversible Price Changes. Management Science, 46(5), 2000.
13. T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In Proc. ICALP’92,

volume 623 of LNCS. Springer, 1992.
14. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic

verification of probabilistic systems. In Proc. TACAS’06, volume 3920 of LNCS. Springer,
2006.

15. H. Jensen. Model checking probabilistic real time systems. In Proc. 7th Nordic Workshop
on Programming Theory, Report 86:247–261. Chalmers University of Technology, 1996.

16. M. Jurdzinski, M. Kwiatkowska, G. Norman, and A. Trivedi. Concavely-priced probabilistic
timed automata. Technical Report RR-09-06, Oxford University Computing Laboratory,
2009.
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