
Concealing Complex Policies with Hidden Credentials

Robert Bradshaw Jason Holt Kent E. Seamons

May 7, 2004

Abstract

Hidden credentials are useful in protecting sensitive resource requests, resources, policies and cre-
dentials. We propose a significant improvement in decryption performance when implementing hidden
credentials using the Franklin/Boneh IBE. We also propose a substantially improved secret splitting
scheme for enforcing complex policies, and show how it improves concealment of policies from nonsatis-
fying recipients.

1 Introduction to Hidden Credentials

If Alice and Bob share a secret, they can use it as an authentication token or digital credential. Alice can
use the secret to encrypt resources and send them to Bob over insecure channels, and unauthorized parties
will gain nothing from the ciphertext. Public key cryptography extends this scenario to situations when
Alice and Bob have different credentials—or when Alice has no credentials at all—using digital certificates
signed by trusted third parties. Bob shows his certificates to Alice, Alice verifies that the certified attributes
satisfy her policy for releasing the resource, and Alice encrypts her resource using Bob’s public key. That
is, Alice can send messages to Bob based on possession of credentials which she cannot issue: she knows
neither the credential issuer’s private key nor Bob’s private key.

Hidden credentials extend the situation even further. Using Identity Based Encryption (IBE), Alice can
create a public key corresponding to an arbitrary string and the public key of a trusted third party. Only
the trusted third party can issue the corresponding private key to the “owner” of the string. Hidden
credentials leverage this by encoding attributes in strings according to a template published by the trusted
third party. For instance, the FBI might publish a template “(nym):FBI agent:(current year)” for FBI
agent credentials which expire at the end of each year, and issue Bob the private key corresponding to
“Bob:FBI agent:2004”. Alice can then send messages to Bob based on credentials which he may or may
not have. She may not know that Bob is an FBI agent, but she knows that if he is, he must know the
private key corresponding to “Bob:FBI agent:2004”. Using secret splitting, Alice can create messages which
require any number of credentials for decryption. Consequently, she can encrypt a resource in such a way
that only Bob can decrypt the resource, and only if he has credentials sufficient to satisfy Alice’s access
policy. Bob can do this noninteractively, with the result that Alice never needs to learn what credentials
Bob has.

This has interesting consequences.

First, hidden credentials can solve the “going first” problem in PKI-based authentication systems. Nor-
mally, if Alice and Bob wish to establish a trust relationship, one of them must volunteer to go first,
showing a credential to a stranger about whom she knows nothing. Hidden credentials allow Alice to
enforce her policies without having to see Bob’s credentials, and vice versa. This means that combinations
of policies which have unresolvable dependency cycles in traditional trust negotiation work just fine with
hidden credentials.

1

Second, policies can also be concealed from unauthorized recipients. In many cases disclosure of a policy
which requires a sensitive credential is a red flag to attackers that the resource it protects is valuable.
Hidden credentials use secret splitting schemes which conceal policy contents from unauthorized parties;
only a recipient who holds the credential required by a policy learns that the credential is involved. The
improved secret splitting scheme we present here limits this partial disclosure even further, so that only
recipients who fulfill complete subexpressions of a policy can determine that they have done so.

Third, it means that credentials can be created and used which are so sensitive that they’re never shown
to anyone. If Alice is a whistleblower and suspects that coworker Bob is actually an undercover investi-
gator, she can send him evidence encrypted against the FBI credential he must possess if he really is an
investigator. Bob can decrypt the information without blowing his cover, even to Alice.

Fourth, hidden credentials can improve protocol performance, since Alice and Bob don’t have to send
credentials or policies over the network. Instead, Alice uses Bob’s nym to derive the public keys Bob must
hold if he is to fulfill her access control policy. The nym may be something she already knows, such as a
domain name or IP address, or something she doesn’t, like a real name or one-time pseudonym. In many
cases, the progressive multi-round policy and credential exchanges used in traditional trust negotiation
can be reduced to a single exchange of messages with hidden credentials, since all the policies governing a
resource can be enforced in a single ciphertext.

The contributions of this paper are as follows:

• We show how to speed up hidden credential decryption operations by an order of magnitude when
using the Franklin/Boneh IBE, and show how these results are reflected in our implementation.

• We present an improved secret splitting scheme. The original scheme revealed information about
the operators in the access structure. Our improved scheme further limits what the recipient of a
message can learn about the sender’s policy.

• We present the notion of policy concealment and show how it is partially provided by our improved
secret splitting scheme.

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3 provides
basic definitions for hidden credentials. In Section 4, we discuss an approach to achieving an order of
magnitude performance improvement when performing multiple hidden credential decryptions. Section
5 introduces a secret splitting scheme that limits what a recipient can learn about the sender’s complex
policy. Sections 6 presents the performance results of an implementation of the secret splitting scheme.
Section 7 contains conclusions and discussion of our future plans.

2 Related Work

Holt et al. introduced hidden credentials in [6]. They gave a formal description for hidden creden-
tials, including the concept of credential indistinguishability, and showed how to build them using the
Franklin/Boneh IBE. Their work also gives compelling examples of the utility of hidden credentials.

Sending Bob a message which he can only read if he has a certain attribute is easy if all people who have
that attribute share a common secret. For example, Bob could distribute an RSA private key to all the
members of “Bob’s Club.” Alice could then send messages to club members without being a member
herself. However, widely shared secrets tend to leak. Furthermore, since RSA public key encryption has no
forward secrecy, all messages sent to club members become vulnerable if the private key is compromised
by any one member. Hidden credentials avoid both of these drawbacks by allowing Alice to use a public

2

key which depends upon Bob’s attribute and his identity. If Bob’s secret is compromised, only messages
to Bob become vulnerable.

Hidden credentials are built upon identity-based encryption (IBE); attribute values are incorporated into
the identity, and the credential issuer’s public key is the PKG public key. In [5], Boneh and Franklin describe
a suitable IBE, and in section 1.1.2 (Delegation) describe a simple system which includes attributes with
identity.

Our work also draws much from the paradigm of trust negotiation [9, 4, 10, 3]. Trust negotiation is based
on the idea that sensitive resources and information can be guarded by attribute-based policies that can
be fulfilled by publicly verifiable digital credentials issued by some third party. As with trust negotiation,
users of hidden credentials set up policies and are granted credentials with which they may obtain access
to sensitive resources. Unlike trust negotiation, however, sensitive credentials and policies need not be
revealed to be used in obtaining these resources.

In 2003, Balfanz et al [1] proposed a construct called Secret Handshakes. In their system, Alice and Bob
receive pseudonyms from a central authority along with a corresponding secret. These form a credential.
Alice and Bob must mutually authenticate, satisfying both that each has received a credential from the
same authority. Furthermore, the authority can encode roles into the credential which can be made part
of the authentication process. For instance, Alice can verify that Bob is a policeman, but only if she has
a driver’s license. Secret Handshakes are built from pairing-based key agreements.

Secret Handshakes require Alice and Bob to mutually authenticate using credentials from the same issuer.
In contrast, hidden credentials allow Alice to send Bob a message depending only on Bob’s credentials—
Alice need not even have any credentials of her own. Hidden credentials also allow messages to be encrypted
according to complex policies, possibly involving multiple credentials from diverse issuers.

Li, Du, and Boneh describe Oblivious Signature-Based Envelopes (OSBE) [7] as a means to resolve circular
dependencies in automated trust negotiation. OSBEs are similar to hidden credentials in that the ability
to read a message is contingent on having been issued the required secret. Because OSBEs reveal the
contents of the credential, they have the advantage of allowing more general compliance checking, such as
checking credential chains. OSBEs also can be implemented using existing X.509 certificates with RSA
signatures. However, OSBEs require that Alice and Bob agree on the signature Bob needs to have to
decrypt Alice’s message. In other words, Alice needs to disclose her policy to Bob, who must then reveal
his entire credential, minus the signature, before they can proceed. Hidden credentials avoid this, allowing
Alice to send Bob a message without disclosing what credential he must use to decrypt it. This can be very
significant if the policies or credential in question are extremely sensitive. In situations where credentials
and policies are not sensitive, however, they can provide the contents of their policies and credentials,
resulting in behavior similar to that of OSBEs.

Prior work in trust negotiation has explored the issue of policy sensitivity. Bonatti and Samarati [4] pro-
posed a framework for regulating service access and information release on the Web. Sensitive requirements
are not disclosed to strangers, but must first be satisfied before a transaction can progress. Seamons et al.
[8] introduced policy graphs to safeguard sensitive policies from unauthorized access. Yu and Winslett [11]
proposed a unified scheme to treat policies as first-class objects and protect them like any other sensitive
resource. Hidden credentials are another approach that can be used to safeguard sensitive policy informa-
tion. Some of these approaches assume that sensitive policies are gradually disclosed over multiple rounds
of negotiation. Hidden credentials allow the entire procedure to be condensed in a single message. All of
these approaches sometimes require a stranger to submit or use a credential without absolute knowledge
that the credential is relevant to the sensitive policy that has not been disclosed. This requirement is
mitigated if the stranger has only a few credentials. Sometimes, the context of the interaction will focus
the negotiation on just the few relevant credentials. However, with hidden credentials, there is no loss of
privacy in trying all relevant credentials.

3

3 Definitions

Simple Policy A simple policy is the pair (attr, Pub) where attr is a set of one or more attributes (not
including identity) and Pub is the public key of the credential authority (CA) needed to verify those
attributes. We note that this makes (“member”, PubNRA) and (“member”, PubNSA) two distinct policies.
The fact that one owns or requires a credential issued by a specific CA may be as sensitive as the attributes
contained therein. Consequently, credential indistinguishability (defined below) requires protection of both
the attributes and CA public keys specified by policies.

The exact form of attr should be well specified so that anyone can easily generate the unique representation
of the desired attributes. That way, senders don’t have to inform recipients of their policies, and recipients
don’t have to reveal the attributes expressed in their credentials. In some cases, though, it may be desirable
for the intended recipient of a message to specify the attributes expressed in his credentials, for example
when a sender’s policy requires that a “State” attribute be represented as an element of a set of bit strings
{“California”, “Florida”, “Ohio”, ...}. Rather than constructing a complex policy consisting of the OR
of all acceptable strings, it may be preferable for the recipient to specify his attribute to expedite the
transaction. In this case, hidden credentials become largely isomorphic to traditional credential systems,
and can make use of X.509, XML or other types of accepted certificate formats.

Complex Policy A complex policy is an expression of one or more simple policies which must be satisfied
to decrypt a resource. The form a complex policy takes is determined by the secret splitting scheme selected
for the implementation. The original scheme proposed in [6] allows policies to be expressed as monotonic
boolean functions as well as MofN threshold operations. The specification of our improved scheme only
includes monotonic boolean functions, but could be extended to include secret shares from other schemes
as the original scheme did.

Credential In our system a credential is a tuple (nym, attr, Pub, sig) where nym is the (pseudo-)identity
of the credential holder. (attr, Pub) form a simple policy, and sig is the signature on both attr and nym
made with the secret key corresponding to the public key Pub. That is, the CA issues a credential asserting
that nym has attribute attr by providing sig to the owner of nym. Note that sig is the only thing which
is known only to the credential holder (and CA), and must be kept secret.

Credential Indistinguishability A Hidden Credential System is credential indistinguishable iff a recip-
ient can only determine which policy was used to encrypt a message if he fulfills that policy. Specifically,
credential indistinguishablity implies that no polynomial-time bounded adversary A has nonnegligible ad-
vantage in winning the following game against a challenger C: An adversary A requests a number of public
CA keys Pubi and possibly a number of credentials Cj from the challenger for a total of t requests. A
then chooses a name nym and creates two simple policies P0 and P1 for which he has not received the
corresponding credentials. He sends these two policies, along with nym and a message M of his choosing,
to the challenger. The challenger chooses a random bit b ∈ {0, 1} and encrypts M with policy Pb and name
nym. He returns the resulting ciphertext to A. A then outputs a guess b′ ∈ {0, 1} for b. A wins if b′ = b.
A hidden credential system is said to be credential indistinguishable if |Pr[b′ = b] − 1

2 | < 1/f(t) for any
polynominal f(t).

Credential indistinguishability can extend to complex policies as well. We define a system to have full policy
indistinguishability if a polynominal-time bound adversary is unable to gain a non-negligible advantage in
winning the above game for any two complex policies P0 and P1 for which he does not possess a complete
satisfying set of credentials. Partial policy indistinguishability asserts that such an adversary is unable to
gain a non-negligible advantage for the above game for any two policies that he does not partially fulfill,
but may have an advantage if he partially fulfills one or the other of them. Weak policy indistinguishability
means that a system lacks even partial policy indistinguishability. An example of a system with weak policy
indistinguishability is the original secret splitting scheme, whose shares leak information about the boolean
expressions they represent. Our improved scheme provides partial policy indistinguishability. There are

4

several anonymous secret splitting schemes which might be able to provide full policy indistinguishability,
but these tend to involve much more overhead and are left as an avenue for future research.

We note that to achieve partial or full policy indistinguishability, the correct decryption of a random
plaintext according to a simple policy must be indistinguishable from decryptions performed with incorrect
credentials. Otherwise, any secret splitting scheme used to enforce complex policies will necessarily reveal
any credentials used in the access structure to recipients who possess those credentials, even if those
credentials are insufficient to satisfy the policy, since the recipient will be able to recognize which credentials
he used in producing correct decryptions of secret shares.

A hidden credential system consists of the four algorithms defined below. Optionally, a setup phase
precedes these in cases where a set of system parameters needs to be conventionally agreed upon to ensure
indistinguishability between credential authorities.

• Create CA

To create a Credential Authority, generate a private key and publish the corresponding public key.
CAs can be created at any time.

• Issue(nym,attr)

Create a credential certifying that the user identified by nym possesses the attribute(s) designated
in attr.

• Encrypt(m,nym,P)

Encrypt a message guarded by a policy P with a specific intended recipient identified by nym, and
return the ciphertext. Encrypt must be secure against chosen ciphertext attack and provide credential
indistinguishability as defined above.

• Decrypt(ciphertext,nym,credentials)

Attempts decryption of a ciphertext, returning the plaintext if and only if the set of available cre-
dentials issued with respect to nym is sufficient to satisfy P .

4 Improving Decryption Performance

Holt et al. [6] describe a hidden credential system built from the FullIdent Identity Based Encryption system
in [5]. In this section, we describe how to achieve an order of magnitude improvement in performance when
performing multiple hidden credential decryptions with the same credential, as both our improved secret
splitting scheme and the original scheme require.

BasicIdent, also given in [5], is a simplified version of FullIdent which omits integrity protection and
thus chosen-ciphertext security. We regain chosen-ciphertext security by providing message authentication
as part of the encryption function. BasicIdent produces ciphertexts of the form (U, V), where U is a
randomizing value. U is used with a bilinear map and hashed to produce a pad. That pad is XORed with
the message to produce V .

We prove that U can be reused across several ciphertexts. This allows the decryptor to perform a single
pairing operation whose result can be reused when attempting to decrypt each plaintext. Since pairings
dominate the cost of IBE operations in current implementations, this optimization reduces the cost of
decrypting multiple ciphertexts from a value linear in the number of credentials to a cost which is nearly
constant, as our performance results indicate.

Here we define an implementation of hidden credentials modeled after the original specification.

5

• Setup

A public value params is conventionally agreed upon for use by all users, almost identical to the
values chosen in the Setup phase of BasicIdent. As in the original hidden credential specification, P
is used by everyone, rather than being chosen independently by each CA. Additionally, we require
that H2 accept a second argument which is used like the counter in CTR mode encryption. We also
specify encryption and decryption functions E and D for encrypting the actual message to be sent.

Additionally, we assume a security parameter k and selection of an appropriate secret splitting
scheme.

params = (q,G1, G2, ê, n, P,H1, H2, E ,D)

q is a large prime number, G1 and G2 are two groups of order q, ê is an admissible bilinear map
from G1 × G1 → G2 for which the Bilinear Diffie-Helman Assumption as defined in [5] holds. P is
an arbitrary generator in G1. H1 and H2 are cryptographic hash functions such that H1 : {0, 1}∗ ×
{0, 1}∗ → G∗1, and H2 : G2 × Z+ → {0, 1}l for the value of l needed by Encrypt.

E is a semantically secure symmetric encryption function with integrity protection, such that m =
Ds(Es(m)) for the corresponding decryption function D, and D returns failure for every s′ 6= s.

Note thatH1 must be collision resistant across both its variables. For instance, H1(“ab”, “c”) must not
produce the same value as H1(“a”, “bc”), since it would then be possible to find multiple (nym, attr)
pairs that would produce the same keys, encryptions, and decryptions.

• Create CA

Each CA chooses a random private key sca ∈
� ∗
q and publishes its public key Pub = scaP .

• Issue(nym,attr)

A CA issues a credential fulfilling a policy (attr, Pub) by computing sig = scaH1(nym, attr) where
nym is the (pseudo)nym of the intended credential holder.

• Encrypt(m,nym,P)

To encrypt a message M for a recipient designated by nym using the policy P , first generate a random
key s ∈ {0, 1}k and a random value r ∈ � ∗

q . Split s according to P and the secret splitting scheme
of choice to create n secret shares s1, ..., sn, to be encrypted against corresponding simple policies
p1, ..., pn. Each simple policy consists of a pair (attr, Pub). Construct the ciphertext as follows:

C = 〈rP, s1 ⊕ σ1, s2 ⊕ σ2, ..., sn ⊕ σn, Es(M)〉

where
σi = H2(ê(Pubi, Qi)

r, i) and Qi = H1(nym, attri)

• Decrypt(ciphertext,nym,credentials)

Upon receipt of a ciphertext C = 〈U, V1, V2, ..., Vm,W 〉, the recipient first finds all possible plaintext
shares sij by calculating

sij = Vi ⊕H2(ê(U, sigj), i)

for each Vi and each of his credential signatures sigj . The bilinear map ê has the property that
ê(sP,Q)r = ê(rP, sQ), which allows decryption using the signature instead of knowing r as the
sender did. Of course, sij will be nonsense unless sigj belongs to the right credential. The secret
splitting scheme is left to define how the recipient recognizes correct decryptions, if such decryptions
are to be recognized at all.

If he has a satisfying set of shares in his collection of sij , he can use these to recover s, and Ds(W)
will indicate successful recovery of the message M .

6

Implementation note: In practice, it may be possible to replace H2 with a stream cipher suitable for
random number generation keyed with ê(U, sigj). Then, rather than running H2 for each attempt at
decrypting a key share, treat (V1, ..., Vn) as a single ciphertext and generate enough keystream to decrypt
the entire concatenation. Encryption likewise requires generating the same keystream for a particular Vi.

4.1 Reusing rP

Here we show that reusing the value rP when encrypting a set of secret shares does not compromise the
security of BasicIdent or preclude its use with hidden credentials.

Theorem 1 Encrypting several values using the same r with different identities or CAs does not compro-
mise the security of BasicIdent, assuming the BDH problem is hard in G1.

Proof

First we will show that reusing r with different identity strings (which correspond with nym/attribute
pairs in hidden credentials) is secure. Then we will show that reusing r with the same identity string but
a different CA is secure. The only significant change from the specification given above is that BasicIdent
uses a single parameter hash for H2. We consider the second parameter in the next proof.

[5] gives a proof of security for BasicIdent in which an attacker works with a challenger to try to distinguish
which of two plaintexts forms a particular ciphertext. Among other things, the attacker is allowed to request
the private key corresponding to any identity other than the one used to create the challenge ciphertext.

Assume that the challenge ciphertext is of the form

C = (rP,M ⊕H2(ê(scaP,Q0)r)))

and that the attacker can request any number of additional ciphertexts reusing r but with a different
identity Qi. We call this a “reuse query”.

Ci = (rP,M ⊕H2(ê(scaP,Qi)
r)))

But recall that the attack in [5] allows identity extraction queries, meaning the attacker can request scaQi
for any Qi 6= Q0. This allows the attacker to create such ciphertexts without the need for a special reuse
query:

Ci = (rP,M ⊕H2(ê(rP, scaQi)))

Consequently, reuse queries with different identities allow the attacker no additional advantage over private
key extraction queries.

Likewise, we could offer reuse queries in which the same identity is used with a different CA. But the same
situation applies - the attacker can easily create CAs of his own and create equivalent ciphertexts without
the need for a reuse query. ¤

Theorem 2 Adding an index parameter i to H2 allows reuse of r with the same identity and CA, as long
as different values of i are used.

7

Proof

In the random oracle model, a successful attack on a BasicIdent ciphertext

C = (rP,M ⊕H2(ê(scaP,Q0)r)))

implies knowledge of the input to H2. The addition of a parameter i to H2 clearly does not weaken H2 as
a random oracle, so we need only consider whether knowledge of ciphertexts which differ only in the index
value creates a vulnerability. That is, given a ciphertext

C0 = (rP,M ⊕H2(ê(scaP,Q0)r), 0))

and the ability to make reuse queries for ciphertexts Ci where

Ci = (rP,M ⊕H2(ê(scaP,Q0)r), i))

and i > 0, does the attacker gain any advantage in breaking BasicIdent? Since the unmodified BasicIdent is
assumed to be secure, we can assume that the attacker does not know ê(scaP,Q0)r. Since the only difference
between different values of Ci is the output of H2, and H2 is a random oracle producing unrelated outputs
for distinct inputs, then a unique index value is sufficient to ensure that the corresponding ciphertexts
produce no useful information for the attacker. ¤

5 Secret Splitting

In hidden credentials, access to a resource is granted based on the satisfaction of a policy defined as
an access control structure in a secret splitting scheme. Many general secret splitting schemes have been
proposed, and most of them can be used with hidden credentials by creating secret shares which correspond
with credentials the recipient may hold, then encrypting each share against its required credential.

5.1 Policy Concealment

Still, care must be taken in choosing a secret splitting scheme in order to maximize policy indistinguisha-
bility. The form of an access structure, or even just the number of terms it contains can leak information.
For example, consider an attacker named Mallory trying to learn information about a secure database.
Each time he sends a request to the database, it returns a response encrypted against some set of hidden
credentials chosen according to the database’s access policy for that entry. The database doesn’t want to
reveal which entries exist in the database and which don’t, so it always responds to requests for nonexis-
tant entries with a fake response encrypted against credentials which are never issued to anyone (“NAK”
credentials).

If we assume that Mallory has no valid hidden credentials, then he should not be able to learn anything
about the database, including what entries it contains. But what if the secret splitting scheme implicitly
reveals information about the access structure? For example, Mallory might be able to infer, based on the
size of the encrypted secret shares returned by the database, that the access policy for a particular resource
is ? ∧ (?∨?). That is, Mallory doesn’t learn what credentials correspond to each ?, but he does learn that
the policy consists of an AND and an OR. If the database always uses the same access structure when
returning responses for nonexistant entries, we have a problem. Mallory simply asks for an entry which

8

he knows is nonexistant, and examines the access structure of the response. Now he knows that any time
he makes a request and receives a response with a different access structure, that entry must exist in the
database, even if he can’t actually learn anything about its value.

The following aspects of a secret splitting scheme can all leak information about a transaction:

• The form of the access structure, eg. ? ∧ (?∨?)

• The number of credentials involved in the access structure

• Which credentials possessed by the recipient contribute to partial fulfillment of the access structure.
For example, learning that a particularly sensitive credential was necessary but not sufficient to
satisfy the access structure suggests that the resource itself is quite sensitive.

A system with full policy indistinguishability would leak no information about any of these aspects to
recipients who don’t completely satisfy the access structure. As we stated earlier, our improved scheme
provides partial policy indistinguishability, whereas the original scheme provided only weak policy indis-
tinguishability.

5.2 Improved Secret Splitting

In the original hidden credential specification [6], encrypting a message M according to a policy (X∧Y)∨Z
produces a ciphertext (EX(EY (M)), EZ(M)), where EX(M) denotes encryption of M according to simple
policy X. The Boneh/Franklin IBE system produces ciphertexts longer than the input plaintext, so the
recipient can easily discern that the first term in the ciphertext involves a double encryption and therefore
has an AND structure. The second term reveals that an OR is present, since ORs always produce additional
terms. Consequently, with no decryption effort at all, the recipient knows that the policy used was (?∧?)∨?.

Additionally, the original specification assumed that the recipient was provided a way to recognize correct
decryptions of elements in the ciphertext. That is, decrypting the first term in the example above with the
X credential produces a “correct” decryption, implicitly revealing that X is part of the policy. Of course,
without the X credential, the recipient can’t attempt decryptions of the inner EY (M) even if he has Y .
But he can learn about X’s presence in the policy if he has it.

Our system improves both of these shortcomings. Rather than receiving a structured ciphertext with
elements of various sizes, the recipient gets a number of secret shares, all of equal size. The number of
shares places an upper bound on the number of terms in the policy, but not a lower bound since the sender
can include any number of bogus shares with only a marginal increase in overhead.

Furthermore, message recipients only learn portions of an unfulfilled policy if they can satisfy a complete
subexpression. That is, in a policy of ((W ∧X)∧Y))∨Z, the recipient only learns that credentials W and
X are in the policy if he possesses both of them.

Finally, our system includes ambiguity about partial policy fulfillment. In the above example, if the
recipient has credentials W and X, he learns that they are probably part of an AND subexpression, but is
left with some chance that they were incorrect decryptions which just happened to match up. This type
of ambiguity can be hard to preserve across multiple transactions, and so we leave it mostly as an avenue
for future research. We treat the topic briefly in the Parameter Selection section below.

Overview. We propose a modification of the simple secret splitting system found in [2]. In that system,
if either of secret shares X OR Y is sufficient to recover a secret s, we simply set X = s and Y = s. If
X AND Y are both required to recover s, we generate a random pad r and set X = s ⊕ r and Y = r.
Recursively applying this procedure allows us to split a secret s into a set of shares {s1, ..., sm} for any

9

monotonic boolean access structure. That is, s can be recovered if and only if one possesses a satisfying
set of secret shares. Each one of the shares is a bit string of equal length to the original secret.

In our modified system, rather than overtly giving the access structure, we mark the shares at each step.
First, we mark the ultimate secret s with some fixed bit string to indicate when s has been successfully
recovered. To split s using an AND structure, we prepend a set number of random bits to each share
after applying the random pad. When both shares are recovered, their matching prefixes identify them as
operands of an AND which should be XORed together. Splitting a secret with an OR structure produces
identical shares, so no prefix is necessary to identify the matching shares.

We also pad all shares on the right to make each have the same length, so that the number of prefixes
prepended to a given share doesn’t reveal its depth in the access structure. This padding is added to the
master secret before splitting. All resulting shares can then be truncated to an equal length.

Definition. Our system is defined in three phases: setup, sharing and recovery. We assume a message
sender A who will define access structures and issue secret shares to be encrypted against particular hidden
credentials, and a recipient B with a set of credentials CB ⊂ C, where C is the set of all possible credentials.
The set of all simple policies P is defined as

⋃
p|(p = (attr, Pub)) ∧ ((nym, attr, Pub, sig) ∈ C).

‘||’ denotes concatenation.

Setup:

1. A chooses a security parameter k.

2. A chooses a symmetric encryption function with integrity protection E and its corresponding decryp-
tion function D, such that m = Ds(Es(m)). Integrity protection, such as a MAC, is required to allow
use of short values of the “done” prefix (defined below) without leaving ambiguity as to whether
the secret has been properly recovered, and to ensure that A cannot attack the system by creating
shares which appear to recover different secrets depending on how B satisfies the policy. That is, the
integrity protection must ensure that A cannot find two secrets s1 and s2 which both provide valid
decryptions of a ciphertext.

Sharing:

1. A chooses the prefix length l

2. A chooses the “done” prefix d ∈ {0, 1}∗

3. A chooses a secret s′ ∈ {0, 1}k to split according to an access structure f . The Encrypt algorithm
encrypts her message m to produce ciphertext = Es′(m).

4. The “done” prefix d is prepended to s′ to indicate when s′ has been successfully recovered. Then s′ is
padded to the right with a random value r ∈ {0, 1}l|S|, where |S| is the total number of secret shares
(including dummy shares) which will be produced. For convenience in this specification we call the
chosen secret s′ and define s = d||s′||r. We call |s| the share length, since all shares will be this size.

5. A chooses f , a monotonic boolean formula defined in terms of credentials in C.

6. f is recursively evaulated to produce a set of shares S, one for each operand in f . A calls Split(s, f),
where Split is defined as follows:

if f = f0 ∨ f1,

(a) call Split(s, f0)

10

(b) call Split(s, f1).

if f = f0 ∧ f1,

(a) truncate the rightmost l bits of padding from s

(b) choose a random prefix p ∈ {0, 1}l

(c) choose a random pad r ∈ {0, 1}|s|

(d) call Split(p||(s⊕ r), f0)

(e) call Split(p||r, f1).

if f = p, where p ∈ P,

(a) Add a share to S along with its simple policy. S := S ∪ (s, p). The Encrypt algorithm handles
encryption of s against p.

7. A creates a number of bogus shares so that the number of shares in S doesn’t reveal the number of
terms in f . Each dummy share is chosen at random as r∈{0, 1}|s|, and then (r,NAK) is added to
S, where NAK is a policy for a credential that is never issued to anyone.

8. A randomly rearranges the shares in S so that the position of a share doesn’t leak information about
f .

9. A sends Encrypt’s encryption of S and M , along with the unencrypted values (l, d, k), to B.

Recovery:

1. B creates an empty table T = {}

2. For each si ∈ S,

(a) Iterate over the credentials cj ∈ CB and add each attempt at decrypting cj with si.

(b) If any two elements ta, tb ∈ T are equal, remove one of them from T . (ta and tb are operands of
an OR).

(c) If any two elements ta, tb ∈ T begin with the same prefix, strip the prefix off and add the XOR
of the two elements to T. (ta and tb are probably operands of an AND). That is, ∀{ta, tb} ∈
T × T, IF ∃p ∈ {0, 1}l|(ta = p||x) ∧ (tb = p||y) THEN T := (T ∪ x⊕ y).

(d) If any element ta ∈ T has the “done” prefix, then s′, where ta = d||s′, is the secret with proba-
bility 1 in 2|d|. If m = Ds′(ciphertext) indicates successful decryption, m has been successfully
recovered. Halt.

Once B has recovered a valid secret, he may wish to continue the algorithm rather then halting, to
determine if there are any other ways in which the policy might be satisfied. This can be beneficial if he
wishes to reveal to A that he successfully recovered s′. For example, if recovering s′ required B to use c1,
a very sensitive credential, B may be unwilling to reveal to A that he successfully recovered s′, because it
implicitly reveals his possession of c1. On the other hand, if s′ could be recovered with either of c1 or c2,
where c2 is a non-sensitive credential, then B can respond as if c2 were the only credential he owned.

11

5.3 Performance

Share length and table size increase with the number of secret shares. Table size also increases with the
number of credentials used for decryption. However, since prefix lengths are typically short, on the order of
16 bits, share length increases slowly. For very large policies, share length could even be set to a value lower
than the maximal default specified above. Furthermore, since the recovery operations consist primarily of
XOR and comparison operations, even large tables can be processed absurdly quickly—much more quickly
than even a single IBE operation, as our experimental results confirm.

5.4 Parameter Selection

Prefix length. One paramter in our system, the prefix length l, must be chosen with care to ensure
termination of the recovery algorithm. Prefixes indicate whether two shares form arguments to a simple
AND subexpression of the access structure. Since incorrect decryptions are assumed to produce essentially
random prefixes, the birthday paradox predicts that random prefixes of length n will produce a false match
in a set with about 2n/2 random elements. Such false positives increase storage and computational costs
in the recovery phase, but decrease how much a recipient learns about a policy which he only partially
satisfies. For example, if the prefix length were set to 128 bits, then any two table entries which match
are almost certainly arguments to an AND subexpression, since it would take an expected 264 random
table entries to produce a false positive. But if prefixes are only 8 bits long, then a match may indicate
partial fulfillment of the access structure, but is also very likely to be a false positive, even for a small
table. Thus, if the match never leads to recovery of the secret, the recipient cannot say with certainty that
any particular credential was involved.

If the prefix length is set too low, recovery can actually become intractable. Consider a prefix of zero
length—all terms would “match”, producing new terms which would also match all the others, ad infinitum.
Our results indicate that 16-bit prefixes provide some ambiguity, but still ensure that, with a probability
of less than 2−100 for even reasonably large tables, the table will never more than double in size as a result
of false positives.

In any case, such ambiguity only extends to operands of AND subexpressions, since operands of an OR are
identical in all their bits. Expressing the formula as a sum of products reduces the number of OR terms
at the terminating level of the tree. It should be noted, however, that no information about either the OR
or AND operands is revealed unless one has both of two corresponding shares.

It should be noted that the ambiguity provided by short prefixes is fragile. If a recipient can request multiple
ciphertexts encrypted with the same policy, he can quickly separate false positives from the matches which
occur every time. The nature of the resource itself and the policies governing related resources can also
provide clues as to which credentials are likely to be involved in a particular policy. Future work may treat
this idea in more depth and explore ways to further exploit such ambiguity, such as extending it to OR
subexpressions.

The “done” prefix. d may have any value, but its length is significant. Incorrect decryptions of secret
shares will produce d as a prefix with probability 2−|d|, so d should be chosen large enough to avoid too
many false positives, but small enough that encrypted shares are of reasonable length. The length of d
does not impact policy indistinguishability, as an incorrect value of s′ is easily identified by the integrity
protection in the encryption algorithm.

Bogus shares. The time required to decrypt a message in our system is presently dominated by the
number of elliptic curve operations, which in the improved decryption algorithm is only determined by
the number of credentials held by the recipient. Consequently, adding bogus shares does not significantly
impact the runtime of the decryption algorithm, although it does cause a linear increase in encryption

12

cost. Still, we recommend using the same size ciphertext for any message, no matter how simple the
policy. Simply find the upper bound for the number of shares over all possible policies (say, the policy
that would have to be fulfilled to release all resources), add any number of additional shares to conceal
that upper bound, and use that number of total shares for all encryptions. Thus a “NAK” policy used for
nonexistant resources, consisting entirely of bluff shares, is indistinguishable from any other system policy
to an unqualified recipient.

5.5 Security of the Secret Splitting Scheme

Benaloh and Leichter proved that their system provides perfect information hiding, and it is easy to see
that only the same fundamental operations of copying and XORing against a random pad are used on the
actual secret in our modified scheme. Prefixes and length padding never interact with the secret itself.

Thus, we need only consider whether prefixes, the “done” prefix and padding affect policy indistinguisha-
bility. The “done” prefix can be considered part of the original secret, since it is prepended before any
splitting takes place. Length padding is also applied to the original secret before splitting and consequently
inherits its secrecy. Its length does change as it is truncated to make room for AND prefixes, and those
two elements do deserve scrutiny.

When an AND is encountered, length padding is truncated. Then the string is treated just like a secret
in the original scheme in [2], ensuring that neither resulting share is distinguishable from a random string
of the same length. Since the prefix added to both shares is also random, the resulting string is still
indistinguishable from a random string, until both shares are recovered and the identical prefixes can
be observed. But this is just what we want: when both parts of a subexpression are fulfilled, they are
identifiable so that their result can be added to the table. Likewise, two identical shares from an OR
are individually indistinguishable from random strings, but are allowed to be recognized when both are
present.

6 Implementation and Performance

We implemented the secret splitting scheme described in the previous section using Java and the Stanford
IBE library (see http://crypto.stanford.edu/ibe/download.html). Our implementation includes a hidden
credential aware HTTP server and web proxy. Client HTTP requests are processed by the proxy and a
policy is created based on the requested URL. If the proxy is able to decrypt the web server’s response, it
returns the decrypted response to the client. Otherwise it returns an authentication error and explanatory
page. We also created a server-side proxy that can provide hidden credential-based access control to any
web server. Our implementation will be released under the GPL and made available on our website.

The runtime of the hidden credential algorithms is dominated by the elliptic curve operations used to
implement the Boneh/Franklin IBE. In our implementation, 95-98% of the total runtime is spent calculating
pairing operations. In the design of the original hidden credential implementation [6], encryption required
one elliptic curve multiplication, one elliptic curve pairing, and one modular exponentiation for each term
in the policy. Using the optimization discussed in this paper, only one elliptic curve multiplication needs
to be computed for the entire policy, and a single pairing and exponentiation are then performed for each
unique term within the policy. Decryption sees the larger benefit, however. One elliptic curve multiplication
is required for a ciphertext, and one pairing is then used for each credential relevant to the transaction,
regardless of the number of secret shares in the ciphertext. The original implementation required one
multiplication and pairing for each combination of a secret share and relevant credential.

We conducted experiments to measure the actual encryption and decryption performance of hidden cre-
dentials on an 867 Mhz G4 running OS X 10.3.3 using the security parameters recommended in [5] and in

13

the documentation of the Stanford IBE library (i.e., letting p be a 512 bit prime for the underlying field
Fp2 , and using a 160-bit subgroup of an elliptic curve over this field). We varied the policy complexity
from 1 to 20 unique terms in a policy, with a 50-50 ratio of ANDs and ORs randomly generated for each
policy. Sixteen-bit prefixes were used in the secret splitting scheme.

Figure 1 shows the time required for an encryption operation across various policy sizes. For a single
policy, there is a small overhead for the optimized approach compared to the original design. As the
policy complexity grows, the optimized system performs n− 1 fewer elliptic curve multiplications than the
original system, where n is the number of terms in the policy. This explains the increasing difference in
performance between the two systems as the policy size increases.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20

T
im

e
(s

ec
)

Policy Size

Original system
Improved system

Figure 1: Average encryption time vs. policy size.

The impact of the optimized design on decryption is even more significant than the impact on encryption.
Figures 2 and 3 show the decryption time for the original hidden credential design and an optimized design,
respectively. Previously, unless the policy was overtly given, one had to attempt decryption of each share
with each possible credential resulting in up to mn elliptic curve operations for an n-term policy and
m candidate credentials. In practice, the number of operations required depends greatly on the policy
structure—if the first term of an AND cannot be fulfilled, the rest of the expression is not explored, but
every possible combination must be tried for an OR. In the optimized design, a single pairing is performed
for each relevant credential, regardless of how many terms are in the policy.

The decryption experiments varied the number of candidate credentials from 0 to 25. The experimental
results in figures 2 and 3 reveal an order of magnitude performance improvement using the new design as
the policy size and number of candidate credentials increase.

It should be noted that all the ciphertexts used in figure 3 are indistinguishable from other ciphertexts
with the same number of secret shares, while those in figure 2 leak policy structure. Also, had any of the
simple policies been reused in the expression, the performance benefits for encryption and decryption using
the optimized design would have been even greater.

7 Conclusions and Future Work

We have drastically improved the efficiency of hidden credentials by reusing randomness in a way that does
not compromise the security of the system. The number of elliptic curve operations required now depends
only on the number of credentials relevant to a transaction and is constant over a change in policy size or
complexity.

We also pioneered a perfect monotonic secret splitting scheme where the relevant shares and the corre-
sponding boolean expression are only revealed as relevant pairs of shares are discovered. Using this secret
splitting scheme we are able to extend indistinguishability to complex policies. This secret splitting scheme
has applicability outside hidden credentials which we will explore in future work.

14

 0 5 10 15 20 25 Credentials 2 4 6 8 10 12 14 16 18 20

Policy Size

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

Time (sec)

Figure 2: Original system: Decryption time
as a function of policy size and the number of
credentials held.

 0 5 10 15 20 25 Credentials 2 4 6 8 10 12 14 16 18 20

Policy Size

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

Time (sec)

Figure 3: New system: Decryption time as
a function of policy size and the number of
credentials held.

Hidden credentials have advantages in policy, credential, and resource protection that no other system we
are aware of has. The advances we presented here are essential to achieve the full potential of concealed
policies and make the use of hidden credentials a usable model for protecting sensitive resources.

Reducing prefix length in our secret splitting scheme increases anonymity but also increases overhead
and the probability of a runaway table. In future work we plan to investigate more fully the the exact
relationship between the prefix length, number of shares, and the probability that the secret splitting
algorithm terminates. This would make it possible to continue to guarantee with overwhelming probability
the algorithm’s termination in a reasonable amount of time and at the same time provide a higher degree of
policy concealment. We are also considering other optimizations, such as varying the prefix length based on
the height of the operand in the expression tree to provide high concealment at lower levels while reducing
ambiguity at higher levels sufficiently to prevent the total number of shares from exploding. It would also
be desirable to provide anonymity for two terms of an OR expression. We plan to investigate other secret
splitting schemes that may give stronger or even full policy indistinguishability, including across multiple
requests for the same resource.

In relation to this, we plan to more rigorously define and investigate different levels of policy indistin-
guishability. The makeup and structure of the policy can be seen as plaintext content, suggesting parallels
between policy indistinguishability and the several kinds of ciphertext security. There may also be appli-
cable parallels from the domain of anonymous secret splitting.

There are some scenarios where Alice and Bob need multiple rounds of messages to complete their trans-
action. Each exchange guarantees that all relevant policies are satisfied before any information is revealed,
but continuing a transaction may reveal whether or not one was able to understand the preceding message.
The ability to bluff when one does not understand a message is available, but the question of when to stop
bluffing is an interesting one that was investigaged in [6] but needs to be developed further.

We would also like to enable hidden credentials to use more exotic operations on attribute values, such
as greater than and less than, without falling back to disclosure of policy and credential content as other
systems require.

References

[1] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. Wong. Secret handshakes from pairing-
based key agreements. In Proceedings of the 2003 IEEE Symposium on Security and Privacy, pages 180–196,
Oakland, CA, May 2003.

[2] J. C. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In S. Goldwasser, editor, Ad-
vances in Cryptology - CRYPTO ’88, volume 403 of Lecture Notes in Computer Science, pages 27–35. Springer,
1990.

15

[3] E. Bertino, E. Ferrari, and A. Squicciarini. χ-TNL: An XML-based language for trust negotiation. In Fourth
IEEE International Workshop on Policies for Distributed Systems and Networks, pages 81–84, Como, Italy,
June 2003. IEEE Computer Society Press.

[4] P. Bonatti and P. Samarati. Regulating service access and information release on the web. In Proceedings of the
7th ACM Conference on Computer and Communications Security (CCS-7), pages 134–143. ACM Press, Nov.
2000.

[5] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In Proceedings of Crypto 2001,
volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

[6] J. Holt, R. Bradshaw, K. E. Seamons, and H. Orman. Hidden credentials. In 2nd ACM Workshop on Privacy
in the Electronic Society, pages 1–8, Washington, DC, Oct. 2003. ACM Press.

[7] N. Li, W. Du, and D. Boneh. Oblivious signature-based envelope. In Proceedings of the 22nd ACM Symposium
on Principles of Distributed Computing (PODC 2003), pages 182–189, Boston, Massachusette, July 2003. ACM
Press.

[8] K. E. Seamons, M. Winslett, and T. Yu. Limiting the disclosure of access control policies during automated
trust negotiation. In Network and Distributed System Security Symposium, pages 109–124, San Diego, CA, Feb.
2001.

[9] W. H. Winsborough, K. E. Seamons, and V. E. Jones. Automated trust negotiation. In DARPA Information
Survivability Conference and Exposition, volume I, pages 88–102, Hilton Head, SC, Jan. 2000. IEEE Press.

[10] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B. Smith, and L. Yu. Negotiating trust
on the web. IEEE Internet Computing, 6(6):30–37, November/December 2002.

[11] T. Yu and M. Winslett. A Unified Scheme for Resource Protection in Automated Trust Negotiation. In IEEE
Symposium on Security and Privacy, Oakland, CA, May 2003.

16

