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Abstract

Spread spectrum communication systems may be affected by other types of signals called outliers.

These coexisting signals are typically narrow (or concentrated) in the considered domain. This

thesis considers two areas of outlier detection, namely the concentrated interference suppression

(IS) and concentrated signal detection. The focus is on concentrated signal extraction using blind,

iterative and low-complex consecutive mean excision (CME) -based algorithms that can be

applied to both IS and detection. 

A summary of results obtained from studying the performance of the existing IS methods,

namely the CME, the forward CME (FCME) and the transform selective IS algorithms (TSISA),

is presented. Accurate threshold parameter values for the FCME algorithm are defined. These

accurate values are able to control the false alarm rate. The signal detection capability of the CME

algorithms is studied and analyzed. It is noticed that the CME algorithms are able to detect signals,

but they are not able to estimate signal parameters such as the bandwidth. The presented generic

shape-based analysis leads to the limits of detection in which the concentrated signals can be

detected. These limits enable checking fast whether the signal is detectable or not without time

consuming computer simulations. The performance of the TSISA method is evaluated. Simulation

results demonstrate that the TSISA method is able to suppress several types of concentrated

interfering signals with a reasonable computational complexity. 

Finally, new CME-based methods are proposed and evaluated. The proposed methods are the

extended TSISA method for IS and the localization algorithm based on double-thresholding

(LAD), LAD with normalized thresholds (LAD NT), LAD with adjacent cluster combining (LAD

ACC) and two-dimensional (2-D) LAD methods for detection. The simulations indicate that the

extended TSISA method has a good performance against several types of concentrated interfering

signals. The narrowband signal detection capability of the LAD methods is studied. Numerical

results show that the proposed LAD methods are able to detect and localize signals in their

domain, and they are able to estimate the number of narrowband signals and their parameters,

including, for example, bandwidths and signal-to-noise ratio (SNR) values. The simulations show

that the LAD methods outperform the CME algorithms, and ACC and 2-D LAD methods

outperform the original LAD method. The LAD methods are also proposed to be used for

spectrum sensing purposes in cognitive radios. 

Keywords: interference suppression, signal detection, spectrum sensing
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List of symbols and abbreviations

a order parameter in FrFT/coefficient (LAD NT)

b coefficient (LAD NT)

C shape parameter (usually the covariance)

Eb the energy of the desired signal per bit

H conjugate transpose

H0 noise-only hypothesis

H1 signal-present hypothesis

I power of the concentrated signal

Ik received frequency domain samples belonging to the kth estimated NB

signal set

ii(n) ith concentrated signal

K noise set size

M number of transform domains

Ma arithmetic mean

Mg geometric mean

m number of unknown concentrated signals

m′ estimated number of narrowband signal sets

N set size

N0 noise power spectral density

Nk number of samples in the kth estimated NB signal set

Ncon number of corrupted samples

Ntot total number of samples

n adjacent samples below the lower threshold (LAD ACC)

PD probability of detection

PFA probability of false alarm

PFA,DES desired clean sample rejection rate

Plo fixing coefficient (LAD NT)

PM miss probability

Pup fixing coefficient (LAD NT)

Q set size

r vector
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r the location parameter (usually the mean)

r(n) received discrete-time signal sample

rt(n) received time domain signal sample

r f (n) received windowed signal sample in the transform domain

S power of the wideband signal

Si height of the ith signal lobe

s(n) wideband direct sequence spread spectrum signal

T threshold value

T1 upper threshold parameter

T2 lower threshold parameter

TCME threshold parameter

Th threshold

Tl lower threshold

T ′
l lower threshold (LAD NT)

Tnew threshold (LAD NT)

Tu upper threshold

T ′
u upper threshold (LAD NT)

Tx threshold parameter (LAD NT)

W width of the base signal

Wi width of the ith signal lobe

{W (n)} received frequency domain noise+wideband signal samples

xi zero-mean, independent, i.i.d. Gaussian distributed complex random

variable

x average sample mean

x2 average sample mean (or energy)

βi relative width of the ith signal lobe

γ the ratio of signal energy to noise power density

γ̂k SNR estimate for the kth estimated narrowband signal

δ̂ estimate of the Rayleigh parameter of the received vector

ε ratio of the number of corrupted samples to the total number of samples

ǫ coefficient of variation

ζ average sample mean

ζnew average sample mean (LAD NT)

η(n) noise process
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ξ interference-to-signal ratio

ρ normalization coefficient

̺ compression gain

σ̂ estimate of the standard deviation

AWGN additive white Gaussian noise

ACM approximate conditional mean

BER bit error rate

BPSK binary phase shift keying

BW bandwidth

CA cell-averaging

CDMA code division multiple access

CFAR constant false alarm rate

CG compression gain

CME consecutive mean excision

CV coefficient of variation

DFT discrete Fourier transform

DS direct sequence

DSSS direct sequence spread spectrum

DTV digital television

DUDE dynamic undersea detection extractor

DVB-T digital video broadcasting - terrestrial

FCME forward consecutive mean excision

FCC Federal Communications Commission

FFT fast Fourier transform

FH frequency hopping

FPGA field-programmable gate array

FrFT fractional Fourier transform

FSK frequency shift keying

FT Fourier transform

GHz Gigahertz

GPS global positioning system

HMM hidden Markov model

IFrFT inverse fractional Fourier transform

IFT inverse Fourier transform
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IS interference suppression

ISR interference-to-signal ratio

LAD localization algorithm based on double-thresholding

LAD ACC LAD with adjacent cluster combining

LAD NT LAD with normalized thresholds

2-D LAD two-dimensional LAD

LCME limiter consecutive mean excision algorithm

LMS least mean squares

LOS line-of-sight

LPI/D low probability of interception/detection

MF matched filter

MFSK M-ary frequency shift keying

MHz Megahertz

MSD Mahalanobis squared distance

MVE minimum volume ellipsoid

NB narrowband

NMSE normalized mean square error

OFDM orthogonal frequency division multiplexing

Ofcom Office of Communications

PN pseudo noise

PRC percentile

PSD power spectral density

PU primary user

RC raised cosine

RLS recursive least squares

RMSE root mean square error

SAW surface acoustic wave

SINR signal-to-interference plus noise ratio

SNR signal-to-noise ratio

S/P serial-to-parallel

SS spread spectrum

SU secondary user

TSISA transform selective interference suppression algorithm

TV television

UWB ultra wideband
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VSB vestigial sideband

WARP wireless open-access research platform

WLAN wireless local area network

WRAN wireless regional area network

XPS Xilinx platform studio
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to the family of CME algorithms which includes iterative notch-type outlier detection

methods that are able to find interfering narrow signals blindly, i.e., without a priori

knowledge of their environment. The CME algorithms can be used in time, frequency,

or in some other transform domain as long as the signal is narrow (i.e., concentrated)

in the studied domain. Paper III introduces the idea of using the low-complex but effec-

tive CME algorithms as a narrowband signal detection method. In Paper IV, the false

alarm probability of the FCME algorithm is analyzed. It is proposed that forward CA

technique can be applied for outlier detection. The analysis of the CME algorithms is

presented in Paper V, and in [148]. Therein, detection limits at which the CME algo-

rithms are able to find concentrated signals are derived. In Paper VI, an enhancement

of the FCME algorithm called the LAD method is proposed. The LAD method is a

narrowband signal detection method that uses two thresholds and is able to localize the

narrowband signal samples in the frequency. It is shown in Paper VII that because of a

good localization ability, the LAD method is also able to estimate SNR values. Paper

VIII proposes two new versions of the LAD method. In addition, it proposes the use

of LAD methods in finding unoccupied frequencies in future cognitive radio systems.

Finally, Paper IX proposes an extension of the LAD method that utilizes both time and

frequency domain processing.
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1 Introduction

"Keep it simple."

Since smoke signals, homing pigeons, telegraphic and landline telephones, data trans-

mission methods have been vastly improved. Nowadays, wireless communication en-

ables transforming information even long distances without the use of physical wires. In

the modern wireless world, spread spectrum (SS) communication techniques are widely

used [20, 28, 97, 102, 170]. In an SS system, the signal is spread in the frequency

(Fourier) domain, so the used transmission bandwidth is significantly larger than the

source information rate. The roots of SS techniques lie in World War II. In 1942, the

actress Heddy Lamarr and the musician George Antheil patented the first form of an SS

system called the "Secret Communications System" [123]. The system was developed

to control armed torpedoes without the threat of intentional interference, i.e., jamming.

The first SS systems were developed for military use. It was found out later that SS

techniques are also attractive in commercial communications systems because the SS

waveforms have several advantages over traditional ones. The benefits include the pos-

sibility of code division multiple access (CDMA), low probability of interception and

detection (LPI/D), privacy, tolerance to co-channel interference as well as to multipath

effects [133]. SS systems are also able to share a frequency band with non-spread sys-

tems. Nowadays, SS signals are used in several applications in both the military and

civilian worlds. These include communications systems (e.g. Bluetooth [9]), wireless

local area networks (WLAN) [9] and positioning systems (e.g. the global positioning

system GPS).

SS information signals coexist usually with other types of signals. These signals

can be, for example, narrowband (NB) or impulsive signals. A narrowband signal is a

signal whose bandwidth in the frequency domain is much narrower than that of the SS

signal. An impulsive or short duration signal is "narrow" in the time domain, i.e., it only

covers a small fraction of the symbol interval of an SS system. Herein, a concentrated

signal denotes a signal which is narrow either in the time or frequency domain or pos-

sibly in some other domain. The problem of identifying these coexisting signals can be

seen as an outlier detection problem. From a statistical point of view, outliers can be de-

fined to be samples that differ from the majority of data [160] as illustrated in Figure 1.
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Fig. 1. An outlier is a data sample that differs from the majority of the data.

Outlier detection has numerous applications in several fields of science, and examples

of outliers can be found almost everywhere. As a gardener classifies weeds as outliers

and removes them by rooting up, the lowest and the highest style points in ski jumping

are considered as outliers, and, thus, tossed out before calculating the sum of points. In

the case of SS communication, an outlier, aka, concentrated signal sample has a large

numerical value (usually the energy of a sample) when compared to the majority of the

data samples (i.e., the clean data). This thesis considers two problems that both belong

to the field of outlier detection, namely the concentrated interference suppression (IS)

and concentrated signal detection. In the first one, interfering outliers are removed af-

ter the detection, whereas the second means pure detection. Even though the focus in

this thesis is on NB signals, some other kind of concentrated signals are also considered.

1.1 Interference suppression

Interference or an interfering signal denotes a signal which is at the same time in the

same transform domain as the information signal. Different communication systems,

other electronic devices and natural phenomena such as lightning cause unintentional

electromagnetic interference [86]. An environment with interference is illustrated in

20



 

Channel Transmitter Receiver 

Interference 

Fig. 2. A spread spectrum (SS) system with interference.

Figure 2. A narrow bandwidth or short duration and small power (i.e., time average of

energy) are common to unintentional interference. In contrast, the power of intentional

interference, jamming, may be large and the bandwidth wide. Interference causes per-

formance degradation and may even prevent the recovery of the information from the

received SS signal, especially if both the power and the bandwidth or the duration of

interfering signal are large [27]. The SS systems have some implicit capability to reject

the effects of interference. It is common to increase the tolerance to interference by

increasing the signal power, using the frequency hopping (FH) technique, coding tech-

niques or directional antennas. However, these methods are not necessarily sufficient,

especially when the interfering signal is intentional. In these cases, the impact of inter-

ference should be minimized in order to improve the interference rejection capability

of SS systems to guarantee reliable data transmission. This minimization can be done

by limiting or zeroing the interfered samples.

A good IS method is blind and robust. A blind IS method needs no knowledge of

the interfering signal or noise level. Robustness means that the method is able to han-

dle several types of interfering signals. In addition, the computational complexity of a

good IS method should be low. An effective IS filter should also be adaptive, since the

characteristics of the interfering signals are usually not known, and change with time.

Interference suppression causes performance loss. The amount of the performance loss

depends on the interference suppression method used. For example, the losses for dif-

ferent types of notch filters have been evaluated in [162]. The loss can be compensated,

for example, by increasing the signal-to-noise ratio (SNR) via increasing the transmitter

power, using longer integration time, or using stronger coding.
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1.2 Signal detection

In signal detection, the presence or absence of a signal is determined. In concentrated

signal detection a wideband information signal may also be present with noise. In such

a case, concentrated signal detection involves decision-making between two hypothe-

ses: either there is only noise and possibly a wideband signal, or there is a concentrated

signal embedded in the noise and possibly a wideband signal [65]. In many practical

situations, this kind of simple binary detection is not sufficient. While binary detection

simply decides if there is a signal or not, localization gives detailed information about

the signal. In this context, localization means that the NB signal is localized in its do-

main, e.g., the frequency band of the NB signal is searched. Localization information

may be used to characterize the detected signal. In frequency localization, the center

frequency and bandwidth of a NB signal are estimated. Localization can also be done

in other transform domains, for example, in the time domain, but this aspect is not con-

sidered in this thesis.

Localization information can be used, for example, when finding unoccupied fre-

quency bands in future cognitive radios. The concept of cognitive radio was first pro-

posed by Mitola III in the late 1990s [92, 94]. Since then, cognitive radio has been

discussed in a number of papers, e.g., [14, 18, 53, 93, 122]. In this thesis, cognitive

radio is defined as an intelligent device which is able to find out vacant channels for

transmission and, if required, is able to change its transmission channels while avoiding

interference with other users. According to [53], the key elements are awareness, intel-

ligence, learning, adaptivity, reliability and efficiency. The cognitive radio approach

is one possible solution to the problem of insufficient amount of frequencies suitable

for wireless communication transmission. The cognitive network concept can be di-

vided into three categories called underlay, overlay and interweave techniques [46]. In

underlay systems, the cognitive radio is allowed to operate simultaneously with the non-

cognitive users if the interference caused by the cognitive radio is below an acceptable

threshold. This can be achieved, for example, using ultra wideband (UWB) commu-

nication signals. Overlay systems require information about the non-cognitive users’

codebooks and messages. The cognitive radio may even help non-cognitive users trans-

mission [46]. Interweave systems are based on the original idea of the cognitive radio

[92, 94]. Therein, the main purpose is to find unoccupied frequency bands, i.e., "white

spaces" or spectrum holes, for transmission. There, unlicensed or so called secondary

users (SU) are allowed to use temporarily unoccupied frequency bands statically allo-
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Fig. 3. Cognitive radio system. PU denotes primary user as SU denotes secondary

user. "White space" denotes unoccupied frequencies what new SU is able to use.

cated to licensed or so called primary users (PU) if they do not cause any harm to the

licensed users. In this thesis, mainly cognitive radio systems based on spectrum sensing

are considered. The cognitive radio system is illustrated in Figure 3. The number of

these unoccupied frequency bands varies over frequencies, time and geographic loca-

tions. However, because of inflexible spectrum allocation, it is widely known that the

spectrum resources are not efficiently used [33–35, 37, 40]. Suggested channel can-

didates for cognitive radio operation are television (TV) broadcasting bands [37]. In

Europe, the digital television (DTV) signal is based on orthogonal frequency division

multiplexing (OFDM) [32] whereas in the Northern America, DTV signal is a Vestigial
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Sideband (VSB) modulated signal [4]. The standardization of cognitive radio opera-

tion has already been started. For example, the Institute of Electrical and Electronics

Engineers (IEEE) 802.22 wireless regional area network (WRAN) group established to

develop a standard for WRAN cognitive radio devices in 2004. In 2006, the Federal

Communications Commission (FCC) reported that fixed low-power devices could oper-

ate in unused TV channels [36]. In the United Kingdom, the Office of Communications

(Ofcom) considered in 2007 the cognitive usage of TV bands [98]. In 2008, the FCC

approved that unlicensed radios are able to operate in the TV bands under some specific

rules [38]. The most important restriction is that secondary users are not allowed to

interfere with primary users. This calls for a reliable location of unoccupied bands. The

FCC resolved technical issues concerning "white spaces" in TV spectrum in September

2010 [39]. One of the most interesting issue is that devices incorporating geolocation

and database access do not have to sense TV signals or low-power auxiliary service

stations. Even though sensing is not required, it can be used, for example, to sense

other secondary users. However, it should be kept in mind that this is the situation at

the present moment in the specific frequencies in the United States. It is not known yet

how the communications regulators in other countries react. In the end, time will tell

what the role of sensing will be.

Signal detection methods, as well as many IS algorithms, are based on the use of a

detection threshold [118]. The threshold can be fixed or adaptive. Adaptive thresholds

are typically used under non-stationary conditions. The threshold calculation is based,

for example, on the statistical properties of the noise-only case. The threshold is used

to separate the samples into two sets. One set is assumed to be caused by noise (and

a possible wideband information signal), and another set is caused by the concentrated

signal. The setting of the threshold is a critical task. The signal energy at a certain fre-

quency within the frequency band of the signal may temporarily drop below the thresh-

old during the signal. This causes needless separation of the signal into two or more

signals. Also, noise (and the possible wideband signal) may temporarily exceed the

threshold and cause falsely detected signals. If the threshold is too high, the signal may

be separated into several parts or the signal is not detected at all, but false detections are

avoided. If, however, the threshold is too small, false detections become common but

needless separation of the signal is avoided. Needless separation of signals as well as

falsely detected signals cause problems especially when localization information of the

signal, for example, the center frequency and bandwidth, is estimated.
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1.3 The aim and outline of the thesis

The focus of this thesis is in two areas, namely concentrated interference suppression

and concentrated signal detection. Both of these are applications of outlier detection.

The goal is to consider low-complexity concentrated interference suppression and con-

centrated signal detection methods that are efficient but easy and possible to implement.

The two main contributions are to investigate existing IS methods and to introduce new

IS and detection methods.

The performance of the IS methods, namely the consecutive mean excision (CME)

algorithm [57], the forward CME (FCME) algorithm [117] and the transform selective

IS algorithm (TSISA) [3], is studied. From a practical point of view, it was noticed

that it may be advantageous to use the same algorithm for IS and detection. Hence,

another goal of this thesis is to show that the CME algorithms are also able to detect

NB signals. In addition, a new FCME-based method called the localization algorithm

based on double-thresholding (LAD) and its three versions are introduced for NB signal

extraction and localization. Although the LAD methods are primarily used for detect-

ing NB signals in the frequency domain, they may also be applied for detecting other

concentrated signals in other domains.

This thesis is organized as follows. Chapter 2 presents a literature review of outlier

detection and its two applications, interference suppression and signal detection. Sec-

tion 2.1 gives an introduction to outlier detection. The existing interference suppression

methods are reviewed in Section 2.2. Section 2.3 reviews briefly the concept of signal

detection, focusing on the detection of unoccupied frequencies in future cognitive ra-

dios. In Section 2.4, the threshold setting problem is discussed briefly. The studied

methods are presented and a summary of original papers is given in Chapter 3. Section

3.1 presents the system model. The CME algorithms, the TSISA method and the LAD

methods are considered in Sections 3.2, 3.3 and 3.4, respectively. Therein, their per-

formance reported in the original papers is also considered. Methods and performance

considerations are presented in Chapter 3 in detail for readability and clarity. In addi-

tion, supplementary papers contributed by the author of this thesis are briefly reviewed

to offer a more comprehensive general view. These supplementary papers are referred

to in the text as all other references. Finally, a brief summary and discussion is pre-

sented in Chapter 4. The original papers are reprinted in Appendices.

25



1.4 Author’s contribution to the publications

This thesis is mainly based on nine original papers. The papers are included as appen-

dices. The author of this thesis has been the main author in all the papers but Paper IV,

where the first author provided the main part of the analysis and numerical results for

the article. The author of this thesis provided part of the analysis, and wrote the most

of Paper IV. Co-author, professor Markku Juntti, gave comments and supervised the

writing process of Paper IV. Co-author Dr. Harri Saarnisaari gave comments, criticism

and support. In other papers, the author of this thesis has invented the ideas as well

as carried out the analysis, derivations, analysis of the results, and drawing the conclu-

sions. The author of this thesis has been the only inventor of the extended TSISA and

the LAD methods proposed in the papers. In the original papers, the co-authors have

provided valuable guidance and support, comments and criticism, as well as help with

running the computer simulations.

A number of supplementary papers related with this thesis have also been published.

The author of this thesis has also been the main author in Papers [138, 140–149] and

a co-author in Papers [49, 61, 63, 68, 71–75, 77, 78]. These papers are referred to in

the text as all other references. In addition to the published papers, a patent of the LAD

method was granted in 2007 [139].
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2 Literature review

This chapter provides a literature overview of outlier detection with applications to in-

terference suppression and signal detection in wireless communications. The purpose

is to present a general overview and survey of the relevant literature without mathemat-

ical details. Chapter 3 introduces methods used in this thesis in more detail. Section

2.1 introduces outlier types and gives an overview of the outlier detection concept. Sec-

tion 2.2 reviews the literature of interference suppression. Narrowband signal detection

methods are considered in Section 2.3. Its application in cognitive radios is described

in Section 2.3.1. Finally, Section 2.4 presents a short overview of the threshold setting

problem.

2.1 Outlier detection

In statistical signal processing outlier detection is usually divided into two categories.

These are robust signal processing and diagnostic methods [26, 62, 64, 80, 86, 99, 126,

127, 136, 154, 157, 160]. In robust signal processing, the outlier detection and mitiga-

tion are performed jointly. With diagnostic methods the outlier mitigation is performed

after outliers are first detected. Here, the review is limited to diagnostic methods.

The diagnostic methods can be further divided into backward search methods [6]

and forward search methods [7, 47, 59]. While backward methods use the whole data

set for finding outliers, forward methods use a small appropriate part of data to fix

the detection parameters. Even though the forward methods outperform the backward

search methods, these are also more complex [160]. The classification of outlier detec-

tion methods is illustrated in Figure 4.

The probability of detecting outliers is a sum of several factors. Dimension (the

number of antennas in wireless communications), number of data samples, contamina-

tion ratio (i.e., the ratio of the number of outlier samples to total samples) and the type

of contamination as well as parameters needed in the algorithm have a major influence

on the outlier detection. They also depend on each other. Outlier detection is impossible

if both the contamination and the dimension of the data are high. In addition, the more

data and the more time, the more outliers can be handled. It has also been noticed that

the difficulties of detecting outliers increase as the dimension of the data increases, so
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Fig. 4. Classification of the outlier detection methods.

the estimation of multivariate shape and location is difficult [114]. The outlier type has

also an impact on successful detection. The hardest outliers to find are outliers with the

same shape as the main data, very compact (i.e., closely spaced) as well as shifted out-

liers. Shifted outliers have the same but shifted distribution as the set of clean samples.

Other outlier types include, for example, shifted as well as reduced outliers (in scale)

[114].

An outlier detection metric is used to decide if a sample is an outlier or not. In the

diagnostic methods, the outlier detection is usually based on the Mahalanobis squared

distance (MSD) [50, 82, 131]. That is, all large observations are assumed to be caused

by outliers. Mathematically, a sample from vector r is caused by outliers if the MSD

χi = (r− r)H
C−1 (r− r)> T, (1)

where H denotes the conjugate transpose (or Hermitian transpose), C is the shape pa-

rameter (usually the covariance matrix of r) and r is the location parameter (usually the

mean of r). Thus, the sample vector r is classified as an outlier if the MSD is larger

than some predetermined threshold value T , i.e., the cutoff point. A threshold that sep-

arates the outliers from other samples can be solved from Eq. (1). The threshold setting

problem is considered in more detail in Section 2.4.

The main problem with the MSD is that the mean and covariance are usually un-

known, so these have to be estimated reliably. However, these estimates are not neces-

sarily robust but sensitive to outliers resulting in undesired effects like swamping and

masking. Swamping means that all large MSD values are not necessarily caused by
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outliers. Masking means that all the outliers do not necessarily have a large MSD value,

because the outliers may affect the estimates of the mean and the covariance. For exam-

ple, an outlier may mask another outlier. [47]

The swamping and masking problems can be alleviated or avoided, for example,

by using iterative and/or robust parameter estimation. One possible method is to use

minimum volume ellipsoid (MVE) [114]. The MVE is efficient, but the computational

complexity is high. Hence, algorithms for approximating the MVE have been suggested.

For example, an effective and computationally simple forward-type procedure for ap-

proximating the MVE has been proposed in [47]. The method starts by rearranging

the samples in an ascending order according to a robust distance. The MSD is used to

calculate a robust distance but robust location and covariance are used instead of the

basic mean and covariance. The data set of size N is divided into two sets: a basic

set (starting set) contains the first p+ 1 samples which are assumed to be clean, and a

non-basic set (complementary of the basic set) contains the rest N − (p+ 1) samples

including both clean and outlier samples. Here, p denotes the dimension. Next, the

arithmetic mean (i.e., centre) of the basic set is computed and the distance between the

mean and data points are calculated. The distances are calculated relative to the sample

covariance matrix of the basic set. After that, all the N samples are rearranged again in

an ascending order and divided into two sets. Now, the first p+ 2 samples belong to

the updated basic set and the rest N − (p+2) samples belong to the updated non-basic

set. The process continues until a pre-determined stopping criterion is reached. Thus, if

performed properly, the last updated basic set contains all the clean samples as the last

updated non-basic set contains all the outlier samples. This is basically a forward type

diagnostic method.

When the number of outliers is one, the outlier detection is a simple task. Instead,

detecting clusters of outliers is a more difficult task and requires robust estimators [114].

To ensure outlier detection, there has to be enough clean samples. In addition to robust-

ness, a good estimator is also able to reject outliers that are far away from the centre

of the data, is able to converge to a good solution, and has a reasonable computational

complexity. [113, 114]
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Fig. 5. One classification of the interference suppression (IS) methods.

2.2 Interference suppression

Interference suppression (IS) techniques and the effects of IS have been widely studied

since the 1970s. Several methods have been considered for detecting the interfering

signals, see, e.g., [25, 44, 56, 60, 67, 79, 89, 90, 104, 112, 120, 162]. IS methods can

be classified into three groups: time domain, transform domain and bank-type methods.

The classification is illustrated in Figure 5.

2.2.1 Time domain interference suppression

Time domain techniques can be further divided into linear and nonlinear methods [17,

88]. In the linear (or estimator) methods, estimates of the received signal are obtained

using a transversal filter. The estimates are based on both model assumptions and

previous samples. Existing time domain IS methods are mainly based on predictive

techniques. This means that the present sample of interference can be predicted from

the previous and future samples. Predictive methods are based on the idea that in the

received signal only the concentrated signal is primarily predictable, whereas the wide-

band SS signal and noise are not [84]. The first IS filters, called linear prediction filters,

were proposed in the 1980s. Linear predictive filters can be made adaptive, for exam-

ple, by using the Widrow-Hopf least mean squares (LMS) algorithm [158] as in [88].

Therein, no external reference waveform is needed, in contrast to many other applica-

tions of the LMS algorithm, where an external reference waveform is used to adjust the
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tap weights.

A linear estimator, such as the Kalman filter, may have serious problems if the den-

sities are non-Gaussian. However, in practice, densities are seldom purely Gaussian.

The optimum filter for predicting an interfering signal in the presence of an identically

distributed binary sequence, the direct sequence (DS) signal, is nonlinear. Nonlinear IS

is based on the work by Masreliez [83], who proposed an approximation to the optimal

non-Gaussian filtering assuming linear state and observation relations in 1975. Accord-

ing to [83], the observation noise does not have to be Gaussian, but the distribution is

still Gaussian for the conditional mean. For that reason, the proposed filter is called the

approximate conditional mean (ACM) filter. The ACM filter is widely considered in

the literature, and it has been extended to the nonlinear IS [115, 151]. In [43], nonlinear

filters in DSSS systems were studied for rejecting NB interference in impulsive noise

channels. It was noticed that the performances of the nonlinear adaptive filters were

better than that of the LMS filter.

Conventionally, the nonlinear filters have been made adaptive using the LMS algo-

rithm. A drawback of the LMS algorithm is its rather slow convergence rate which

limits its IS capability in a time-varying case. Many other techniques have, therefore,

been proposed to make the system adaptive. These are based on recursive least squares

(RLS) or conjugate gradient methods [52]. The adaptive RLS filter has many advan-

tages, e.g., the convergence rate is faster than that of the LMS algorithm. However, the

RLS algorithm is computationally complex. The overall complexity is of order O(N2),

where N is the length of the input vector.

2.2.2 Transform domain interference suppression

NB signals can also be suppressed in the frequency domain or in some other transform

domain [89, 90]. Transform domain methods transform the received signal to the trans-

form domain before the IS. The most often used domain is the frequency domain, to

which the signal is transformed using the Fourier transform (FT). The transform do-

main systems have an advantage over the LMS based receivers when rapid adaptivity

is needed: the transform domain systems can be made adaptive without the need for an

adaptive algorithm since they are usually block-based. [88]

Transform domain interference suppressors consist of three parts as illustrated in

Figure 6. In part one, the received signal is windowed in the time domain to reduce
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Fig. 6. Transform domain interference suppressor (IS).

the spectrum leakage. After the windowing, the transform is performed. In the 1970s

and 1980s, a continuous-time Fourier transform was used in the literature analysis. The

discrete Fourier transform (DFT) and the fast Fourier transform (FFT) are currently the

main methods for calculating the frequency domain representation. In part two, after

the transformation, the detected interfered samples are set to zero or limited. In part

three, the signal is returned to the time domain using inverse transform. The main prob-

lem herein is to detect the interfered samples or decide which samples are interfered.

This thesis will provide some interesting alternatives for this.

Notch filters have been considered, for example, in [1, 16, 88]. Adaptive notch

filtering based on the DFT was considered in [67]. The considered IS filters were based

on the parametric spectrum estimation algorithm and the nonparametric spectral estima-

tion algorithm (the Welch method). The nonparametric spectral IS method discussed

in [67] used the knowledge that the spectrum of the pseudo noise (PN) sequence is flat

while the spectrum of the NB interference is peaked. Prior knowledge of the interfer-

ence was not needed. The drawback is that adaptive notch filtering is ungainly against

multiple sinusoidal interfering signals and adaptivity is slow. In [24, 112], the interfer-

ence excision function was an on-off switch which implements a notching function in

the frequency domain. The energy of NB interference was concentrated using a win-

dowing function. Saulnier [120] considered frequency-domain adaptive filters for IS. A

new tap-weight structure with the leakage factor was discussed. In [112], rectangularly

windowed block DFT was studied. In the interference excision, the six cells surround-

ing the interference frequency were set to zero. It was shown that the use of ensemble

averaging over both the interference frequencies and PN sequences enhances the bit

error rate (BER) performance. In [162], several real-time DFT based frequency domain

IS algorithms were considered in an environment where multiple sinusoidal interfering

signals co-exist. It was also assumed that the receiver does not know the statistics of the

interference. Impulse noise effects and mitigation in DVB-T (digital video broadcasting

- terrestrial) systems have been considered, for example, in [54].

Henttu et al. [57] proposed an adaptive iterative notch-type interference excision

method called the consecutive mean excision (CME) algorithm in 2002. The CME al-
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gorithm has low complexity and it does not need any a priori knowledge of the interfer-

ing signals. Similar approach has been later applied, for example, in [129]. Saarnisaari

and Henttu [117] proposed two new versions of the CME algorithm, namely the limiter

CME (LCME) and forward CME (FCME) algorithms for impulsive IS in 2003. It was

noticed that the CME algorithms are special cases of classical diagnostic methods used

to detect outliers in the statistical literature [47]. Even though proposed for impulse

rejection in the time domain, the CME algorithms can also be used in any other trans-

form domain, as in the Fourier domain. Threshold values of the CME algorithm were

studied in [57]. It was noticed that a proper choice of clean sample rejection rate (i.e.,

the desired false alarm rate) is approximately 0.1%, thus meaning that in the noise-only

case, 0.1% of the samples are classified as outliers. The clean sample rejection rates of

both the CME and FCME algorithms were considered in [117]. It was noticed that the

desired clean sample rejection rate should be set to be less than 1%, otherwise too many

clean samples are rejected and the performance degrades. It was also noticed that the

CME algorithm was able to detect random impulses if at most 20% of the samples were

corrupted by impulses. For constant envelope impulses, the proportion was 40%, as the

FCME algorithm detected impulses even when 90% of the samples were corrupted by

impulses, regardless of the impulse type.

Both the CME and FCME algorithms were considered for narrowband interference

suppression in [116]. Noniterative notch filters were used as a point of comparison.

The root mean square error (RMSE) of the delay estimator was studied. The delay

estimation is of interest, for example, in positioning. When the interference was very

narrowband, i.e., 1% of the bandwidth of the desired signal, both the CME algorithms

performed well. When compared to the case where no IS was used, the improvement

the CME algorithms offered before their performance collapse was at least 60 dB. When

the bandwidth of the interference was 25% of the bandwidth of the desired signal, the

improvement the CME algorithms offered was approximately 40 dB. It was shown that

the performance of the CME algorithm starts to decrease after that. Instead, the perfor-

mance of the FCME algorithm starts to decrease after the bandwidth of the interference

is 40% of the bandwidth of the desired signal. The improvement the FCME algorithm

offered before the performance collapse was approximately 40 dB. It was also noticed

that the wider the bandwidth of the interference is, the more important the averaging

in delay estimation is. The theoretical impulse detection performance of the CME al-

gorithms was analyzed and detection probabilities were presented in [118]. In [76],

the CME algorithms were used with the cell-averaging (CA) scaling factors. The con-
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ventional CA-type detector uses the average of all reference cells when calculating the

threshold [41].

The CME algorithms have also been studied, for example, in [10, 63, 75, 108, 109,

155, 167]. It has been observed that the CME algorithms outperform the notch filters.

The FCME algorithm has somewhat higher computational complexity than the CME

algorithm but it also has better performance [118]. The CME algorithm is efficient

when the signal is very narrow. In general, the CME algorithms are able to offer good

performance with low computational complexity. Thus, they can be said to be useful

for suppressing narrow signals. The CME algorithms are discussed in more detail in

Chapter 3.

2.2.3 Wideband signal detection in the presence of

interference

Interference suppression techniques can also be applied to intercept receivers. The

function of the receiver is to determine whether a DS signal is present or not when a

DS signal may be superimposed by an NB signal. In an interfering environment, the

IS is performed before the decision on the presence of the DS signal is made. In [44],

a total power radiometer intercept receiver based on surface acoustic wave (SAW) was

enhanced by proposing real-time transform domain processing for IS. A radiometer

measures the power of the received signal, and compares it to a detection threshold. If

the measured power exceeds the detection threshold, it can be assumed that there is a

signal. The proper setting of the detection threshold was not considered in [44]. Two

techniques for adaptive NB IS in the Fourier transform domain were considered. The

first method detected the NB interference and excised it using an adaptive notch filter.

The second method used a so called soft-limiter. In 1995, Masry [84] analyzed the

interception receiver of [44] with the exception that multiple outputs of the analog com-

pressive receiver were accumulated. The interference suppressor reduced the energy

from the interference significantly. The performance of the radiometer under frequency

and time domain interfering signals was discussed in [78]. A simple method for choos-

ing if either the time domain or the frequency domain IS should be used by the receiver

was proposed. In [78], the domain selection is based on the fact that the correct domain

concentrates interference energy into a fewer samples. The selection is based on calcu-
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lating 25% percentiles in each domain, i.e., 25% of the data is underneath the percentile.

The domain with the smallest percentile is selected for IS. Unlike usual practice, the re-

sults of the IS were used when calculating the threshold of the radiometer. This allows

better performance when compared to the conventional method that uses a fixed thresh-

old. The proposed IS method gives some performance gain but the selection method is

suitable only for specific types of interfering signals [78].

2.2.4 Bank-type interference suppression methods

Most of the existing IS methods are targeted against a specific type of interference.

If the interference is another type of signal, these methods often fail. In order to im-

prove the performance of IS systems, bank type IS methods have been studied. The

goal is to achieve better performance against different types of concentrated interfering

signals. A filter bank system may, for example, consist of several parallel estimators

[17], independent IS systems [105] or transform domains [3] presented in Figure 7. In

[17], a multiple NB IS system based on a bank of independent hidden Markov model

(HMM) estimators was proposed to detect and estimate interfering signals. In [105],

interference suppression was performed by four parallel branches, and finally only one

IS output was chosen based on the maximum signal-to-interference plus noise ratio

(SINR) [105]. The proposed IS bank consists of several IS methods, namely the pure

matched filter (MF), the CME algorithm [57], the RLS algorithm [52, 58] and the polar

algorithm [55]. The CME algorithm is discussed in more detail in Chapter 3. While

the RLS filter is able to suppress interfering signals with amplitude variations, the polar

suppressor can remove even very wideband constant envelope signals, covering even

100% of the bandwidth of the desired signal. According to [105], the proposed IS bank

method is effective, but excessive computation is required due to the several algorithms.

Aromaa et al. [3] proposed an efficient bank-type IS system. The proposed system,

called the transform selective interference suppression algorithm (TSISA), is able to

suppress several types of interfering signals – impulses, narrowband signals and sweep-

ing or chirp signals – and its computational complexity is low. The transform domain

selection is performed using the compression gain (CG) metric. The compression gain

is commonly used, for example, in image processing, where it is called a coding gain.

The TSISA is discussed in more detail in Chapter 3.
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Fig. 7. Examples of filter bank systems. (a) Several parallel estimators. S/P de-

notes serial-to-parallel, DFT is discrete FT, HMM denotes hidden Markov model,

IDFT is inverse DFT and P/S denotes parallel-to-serial. (b) Several independent in-

terference suppression (IS) systems. MF denotes matched filter, CME denotes the

consecutive mean excision algorithm, RLS means recursive least squares and

SINR denotes signal-to-interference plus noise ratio. (c) Several transform do-

mains. FFT is fast Fourier transform, FrFT is fractional Fourier transform, CG

denotes compression gain and FCME is the forward consecutive mean excision

algorithm.
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2.2.5 The impact of temporal windowing

Windowing is widely used to improve the performance of IS methods that suppress

interfering signals in some other than time domain. Therein, a window function is

required to reduce spectrum leakage which transforms signal energy partly to other fre-

quencies [106, 130]. The window to be used has to be chosen carefully. For example,

when notch-type filters are used, a window with small values at tails is essential to pre-

vent the performance failure. In the window functions, there is a trade-off between the

width of the central peak in the spectrum and the falling of the tails. It is possible to

have either a narrow central peak or tails that fall off as fast as possible. The length

of the window is a trade-off between spectral resolution and statistical variance [106].

There exists several types of window functions. The rectangular window produces large

sidelobes. These can be reduced by using weighting functions, but the disadvantage is

that those distort the input signal. Consequently, different types of windows are needed

[51, 88]. Hamming and Hanning (Hann) windows are commonly used window func-

tions. Both of these are n-point symmetric windows. The Blackman window is also

an n-point symmetric window. The central lobes are wider than those of the Hamming

and Hanning windows, but the Blackman window has less sideband leakage. Another

popular window is the 4-term Blackman-Harris window, which is an n-point minimum

window, which means that the maximum sidelobes of the window are minimized. Win-

dowing causes performance (SNR) losses which may be significant. In general, more

concentrated windows cause larger losses. According to [163], performance loss due

to the Hanning window is almost 2 dB and that of the 4-term Blackman-Harris win-

dow is approximately 3 dB. It has been noticed that the loss can be reduced using the

overlap-and-add method [163]. For 50% overlap, the windowing loss is less than 1 dB

for all the windows. It can be shown that the loss of the 4-term Blackman-Harris can be

reduced to be less than 0.5 dB [163].

In this thesis, the CME algorithms and their applications are studied. The interfer-

ence suppression capability of the backward and forward CME algorithms originally

proposed in [57, 117] has been considered in the supplementary papers [140, 145, 146].

Therein, the focus lies in frequency domain interference suppression. The analysis of

the CME algorithms has been presented in Papers IV, V, and in the supplementary pa-

per [148]. The performance of the FCME-based TSISA method originally proposed

in [3] has been evaluated in Paper I, and in the supplementary paper [141] under sev-
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eral types of interfering signals. In addition, the enhancement of the TSISA has been

proposed in Paper II, and in the supplementary paper [147].

2.3 Signal detection

Signal detection is a decision-making problem: the presence or absence of a signal is

decided [65, 103, 134]. Because there always exists noise, the decision is, in general,

a comparison between two hypotheses: the noise-only hypothesis (H0) and the signal-

present hypothesis (H1). This is called a binary hypothesis testing problem. Usually,

the noise is assumed to be a zero-mean white Gaussian process with either known or

unknown variance. The signal detection is usually based on some threshold testing

[134]. Hypothesis H1 is true if a received sample exceeds the threshold. Instead, if a

received sample is below the threshold, hypothesis H0 is true. In the well-known Bayes

criterion, a priori known probability values are utilized to decide in which set samples

are located [11]. Thus, the probability of the occurrence of each hypothesis is assumed

to be known. The so called Neyman-Pearson criterion [2, 134] does not need to know

a priori probabilities. Therein, the goal is to have a maximum probability of detection

(PD) while maintaining the probability of false alarm (PFA) below some predetermined

level. The probability of detection means the probability of a signal sample being classi-

fied as a signal sample, whereas the probability of false alarm means the probability of

a noise-only sample being falsely classified as a signal sample. In the Neyman-Pearson

sense, the best detector is defined to be the detector which is able to achieve the high-

est probability of detection subject to maximum false alarm probability constraint. It

depends on the knowledge of the detected signal and/or noise what kind of detector is

the best choice. When the noise is additive Gaussian noise and the detected signal is

known, the optimum detector is the matched filter [88]. Usually, the noise level is not

known or varies in time. In that case, it has to be estimated. When the detected signal

is unknown, blind signal detection methods are needed since they require no a priori

knowledge of the signal.

Signal detection can be classified into wideband and narrowband (or generally, con-

centrated) signal detection. Here, the main interest lies in the narrowband signal detec-

tion. Narrowband signal detection has many applications, for example, in radar, sonar

and wireless communications [135, 150]. In the wide field of wireless communications,

spectrum sensing in future cognitive radio transmissions is one of the most interesting
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and current topics. Next, signal detection is considered from that point of view.

2.3.1 Detection in cognitive radios

For cognitive operation purposes, the unoccupied frequency bands can be located using,

for example, beacons, databases, location monitoring, or spectrum sensing [12, 22, 45,

61, 72, 119, 128, 142].

Spectrum sensing uses signal detection methods to decide if a signal or signals are

present or not, i.e., if the investigated frequency band is occupied or available. The use

of spectrum sensing has several benefits. These include, for example, that knowledge of

other users is not necessarily required and all secondary users may operate individually.

The simplest approach for spectrum sensing is to use a low-complexity energy detec-

tor, aka, a radiometer, which measures the strength of the received signal and compares

it to a threshold [65, 137]. Therein, if the threshold is exceeded, it is assumed that

there is a signal present, so the channel is occupied as illustrated in Figure 8. The en-

ergy detector is said to be optimal if there is no information about the detected signals

[65]. The channelized radiometer [14] integrates energy in several frequency bands

simultaneously because it uses several parallel radiometer receivers. The benefit of a

radiometer is that no a priori knowledge of signals or their parameters is required. The

drawback of using an energy detector is that due to the noise level uncertainty, the

performance may degrade [125]. These effects cause problems in the threshold set-

ting procedure. When the noise power is unknown, constant false alarm rate (CFAR)

techniques can be utilized [76]. In the CFAR type methods, the threshold setting is

performed using a predetermined false alarm rate. In that case, the probability of false

alarm stays constant. In general, the predetermined false alarm rate should be rather

low. Otherwise, the performance of the system may drop in the interference-free case.

Cyclostationary feature detector [30, 42] uses cyclostationary properties of the

signals. Thus, some a priori knowledge of the signal is required. In addition, a cyclo-

stationary feature detector is complex for real-time spectrum sensing. In [21], a method

based on fast Fourier transformation (FFT) was used to detect low power narrowband

Part 74 devices, such as wireless microphones (IEEE 802.22 Standard [21, 23]). Partial

matched filtering approach was used in [164]. Therein, some transmission parameters

were estimated and compared to the a priori known parameters. Easy-to-implement

OFDM spectrum sensing methods based on time-domain symbol cross-correlation were
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Fig. 8. Unoccupied channels can be found via detecting signals present (=occu-

pied channels).

proposed in [19]. In [165], two eigenvalue-based sensing methods were proposed. The

methods use the ratio of the maximum or average eigenvalue to the minimum eigen-

value. No knowledge of signal or noise power was required. So called goodness-of-fit

testing was used in [153]. Therein, the presence of signal was detected via testing if the

observed samples were independent from the noise distribution. No knowledge of the

detected signal is required. The proposed method is said to outperform an energy detec-

tor especially at low SNR values. Wavelet based wideband "white space" detection has

been studied in [132].

When there are several cognitive radios, the coexistence causes interference to each

other. A so called hidden terminal problem means that the secondary user is not able

to detect the primary user because it is far away from the primary transmitter, and, thus,

the secondary user starts to transmit, causing interference to the primary user (i.e., to

the receiver if TV signals are considered). This can be avoided, for example, with coop-

eration. Cooperative spectrum sensing means that multiple cognitive radios detect the

spectrum holes collaboratively [74, 81, 168]. In [166], cooperative spectrum sensing

with energy detection was used. In [169], a local blind source separation algorithm

for cooperative sensing was proposed. Therein, no knowledge of the source signal or

the channel was required. Usually, it is assumed that the communication between the

cognitive radio devices and a base station is noise-free [45, 53, 91, 152]. However, this

is not the case in realistic cognitive radio scenarios. The effects of imperfect channels

have been studied, for example, in [110], where the goal was to minimize the interfer-

ence to the primary user. The effects of correlated shadowing on the reporting channel
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were considered in [111]. A reporting channel is a channel which is used by cognitive

radios when sending sensing results to the fusion center (or data collector). It was no-

ticed in [111] that in realistic systems, correlated shadowing may cause performance

degradation both in sensing and reporting channels. In [5], errors occurring during the

transmission of local decisions were taken into account. Recently, the problem of se-

lecting only the most suitable cognitive radios for cooperation was studied [68]. Three

methods for selecting the cognitive radios with the best detection performance were pro-

posed. Therein, the decisions were based only on binary decisions from the cognitive

radios. Although cooperative spectrum sensing is an interesting topic, it is not within

the scope of this thesis, and, therefore, not considered in more detail.

In this thesis, the CME algorithms and their applications have also been considered

for signal detection purposes. The study of the CME algorithms has been extended to

concentrated signal detection in Paper III, and in the supplementary paper [144]. The

analysis of the CME algorithms has been presented in Papers IV, V, and in the sup-

plementary paper [148]. A new narrowband signal detection method called the LAD

method has been proposed in Paper VI, and in the supplementary paper [143], and ex-

tended in Paper VII. Two enhancements of the LAD method, namely the LAD NT and

LAD ACC methods, have been proposed in Paper VIII. In Paper VIII, the LAD methods

have also been proposed to be used for spectrum sensing purposes in cognitive radios.

An extension of the LAD method called the 2-D LAD method has been proposed in

Paper IX. The performance of the LAD methods has also been studied in the supple-

mentary papers [71, 149], and the analysis of the LAD methods has also been presented

in the supplementary paper [77].

2.4 Threshold setting problem

Setting the threshold is a demanding task. One of the simplest IS methods, the notch

filter [88], calculates the threshold from the magnitude spectrum. The samples which

exceed the threshold are outliers, and, thus, zeroed. The problem is how to select the

proper threshold because adaptivity is required. The CME algorithms [57, 117] are it-

erative notch-type methods for setting an interference excision threshold. The adaptive

threshold is set automatically based on a mean of sample energies and a threshold pa-

rameter. The used threshold parameter depends on the assumed distribution of noise.

Because the CME algorithms use the CFAR principle used in the energy detection of
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unknown signals [65], the false alarm probability stays constant. The CFAR princi-

ple is widely used, for example, in radar applications [41]. The CME algorithms are

computationally simple but effective methods and they are able to operate without any

knowledge of the noise level or the signals to be suppressed. However, especially at low

SNR levels, the CME algorithms suffer from two common problems we are interested

herein: needless separation of a signal as well as falsely detected signals. These are

problems especially in signal detection if the purpose is to estimate also signal parame-

ters like the bandwidth of the signal.

Several threshold setting methods have been proposed for reducing these problems.

The dynamic undersea detection extractor (DUDE) extracts and characterizes concen-

trated acoustic signals among the noise [66]. The DUDE consists of two parts. As the

first part operates on single beam data, the second part considers multiple beams. The

first part of the DUDE compares the frequency samples to the threshold. The threshold

is a constant multiplied by a periodically updated noise estimate. The DUDE groups

the adjacent samples assumed to be caused by a concentrated signal together to form a

cluster. To avoid needless separation of the signal, the DUDE allows adjacent frequency

samples in the cluster to drop below the threshold if the number of these samples is less

than a predetermined constant, the max ridge with skip parameter. This situation is il-

lustrated in Figure 9 a).

Wiley [159] described thresholding with hysteresis. The purpose is to avoid need-

less separation of the signal when thresholding noisy data. The threshold for the cur-

rent sample is reduced if the previous sample is above the threshold. Consequently,

the threshold for the current sample is increased if the previous sample is below the

threshold. The reduction and accretion depends on the noise level. For that reason, the

noise level has to be estimated. A threshold with hysteresis is illustrated in Figure 9

b). Thresholding with hysteresis is also used, for example, in Canny edge detector [15].

There, the edges in images are detected using two thresholds. Advanced hysteresis

has been used in error diffusion in a digital audio recording in [31]. Output dependent

threshold modulation changes the threshold to avoid certain output patterns. Both hori-

zontal and vertical hysteresis constants were used to achieve better printability.

Mustafa et al. [95] proposed three algorithms for automatic detection of active

radio stations. These algorithms are based on frequency domain information and both

the bandwidths and the center frequencies of the detected radio stations are estimated.

One of these algorithms calculates multiple thresholds. The statistical characteristics of

the height and position of the spectrum components are used. The algorithm assumes
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> ridge with skip < ridge with skip

time

Fig. 9. (a) Threshold in the DUDE algorithm. The ridge with skip parameter de-

fines how many adjacent frequency samples may be below the threshold without

separating the signal. (b) Threshold with hysteresis. The threshold for the current

sample is reduced/increased if the previous sample is above/below the threshold

(dashed line).

that the maximum expected number of radio stations is known. The decisions can be

based on the ranking of stations by the power. In such a case, the falsely detected radio

stations are mainly avoided [95].

In this thesis, a novel simple but efficient threshold setting method called the LAD

method is considered. The LAD method which is based on the FCME algorithm is

discussed in more detail in Section 3.4.
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3 Methods and their performance

This chapter introduces the investigated methods and summarizes their performance

reported in the original publications I-IX. In addition, supplementary papers [49, 71,

73, 77, 140, 141, 143–149] are briefly reviewed. First, Section 3.1 presents the system

model. Section 3.2 presents the CME and FCME algorithms. Both the interference

suppression and detection performance of the CME algorithms are considered. The

TSISA method and its extension are considered in Section 3.3. Finally, Section 3.4

considers the LAD methods and their performance. The methods considered and their

relations to each other are presented in Figure 10.

CME algorithm

FCME
algorithm

TSISA

Fig. 10. Methods considered in this thesis.
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3.1 System model

After front end filtering and sampling, the received discrete-time signal is assumed to

be

r(n) =
m

∑
i=1

ii(n)+ s(n)+η(n), n ∈ Z, (2)

where m is the number of unknown concentrated signals, ii(n) is the ith concentrated

signal, s(n) is a possible wideband direct sequence (DS) SS signal, and η(n) is the noise

process. The noise is assumed to be a zero mean complex white Gaussian process. The

SS signal, the concentrated signal, and the noise are assumed to be mutually indepen-

dent. In Papers I-IX, only single path channels are considered.

The signal-to-noise ratio (SNR) is the ratio of signal energy to noise power spectral

density, i.e.,

γ =
Eb

N0
, (3)

where Eb is the energy of the desired signal per bit and N0 is the noise power density.

In the presence of wideband signal, SNR denotes wideband signal-to-noise ratio. In

the absence of wideband signal, SNR denotes concentrated signal-to-noise ratio. The

interference-to-signal ratio (ISR) is defined as

ξ =
I

S
, (4)

where I and S are the power of the concentrated and wideband signals, respectively. The

concentrated signal can be interfering signal or signal to be detected. When there are

multiple concentrated signals, it is assumed that independent signals are from different

sources. Thus, the ISR is defined per concentrated signal.

The ratio of the number of corrupted samples Ncon to the total number of samples

Ntot is called the contamination ratio ε , i.e.,

ε =
Ncon

Ntot
. (5)

Next, some assumptions that are common to the papers considered in this thesis are

reviewed. The data sequence is spread by a 63-chip Gold sequence meaning that the

bandwidth of the spread spectrum signal is 63 times wider than the bandwidth of the in-

formation signal being sent. Furthermore, it is assumed that the signal is sampled once
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Fig. 11. The threshold setting. The threshold separates signal samples (dots) into

noise and concentrated signal sample sets.

per chip. In the receiver, IS and/or detection precedes demodulation. The considered

concentrated signals are impulsive signals, sinusoidal signals, chirps, or binary phase

shift keying (BPSK) communication signals with different parameters. The BPSK sig-

nals are bandlimited by a root raised cosine (RC) filter with a roll-of factor of 0.22 [107].

A summary of the main assumptions in original publications is presented in Table 8 on

page 94.

In Papers III, IV, V, VII, and VIII, the spectrum estimates have been calculated

using the conventional periodogram [106]. In Papers I, II, and VI, 4-term Blackman-

Harris window was used. In some papers, as in Paper IX, and in the supplementary

paper [71], the Welch method [156] was used instead of the periodogram. In the Welch

spectrum estimate, overlapping and windowing is used. Therein, the data is divided

into different segments which are allowed to overlap. Herein, 50% overlapping is used.

Each data segment is windowed separately.

3.2 Consecutive mean excision algorithms

The CME algorithms [57, 118, 138] are automated methods for setting a threshold in

order to separate the samples into two sets: the concentrated signal set above the thresh-

old containing the concentrated signal samples, and the desired signal set below the

threshold containing the wideband information signal and the noise samples. This is il-

lustrated in Figure 11. The threshold computation of the CME algorithms uses a thresh-

old parameter which is calculated a priori using a desired clean sample rejection rate

(i.e., the required false alarm rate) and the statistical properties of the noise [57, 87, 96].

The CME algorithms are blind methods in the sense that they do not need to know the

noise level. In general, no side-information is required. That is, no a priori informa-
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tion about the signals or their parameters is required. The only requirement is that the

signal/signals are narrow with respect to the studied bandwidth. The CME algorithms

are good at excising samples that do not follow the statistics of the wideband signal and

noise. They can be used either in the time domain or in some other transform domain.

In the frequency domain, windowing is used to reduce the spectral leakage.

Both CME algorithms use the same threshold parameter. The threshold parameter

used depends on the distribution of the noise. The most common distributions in the

threshold setting are chi-squared and Rayleigh distributions, which follow if the noise is

Gaussian. The CME algorithms assume that the samples xi are zero mean, independent,

i.i.d. Gaussian distributed complex random variables. Herein, the notation xi is general

and not specified to some particular domain, i.e., samples xi can be in time, frequency

or in some other domain. Zero mean assumption is usually valid in wireless commu-

nications. As a consequence, the variable |xi|2 has a chi-squared distribution with two

degrees of freedom and |xi| follows a Rayleigh distribution. The threshold parameter

can be solved from Eq. (1). Here, the mean xi = 0 and covariance reduces into the vari-

ance [117]. When the desired signal set has a chi-squared distribution, i.e., if the energy

of samples is considered, the threshold for CME algorithms is [118]

Th =−x2 ln(PFA,DES) = x2TCME, (6)

where

ζ = x2 =
1

Q

Q

∑
i=1

|xi|2 (7)

is the average sample mean (or energy), Q is the set size, PFA,DES is the desired clean

sample rejection rate and

TCME =− ln(PFA,DES) (8)

is the threshold parameter. Example threshold parameter TCME values in the chi-squared

case are 4.6 (corresponding PFA,DES = 10−2 = 1%) and 6.9 (PFA,DES = 10−3 = 0.1%).

When the desired signal set has a Rayleigh distribution, i.e., if the absolute value of

samples is considered, the threshold is [57]

Th =
√

2δ̂ 2

√

− ln(PFA,DES)

= |x|
√

4

π

√

− ln(PFA,DES) = |x|TCME, (9)

where

δ̂ = |x|
√

2

π
(10)
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is an estimate of the Rayleigh parameter of the received vector, PFA,DES is the desired

clean sample rejection rate,

ζ = |x|= 1

Q

Q

∑
i=1

|xi| (11)

is the average sample mean, Q is the set size and

TCME =

√

4

π

√

− ln(PFA,DES) (12)

is the threshold parameter. Example threshold parameter TCME values in the Rayleigh

distribution case are 2.97 (corresponding PFA,DES = 10−3 = 0.1%), 2.42 (PFA,DES =

10−2 = 1%) and 1.95 (PFA,DES = 5%). In the IS, commonly used desired clean sample

rejection rates are 0.1% and 1%, corresponding to the threshold parameters 2.97 and

2.42 [57]. Table 1 presents example threshold parameter values based on Eq. (8) (in the

chi-square case) and Eq. (12) (in the Rayleigh case).

Table 1. Example threshold parameter TCME values in chi-square and Rayleigh

cases.

PFA,DES TCME (chi-square) TCME (Rayleigh)

10−1 = 0.1 (10%) 2.30 1.71

10−2 = 0.01 (1%) 4.60 2.42

10−3 = 0.001 (0.1%) 6.90 2.97

The used threshold parameter TCME is calculated based on the desired clean sample

rejection rate PFA,DES which is to be decided. The resulting TCME varies according to

the assumed distribution. The larger the value of PFA,DES is, the smaller is TCME, the

smaller is the threshold, and the larger is the amount of false alarms. Instead, small

PFA,DES leads to larger TCME, larger threshold and, thus, a small amount of false alarms.

The proper choice of PFA,DES depends on the situation and on the application. In IS

applications, there also exists a desired (information) signal which can be assumed to

be wideband. In that case, a too low threshold may also suppress components from the

desired signal. It was noticed in [117] that in IS purposes, PFA,DES < 1% in order to

avoid performance degradation. In signal detection applications, a too low threshold

causes falsely detected signals, whereas a too large threshold may lead to situation in

which the signal is not detected at all. In addition, when using a too low threshold, the

bandwidth estimate of the signal may be too wide because of the sidelobes above the
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Fig. 12. One example outcome of the CME algorithm. Simulated frequency do-

main samples (O). The frequency domain samples are caused by the noise (and

possible wideband information signal) (×) or by the NB interfering signal (∗).

threshold. In cognitive radio approach, the control of PFA,DES is even more important,

as PFA,DES is directly related to the interference caused and the loss of spectral opportu-

nities.

The original CME algorithm is a backward method, which means that in the first

iteration the sample mean ζ is calculated from the whole set. After calculating the first

threshold Th, the samples above the threshold are selected for removal. The new value

for ζ is calculated from the samples below the threshold. In general, the CME algo-

rithm calculates iteratively a new value for ζ and, thus, a new threshold until samples

that exceed the threshold (which are caused by the concentrated signal) are no longer

found or a maximum number of iterations is reached [57]. The samples exceeding the

threshold are assumed to be caused by a concentrated signal. One example outcome of

the CME algorithm is presented in Figure 12.

The FCME algorithm is obtained by rearranging the samples in an ascending order

according to their energies. Due to the rearrangement, the FCME algorithm requires

sorting [106]. Commonly used sorting algorithms are Quicksort and Heapsort [106].

The running times of some sorting algorithms are presented in Table 2. After the sort-

ing, the FCME algorithm calculates ζ of a small initial set [47, 160] which is assumed
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to be free of interference. The size of the initial set can vary from one element up to

10% of the size of the whole data set [57]. The larger the initial set, the simpler the

algorithm is because less iterations are needed. However, the possibility that the initial

set is not clean increases. On the other hand, the smaller the initial set is, the higher

the possibility that the initial threshold is too small. In that case, it may be possible

that the algorithm does not converge at all. Usually, the size of the initial set is 10%

of all the samples. The FCME algorithm iteratively calculates a new value for ζ and a

new threshold Th until there are no new samples below the threshold [57]. While the

threshold of the CME algorithm decreases in every iteration, the threshold calculated

by the FCME algorithm increases. In general, the forward search methods have better

performance than the backward methods [160]. The flowchart of the CME algorithm

is presented in Figure 13 on page 52 and the flowchart of the FCME algorithm is pre-

sented in Figure 14 on page 53.

Table 2. Sorting algorithms; N = the number of elements. [106]

Sorting algorithm Average Worst case Limitations

running time running time

Straight insertion N2 N2 N < 20

Shell’s method N1.25 N1.5

Quicksort 2log2 N N2

Heapsort N log2 N N log2 N

Instead of zeroing the interfering samples, these can also be limited. Robust meth-

ods use limitation and it has been shown to have a good asymptotic performance [64].

For that reason, the limitation of outliers has also been adopted for the CME algorithms.

Limiter CME (LCME) algorithm [118] limits the interfering samples to the lower level

by normalizing, i.e., the interfering sample becomes xi =
xi
√

Th

||xi|| instead of zero. The

point is that every interfering signal sample also contains some energy from the in-

formation signal. While zeroing totally destroys the energy of the sample, limitation

maintains some energy. This may be advantageous when there are a lot of interfering

samples. However, the problem is that the energy after the limitation comes from both

interfering and the information signal.

The CME algorithms are computationally simple. In the case of the CME al-

gorithm, the most complex part is the Fourier transform which is required in frequency
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where Q is the set size. In the first iteration, Q is 

the whole data set. 
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Fig. 13. The consecutive mean excision (CME) algorithm. (A) chi-squared distri-

bution (B) Rayleigh distribution.

52



 

   start 

Select PFA,DES  and calculate 

  )ln( DESFA,CME PT −=   (A) 

  )ln(
4

DESFA,CME PT −=
π

 (B)  

Calculate  ∑
=

==
Q

i

ix
Q

x
1

22 1
ς  (A) 

   ∑
=

==
Q

i

ix
Q

x
1

1
||ς  (B) 

 where Q is the set size. 

Calculate threshold ς⋅= CMEh TT  

Add xi, i=Q+1,… ,N to the set Q if 

h

2
Txi <   (A) 

hTxi <   (B) 

 

 

Were there   
observations   

below the   

threshold? 

YES NO 

  Stop 

Rearrange the observations in ascending order according to 

sample energy.  The number of observations is N. 

Select n smallest  observations to form the 

initial set (usually n=10%). Let this be set Q. 

Obervations above the 

threshold are outliers. 

Fig. 14. The forward consecutive mean excision (FCME) algorithm. (A) chi-

squared distribution (B) Rayleigh distribution.

53



domain processing. The computational complexity of FFT is N log2 N [106]. In the

FCME algorithm, the most complex parts are the Fourier transform, and rearranging

the samples (sorting). The sorting can be done, for example, using Heapsort (average

computational complexity N log2 N) or Quicksort (average computational complexity

2 log2 N) [106]. Thus, the computational complexity of the CME algorithms is of the

order of N log2 N.

The CME algorithms and their performance have been considered in several pa-

pers. In the supplementary paper [145], the CME algorithm was used as an interference

suppression method in wideband signal detection. Therein, the detection of DS-CDMA

signals under NB interference was considered. The interfering signals were 2-frequency

shift keying (FSK), 4-FSK and off-center tone signals occupying 1.6% and 3.2% of the

bandwidth. A Hann-256 window with 50% overlapping in the Welch power spectral

density (PSD) was used. ISR was set to 20 dB. The CME threshold parameter was set

to
√

3 and
√

4.5, because MFSK modulated signals have strong sidelobes. Radiometric

detection was performed after the interference excision. The per bin probabilities of

detection (PD) and false alarm (PFA) vs. SNR were simulated. The paper concluded that

the loss caused by the IS was approximately 1−2 dB depending on the SNR, and that

the CME algorithm had good performance.

It is usually assumed that the signal arrives at the receiver from a single path. How-

ever, this is not necessarily a realistic assumption. In wireless channels, a signal may

arrive at the receiver through various paths due to multipath propagation. In the sup-

plementary paper [146], a frequency-selective Rayleigh fading channel model was used

when studying the effects of multipath propagation on interference suppression. The

Rayleigh fading channel is a channel without the line-of-sight (LOS) component, i.e.,

there is not a dominating path. The bit error rate (BER) performance of the FCME algo-

rithm used for IS in a DS-CDMA system was considered. The interfering signals inves-

tigated were 1−5 sinusoidal, bandlimited BPSK interfering signals with bandwidths up

to 60% of the system’s bandwidth, and chirp interference. A 4-term Blackman-Harris

window was used before the Fourier transform. Absolute values of signal samples were

used, and the FCME threshold parameter was 2.97. The BER performance vs. SNR

and ISR were simulated as well as the effects of multipath interference on interference

suppression. A frequency-selective Rayleigh fading channel model with two paths was

used. It was assumed that the scattering was uncorrelated and that the path delays were

multiples of the sampling interval. It was concluded that the FCME algorithm per-

formed well. The narrower the bandwidth of the interfering signal, the smaller BER.
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In addition, large ISR leads to a large BER value. The multipath interference caused

performance degradation of the FCME algorithm only when the interfering signal was

a chirp. This was mainly because the frequency domain is not the optimal excision

domain for chirp signals, i.e., the chirp signal is not the narrowest in the frequency do-

main.

The threshold setting of the CME algorithms assumes that the noise is Gaussian.

In practice, this is not necessarily true. The interference suppression ability of the

CME, FCME and LCME methods for measured radio channel data was considered in

the supplementary paper [140]. Therein, the data consisted of radio channel measure-

ments performed in autumn 2004 in the city of Oulu, Finland, at 2.45 GHz with 200

MHz measurement bandwidth using the Elektrobit PropSound radio channel sounder

[29, 70]. There was no interference-free reference data and the interfering signals were

unknown to the receiver, so statistical analysis could not be performed. Instead, the

aim was to show via examples that the CME algorithms are also able to operate in the

case where the noise is not pure computer-generated Gaussian but from the real-world

measurements. Both the channel transfer functions and impulse responses were studied.

Receiver imperfections like nonlinearities were not studied. It was concluded that the

CME algorithms are able to operate even though the noise is from real-life measure-

ments.

Because the CME algorithms are blind, simple, low-complex and easy to implement

– in other words, ’almost perfect’ – an idea came to the mind: why not to use the CME

algorithms to concentrated signal detection? As diagnostic outlier detection methods,

the CME algorithms separate the noise-like samples and the samples caused by outliers,

aka, concentrated signals. So, it should have no matter whether the concentrated signal

is a desired signal or an interfering signal.

The above-mentioned idea was considered in the supplementary paper [144], which

presented the idea of using the CME algorithm as a NB signal detection algorithm. The

NB signal was a RC-BPSK signal with a bandwidth covering 5− 40% of the system

bandwidth. The frequency samples caused by the NB signal were defined in two dif-

ferent ways, using 3 dB and 10 dB bandwidths of the signal. It was assumed that the

received signal consisted only of the NB signal and the noise. Absolute values of signal

samples were used. The CME algorithm with a threshold parameter of 2.42 was used

for the NB signal detection. The number of samples was 512. The PD and PFA per fre-

quency sample vs. SNR were demonstrated through simulations. The simulation results

showed that the CME algorithm operated best when the signal bandwidth was narrow.
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Both the CME and FCME algorithms were used as NB signal detection algorithms

in Paper III. The paper compared a conventional notch filter, the CME and the FCME

algorithms in the sense of correctness of the thresholds and probability of detection.

The received signal consisted only of the NB signal and the noise. The narrowband

signal consisted of adjacent off-center tone signals with a bandwidth (BW) covering

5−95% of the receiver bandwidth. The phase of the narrowband signal was uniformly

distributed on [0,2π]. The frequency samples caused by the NB signal were defined us-

ing 3 dB bandwidth of the signal. The number of samples was 512. Absolute values of

signal samples were used. The threshold parameter was 2.42. The initial set size of the

FCME algorithm was 9.8%. A channelized radiometer was used for comparison. The

normalized mean square error (NMSE) between the theoretical and simulated thresh-

olds was used to measure the correctness of the thresholds. The NMSE of the notch

filter was poor even when the signal was very narrowband. The NMSE’s of the CME

and FCME algorithms were almost equal until the bandwidth of the narrowband signal

was approximately 50%. After that, the NMSE of the CME algorithm started to de-

grade. Instead, the NMSE of the FCME algorithm was good even when the bandwidth

of the narrowband signal was 80%. When the bandwidth of the narrowband signal was

95%, the NMSE of the FCME algorithm was poor because the initial set was not clean.

The probability of detection per frequency sample as a function of SNR was demon-

strated via simulations. The results for the CME and FCME algorithms are presented

in Figures 15 and 16. It was noticed that the FCME algorithm performed better than

the CME algorithm and the performance of the notch filter was the worst. The paper

concluded that the performance of the CME algorithm started to decrease when the sig-

nal bandwidth was more than 50% of the receiver bandwidth. Meanwhile, the FCME

algorithm performed well even when the signal bandwidth was 85% of the receiver

bandwidth. The performance of the conventional notch filter started to degrade after

the signal bandwidth was more than 20% of the receiver bandwidth.

It was noticed in Paper III, that the FCME algorithm is better suited for detection

than the CME algorithm. Although having good detection probabilities, the FCME al-

gorithm was noticed not to be directly applicable for signal detection purposes. That

was because statistical information such as bandwidth, center frequency and the number

of detected signals is almost impossible to estimate properly due to problems in thresh-

old setting that yield additional false alarms and needless signal separation. Something

had to be done to fix the problem. Both low and high thresholds have good and poor

detection properties. But how do they work together? This is discussed in more detail
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Fig. 15. Simulated PD vs. SNR. The CME algorithm and the channelized radiometer

(envelope detector) with signal BWs 50%, 60%, 70% and 80% of the receiver BW.

(III, published by permission of IEEE).
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in Section 3.4, where one solution to this problem is given.

The threshold parameter values calculated from Eq. (8) and Eq. (12) are approxi-

mations which are used regardless of the number of samples and the size of the initial

set. However, when the number of samples is small, the obtained false alarm does not

equal to the desired false alarm. As a consequence, the false alarm rate is not properly

controlled. The correctness of the false alarm rate is important in many applications.

For example, in cognitive radios, a too high false alarm rate may lead to inefficient

spectrum usage. For that reason, accurate false alarm probabilities were derived in Pa-

per IV. The FCME algorithm and forward cell-averaging (CA) method [73, 76] were

considered. Accurate false alarm probabilities of the FCME algorithm and, thus, the

forward CA method were analytically studied. Accurate values of the threshold param-

eter as a function of number of signal samples N and the size of initial set were derived.

First, the noise-only case was studied. The false alarm probabilities for the FCME and

joint forward CA methods are presented in Figure 17 in the case of magnitude-squared

values which correspond to the chi-squared distribution with 2 degrees of freedom. The

simulations confirmed that the use of derived accurate threshold parameter values im-

proved the false alarm probabilities, especially when N is small. It can be concluded

that when the number of samples is at least 512, the desired false alarm probability

PFA,DES ≤ 10−3, and the threshold parameter is calculated from Eq. (8), the desired and

obtained false alarm rates are almost equal. In the presence of independent, noncentral

chi-square distributed Rayleigh fading outliers covering approximately 31−62% of the

whole bandwidth, the obtained false alarm probabilities for the FCME algorithm were

higher than the desired ones, even though accurate threshold parameter values were

used. Instead, with the forward CA method the obtained and desired false alarm proba-

bilities were approximately in the same level. However, the FCME algorithm had better

detection rates than the forward CA method. The more outliers, the more the FCME

algorithm outperformed the forward CA method.

The threshold parameter values in the case of chi-squared distribution with more

than 2 degrees of freedom were also derived in Paper IV. In the noise-only case, the

derived threshold parameter values had more precise false alarm probability when com-

pared to the original threshold parameter values. It was noticed that by increasing the

degrees of freedom, the effectiveness of the studied methods improved. In the presence

of outliers, required SNR values for a given detection probability (0.9 and 0.99) were

studied. It was noticed that in the studied cases, the required SNR values for the for-

ward CA method were approximately 0.3− 1.5 dB larger when compared to the ideal
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Desired false alarm probability PFA,DES

10−5 10−4 10−3 10−2

N I A B A B A B A B

16 4 22.6 1.17 9.00 1.25 5.16 1.5 5.03 2.47

16 8 1.14 1.04 1.20 1.09 1.42 1.24 2.26 1.87

· · · · · · ↓ Region with acceptable performance ↓ �↓ Poor ↑
32 12 1.01 1.01 1.03 1.03 1.11 1.10 1.62 1.51

64 12 1.0 1.0 1.0 1.0 1.1 1.1 1.4 1.4

128 16 1.0 1.0 1.0 1.0 1.1 1.1 1.3 1.3

128 32 1.0 1.0 1.0 1.0 1.1 1.1 1.3 1.3

256 16 1.0 1.0 1.0 1.0 1.1 1.1 1.3 1.3

512 16 1.0 1.0 1.0 1.0 1.1 1.1 1.3 1.3

Fig. 17. False alarm probabilities in the noise-only case. A: The FCME algorithm

and B: The forward CA method. I denotes the size of the initial set. Results are

relative to the desired PFA,DES, i.e., 1 means that the desired false alarm probability

is achieved. (IV, published by permission of IEEE).

NP detector.

Recently, the CME algorithms were analyzed in Paper V, and in the supplementary

paper [148]. The presented analysis is based on the signals shape in the considered

domain, e.g., spectrum in the frequency domain. The goal was to provide simple tools

for checking whether a signal is detectable or not without the need for time-consuming

simulations. The signal samples were re-ordered in a descending order according to

their heights for the purposes of the analysis. The adjacent signal samples with equal

heights were subsequently divided into different sets (lobes), so that one lobe consisted

of signal samples with equal heights as illustrated in Figure 18. Because of the reorder-

ing, the first lobe consisted of the signal samples with the highest heights, as the last

lobe consisted of the signal samples with the lowest heights. Based on Eq. (1) and using

a geometrical approach to define the average sample mean, the limits of detection were

derived for both the CME algorithms in terms of the heights of the lobes and the used

threshold parameter (or threshold multiplier). In addition, different detection alterna-

tives were also derived. From the results of the analysis, practical SNR limits at which

the CME algorithms are able to find signals with different widths were derived. The

detection limits are presented in Tables 3 and 4. It was noticed that the required SNR
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the ith signal lobe. (V, published by permission of IEEE).

Table 3. The values of SNR [dB] when the signal detection via the CME algorithm is

possible with different values of threshold parameter TCME and relative bandwidth

of the signal β1. The signal has only one lobe. SNR is defined per total bandwidth.

TCME β1 = 0.05 β1 = 0.1 β1 = 0.2 β1 = 0.3 β1 = 0.4

2.3026 >−9 dB >−6 dB >−2 dB > 2 dB > 8 dB

4.6052 >−5 dB >−1 dB > 10 dB −∗ −∗

6.9078 >−3 dB > 3 dB −∗ −∗ −∗

∗ detection is not possible

values for both CME algorithms are almost equal when the signal is very narrowband.

When the bandwidth of the signal gets wider, the CME algorithm requires larger SNR

for the detection when compared to the FCME algorithm. When the bandwidth of the

signal was more than 40% of the total bandwidth, the CME algorithm does not operate

at all. The obtained limits of detection were confirmed with simulations using random

and OFDM signals. It was noticed that the analysis predicts well the detectability of

signals.
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Table 4. The values of SNR [dB] when the signal detection via the FCME algorithm

is possible with different values of threshold parameter T and relative bandwidth

of the signal β1. The signal has only one lobe. SNR is defined per total bandwidth.

T β1 = 0.05 β1 = 0.1 β1 = 0.2 β1 = 0.3 β1 = 0.4

2.3026 >−9 dB >−6 dB >−3 dB >−2 dB > 0 dB

4.6052 >−6 dB >−3 dB > 0 dB > 2 dB > 3 dB

6.9078 >−5 dB >−2 dB > 1 dB > 3 dB > 4 dB

3.3 The transform selective interference suppression

algorithm

While some interfering signals are best excised in the time domain, some are best ex-

cised in the frequency or some other domain. The optimal domain depends on the signal

characteristics. Signals may be "broadband" in one domain but "narrowband" or con-

centrated in another domain. The CME algorithms discussed earlier in this chapter are

able to excise interfering signals only in the considered domain, which is usually either

the time domain or the frequency domain. The problem is that this type of IS methods

are useless against interfering signals that are not "narrowband" or concentrated in the

considered domain; for example the FCME algorithm in the time domain is effective

against impulsive interfering signals while it is useless against other kind of interfering

signals.

The transform selective interference suppression algorithm (TSISA) method is a

computationally simple bank-type method for suppressing different types of time -

varying and non-stationary interfering signals [3]. The TSISA method employs several

transforms and makes the selection between the domains before the IS, which reduces

the computational complexity considerably compared to other filter bank methods, for

example, [17]. The most suitable transform is selected based on the simple compression

gain (CG) metric. The IS is performed by the FCME algorithm. The block diagram of

the TSISA is illustrated in Figure 7 c) on page 36.

The TSISA computes a number of transforms in parallel and selects the most suit-

able one for IS. The considered transform domains are the time domain, the ordinary

Fourier domain and the fractional Fourier domain. However, an arbitrary number of

transform domains may be used. The fractional Fourier transformation (FrFT) is a

generalization of the ordinary Fourier transformation with an order parameter a [100].

When a = 1, the FrFT corresponds to the ordinary FT. When a = 0, the FrFT is the orig-
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inal signal itself in the time domain. So, the FrFT is able to make the transform to any

intermediate domain between the time and frequency domains. The FT has sinusoids

as basis functions. As a consequence, stationary NB interference is best excised in the

frequency domain. The FrFT has frequency sweeping sinusoids, chirps, as basis func-

tions. Therefore, it is theoretically possible to perfectly localize chirp interference in

the FrFT domain. However, this requires that the order parameter of the FrFT has to be

chosen properly. The optimal order depends on the sweep rate of the interfering signal.

The order of the FrFT is defined by estimating the bandwidth of the interfering signal

using the FCME algorithm in the FT domain. Hence, the FT and its CG are calculated

before the calculation of the FrFT.

The used transform is selected based on the compression gain [100]

̺=
1
N ∑N

n=1 |r(n)|2
N

√

∏N
n=1 |r(n)|2

, (13)

where N and r(n) are the used block length and the received signal sample at the ap-

propriate transform domain, respectively. Theoretically, the CG is the ratio of the arith-

metic mean Ma and the geometric mean Mg of the signal sample powers. The arithmetic

mean is always larger than or equal to the geometric mean [13], so ̺ ≥ 1. In its loga-

rithmic form, the CG can be expressed as [161]

ln̺= ln |r(n)|2 − ln |r(n)|2, (14)

where (·) denotes the sample mean. Because ̺≥ 1, it follows that ln̺≥ 0 and ln̺= 0

only if all the data values are equal.

The CG has been used previously, for example, in image processing, where it is

known as a coding gain. In image processing, the CG measures how well a transform

can compress the image data. In IS, the CG measures how well the interfering signal is

compressed in the transform domain. The more the energy is concentrated in a smaller

number of samples, the larger the CG is [3, 69] and the easier it is to detect and remove

the interfering signal as already seen. It can be assumed that the concentrated energy is

mostly from the interference, because the harmful interference is usually significantly

stronger than the information signal or the noise.

The flatness of the spectrum has an influence on the CG. When the spectrum is to-

tally flat, all the samples r(n) have equal values, and the CG= 1. In such a case, the

transform is not able to compress the signal. When the spectrum is not flat, Ma > Mg
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and correspondingly CG> 1. Unlike in the flat case, the transform is capable of com-

pressing the signal. [13]

The performance of the TSISA [3] was considered in Paper I. Therein, the BER per-

formance comparisons of the TSISA to pure FCME algorithm based IS and recursive

least squares (RLS) based IS were presented in every considered transform domain. The

received signal consisted of a DS spread spectrum wideband information signal, inter-

fering signal and noise. Three types of interfering signals – impulses, multiple sinusoids

and chirps – were considered. Impulses had random or constant pulse repetition rate,

and the frequency-offset of the sinusoidal interference was random. The chirp swept

the predetermined frequency band during one bit duration. Three transform domains

for IS were considered: the time domain, the Fourier domain and the fractional Fourier

domain. With both the Fourier transforms, a 4-term Blackman-Harris window was used.

The SNR was set to 15 dB and the ISR to 30 dB per interfering signal. Absolute values

of signal samples were used. The FCME algorithm with threshold parameter 2.97 and

with the initial set size of 10% was used. The length of the RLS filter was 8 taps. Both

the domain selection process and BER were evaluated. It was assumed that the time

domain is the most suitable domain for impulsive interference, the Fourier domain is

the most suitable domain for sinusoids, and the fractional Fourier domain is the most

suitable domain for chirp interfering signals.

In the case of constant and random impulse interference, the TSISA was able to

select the time domain even when the contamination ratio was approximately 80% of

the samples. The BER performance of the TSISA was superior when compared to the

performance of the RLS filter as can be seen from Figures 19 and 20. The BER per-

formance of the TSISA and that of the time domain FCME algorithm were almost in

the same level. In the case of sinusoids, the TSISA started to select the Fourier domain

when ISR was 10 dB, or when the number of sinusoids was 3. It was noticed that when

there were only few sinusoidal signals, the bandwidth was narrow, and the order of the

FrFT was close to one, corresponding the FFT. For that reason, the selection rate of the

FrFT was almost equal to that of the FFT. The BER results for sinusoidal signals are

presented in Figures 21 and 22. The BER performance of the TSISA was equal to that

of the Fourier domain FCME algorithm but better than that of the RLS filter regardless

of the number of sinusoids. When the interfering signal was a chirp, the TSISA started

to select the FrFT domain when the ISR was 15 dB, or when the relative bandwidth of

the chirp was 20%. This is because the selection rates of the FrFT and FFT are almost

equal when the bandwidth of the chirp is narrow. At low ISR, the signal is so weak
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Fig. 19. BER vs. contamination ratio with constant impulse interference. ISR=30

dB. (I, published by permission of IEEE).
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Fig. 20. BER vs. contamination ratio with random impulse interference. ISR=30

dB. (I, published by permission of IEEE).

64



0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

ISR [dB]

B
E

R

Time domain IS
FrFT
RLS 8 tap
TSISA
FFT

Fig. 21. BER vs. ISR with sinusoidal interference. The number of sinusoids is five.

SNR=15 dB. (I, published by permission of IEEE).

2 4 6 8 10 12

10
−4

10
−3

10
−2

10
−1

10
0

Number of Sinusoids

B
E

R

Time domain IS
FrFT
RLS 8 tap
TSISA
FFT

Fig. 22. BER vs. number of sinusoids. SNR=15 dB and ISR=30 dB. (I, published

by permission of IEEE).

65



0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

ISR [dB]

B
E

R

Time domain IS
FrFT
RLS 8 tap
TSISA
FFT

Fig. 23. BER vs. ISR with chirp interference. Chirp sweeps the whole frequency

band in one bit duration. SNR=15 dB. (I, published by permission of IEEE).

that the FCME algorithm does not find it. In addition, at large ISR value, raising side-

lobes decrease the performance. The BER performance of the TSISA was better than

that of the RLS filter when the ISR was 20 dB or more (Figure 23). Again, the perfor-

mance of the TSISA and FrFT domain FCME were almost equal. The domain selection

procedure of the TSISA in the presence of above-mentioned interfering signals has also

been considered in the supplementary paper [141].

According to the simulation results it can be concluded that the TSISA has an excel-

lent BER performance. The performance of the TSISA was superior to the RLS based

IS, and a pure FCME algorithm also outperformed the RLS based IS. In addition, the

performance loss between the TSISA and the FCME interference suppression in the

best suitable domain was small. It was also observed that the computational complexity

of the TSISA was low. It can be concluded that when there exists interfering signals

that are concentrated in different transform domains, or it is not known in which trans-

form domain the interfering signals are the most concentrated, the TSISA could be a

reasonable choice for IS. The question which came up was that could there be any other

simple transform selection methods?
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Fig. 24. Interference suppression with transform selection (TS). W denotes a win-

dow.

3.3.1 Other transform selection metrics

In addition to the compression gain, the domain selection in the TSISA can be done

using, for example, percentiles (PRC), maximum or coefficient of variation (CV) (Paper

II, supplementary paper [147]). The block diagram of this extended TSISA system is

illustrated in Figure 24.

A PRC is a value that indicates the percentage of the values which are below or

equal to the PRC. For example, 25th percentile means that 25% of the values are below

it. The method operates as follows. First, the energies of samples are rearranged in an

ascending order in every transform domain [106]. The number of extra sorting opera-

tions is M−1, where M denotes the number of transform domains. Note that the sorting

has already been done in the Fourier domain because of the FCME algorithm, so that

does not increase additive sorting. Then, the 25% PRCs (quartile) are calculated. The

sum of energies have to be normalized in all the transform domains that use windowing

because it reduces the energy. The normalization coefficient ρ is given by

ρ ∑ |r f (n)|2 = ∑ |rt(n)|2, (15)

where rt(n) and r f (n) are the time domain samples and windowed samples in the trans-

form domain, respectively. From that, ρ may be written as

ρ =
∑ |rt(n)|2
∑ |r f (n)|2

. (16)
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Because it can be assumed that most of the energy is from the interfering signal,

the relatively largest value in each transform domain (maximum) can also be used as a

metric for selecting the best transform domain for IS. The relatively largest value, i.e.,

the ratio of the largest value to the smallest value, can be expressed as

max
k=1,...,M

⎛

⎝

max
n=1,...,N

(|rk(n)|2)

min
n=1,...,N

(|rk(n)|2)

⎞

⎠ . (17)

This method is called the maximum (metric) hereafter.

The coefficient of variation measures the deviation of a variable from its mean.

When the variation is small, also the CV is small. It does not depend on the mean

intensity. The CV can be expressed as [161]

ǫ= σ̂/|r(n)|2, (18)

where

σ̂ =

√

1

N −1

N

∑
i=1

(|r(n)|2 −|r(n)|2)2 (19)

is the estimate of the standard deviation. In other words, the CV is the ratio of the stan-

dard deviation and the mean of the data. The transform domain with the largest CV is

chosen.

The percentile was first used with the FCME algorithm in the supplementary pa-

per [78], where the domain selection was performed between the time and frequency

domains. An extension of the TSISA was considered in Paper II. There, two novel

transform domain selection methods, namely the maximum and the CV, were proposed

and evaluated. The percentile and CG were used as points of comparison. The system

was assumed to consist of a wideband BPSK DS spread spectrum signal with Gold

spreading codes, an interfering signal and Gaussian noise. Sinusoidal, impulsive, chirp

and BPSK signals were used as interfering signals. Two or three transform domains for

IS were considered, namely, the time domain, the Fourier domain, and, in some simu-

lations, the fractional Fourier domain. ISR was set to 30 dB whereas SNR was set to 5

or 15 dB. The frequency domain samples were calculated with the windowed 64-point

FFT. The 4-term Blackman-Harris window was used. Absolute values of signal samples

were used. The FCME threshold parameter was chosen to be 2.97. The uncoded BER

performance of the considered methods was evaluated via simulations. When the selec-

tion was done between the time and Fourier domains, impulses, multiple sinusoids and
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RC-BPSK signals were considered. In the case of impulsive interference and SNR=15

dB, the BER as a function of the contamination ratio was studied. The CG and PRC had

almost equal performance. CV performed slightly worse as the performance of the max-

imum was the worst. The CG, PRC and CV are able to operate even when slightly more

than half of the samples are corrupted. When there were multiple sinusoids present and

SNR=15 dB, the BER as a function of the number of sinusoidal signals was simulated.

The maximum performed the worst. Instead, all other methods offered decent perfor-

mance, the BER less than 10−3, when there were less than seven sinusoids. In the case

of RC-BPSK signal with 10% bandwidth and SNR=15 dB, the BER as a function of

ISR was considered. The FCME algorithm started to operate properly when ISR=10

dB. It was noticed that the CG and CV had the best performance while the maximum

had the worst performance. In the case of the CG, CV and the PRC, the BER was less

than 10−3 when ISR was less than 40 dB.

When the selection was done between all the three domains, impulses, multiple si-

nusoids and chirps were considered. It was noticed that in the case of impulses and

multiple sinusoids, the BER results were almost equal when compared to the BER re-

sults where the domain selection was done between only the time and Fourier domains

(Figures 25 and 26). In the case of chirp interference, the BER as a function of ISR was

studied. The results are presented in Figure 27. The FCME algorithm started to operate

properly right after ISR=15 dB. This is because at lower ISR, the signal is so weak that

the FCME algorithm does not find it. In addition, at large ISR value, raising sidelobes

decrease the performance. The maximum performed the worst, as CV, CR and PRC

offered almost equal performance. The BER less than 10−3 was achieved when ISR

was between 20 and 40 dB and SNR=15 dB.

It was also noticed that when the SNR=5 dB, the BER was in all of the studied

cases at its best 10−2. According to the simulations, the CG was able to offer the best

performance in most of the cases. However, the performance of the CV was almost

as good as the performance of the CG. The maximum method performed the worst.

The simulations indicated that the proposed CV-based domain selection provided good

performance against all studied interfering signals. In addition, it was noticed that the

CV is simple to implement and has a low computational complexity. The domain se-

lection process of the proposed methods was considered in the supplementary paper

[147]. Therein, it was noticed that CV and CG had almost equal performance, and the

maximum method performed the worst.
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30 dB. (II, published by permission of IEEE).
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3.4 The localization algorithm based on

double-thresholding

The localization algorithm based on double-thresholding (LAD) method was proposed

in Paper VI, and in the supplementary paper [143]. The purpose of the LAD method is

to reduce the problems of falsely separated and detected signals. The LAD method is

based on the usage of two thresholds, the upper and lower thresholds. The LAD thresh-

olds can be calculated with the FCME algorithm, for example. The FCME algorithm is

run twice with two threshold parameters, which are called the upper (T1) and lower (T2)

threshold parameters, T1 > T2, to have two thresholds, which are called the upper (Tu)

and lower (Tl) thresholds. After the threshold calculation, the LAD method groups the

adjacent samples above the lower threshold Tl into the same group called a cluster. The

largest element of a cluster is compared to the upper threshold. If it exceeds the upper

threshold Tu, it is decided that the cluster corresponds to a concentrated signal. If the

largest sample is below the upper threshold, it is decided that the cluster corresponds to

the noise and possible wideband information signal.

Blind SNR estimation discussed, for example, in [8, 85, 101, 121], is useful when

a priori knowledge of the signal(s) and/or the noise is not available. The LAD method

can be extended to estimate the SNR values of several unknown narrowband signals as
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illustrated in Figure 28. After running the LAD method, there are m′ estimated sets of

narrowband signals and one noise set. The SNR estimate for the kth estimated narrow-

band signal is then given by

γ̂k =

1
Nk

∑ |Ik(n)|2
1
K ∑ |W (n)|2

=
P̂i

k

P̂w

, (20)

where {Ik},k = 1, · · · ,m′, means the received frequency domain samples belonging to

the kth estimated narrowband signal set, Nk is the number of those samples, {W (n)}
is the received frequency domain samples belonging to the noise + possible wideband

signal set, and K is the noise set size. The complexity cost of the SNR calculation is

low, because all the samples are already in the Fourier domain and also squared.

The LAD method has several advantages. First, it does not need a priori knowledge

of the signal to be detected, because the threshold calculation via the FCME algorithm

is done blindly. Second, the computational complexity of the LAD method is low. This

is due to the simple threshold computation. There are also some problems. The LAD

method is not always capable of separating two adjacent signals and it is not able to

localize weak signals accurately. High sidelobes also cause problems when estimating

the (band)width of a signal.

A flowchart of the LAD method is presented in Figure 29. In Figure 30, the thresh-

old setting of the LAD method is compared to that of the FCME algorithm and the

advantages of the LAD method are illustrated.

Fig. 28. A blind SNR estimation scheme.
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Fig. 29. The localization algorithm based on double-thresholding (LAD). The

thresholds can be calculated with the FCME algorithm, for example. "Cluster is

ignored" means that the cluster corresponds to noise (and possibly a wideband

signal). "Cluster is accepted" means that the cluster corresponds to a concen-

trated signal.
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Fig. 30. A RC-BPSK signal in the frequency domain. (a) The FCME algorithm with

threshold parameters 2.97, 2.42 or 1.95. The uppermost threshold finds 5 signals,

the middle threshold finds 6 signals and the lowest threshold 8 signals. (b) The

LAD with upper (threshold parameter 2.97) and lower (threshold parameter 1.95)

thresholds. The LAD finds 8 groups, i.e., peaks above the lower threshold, but

only one group is accepted as a signal, i.e., if a peak of the cluster exceeds the

upper threshold. (VI, published by permission of IEEE)
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3.4.1 The LAD with normalized thresholds

The LAD threshold calculation can be simplified as proposed in Paper VIII. In the LAD

NT method, the threshold is calculated only once, and the upper and lower thresholds

are derived from that. This reduces the computational complexity. First, one threshold

is calculated using some threshold parameter Tx, T2 ≤ Tx ≤ T1. Thus, the last threshold

is Tnew = Txζnew, where ζnew is the mean after the last iteration. Second, two fixing

coefficients

Pup = (T1/Tx)a (21)

and

Plo = (T2/Tx)b, (22)

a ≥ 1 and b ≤ 1, are used to get the upper and lower thresholds

T ′
u = TnewPup (23)

and

T ′
l = TnewPlo. (24)

Coefficients a and b are used to correct the mean values. The mean of the set with

less samples is smaller than the mean of the set with more samples because the samples

are sorted in an ascending order according to their energies [118]. However, without

coefficients a and b, ζu = ζnew and ζl = ζnew which are not true. Thus, a proper choice

for a and b is a = E[ζu/ζnew] and b = E[ζl/ζnew]. However, the means ζu and ζl are

usually unknown. So, a and b can be selected to be, for example, the statistical means

in extensive computation simulations. The means depend on the actual realizations, so

Tu and T ′
u as well as Tl and T ′

l do not exactly correspond to each other. It follows that

the desired and obtained false alarm rates are not equal. For that reason, the NT method

is a so called ad hoc method. However, the thresholds are close enough as noticed in

VIII.

The threshold parameter Tx can be selected in different ways. In case (a), the lower

threshold parameter T2 is used as a threshold parameter Tx. Thus, Tl = T ′
l . In case

(b), the used threshold parameter Tx is in the middle of the upper and lower threshold

parameters, i.e., Tx = (T1 +T2)/2. The LAD NT method is illustrated in Figures 31 and

32.
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Fig. 31. The LAD NT method. (a) The upper threshold is calculated from the lower

threshold. (b) The upper and lower thresholds are calculated from a threshold

which is in the middle of the thresholds.
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Fig. 32. LAD with normalized thresholds (LAD NT). The original LAD method calcu-

lates the upper (Tu) and the lower (Tl) thresholds separately. Instead, the LAD NT

method calculates only one threshold, Tnew, and derives the corresponding upper

and lower thresholds by multiplying the threshold Tnew. [149]
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Fig. 33. LAD with adjacent cluster combining (LAD ACC). The original LAD method

separates the signal into two parts because of the occasional signal sample below

the lower threshold during the signal. Instead, the LAD ACC method makes the

decision that there is only one signal. [149]

3.4.2 The LAD with adjacent cluster combining

The performance of the original LAD method in the sense of estimating the correct

number of signals can be enhanced. In the original LAD method and especially at low

SNR values, the signal can be separated into several signals due to the fluctuation as can

be seen in Figure 33. In spectrum sensing applications, this phenomena may lead to the

illusion of unoccupied frequencies inside the signal, as in signal detection, the parame-

ter (bandwidth, etc.) estimation of the signal fails. This problem can be solved using the

LAD with adjacent cluster combining (ACC) proposed in Paper VIII. The LAD ACC

method uses an extra condition after the LAD processing. Therein, if accepted clusters

are separated only by at most n samples below the lower threshold, these accepted clus-

ters are decided to be from one signal. So, these clusters and separating samples are

joined together into one signal. In other words, two distinct signals can be separated

if there is n+1 or more adjacent samples between the signals that are below the lower

threshold. The value n can be, for example, 1 or more.
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Fig. 34. Illustration of the 2-D LAD method. Time is in the vertical axis and fre-

quency in the horizontal axis. Dark blocks present the detected signal samples

and white blocks present the missed signal samples inside the signal and noise

samples outside the signal. p = 4 and r = 7. (a) LAD results for 7 consecutive

time intervals. (b) Combined results (the 2-D LAD method). For example in col-

umn 11, there are 3 missed signal samples (white blocks) and 4 signal samples

(dark blocks) in (a). So, the 2-D LAD decides that the frequency domain sample is

caused by the signal in (b). (Revised from IX).

3.4.3 Two-dimensional LAD

The problem with the LAD ACC method is that the parameter n has to be rather large

to avoid separating the signal. This may lead to a situation where two closely separated

signals may be classified as one single signal. To overcome this problem, an extension

of the LAD method that utilizes both time and frequency domain processing was pro-

posed in Paper IX. The proposed two-dimensional (2-D) LAD method that coincides

with binary detection in radar systems [124] helps to reduce the number of missed sig-

nal samples, i.e., samples from the signal that are below the threshold. That is, after

the original LAD processing in the frequency domain, time domain processing is per-

formed: r consecutive time intervals are considered to decide if the samples are caused

by a signal or not. If a specific frequency domain sample is reported to belong to the

signal at least p times out of r time instants, that frequency domain sample is decided

to belong to the signal (Figure 34). A sliding window is used. It means that the first

examination period consists of time intervals 1, . . . , p, the second examination period
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Table 5. The LAD-based NB signal detection methods. T1 is the upper and T2 is the

lower threshold parameter.

LAD two-threshold based detection method: T1,T2 original

LAD ACC LAD with adjacent cluster combining: T1,T2 enhanced version

LAD NT LAD with normalized thresholds simplified version

-case (a) One threshold parameter, Tx = T2

-case (b) One threshold parameter, Tx = (T1 +T2)/2

2-D LAD two-dimensional LAD with time domain enhanced version

processing: T1,T2

consists of time intervals 2, . . . , p+1, etc. The 2-D LAD method is illustrated in Figure

34 where a simplified example is presented. There are 27 frequency domain samples

(columns), and LAD results for 7 consecutive time intervals (rows) are considered. In

the 2-D LAD method, p = 4 and r = 7. The signal is located at frequencies 9− 17.

Frequencies 1−8 and 18−27 denote noise samples. It can be seen from (a) that after

the original LAD processing, there are missed signal samples (white blocks) among the

signal samples 9−17 at every time instant. For example, at time instant one (first row),

there are 4 missed signal samples inside the signal. Because every column 9−17 con-

sisted of at least 4 signal samples, the 2-D LAD method decided that the frequencies

9−17 consist of a signal (b).

In Table 5, the LAD, LAD ACC, LAD NT and 2-D LAD methods are presented.

A flowchart of the LAD, LAD ACC, LAD NT and 2-D LAD methods is presented in

Figure 35.

The performance of the LAD methods has been studied in several papers. The LAD

method was proposed and its detection performance was considered in the supplemen-

tary paper [143] and Paper VI. Both the BER performance and the number of correctly

detected signals were studied in the Fourier domain in Paper VI. The FCME algorithm

was used as a point of comparison. In the simulations, there was a BPSK-DS spread

spectrum signal among the NB signals and noise. A 4-term Blackman-Harris window

was used. The simulated NB signals were RC-BPSK signals and 1 or 3 sinusoidal sig-

nals. In the case of multiple sinusoids, there was a fixed signal separation of 15% or

30% between the center frequencies of the sinusoids. Absolute values of signal samples

were used. The LAD threshold parameters were selected to be 1.95 (PFA,DES = 5%) for

the lower threshold and 2.97 (PFA,DES = 0.1%) for the upper threshold. The FCME

algorithm was used as a point of comparison with the threshold parameter 1.95, 2.42
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Fig. 35. LAD, LAD with normalized thresholds (NT), LAD with adjacent cluster com-

bining (ACC) and two-dimensional (2-D) LAD. "Cluster is ignored" denotes that the

cluster corresponds to noise (and possibly a wideband signal), as "Cluster is ac-

cepted" denotes that the cluster corresponds to a signal.
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Fig. 36. The LAD and FCME methods. Number of correctly detected signals vs.

ISR with RC-BPSK signal. SNR= 15 dB. (VI, published by permission of IEEE).

or 2.97. In the RC-BPSK signal scenario, the ratio of the correctly detected number

of signals was simulated as a function of ISR (Figure 36). In addition, the bandwidth

estimation success rate as a function of the relative bandwidth of the RC-BPSK signal

was simulated. The LAD was able to determine the correct number of NB signals even

in 90% of the cases. By comparison, the original FCME algorithm defined the correct

number of NB signals at its best only in approximately 60% of the cases. However, with

a large ISR, the bandwidth definition was not accurate because of the large sidelobes

that partially rise above the threshold. At low ISR values, the signal is so weak that the

methods are not able to find it. Because the LAD method is able to find weaker signals

than the FCME algorithm, the LAD method starts to operate properly at a lower ISR

value than the FCME algorithm. In the BER simulations, the BER was simulated as a

function of SNR and ISR. The performance of the LAD method was almost equal to

that of the FCME algorithm with threshold parameter 2.42 or only slightly worse. In

the sinusoidal signal scenario, the ratio of the correctly detected number of signals was

simulated as a function of ISR (Figure 37). The LAD method clearly outperformed the

FCME algorithm. The performance of the LAD method in the means of a correctly

detected number of signals was excellent. When 15% signal separation was used, the

sinusoids fused together at large ISR values causing performance loss. As in the pre-
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Fig. 37. The LAD and FCME methods. Number of correctly detected signals vs.

ISR with three sinusoidal signals. SNR= 15 dB. (VI, published by permission of

IEEE).

vious case, the LAD method was able to find the correct number of NB signals more

accurately than the FCME algorithm. In the BER simulations, the BER was simulated

as a function of ISR (Figure 38). Again, the performance of the LAD method was al-

most equal to or only slightly worse than that of the FCME algorithm with threshold

parameter 2.42.

It was concluded that the LAD method has a good performance in terms of de-

tecting the correct number of signals. In addition, the BER performance is good. In

the bandwidth estimation, large sidelobes cause problems, and, thus, some performance

degradation. It was also noticed that the LAD method is not able to separate two closely

spaced signals or weak signals accurately. The LAD method has also been considered

in the supplementary paper [143]. Therein, a DS spread spectrum signal was within the

noise. The LAD method was performed in the Fourier domain. The number of correctly

detected signals was studied in the presence of RC-BPSK and multiple sinusoidal sig-

nals. It was concluded that the LAD method outperformed the FCME algorithm.

The LAD method was extended to compute SNR values of several unknown nar-

rowband signals in Paper VII. Both the SNR and bandwidth estimation accuracies were

studied in the Fourier domain. The bias and NMSE of the SNR were used to mea-

sure the performance of the extended method. There were at most five off-center si-
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Fig. 38. The LAD and FCME methods. BER vs. ISR, with one sinusoidal signal.

SNR= 15 dB. (VI, published by permission of IEEE).

nusoidal or at most two BPSK signals with bandwidths of 2− 10% of the system’s

bandwidth and noise. The received samples were magnitude squared. The LAD pa-

rameters were selected to be 13.814 (PFA,DES = 10−6) for the upper threshold and 2.66

(PFA,DES = 7 ·10−2) for the lower threshold. This selection seemed to be a good choice

and this assumption was analytically confirmed later in the supplementary paper [77].

There were 1024 samples and the FFT length was 1024. No windowing was used. In

the bandwidth estimation simulations, one or two RC-BPSK signals were considered

with bandwidths 5 or 10% of the system’s bandwidth. The numerical bandwidth esti-

mation results are presented in Table 6. Figure 39 presents one bandwidth and SNR

estimation example for single realization. It was noticed that at low SNR values, the

LAD method had problems when defining the correct number of BPSK signals because

of the separation of the signal. Instead, large SNR values raise the sidelobes thus lead-

ing to too wide estimated bandwidths. The latter phenomena is illustrated in Figure 40,

where NMSE of the estimated noise mean vs. SNR is presented in the case of different

signals. In the simulations it was noticed that the LAD method is able to estimate the

SNR values well. However, at low SNR values, NMSE is large. In addition, with large

SNR values, the number of estimation errors increases because of the rising sidelobes.

The LAD method was also tested with real-life radio channel measurement data

where the noise was from the reality instead of being computer-generated. There were
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Table 6. Bandwidth estimation accuracy of the LAD method.

Estimated BWs

SNR [dB]

0 5 10 15 20 25

BPSK, BW 5% 5.0 5.6 6.1 6.9 8.6 11.9

BPSK, BW 10% 7.7 10.3 11.3 11.9 12.7 14.6

BPSK #1, BW 5% 4.8 5.0 5.8 6.5 7.9 9.8

BPSK #2, BW 5% 3.9 4.7 5.9 6.6 7.8 10.0

BPSK #1, BW 10% 5.9 6.6 9.1 10.0 11.4 12.5

BPSK #2, BW 10% 3.6 6.3 8.6 10.5 11.2 12.5
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Fig. 39. THe LAD method, one bandwidth and SNR estimation example based

on single realization. Two RC-BPSK signals. Actual BWs 8 and 2%, estimated

BWs 8.5 and 3.2%. Actual SNR=10 and 7 dB, estimated SNR=9.7 and 6.4 dB. (VII,

published by permission of IEEE).

some realizations (measured "snapshots") from the data measured using the Elektrobit

PropSound multidimensional radio channel sounder [29] in the city of Oulu, Finland,

in autumn 2004 at 2.45 GHz with 200 MHz receiver bandwidth [70]. Because the

measured signals were unknown to the receiver and clean data was not available as a

reference, only some example realizations were presented as an example. Statistical

analysis was not possible. However, it was noticed that both the bandwidth and SNR

estimation realizations seem to be successful even though the noise is from real-life
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Fig. 41. The LAD method. BW and SNR estimation example for real-life radio

channel measurement. DC-component at 2.45 GHz. Estimated center frequencies

2.45, 2.5 and 2.53 GHz. Estimated BWs 0.19, 15.04 and 9.77 MHz. Estimated SNR

values 30.74, 18.39 and 15.97 dB. (VII, published by permission of IEEE).
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radio channel measurements. One example "snapshot" is illustrated in Figure 41.

It was concluded that if the number of narrowband signals was estimated correctly,

the LAD method was able to estimate the SNR values reliably. The problem was that

even though the LAD method clearly outperformed the FCME algorithm as a detection

method, the detection capability of the LAD method still had a room for improvements.

The LAD ACC and NT methods were proposed in VIII. Therein, the LAD system

was also proposed to be used for spectrum sensing purposes in cognitive radios. The

proposed methods were studied in the Fourier domain in the presence of 2− 4 BPSK

signals in the AWGN channel. The BPSK signals had bandwidths of 2−10% of the sys-

tem’s bandwidth. The SNR per signal was between 0 and 25 dB. There were N = 1024

samples and the FFT length was also 1024. Windowing was not used. The received

samples were magnitude squared. The LAD parameters were selected to be 13.814

(PFA,DES = 10−6) for the upper threshold and 2.66 (PFA,DES = 7 · 10−2) for the lower

threshold. As mentioned earlier, this selection was justified later in the supplementary

paper [77]. In the case of the LAD ACC method, n = 1. The detection performance

as well as bandwidth estimation accuracy of the LAD ACC method were simulated.

The NT was applied to both the LAD and LAD ACC methods. When considering the

ratio of correctly detected number of signals as a function of SNR, it was noticed that

the LAD ACC was able to perform much better than the original LAD method. The

difference was the biggest with low SNR values. At its best, the LAD ACC method

was able to find the correct number of signals even more often than in 95% of the cases.

In contrast, the original LAD method was able to find the correct number of signals

at most in 60% of the cases. In addition, it was noticed that the LAD ACC started to

operate properly at a lower SNR level than the original LAD method. In most of the

cases, the LAD ACC method operated well when the SNR was 5 dB or more, whereas

the original LAD method required at least 10− 15 dB SNR. In general, the difference

in the performance was huge: when SNR was 5 dB or more, the best performance of

the original LAD method was still worse than the worst performance of the LAD ACC

method. In all the studied cases, NT only had a slight effect on the performance of

the LAD and LAD ACC methods, meaning that in practice, the threshold needs to be

computed only once instead of twice. Figure 42 presents the ratio of correctly detected

number of signals in the presence of two RC-BPSK signals relating to the discussion

above.

The bandwidth estimation accuracies were also studied. With low (0 dB) SNR

values, bandwidth estimation performance was not good. When the SNR was higher,
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Fig. 42. The LAD, LAD NT and LAD ACC methods. The ratio of correctly detected

signals vs. SNR. Two RC-BPSK signals with BWs 5%. (VIII, published by permis-
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1 1024
−120

−110

−100

−90

−80

−70

−60

−50

Frequency 

P
o

w
e

r 
S

p
e

c
tr

u
m

 M
a

g
n

it
u

d
e

Input

Detected signals

Fig. 43. The LAD ACC method. One bandwidth estimation example in the presence

of three RC-BPSK signals with SNR values 5dB. Actual BWs 2%, estimated BWs

2.9, 2.3 and 3.2%. (VIII, published by permission of IEEE).

the LAD ACC method was able to offer good bandwidth estimation accuracy. When
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Table 7. Bandwidth estimation accuracy of the LAD ACC method.

Estimated average BWs

SNR [dB]

0 5 10 15 20 25

2 BPSK signals, BWs 5% 4.9 5.5 5.9 6.6 7.8 9.8

2 BPSK signals, BWs 7% 5.7 7.0 7.6 8.2 9.1 10.4

2 BPSK signals, BWs 10% 1.7 9.4 10.9 11.7 12.4 13.4

3 BPSK signals, BWs 2% 2.3 2.6 3.1 4.1 5.5 7.4

3 BPSK signals, BWs 5% 4.6 5.4 5.9 6.5 7.3 8.6

4 BPSK signals, BWs 2% 2.3 2.6 3.1 4.0 5.2 6.6

the SNR was high, the bandwidth estimates were too wide because of rising sidelobes.

In Figure 43, one bandwidth estimation example is illustrated in the case of three RC-

BPSK signals. The bandwidth estimation results for the LAD ACC method are pre-

sented in Table 7. With NT, the estimates were approximately in the same level. It was

concluded that both the LAD ACC and NT methods had a good performance, and the

LAD ACC method is able to estimate the number of detected signals much better than

the original LAD method. However, the problem with the LAD ACC method is that

two signals located close to each other may be classified as one signal. In that case,

the estimation of signal parameters such as the number of signals and their bandwidths

fails.

The cognitive radio approach was also used in the supplementary paper [149],

where the LAD methods were also used for detecting signals from real-life radio chan-

nel measurement data [29, 70]. In the measurements, the signals were unknown to the

receiver. In addition, there were no clean reference measurements. For those reasons,

only some example results were presented. The main point was to show that the LAD

methods are also able to operate in the case when the noise is from the reality and, thus,

not computer-generated Gaussian. According to the considered examples it was noticed

that the LAD methods are able to detect measured real-life signals.

The performance analysis of the LAD method was considered in the supplementary

paper [77]. Therein, both the clean sample rejection and detection rates were analyzed.

According to the analysis, it was confirmed that the PFA values 10−6 and 7 ·10−2 used in

the Papers VII and VIII are good choices when defining the upper and lower thresholds,

respectively. It was noted that the PFA value in the case of the lower threshold has to be

as high as possible but less than 10−1. In other words, the lower threshold should be as

low as possible, but not too low or the sidelobes will rise above the threshold and the
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rejection rate will rise remarkably. It was also noticed that in the case of the LAD ACC

method, the setting of the lower threshold was not so critical a task.

Usually, the periodogram has been used with the CME and LAD methods. In the

supplementary paper [71], the LAD ACC method was used with the Welch spectrum

estimator. First, an asymptotic approach for obtaining the proper threshold parameter

for the FCME algorithm with the Welch spectrum estimator was presented. The thresh-

old parameter cannot be calculated based on chi-squared (Eq. 8) or Rayleigh (Eq. 12)

distribution, because the distribution of the desired signal is distorted due to window-

ing and overlapping. It was noticed that the asymptotic approach was sufficient when

the desired clean sample rejection rate was less than 0.01. Second, the performance of

the LAD ACC method in the presence of real-life signals was considered. The proba-

bility of detection as a function of SNR was studied. Laboratory measurements were

performed using BPSK and recorded FM signals generated by Agilent E4438C signal

generator. A cable was used between the signal generator and spectrum analyzer. In the

field measurements, a real wireless microphone signal generated by Sony UTX-B1 wire-

less microphone was used. The field measurements were performed in the University

of Oulu, Finland, in December 2008. Silence, speech and pop music were studied. In

the Welch estimator, 50% overlapping and averaging was used. The LAD ACC method

was able to detect the studied signals. The narrower the BPSK signal the better the

performance of the LAD ACC method was. The FM signal was detected when SNR

was larger than −20 dB. Wireless microphone signals were detected when the signal

(+ noise) power was as weak as approximately −110 dBm. Because the lowest signal

power at which the wireless microphone was able to operate was approximately −80

dBm, it was discovered that when using the LAD ACC method, the safeguard for the

wireless microphone signal is approximately 30 dB. It was concluded that the gain from

the Welch detector was approximately 10 dB when compared to the conventional peri-

odogram. It means that when the Welch detector is used, approximately 10 dB weaker

narrowband signals can be found than when using the periodogram.

The 2-D LAD method that operates both in time and frequency domains was pro-

posed and its detection performance was considered in Paper IX. Therein, the probabil-

ity of detecting a correct number of signals was studied. The main goal was to enhance

the signal detection probability of the LAD and LAD ACC methods. Both the LAD

and LAD ACC methods were used as a point of comparison. In the simulations, there

was one measured BPSK signal and measured thermal noise. The signal was generated

using the Agilent E4438C signal generator as the measurements were performed using
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Fig. 44. The probability of detecting one signal vs. SNR. A BPSK signal with band-

width of 12.5% of the system bandwidth. The original LAD (1-D) method, LAD

ACC (1-D LAD ACC) method and 2-D LAD method. (IX, published by permission

of IEICE).

an Agilent E4446A spectrum analyzer. The total bandwidth was 8 MHz and the band-

width of the signal was either 25%, 19% or 12.5% of the total bandwidth. SNR was

defined to be the ratio of the signal power to the noise power in the system’s bandwidth.

There were ten overlapping blocks and 50% overlap. The FFT size was 1024. In the

simulations, the LAD threshold parameters were calculated using PFA,DES = 10−5 and

10−1, which in the case of the Welch spectrum estimate method yield to the threshold

parameters 3.07 and 1.54, respectively [71]. With the ACC processing, n = 8 samples.

First, the values of p and r used in the simulations were selected. The smaller the p, the

higher the probability is. A small value of p, however, increases the probability of false

alarm. A large value of r increases the need of memory. Values of p = 5 and r = 10

were selected to be used in the simulations based on the values used in the literature

and several example scenarios. Figure 44 presents the probability of detecting the cor-

rect number of signals vs. SNR. One signal with the bandwidth of 12.5% is present.

The LAD, LAD ACC and 2-D LAD methods were used. As can be seen, the perfor-

mance of the original LAD method is rather poor when SNR is low. The proposed 2-D

LAD method is able to perform well even when SNR is low. In addition, the 2-D LAD
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Fig. 45. A BPSK signal with bandwidth of 25% of the system bandwidth and with

SNR=−4 dB after the original LAD method. (IX, published by permission of IEICE).
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Fig. 46. A BPSK signal with bandwidth of 25% of the system bandwidth and with

SNR=−4 dB after the 2-D LAD method. (IX, published by permission of IEICE).
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method slightly outperforms the LAD ACC method. Note that because of the Welch

spectrum estimate, the LAD methods are able to operate at low SNR values. According

to the supplementary paper [71], the gain due to averaging is approximately 10 dB. Fig-

ures 45 and 46 present the detection performance difference between the original LAD

and 2-D LAD methods. Therein, the bandwidth of the signal is 25% and SNR= −4

dB. Figure 45 shows that the original LAD method splits the signal into several parts.

The probability of detecting one signal is 4%. In Figure 46 it can be seen that the 2-D

LAD method detects the signal almost perfectly, that is, the probability of detecting one

signal is 87%. One time instant (row) in Figure 46 includes the combined results of

10 time intervals from Figure 45. According to Paper IX, the 2-D LAD method offers

better detection performance especially at low SNR values when compared to the LAD

and LAD ACC methods. The lower the SNR, the more gain was achieved. The 2-D

LAD method and ACC can also be combined to achieve better performance. In addi-

tion, the computational complexity of the 2-D LAD method remains at a reasonable

level, that is, of the order of N log2 N.

Hänninen implemented the LAD method on the wireless open-access research plat-

form (WARP) in 2009 [48], supplementary paper [49]. The goal was to study spectrum

sensing in OFDM communication systems in the Fourier domain. The LAD method

was configured to the WARP using Xilinx Platform Studio (XPS). Because of the lim-

ited resources of the field-programmable gate array (FPGA) chip on WARP, the FFT

length of the implemented LAD method was only 64. Averaging or overlapping were

not used. In the simulations, the thresholds calculated by digital logic and Matlab were

compared. The narrowband signal was a BPSK signal and the noise was Gaussian. The

error between the thresholds was at most 2%. This error was partially explained by the

fact that the Matlab uses round operation as Xilinx blocks use truncate operation. It

was noticed that the 64-point LAD method is able to find signals with the bandwidth of

at most 10/20/40% of the system’s bandwidth when SNR≥ 5/10/20 dB, respectively.

It was also noticed that with high bandwidth and low SNR, the 64-point LAD was not

able to find signals. In the real-life demonstrations, a signal with 2 MHz (5%) band-

width was created using a signal generator. Commercial spectrum analyzer which was

used as a reference listened to the same band as the WARP board. The demonstration

setup is presented in Figure 47. It was noticed that the LAD method was able to find

the signal. However, it was noticed that taking only 64 samples from 40 MHz band was

not enough. The initial set contained only 6 samples, so the size of the initial set was

too small. Therefore, the resulting thresholds were often either too low or too high.
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Fig. 47. Demonstration setup. © Hänninen 2009 [48]
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4 Discussion and summary

This thesis studied the problem of outlier detection in wireless communications. Two ar-

eas of outlier detection were studied. The first research area considered the concentrated

interference suppression, and the second area studied the concentrated signal detection

focused on spectrum sensing in cognitive radios. Chapter 2 reviewed the literature in

the research areas related to the thesis. The studied methods and an overview of the

achieved research results was presented in Chapter 3.

Three existing outlier detection methods were considered closer, namely, the CME

and FCME algorithms and the TSISA method. In addition, new methods called as the

extended TSISA and the LAD methods were introduced. Besides being blind and com-

putationally attractive, all these methods are applications of the CME algorithm.

The iterative CME algorithms are blind IS methods in the sense that they do not

need to know the noise level. Due to computational reasons, it was noticed that it could

be appropriate to use the same algorithm for both IS and narrowband signal detection.

Hence, the CME algorithms were studied as narrowband signal detection and localiza-

tion algorithms. The per bin probabilities of detection were studied in the frequency

domain. As in the IS case, the FCME algorithm outperformed the original CME algo-

rithm. The FCME algorithm performed well even when the bandwidth of the signal

was large. However, the CME algorithms were not able to estimate the number of nar-

rowband signals nor their parameters such as the bandwidth.

The threshold parameter of the CME algorithms is calculated based on the desired

false alarm rate. The equations commonly used in the calculation give only approxi-

mations of the threshold parameter, so the desired and obtained false alarm rates are

not necessarily equal. This may cause problems in the applications where it is desired

that the false alarm rate is controlled. To overcome this problem, accurate threshold

parameters for the FCME algorithm were defined. It was noticed that in the noise-only

case, when the number of samples is 512 or more, the approximation of the threshold

parameter leads to accurate false alarm rate. Instead, when the number of samples is

smaller, an accurate threshold parameter value improved the false alarm probability.

The detection capabilities of the CME algorithms were also theoretically analyzed.

The generic analysis was based on the shape on the signal, and was not restricted to any

transform domain. The effects of the threshold parameter used as well as the width and
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height of the signal to the detection were considered. Moreover, SNR values at which

the signals can be detected using the CME or the FCME algorithm were found. The

resulting limits of detection were confirmed via computer simulations. These limits can

be used for fast checking whether the signal can be detected or not without computer

simulations, so they are applicable both in IS and signal detection purposes.

Because interfering signals may also be concentrated on a domain other than the

frequency domain, the CME algorithms are not optimal methods for IS as such. The

TSISA method is a bank-type method that performs IS using the FCME algorithm in

several transform domains. The CG metric which defines how well the interfering sig-

nal is concentrated on the transform domain is used to select the optimal transform

domain. The optimal domain depends on the characteristics of the interfering signals

and is, for example, time domain for impulses, Fourier domain for sinusoids and frac-

tional Fourier domain for chirps. The BER performance of the TSISA method and the

FCME-based IS in the optimal domain were almost equal. That is, the performance loss

caused by the domain selection operation was negligible. The simulations on the selec-

tion process confirmed that the TSISA method is able to select the optimal domain for

IS in all considered interfering signal cases. Also, the computational complexity was

low. The TSISA seems, therefore, to be an attractive IS method when it is not known

in which domain the interfering signal is the most concentrated. The TSISA method

was also extended to contain other transform selection methods, namely the percentile,

coefficient of variation and maximum. It was noticed that the coefficient of variation is

not only simple to implement but also has a good performance. The percentile metric

also operated rather well, as the maximum metric had the worst performance.

The FCME algorithm was noticed to be able to localize narrowband signals, but

not accurately. A needless separation of the signal as well as falsely detected signals

lead to an inaccurate estimation of signal parameters such as the number of the sig-

nals and their bandwidths. In applications like signal detection and spectrum sensing,

the accuracy of these estimations is important to enable correct decisions. To solve

these problems, a new method for unknown narrowband signal detection and localiza-

tion called the LAD was introduced. Whereas the FCME algorithm uses one threshold,

the LAD method uses two thresholds to achieve better performance. The performance

of the LAD method was studied and compared to the FCME algorithm. The simula-

tions confirmed that the LAD method has a better localization ability than the FCME

algorithm, and the LAD method is able to estimate the number of narrowband signals

and their parameters including, for example, center frequencies and bandwidths. The
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LAD method was extended to estimate the SNR values of several unknown narrowband

signals. The SNR estimation accuracy was noticed to be highly dependent on the band-

width estimation accuracy, at which the LAD method had problems especially with low

SNR values.

The LAD ACC method was introduced to enhance the bandwidth estimation accu-

racy of the LAD method. It was noticed that the LAD ACC method has a much better

localization ability than the original LAD method, especially when the bandwidth of

the detected signal is wide and the SNR is low. The drawback is that two signals lo-

cated close to each other may be classified as one signal. The computation of the LAD

method was simplified with the LAD NT method. It was noticed that the LAD NT

method is able to offer a good performance. However, the false alarm rate is not con-

trolled, i.e., the desired false alarm rate is not equal to the obtained one. It depends

on the application whether this causes problems or not. The LAD methods were also

investigated as spectrum sensing methods in cognitive radios. Although concentrated

in narrowband signal detection, the LAD methods are also applicable for concentrated

signal detection in other transform domains.

The 2-D LAD method that utilizes time domain processing after the original fre-

quency domain LAD method was proposed to enhance the performance of the LAD

and LAD ACC methods. It was noticed that the 2-D LAD method is able to operate

at lower SNR values than the original LAD and LAD ACC methods. The 2-D LAD

method helps to reduce the number of missed signal samples and prevents two closely

spaced signals from being classified as one signal. At the same time, the low compu-

tational complexity was maintained. The proposed 2-D LAD method can also be used

together with the ACC method.

There are still some open problems and interesting questions without answers. For

example, it could be interesting to study if it is possible to enhance the interference sup-

pression performance of the CME algorithms and/or detection performance of the LAD

methods. The proposed methods have only been studied in the presence of one type of

concentrated signal. It could be interesting to study cases when there are several types

of concentrated signals simultaneously, for example, impulsive and sinusoidal signals.

In that case, either both signals should be suppressed, or the impulsive signal should

be suppressed before detecting the sinusoidal signal. There are several possible appli-

cations in several fields of wireless communications for which the blind and computa-

tionally simple CME-based methods can be used. In addition to the spectrum sensing

in cognitive radios, promising cognitive-based applications include, for example, cog-
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nitive radio based femtocells, i.e., small base stations inside a building. In the military

applications, LAD-based methods could be used for detecting signals and estimating

their parameters like center frequencies and bandwidths. Furthermore, this detection

information could be used to aid interference suppression methods, for example, the

CME algorithms, or jamming.
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