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1. Introduction. Classical treatments of the one-dimensional diffusion or heat
equation

dc
dt I (D i)

assume that the diffusion coefficient D is a constant. For heat conduction this is ordinarily
a good assumption, though for large variations in temperature one must take into
account a dependence of D on the temperature. For most diffusion problems the assump-
tion is not nearly so good and often one cannot regard D as constant at all. There is a
substantial literature on problems in which D depends only on the concentration c.
Friedmann [1] surveys the subject in the context of heat flow. The Mathematics o/
Diffusion by Crank [2] surveys the literature in the more general context. Much of this
text is devoted to the class of problems we treat. Other smaller but useful surveys are
section 13.3 of the text [3] and several sections in the text [4],

Much of the study of concentration-dependent diffusion is concerned with the problem
of a semi-infinite medium initially at a concentration c0 after the concentration at the
face is instantaneously changed to Ci and held at this value thereafter. There are two
reasons for this. This physical problem is used often to describe the experimental condi-
tions prevailing when one attempts to measure D(c). Secondly, by using a similarity
transformation the problem becomes one for an ordinary differential equation. This
permits a more detailed analysis, both theoretically and computationally, than does
the general problem. An interesting recent paper [5] shows that in some circumstances
solutions of problems with more general boundary conditions converge to similarity
solutions.

There are few papers analyzing existence and uniqueness for concentration dependent
diffusion. Seyferth [6] proves a very general result about uniqueness for the partial
differential equation. He considers coefficients D(c) which are positive and continuously
differentiable. It is not apparent that the very complex proof is applicable in the cir-
cumstances we discuss or that it can be carried out directly for the ordinary differential
equation at all. Peletier [5] has established both existence and uniqueness for the sim-
ilarity solution with the strong additional hypothesis D'(c) < 0. (His excellent work is
marred by an oversight which we rectify below.) We prove both existence and uniqueness
for all positive D(c) which are piecewise continuously differentiable. This seems a natural
class physically, but there are some problems of physical interest approximated by D
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which vanish. There is a considerable difference in the behavior of solutions between
the two cases, so our assumption is a convenient mathematical one as well as being
the more important physical case. Our proofs are quite elementary and rather simple.
In addition we sketch a second existence proof requiring more technical arguments.

Another aim of this paper is to support theoretically the use of shooting methods
to solve problems of this type. The theory is complemented by numerical examples.
Some of the results derived are also computationally useful in the context of perturbation
solutions and we briefly discuss this matter.

2. Existence. We are interested in the diffusion of a substance into a semi-infinite
medium initially at a concentration c0 after the concentration at the face is changed
to Ci and maintained thereafter. The diffusion coefficient D is to depend only on the
concentration level. This problem is described by

l-K0®!) »£*<•■ <>°.
C = C0 0 < £ < 00 > 2 = 0,

C = C0 X —> °° , t > 0,

C = Cj X = 0, t > 0,

where c = c(x, t). The two constants c0 , c, can always be taken to be 0, 1 by a change
of dependent variable to c = (c — c0)/(ci — c0), as may be easily verified. We shall
suppose this has been done.

It is the similarity solution of the problem that is our sole concern. In terms of the
Boltzmann similarity variable rj = x/y/t the problem is

c( 0) = 1, c(oo) = o. (2)

The diffusion coefficient D(c) will be presumed positive for 0 < c < 1 and piecewise
continuously differentiable with right- and left-hand limits at discontinuities. The
diffusion coefficient is to be continuous at c = 0 and c = 1. This is more smoothness
than is mathematically necessary, but is convenient and physically reasonable. At
points of discontinuity of D(c) we add the requirements that the concentration c(t?)
and the flux Z)(c(5j))c'('?) be continuous. If D(c) is continuous everywhere, it is clear
that initial-value problems for Eq. (1) are well defined and have unique solutions. In
a moment we shall clear up the case of discontinuities.

It may not be clear why we allow discontinuities in I) (c). In problems with phase
changes this may be an appropriate physical assumption [7]. Generalizing the approach
of Neumann to phase change problems, Philip [8] writes equations for the use of piecewise
constant diffusion coefficients to approximate problems with continuous coefficients.
Several authors [1, 7, 9] report successful computations with the approach. Our analysis
will apply to these approximating problems whether their origin is physical or numerical.

On physical grounds one would anticipate that c(n) strictly decreases from 1 at
17 = 0 to 0 as t? —* 00. This turns out to be true, so it is unnecessary to say anything
about Die) for c outside the interval [0, 1], It is convenient for our purposes to define
Die) = -D(O) for c < 0. Any solution of (1) with initial conditions c(i70) = 7, c'(j?0) = m
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with r)0 > 0, 7 < 1, and D continuous at y is either strictly increasing, identically con-
stant, or strictly decreasing. For rewriting (1) as

I I)" -sfe C(c> *drj \ d??/ 2D(c) dti

makes it obvious that

D(c(v))c'(rj) = D(c(rio)y(vo) exp 2D(c(t))) '

whence the statements follow because D(c) > 0. These properties cause initial-value
problems for Eq. (1) to be well defined and to have unique solutions. As an integral
curve c(rj) crosses a value at which Z)(c) has a jump, the continuity of concentration and
flux uniquely defines the continuation of 0(77). (Note that c'(>?) has a jump at such points.)
Discontinuities in D cause only minor changes in succeeding arguments and we shall
not refer to the matter again.

Let us define constants S, A so that

0 < <5 < D(c) < A

for 0 < c < 1. In terms of these constants we shall derive bounds on any solution of
(1, 2) which might exist. We shall consider solutions of (1) with the initial conditions
c(0) = 1, c'(0) = — m < 0. When it is convenient to remind ourselves that c(r?) depends
on the slope —m, we shall write c(ij, m). The idea is to show there exist m such that
c(co, m) = 0 and hence that there exist solutions of (1, 2). The numerical realization
of this approach is called a shooting method. From the observations above,

D(c(rj))c'(r{) = -mD{ 1) exp 2fl(c(r))) ' ®

D(c(t]))c'{i]) < —mD( 1) exp ̂  — J

but now the bounds on D assure us that

r T^dr
25

and

-c'(t?, m) > ^7™ exp (-V/45) > —exp (-^2/45). (4a)

In a similar way we prove

8

By integrating (4b) from rj0 to i) we find

mD( 1)

-c'(v, m) < exp (-n/iA). (4b)

0 < c(Vo) - c(n) < f exp (—r2/4A) dr. (5)
0 Jtjo

If we take r]0 = 0, this is

1 - c(v) < (mD(l)/5)(7rA)1/2 erf (tj/2VA)
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or

c(t), m) > 1 — (mD(l)/8)(irA)1/2 erf (77/2\/A). (6a)

A complementary bound is derived in the same way:

c(v, m) < 1 — (mZ)(l)/A)(x5)1/2 erf (ti/2\/8). (6b)

The a priori bounds (4a, b), (6a, b) assure us that c(?j, m) can be continued for all 17 by
a standard result for initial-value problems. Since 0 < — c'(tj, m), the inequality (4b)
states that c'(ij) —» 0 exponentially fast for all m > 0.

The bounds (6a, b) are valid for any negative initial slope and all 77 (because we
extended the definition of D(c) to c < 0), so a uniform lower bound for c(?j, m) is obvious:

c(»h m) > 1 - (m/)(l)/5)(7rA)1/2.

Since c(?7, m) is strictly decreasing as a function of r? and bounded below, the limit
c(°°, to) must exist. If the lower bound is itself positive, then — m cannot be a slope
resulting in a solution of (1, 2). We conclude it is necessary that

(0 <) 8/D(1)(ttA)1/2 < to (7a)

if to is to yield a solution of the boundary-value problem. Similarly arguing with (6b),
we find

c(c°, m) < 1 — (wZ)(l)/A)(-7r5)1/2

and the necessary condition

m < A/Z)(1)(7t5)1/2. (7b)

This analysis not only gives necessary conditions on the initial slope but also shows that
c(<», m) assumes both positive and negative values. If we can prove c(<», m) depends
continuously 011 m, we obviously have the existence of an m such that c(°°, m) = 0
and the existence of solutions of (1, 2).

Let us return to the inequality (5) and use it in a different way. Passing to the limit,
we see

0 < c(?7o , m) — c(c°, to) < mD(^ eXp (— r2/4A) dr,

or

0 < c(??o , m) — c( co, m) < mD( 1)[(ttA)1/2/6] erfc (ri0/2\/K). (8)

This is a very useful result. The numerical realization of this approach requires the
numerical construction of the integral curve c(??, m). Of course, one cannot integrate
numerically to 77 = 00. This inequality tells us when we may terminate the integration
because we have reached the limiting value to within a specified accuracy. Since m must
satisfy (7a, b) if c(i7, to) is to be a solution of (1, 2), we can combine it with (8) to get an
inequality easier to use,

0 < c(?70 , to) — c(c°, to) < (A/5)372 erfc (i7„/2\/A).

Further useful information can be gleaned. If m is such that c(?7, to) is a solution of (1, 2),
then since c(°°, to) = 0 we have
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0 < c(ij„) < -c'(0)JD(l) erfc (Vo/2VA) < (A/5)3/2 erfc (u0/2\M).

With numerical methods like that of Crank and Henry [10] one replaces the condition
c( co) = 0 with c(N) = 0 for a suitable number N; hitherto there has been no means for
choosing N. The upper bound is asymptotically

2(A/5)3/2(AA)1/2 exP(~^/4A) ;
Vo

so we have a result about the rate at which c(t?) tends to zero. It is sufficiently fast that
the integral Jo c(ri)dr) exists and is finite; this is a result we require later. The total
amount of diffusing substance which has crossed x — 0 at time t, Mt , is given by

M, = I c{x, t) dx = y/t / c{-q) dij
Jq Jo

(cf. Crank [2, p. 151]). We have proven the physically reasonable property that this
amount is finite.

To return to the existence question, we need to show for any e > 0 and m > 0 that
if m' is sufficiently close to m, then |c(a>, m) — c(c°, m!)\ < e. In (8) choose ij0 so large
that

(mD(l) (irA)l/2/(5) erfc (vo/WA) < e/4.

Now take m' sufficiently close to m that

|c(r?o , m) - c(vo ,m')| < e/4,

which can be done because at finite points the solutions depend continuously on the
initial data. If necessary, take m' closer to m so that

(m'J5(l) (ttA)1/2/6) erfc (,„/2\/A) < c/2.

Then

|c(«=, m) - c(co, m')\ < \c(t]o , rn) - c(co, m)| + |c(% , m) - c(t?0 , m')|

+ Wvo , m') - c( co, m')\ <| + | + | = e.

This completes the existence proof.
If we combine the bounds (6a, b) on c( 17, m) with the necessary conditions on the

initial slope (7a, b), we arrive at a -priori bounds for any solution of (1, 2) which may
exist:

C(v) < 1 + (S/A)3/2 erf (v/2VS), (9a)

c(rj) > 1 - (A/d)3/2 erf (77/2VA). (9b)

An alternative existence proof can be given which produces bounds like (9a, b)
except that the bounds actually satisfy both boundary conditions of (2). One changes
the dependent variable by a Kirchoff transformation

<p(c) = f D(\) d\.
Jo
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Let F denote the inverse function of this transformation (which must exist because
D{c) is positive). Then (1, 2) become

cl2<p  t) dxp
dj + 2D(F(V)) Tr,* + on/w ^ T- = °. (10)

<p(0) = <Pi , vi00) = 0 (11)

where <pt. = JJ D(\) d\.
It is an easy matter to produce functions satisfying (10) as an inequality and (11)

with equality. For

satisfies

and

v(v) = <pi erfc (v/2Vd)

& + 2v(0)=-' ^) = 0

u(rj) = pi erfc (tj/2-\/A)

satisfies the complementary inequality. Now let p(rj, m) be the solution of (10) with
initial values <p(0) = <px , <p'(0) = —m. An elegant result of Nagumo [11] implies there
are initial slopes — m with z/(0) > — m > «'(0) such that for any 77, <p(ri, m) assumes
any value in [u{t]), ^(t?)]. A simple argument as in Theorem 7.3 of [12] then implies that
(10, 11) has a solution <p(rj) such that v(rj) > ip(ri) > m(jj) for all j?. Returning to the
original variables, we find there is a solution c{ri) with

F(<f>i erfc (77/2-v/A)) < c(v) < F(<p1 erfc (ri/2y/8)). (12)

Instead of introducing the Kirchoff transformation, one could argue directly with
(1, 2). However, it is no longer trivial to generate functions 11(17), v(ri) satisfying appro-
priate differential inequalities. Peletier [5] did this for the special case of Die) being
strictly decreasing and differentiable everywhere, which leads to bounds sharper than
(12). He relied upon the theorem cited above from the text [12], but his argument is
incomplete. A similar incomplete argument is found in example 7.3 of that text which
is a particular diffusion problem of the sort we are now examining. The theorems of
the text assume the differential equation is Lipschitzian, but here

d2c _ D'(c) (dcY rj dc
dt]2 D(c) \dri) 2D(c) dr)

The quadratic growth in c' is too strong. Nevertheless, it is easy to modify the equation
to make it Lipschitzian because of the a priori bounds on the slope c'(?j). So, bounds
like (4a, b) and a modification of the equation are necessary if one is to use directly the
theorems of [12]. Use of Nagumo's theorem is an easy way to avoid modification and get
existence, but uniqueness is another matter. Peletier relied upon a general uniqueness
result of [12] which also requires the modification of the equation so as to be Lipschitzian.
Even then one only gets uniqueness for his special class. In the next section we prove
uniqueness is generally true.

3. Uniqueness. The boundary-value problem (1, 2) has a unique solution if m ^ m'
implies that c(«>, in) 9^ c(°°, m'). Our proof of this actually establishes rather more.
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For any 77 > 0 it is true that c(rj, m) 5^ c(t?, to'). In graphical terms this means that
integral curves of the initial-value problem (1) and c(0) = 1, c'(0) = — m < 0 cannot
intersect at i\ > 0. This property can be very useful in the solution of (1, 2) by numerical
methods (cf. [12, Ch. 8]). The proof breaks into two parts. First we prove the inequality
for finite 77, and second we show uniqueness by proving it for 77 = . The hypotheses
are the same as for existence.

Suppose 0 > c[(0) > c' (0), so that initially c^-q) > c2(-q). We want to prove this is
true for all 0 < ?) < °°. These functions are the solutions of

(d/dri)(D(c)c') + (r//2)c' - 0, c(0) = 1, c'(0) given.

Let j{ri) = D(c(-q))c'(-q) be the flux. Then we write the differential equation as the system

dc/d-q = f/D(c), c(0) = 1 dj/d-q = ~(-qf/2D(c)), /(0) = D(l)c'(0) given.
We already know c(r?) strictly decreases from its initial value of 1, so it is permissible
to introduce the new independent variable u = 1 — c. Then

diq _ frq dc _ /cfc _ D( 1 — u)
du dc du / dr\ / '

df_ _ df_ &q _ -qf D( 1 — U) _ 2?
du d-q du 2D(1 — u) f 2 '

which is an equivalent system. The initial conditions become

v(u = 0) = "q(c = 1) = 0, f(u = 0) = /(1? = 0) = D(l)c'(0) given.

We are interested in the two solutions ?n(u), fi(u) with i — 1 or 2 and

17,(0) =0, 0 > /1 (0) = D(l)c{(0) > U(0) = z)(l)ci(0).

We know that from continuity and the fact that

v'M = — 1/c[(0) > ^(O) = -1/^(0) > 0
that for some interval (0, S) we have

Vi(u) > 7}2(u)(>0)j (0>)/i(w) > /2(w).

We claim this holds for all 5 < 1 — Cj(oo). For there are only three possibilities as u —» 5:

(i) /i(5) = /2(5), T71 (5) = 772(5). This is impossible because the system has unique
solutions to initial-value problems.

(ii) /1(5) = /2(S), i7i(§) > ''teW. From the differential equations

lim (d/d^iftiu) - j2(u)) = - 772(6)) > 0,
u—»5

which contradicts the assumption that /j(m) — f2(u) > 0 for u < 5.
(in) /1(5) > /2(S), i7i(5) = ^2(5). As in (ii),

iim ^ (771 (u) - „(«)) = D{ 1 - 5)
/i(8) /.(«).

> 0

is a contradiction.
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Returning to the original variables, this result says that if 0 > c[ (0) > c'2 (0) and if
iji is defined by c = i = 1 or 2, then

Vi > V2 , D(c)c{(iji) > D(c)c'2(r)2).

In particular, there cannot be a point -q3 where Ci{t]2) = c2(rj3); hence for 0 < y <
Ci(v) > C2(-q).

Uniqueness can be shown by integrating (1) from 0 to ??. This gives

D(c(v))c'(v) - Z>(l)c'(0) + £ | c'(r) dr = 0

or, on integrating by parts,

D(c(v)V(v) - D(l)c'(0) + |c(„) = | /; C(r) dr.

Suppose now that c(?j) is a solution of (1, 2). We have already examined the convergence
of c'(ij) and c(??) to zero as 77 —» 00 and so justified a passage to the limit in this equation:

— D(l)c'(0) = \ f" c(t) dr.

Physically, this equation represents the conservation of the diffusing substance (cf. Crank
[2, p. 151]). Suppose there are two solutions Ci(rj), c2(v) with 0 > c{(0) > Cg(0). Our
preceding argument implies Ci(r?) > c2(v) for all tj > 0, so

-c;(0) = m~)lci(r) dT>m)l c2(t) dr = -c^(0)

Ci'(0) < c^(0),

which is a contradiction. We conclude there is precisely one solution to (1, 2).
4. Solution bounds and perturbation methods. Apparently the only previous

attempt to determine simple techniques for bounding the effects of property changes
for general problems is due to Friedmann [1], He derived the bounds (12) above by
working directly with the parabolic partial differential equation and assuming existence
and uniqueness. Peletier's [5] bounds previously alluded to are quite useful, but one
must have a D(c) which is strictly decreasing. We want to discuss the general problem
so we shall not refer to this special case again. The bounds (12) are often difficult to use
directly because unless D(c) is rather simple, we cannot obtain the inverse function
F(<p) analytically. One can without difficulty, though, derive bounds on F and then
cruder but more easily applied bounds on c. In any event, the upper and lower bounds
are not close unless D(c) is nearly constant. This suggests they are most useful in con-
nection with perturbation methods.

Friedmann was interested in heat conduction problems. A conductivity D{c) nearly
constant is an extremely important practical class, since only for quite high or low
temperatures do most materials show much variation in conductivity (cf. Ozisik [13]
p. 37ff.). Perturbation methods have been widely applied to such problems [3, 14, 15;
an especially useful formulation is 16]. They are well suited for some methods of measur-
ing the diffusion coefficient [17, 18]. Even when D(c) cannot be regarded as constant the
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methods may still be applicable. The original problem posed in Sec. 2 is for concentrations
ranging from c0 to cx . The coefficient D(c) we have been discussing is that after a change
of dependent variable. In terms of the original variables, we are concerned only with
the variation of the diffusion coefficient over the range [c0 , c,]. For any continuous
diffusion coefficient, perturbation methods are applicable if the initial and final concen-
trations are sufficiently close. An example of this is Kidder's [15] perturbation solution
of the flow of a gas through a porous medium. For this problem D (c) = c in the original
variables, but the perturbation process is applicable because c0 and Ci are close.

One difficulty in using perturbation methods is knowing when they are valid. The
bounds (9a, b) lead to a very simple criterion for the applicability of perturbation
methods. If A = 8 + 0(e), then the upper and lower bounds are 0(e) apart. They bound
the error in the constant-coefficient approximation. For suppose we use D(c) = D0 ,
S < D0 < A, and the zero-order perturbation solution y0(y) defined by

+ fc(0)"1- 9"<") = 0'

The bounds (9a, b) apply to y0(v) as well as c(?j); hence

Ic(ij) - y0(v)\ < (A/S)3/2 erf (ij/2VA) - (5/A)3/2 erf (v/2y/&).

The right-hand side is an increasing function of 77, so we have the uniform bound

Ku) - y0(v)\ < (a/5)3/2 - (s/a)3/\

This is, of course, an extremely easy bound to apply. To get some feeling for it, suppose
A/5 = 1 + e; then the bound is approximately 3e.

5. Shooting methods. With the analysis developed, the use of shooting methods
is straightforward and effective. The equations are integrated as a system

dc / ^ , df rif .
~dr, = m' C(0) = 1' Tv=~2m' /(°) So-

using the constants 5, A we derived a -priori bounds on the initial flux

— A/(71-5)1/2 < /(0) < —5/(7rA)1/2

for the solution of the boundary-value problem. Because of the fact that if /i(0) > /2(0),
then c^ro) > c2(ro), we can use bisection to find the correct initial flux. We actually
used the ZEROIN code of Dekker [19] which combines bisection with the secant rule
for increased efficiency. We attempted to compute the initial flux to a relative accuracy
of 10~7. The inequality

0 < c(t]0 , to) — c(00, to) < (A/8)s/2 erfc (tj0/2VA)

was used to terminate the integration. Before beginning shooting one can step from 0
until an r)0 is found which makes this bound sufficiently small; this value of i?0 is used
for "infinity" in all the shots. This is suitable for integration codes which integrate
to a given endpoint without reporting intermediate results, but is rather conservative.
If one monitors the results at each step, one can terminate when all figures of c(tj) become
fixed.

The basic danger in using shooting methods is that one is trying to follow integral
curves numerically and inevitably one drifts off the desired curves onto neighbors. If
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neighboring curves behave very differently, then shooting methods are unsatisfactory.
Near some argument r and y = c(r) the differential equations are approximately

dc/dr, = f/D(y), df/dr, = ~vf/2D(y)

which have the general solutions

c(v) = A+B erfc (v/2(D(y))U2),

M = exp (-vViD(y)).

All solution curves behave the same way with one significant exception. We are trying
to follow a curve c(^) which is strictly decreasing, equivalently /(r?) < 0. If we drift
to a value /(r) > 0, then we are on curves c(y) which are constant or strictly increasing.
If our differential equation solver is using a relative error test, we cannot drift from a
correct value /(t) < 0 to a value /(r) > 0 unless /(r) = 0, that is, the shot is essentially
completed. If we are careful to use a relative error criterion and monitor f(rj) so that we
terminate the integration when /(??) > 0, we need not fear any particular difficulty with
the stability of the shooting method. A simple way to handle this computationally is
to replace values of c'(ri) by zero if they become positive.

Crank [2, p. 267] gives eight examples of typical diffusion coefficients. We solved (1, 2)
for all. A library Runge-Kutta code was used with a requested relative error of less
than 10~8. The value of tjn was chosen to make the bound less than 10~8. A valuable
and sensitive check is the conservation relation

~/(0) = \ [ c(r) dr.

So along with the system we integrated

dl/dt) — c/2, 1(0) = 0

and on returned we compared /(0) to

I(vo) = | c(r) dr.

A FORTRAN program implementing this procedure was written for the PDP-10
which has a working precision of about eight decimal digits. Two test problems were
used to check out the code. Problem (i) has D(c) = 0.25 and the analytic solutions
c(t?) = erfc (??), —/(0) = .28209479. Five shots were needed to get convergence. The
results for the initial flux and the conservation test are in Table 2. The maximum absolute
error in the computed concentration was about 1.4 X 10~6. The error increased steadily
from its minimum at 77 = 0 to this value as rj increased.

To get a nontrivial test problem we generated a family of nonlinear problems with
simple analytical solutions. If we choose D0 > 0, r]0 > 0 and then define

a = (ttD0)U2 exp (??o/4D0), /3 = a erfc (vo/2VDa), c0 = yS/(/S + Vo),

we find that 0 < c0 < 1. Furthermore, if we define
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TABLE 1

The Problems

Number 25(c) 8 A

i 0.25 exp(—2.303) 1
[8 - 7.605858829(l-c)2

ii -jif c > .2748032226, 4 8
[ 4 otherwise

1 1 + 10(1 - exp(-2.303c)) 1 10
2 1+50 ln(l + .5136c) 1 10
3 1 + 9c 1 10
4 exp(2.303c) 1 10
5 exp(-2.303c) exp(-2.303) 1
6 1/(1 - 3.292c + 2.877c2) 1 18
7 1/(1 - ,6838c)2 1 11
8 1/(1 - .9c) 1 10

D(c) = D0 + 0.25^

the solution of (1, 2) is

1 - 1 — c
c > Co ,

1 — C0/ .

= Do C < Co ,

c(v) = 1 — >?((1 — Co)/Vo) o < V < Vo ,

— (<V(0 + Vo)) erfc (ri/2\/D0) t]0 < v-

These statements may be verified easily. Test problem (ii) takes r]0 = D0 = 4. Eleven
shots were required for convergence. The maximum absolute error in the concentration
was about 3.7 X 10~6 with the error steadily increasing from its minimum at ?? = 0.

All of Crank's typical problems were solved. Each required nine shots with the ex-
ception of problem 2 which required eight. There were no apparent numerical difficulties.

TABLE 2

Some Numerical Results

Number —/(0) J JJ° c(r) dr

i .28209519 .28208911
ii 1.4503982 1.4503436
1 1.6063233 1.6062375
2 2.1533009 2.1532498
3 1.4497852 1.4497697
4 1.2525323 1.2526087
5 .29177820 .29178078
6 1.4338576 1.4336833
7 1.1329485 1.1328898
8 1.0173323 1.0172385
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Tables of the solutions c(ij) may be obtained from the author. Tables of solutions com-
puted on a CDC 6600 for diffusion coefficients depending linearly, exponentially and
in a few other ways on the concentration may be obtained from the author.
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