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CONCENTRATION-DEPENDENT DIFFUSION III.
AN APPROXIMATE SOLUTION*

By L. F. SHAMPINE (Sandia Laboratories, Albuquerque)

In the papers [1, 2], hereafter referred to as I and II respectively, we discussed the
similarity solution of the one-dimensional diffusion equation c, = (DcI)I when the dif-
fusion coefficient D is a function of the concentration c. The physical problem that
concerns us is the diffusion of a substance into a semi-infinite medium after the substance
is introduced at the face at a given concentration level which is maintained thereafter.
Normalizing and introducing the similarity variable tj = x/y/t leads to the problem

iHD + li"0' <«
c(0) = 1, c(oo) = 0. (2)

In addition to (1, 2) a solution must have a continuous flux /(??) = D(c{ri))c'(rj). We
suppose D(c) G C"[0, 1] and that D(c) > 0 for c > 0. If D(0) = 0, the problem is said
to be singular and there may then be an rj0 such that, the solution c(?)) = 0 for rj > tj0 .
This r?0 represents the location of a "front" of a nonlinear wave of the diffusant.

Bounds on the initial flux of the solution are useful in two ways. They were necessary
in I and II for computing the solution. They are quite useful physically because of their
relation to the uptake, which is a quantity readily measured: the total amount of dif-
fusant which has crossed x = 0 by time t, M, , is

M, = f c(x, t) dx = -\/1 f c(rf) dr).
Jo Jo

Using the conservation law

-m = lJ~c(v)dn (3)
which we proved for both singular and non-singular cases, we see that

M, = ~/(0)2 Vt.
By physical reasoning Macey [3] derived an approximate solution of (I, 2) which in

our notation is

<4)

V*(c) = (/' D(t) dr)/(-n for c > 0. (5)

* Received August, 23, 1974.
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Here /* = /(0). He observes that in his computations /* > /(0), and we reported the same
observation in II. This is plausible from the physical arguments. The approximation
c*(ri) is defined implicitly by (5) and is supplemented by c*(j?) = 0 for 77 > 770* where

Vo* = (£ D(r) dr)/(-n. (6)

In this note we shall prove by simple means that the quantity /* of (4) is an upper
bound on the initial flux. Furthermore, if any /* which is a lower bound for the initial
flux is used in (5), the approximation c*(r/) so defined satisfies c(t?) > for all 17 > 0.
Lower bounds are easy to obtain, e.g. in II we derived /(0) > — (A/ir)1/2 where
A = max0St<i D(c). Study of Macey's plots of the approximation c*(rj) of (4, 5) shows
that in every case there is a number 5 such that for 0 < 7? < <5, c*(?j) > c( 77) and for
S < rj, c*(?j) < c(rj). We shall prove this qualitative behavior is always true. In particular,
we shall prove that if the problem exhibits a front at t?0 , then j)0 is at least as large as
the vo* of (6).

In I and II we proved there is a unique solution to (1, 2) which strictly decreases
from 1 to 0. Introducing the flux as a dependent variable and the concentration as the
independent variable, we see that the solution satisfies, for 1 > c > 0,

dv/dc = -O(c)//, t?(1) = 0,

dj/dc = —77/2, 0 > /(l) given.

Now the approximation (5) is the solution of

dv*/dc = D(c)//*, „*(1) = 0,

dj*/dc = 0, 0 > /*(!) = /* given

(Since /*(c) = /*, we shall just write j* in what follows.) The flux /(c) obviously is strictly
increasing as c decreases to 0 and in I and II it is shown to tend to zero. Evidently if
0 > /(1) > /*, we shall have /(c) > /* for all c < 1. But then

d(v ~ v*)/dc = Z>(c)(1// - 1 //*) (7)
is negative for c < 1 which implies 77(c) > ^?*(c). Returning to c as the dependent variable,
we have shown that if j* is a lower bound for the initial flux, then the approximation
c*(77) of (5) is a strict lower bound for c(t?) as long as c(ij) is positive.

The way Macev chooses the initial flux /* is to insist c*(77) satisfy

-/* = | fo c*(t?) dri,

so as to imitate the behavior (3) of the true solution. This requirement results in the
expression (4). It is now easy to see that /* so chosen is an upper bound for the initial
flux. If it were not, the preceding analysis would imply c{ii) > c*(77) as long as c(77) > 0,
hence

-/* = | Jo c*(tj) dv < | ^ 0(77) dy = -/(0),

and 0 > /* > /(0), contrary to our assumption.
If we suppose that /* > /(1), then since /(c) strictly increases to zero as c decreases,
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there is a unique point f for which /(f) = /*. Thus, according to (7), v*(c) — 77(c) strictly
increases as c decreases from 1 to I" and then strictly decreases as c decreases from to 0.
Returning to the concentration as the dependent variable, we have that c*()j) cannot
intersect c(??) more than once. However, using Macey's approximation c*(??) must cross
c(r?) at least once. Otherwise we would have c*(^) > c(v) for all 17 > 0 which implies

~f* = H c*(v) dv>H C(V) dv = ~/(0)'
and the consequence that /(0) > /* is a contradiction. Thus there is a 5 > 0 such that
c*(ri) > c(17) for 0 < v < 5 and c*(v) < c(y) for 5 < 77.

We have seen that any /* less than the initial flux leads to a c*(rj) from (5) which is
less than c(y). Naturally, then, the ij0* of (6) is a lower bound for the location t)0 of a
front of c(ri), should one exist. The qualitative picture of Macey's approximation shows
that using the j* of (4) leads to an ??0* of (6) which must also be a lower bound for i)0 ■
The i/o* of (6) is an increasing function of j* so Macey's approximation gives the best
bound.

References

[1] L. F. Shampine, Concentration-dependent diffusion, Quart. Appl. Math. 30, 441-452 (1973)
[2]  , Concentration-dependent diffusion II. Singular problems, Quart. Appl. Math. 31, 287-293

(1973)
[3] R. I. Macey, A quasi-steady state approximation method for diffusion problems: I. Concentration-

dependent diffusion coefficients, Bull. Math. Biophys. 21, 19-32 (1959)


