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CONCENTRATION-DEPENDENT DIFFUSION III.
AN APPROXIMATE SOLUTION*

By L. F. SHAMPINE (Sandia Laboratories, Albuquerque)

In the papers [1, 2], hereafter referred to as I and II respectively, we discussed the
similarity solution of the one-dimensional diffusion equation ¢, = (Dc.), when the dif-
fusion coefficient D is a function of the concentration ¢. The physical problem that
concerns us is the diffusion of a substance into a semi-infinite medium after the substance
is introduced at the face at a given concentration level which is maintained thereafter.
Normalizing and introducing the similarity variable n = z/+/t leads to the problem

d dc de
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c(0) = 1, ¢(o) = 0. 2)

In addition to (1, 2) a solution must have a continuous flux f(n) = D(c(n))c'(n). We
suppose D(c) € C'[0, 1] and that D(c) > 0 for ¢ > 0. If D(0) = 0, the problem is said
to be singular and there may then be an 5, such that the solution ¢(9) = 0 for n > 7, .
This », represents the location of a “front’” of a nonlinear wave of the diffusant.

Bounds on the initial flux of the solution are useful in two ways. They were necessary
in I and II for computing the solution. They are quite useful physically because of their
relation to the uptake, which is a quantity readily measured: the total amount of dif-
fusant which has crossed x = 0 by time ¢, M, , is

M= [ oa, iz = i [ ola) dn.
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Using the conservation law

—10) = 3 [ etn) dn ®

which we proved for both singular and non-singular cases, we see that
M, = —{(0)2vt.

By physical reasoning Macey [3] derived an approximate solution of (1, 2) which in
our notation is

g [ D@ dr) @

@ = ([ Do ar)i= for ¢ 0. )
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Here f* = {(0). He observes that in his computations f* > f(0), and we reported the same
observation in II. This is plausible from the physical arguments. The approximation
c*(n) is defined implicitly by (5) and is supplemented by c¢*(n) = 0 for n > 7,* where

we = ([ D6 ar)-. ©

In this note we shall prove by simple means that the quantity f* of (4) is an upper
bound on the initial flux. Furthermore, if any f* which is a lower bound for the initial
flux is used in (5), the approximation c¢*(») so defined satisfies ¢(n) > ¢*(n) for all n > 0.
Lower bounds are easy to obtain, e.g. in II we derived f(0) > —(A/7)"® where
A = maxe<.<; D(c). Study of Macey’s plots of the approximation ¢*(») of (4, 5) shows
that in every case there is a number § such that for 0 < < 4, ¢*(n) > ¢(n) and for
8 < 1, c*(n) < c(n). We shall prove this qualitative behavior is always true. In particular,
we shall prove that if the problem exhibits a front at 7, , then 5, is at least as large as
the 5,* of (6).

In I and II we proved there is a unique solution to (1, 2) which strictly decreases
from 1 to 0. Introducing the flux as a dependent variable and the concentration as the
independent variable, we see that the solution satisfies, for 1 > ¢ > 0,

dn/dc = D()/f,  =(1) =0,
df/dec = —n/2, 0 > (1) given.
Now the approximation (5) is the solution of
dn*/dc = D(c)/1*,  2*(1) =0,
df*/dc = 0, 0 > f*(1) = f* given

(Since 1*(c) = 7*, we shall just write f* in what follows.) The flux f(c) obviously is strictly
increasing as ¢ decreases to 0 and in I and II it is shown to tend to zero. Evidently if
0 > /(1) > f* we shall have f(c) > f* for all ¢ < 1. But then

d(n — #*)/de = D()(1/f — 1/1*) )

is negative for ¢ < 1 which implies 7(c) > 7*(c). Returning to c as the dependent variable,
we have shown that if f* is a lower bound for the initial flux, then the approximation
c*(n) of (5) is a strict lower bound for ¢(5) as long as ¢(n) is positive.

The way Macey chooses the initial flux /* is to insist ¢*(n) satisfy

=3 [ ¢

so as to imitate the behavior (3) of the true solution. This requirement results in the
expression (4). It is now easy to see that f* so chosen is an upper bound for the initial
flux. If it were not, the preceding analysis would imply c(4) > ¢*(n) as long as ¢(n) > 0,
hence

=3 [ an<} [ cwan = —10),

and 0 > f* > 7(0), contrary to our assumption.
If we suppose that f* > (1), then since f(¢) strictly increases to zero as ¢ decreases,
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there is a unique point { for which f(¢) = f*. Thus, according to (7), n*(c) — n(c) strictly
increases as ¢ decreases from 1 to { and then strictly decreases as ¢ decreases from ¢ to 0.
Returning to the concentration as the dependent variable, we have that ¢*(y) cannot
intersect c¢(n) more than once. However, using Macey’s approximation ¢*(n) must cross
¢(n) at least once. Otherwise we would have ¢*(n) > ¢() for all 3 > 0 which implies

=3[ eman> L [ eman= o),

and the consequence that f(0) > f* is a contradiction. Thus there is a § > 0 such that
c*(n) > c(q) for 0 < 7 < 6 and ¢*(n) < c(y) for & < 7.

We have seen that any f* less than the initial flux leads to a ¢*(4) from (5) which is
less than c(n). Naturally, then, the 5,* of (6) is a lower bound for the location 7, of a
front of ¢(n), should one exist. The qualitative picture of Macey’s approximation shows
that using the f* of (4) leads to an 7,* of (6) which must also be a lower bound for 7, .
The 5,* of (6) is an increasing function of f* so Macey’s approximation gives the best
bound. ‘
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