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Abstract

We derive multi-level concentration inequalities for polynomials in independent ran-

dom variables with an α-sub-exponential tail decay. A particularly interesting case

is given by quadratic forms f(X1, . . . , Xn) = 〈X,AX〉, for which we prove Hanson–

Wright-type inequalities with explicit dependence on various norms of the matrix A. A

consequence of these inequalities is a two-level concentration inequality for quadratic

forms in α-sub-exponential random variables, such as quadratic Poisson chaos.

We provide various applications of these inequalities. Among them are general-

izations of some results proven by Rudelson and Vershynin from sub-Gaussian to

α-sub-exponential random variables, i. e. concentration of the Euclidean norm of

the linear image of a random vector and concentration inequalities for the distance

between a random vector and a fixed subspace.
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1 Introduction

Let X1, . . . , Xn be independent random variables and f : Rn → R be a measurable

function. One of the main and rather classical questions of probability theory consists in

finding good estimates on the fluctuations of f(X1, . . . , Xn) around a deterministic value

(e. g. its expectation or median), i. e. to determine a function h : [0,∞) → [0, 1] such that

P(|f(X1, . . . , Xn)− E f(X1, . . . , Xn)| ≥ t) ≤ h(t). (1.1)

*This research was supported by the German Research Foundation (DFG) via CRC 1283 “Taming uncertainty

and profiting from randomness and low regularity in analysis, stochastics and their applications”.
†Faculty of Mathematics, Bielefeld University. E-mail: goetze@math.uni-bielefeld.de
‡Faculty of Mathematics, Bielefeld University. E-mail: hsambale@math.uni-bielefeld.de
§Faculty of Mathematics, Bielefeld University. E-mail: asinulis@math.uni-bielefeld.de

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/21-EJP606
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/1903.05964
mailto:goetze@math.uni-bielefeld.de
mailto:hsambale@math.uni-bielefeld.de
mailto:asinulis@math.uni-bielefeld.de


Concentration inequalities for polynomials in α-sub-exponential r.v.

Of course, h should take into account both the information given by f as well as

X1, . . . , Xn. Perhaps one of the most well-known concentration inequalities is the tail

decay of the Gaussian distribution: if X1, . . . , Xn are independent standard Gaussian

random variables, and f(X1, . . . , Xn) = n−1/2
∑n

i=1Xi, then f(X1, . . . , Xn) is a standard

Gaussian and satisfies

P(|f(X1, . . . , Xn)− E f(X1, . . . , Xn)| ≥ t) ≤ 2 exp
(
− t2

2

)
. (1.2)

Using the entropy method, it is possible to show that the estimate (1.2) remains true for

any 1-Lipschitz function f (see e. g. [24, Chapter 5]).

On the other hand, if f is a quadratic form, then its tails are heavier. Indeed,

the Hanson–Wright inequality (see [14], [35], [29]) states that for a quadratic form in

independent, centered sub-Gaussian random variables X1, . . . , Xn with EX2
i = 1 we

have for some absolute constant C > 0

P

(∣∣∣
n∑

i,j=1

aijXiXj − trace(A)
∣∣∣ ≥ t

)
≤ 2 exp

(
− 1

C
min

( t2

‖A‖2HS

,
t

‖A‖op

))
. (1.3)

Here, ‖A‖op is the operator norm and ‖A‖HS the Hilbert–Schmidt norm (Frobenius norm)

of A respectively. Thus the tails of the quadratic form decay like exp(−ct/‖A‖op) for
large t. There are inequalities similar to (1.3) for multilinear chaos in Gaussian random

variables proven in [22] (and in fact, a lower bound using the same quantities as well),

and in [4] for polynomials in sub-Gaussian random variables. Moreover, extensions of

the Hanson–Wright inequality to certain types of dependent random variables have been

considered in [17] and [2], for instance. However, a key component is that the individual

random variables Xi have a sub-Gaussian tail decay.

In recent works [6], [13], [12] we have studied similar concentration inequalities for

bounded functions f of independent and weakly dependent random variables. There,

the situation is clearly different, since the distribution of f(X1, . . . , Xn) has a compact

support, and is thus sub-Gaussian, and the challenge is to give an estimate depending

on different quantities derived from f and X. However, there are many situations

of interest where boundedness does not hold, such as quadratic forms in unbounded

random variables as in (1.3). Here it seems reasonable to focus on certain classes of

functions for which the tail behavior can directly be traced back to the tails of the

random variables under consideration. Therefore, in this note we restrict ourselves to

polynomials.

In the following results, the setup is as follows. We consider independent random

variables X1, . . . , Xn which have α-sub-exponential tail decay, by which we mean that

there exists two constants c, C and a parameter α > 0 such that for all i = 1, . . . , n and

t ≥ 0 it holds

P(|Xi| ≥ t) ≤ c exp(−Ctα). (1.4)

There are many interesting choices of random variables Xi of this type, like bounded

random variables (for any α > 0), random variables with a sub-Gaussian (for α = 2) or

sub-exponential distribution (α = 1) such as Poisson random variables, or “fatter” tails

as present in Weibull random variables with shape parameter α ∈ (0, 1].

We reformulate condition (1.4) in terms of so-called (exponential) Orlicz norms, but

we emphasize that these two concepts are equivalent. For any random variable X and

α > 0 define the (quasi-)norm

‖X‖Ψα
:= inf

{
t > 0: E exp

( |X|α
tα

)
≤ 2
}
, (1.5)
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adhering to the standard definition inf ∅ = ∞. Strictly speaking, this is a norm for α ≥ 1

only, since otherwise the triangle inequality does not hold. Nevertheless, the above

expression makes sense for any α > 0, and we choose to call it a norm in these cases as

well. For some properties of the Orlicz norms we refer to Appendix A.

Throughout the article, we denote by C an absolute constant and by Cl1,...,lk a constant

that only depends on some parameters l1, . . . , lk. These constants may vary from line to

line. Moreover, we frequently write X = (X1, . . . , Xn) for the vector consisting of the

random variables under consideration.

Just to provide one example which might be of particular interest for applications, we

start with a simplified version of a later result. More precisely, we present the following

concentration inequality which may be considered as an analogue of the Hanson–Wright

inequality (1.3) to quadratic forms in random variables with α-sub-exponential tail decay.

Proposition 1.1. Let X1, . . . , Xn be independent random variables satisfying EXi =

0,EX2
i = σ2

i , ‖Xi‖Ψα
≤M for some α ∈ (0, 1], and A = (aij) be a symmetric n×n matrix.

For any t ≥ 0 we have

P

(∣∣∑

i,j

aijXiXj −
n∑

i=1

σ2
i aii

∣∣ ≥ t
)
≤ 2 exp

(
− 1

Cα
min

( t2

M4‖A‖2HS

,
( t

M2‖A‖op

)α
2
))
.

As we will see in Corollary 1.4 (2), the tail decay exp(−tα/2‖A‖−α/2
op ) (for large t) can

be sharpened by replacing the operator norm by a smaller norm. Actually, the technical

result contains up to four different regimes instead of two as above. Note that with

slightly different techniques, it is possible to extend Proposition 1.1 to α ∈ (0, 2], as was

done in [30].

Our main results presented in the next section yield bounds for arbitrary polynomials

in α-sub-exponential random variables for α ∈ (0, 1]. These inequalities typically involve

larger families of norms, resulting in refined tail estimates.

1.1 Main results

Let us first introduce some notation. Define [n] := {1, . . . , n}, and let i = (i1, . . . , id) ∈
[n]d be a multiindex (which we typically write in boldface letters). Let A = (ai)i∈[n]d

be a d-tensor and I ⊂ [d] a set of indices. Then, for any iI := (ij)j∈I , we denote by

AiIc
= (ai)iIc the (d − |I|)-tensor defined by fixing ij , j ∈ I. For instance, if d = 4,

I = {1, 3} and i1 = 1, i3 = 2, then AiIc
= (a1j2k)jk. For I = [d], i. e. we fix all indices

of i, we interpret AiIc
= ai as the i-th entry of A. If I = ∅, iI does not indicate any

specification, and AiIc
= A.

Moreover, we write Pd for the set of all partitions of [d] and P (Ic) for the set of all

partitions of Ic for any I ⊂ [d]. If J = {J1, . . . , Jk} is any partition, we denote by |J |
the number of subsets it contains. For I = [d], by convention there is a single element

J ∈ P (Ic) which we may call the “empty” partition, thus justifying that we set |J | := 0.

Next we introduce a family of tensor-product matrix norms ‖A‖J for a d-tensor A

and a partition J = {J1, . . . , Jk} ∈ Pd. For each l = 1, . . . , k we denote by x(l) a vector in

R
nJl

. Then, we set

‖A‖J := sup
{ ∑

i∈[n]d

ai

k∏

l=1

x
(l)
iJl

:
∑

iJl

(x
(l)
iJl

)2 ≤ 1 for all l = 1, . . . , k
}
.

In particular, this also defines norms ‖AiIc
‖J for any I ⊂ [d] and any J ∈ P (Ic). If I = [d],

‖AiIc
‖J = |ai| is just the Euclidean norm of ai.

The family ‖·‖J was first introduced in [22], where it was used to prove two-sided

estimates for Lp norms of Gaussian chaos, and the definitions given above agree with the
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ones from [22] and [4] (among others). We can regard the ‖A‖I as a family of operator-

type norms. In particular, it is easy to see that ‖A‖{1,...,d} = ‖A‖HS := (
∑

i1,...,id
a2i1...id)

1/2

(Hilbert–Schmidt norm) and ‖A‖{{1},...,{d}} = ‖A‖op := sup{∑i1,...,id
ai1...idx

(1)
i1

· · ·x(d)id
:

|x(l)| ≤ 1 for all l = 1, . . . , d} (operator norm).

In fact, these norms are monotone with respect to the underlying partition in the

following sense. For two partitions I = {I1, . . . , Iµ} and J = {J1, . . . , Jν} of [d], we say

that I is finer than J if for any j = 1, . . . , µ there is a k ∈ {1, . . . , ν} such that Ij ⊆ Jk. In

this case, it is easy to see that ‖A‖I ≤ ‖A‖J . In particular, we always have

‖A‖op = ‖A‖{{1},...,{d}} ≤ ‖A‖J ≤ ‖A‖{1,...,d} = ‖A‖HS, (1.6)

so that the two norms highlighted above can be regarded as “extremal cases” of the

family ‖·‖J .
Before stating our main theorem, let us recall a result by Kolesko and Latała which

provides bounds for a d-homogeneous chaos in independent α-sub-exponential random

variables. By a d-th order homogeneous chaos, we mean the polynomial

fd,A(X) :=
∑

i1,...,id

ai1...id(Xi1 − EXi1) · · · (Xid − EXid). (1.7)

Here, A = (ai1...id) is a d-tensor which we assume to be symmetric (i. e. ai1...id =

aiσ(1)...iσ(d)
for any permutation σ ∈ Sd). Additionally, we often assume that A has

vanishing diagonal in the sense that ai1...id = 0 whenever i1, . . . , id are not pairwise

different. Using the characterization of the Ψα norms in terms of the growth of Lp norms

(see Appendix A for details), [18, Corollary 2] yields the following result:

Proposition 1.2. Let X1, . . . , Xn be a set of independent, centered random variables

with ‖Xi‖Ψα
≤M for some α ∈ (0, 1], A be a symmetric d-tensor with vanishing diagonal

and consider fd,A as in (1.7). We have for any t ≥ 0

P
(
|fd,A(X)| ≥ t

)
≤ 2 exp

(
− 1

Cd,α
min
I⊂[d]

min
J∈P (Ic)

( t

Md maxiI‖AiIc
‖J

) 2α
2|I|+α|J |

)
.

Our main result generalizes Proposition 1.2 to arbitrary polynomials in random

variables with bounded Orlicz norms. For sub-Gaussian random variables, i. e. α = 2,

such a result has been obtained in [4, Theorem 1.4]. Our next theorem can be regarded

as an analogous result for α ∈ (0, 1]. To fix some notation, if f : Rn → R is a function in

CD(Rn), for d ≤ D we denote by f (d) the (symmetric) d-tensor of its d-th order partial

derivatives.
Theorem 1.3. Let X1, . . . , Xn be a set of independent random variables satisfying
‖Xi‖Ψα ≤ M for some α ∈ (0, 1]. Let f : Rn → R be a polynomial of total degree
D ∈ N. Then, for any t ≥ 0,

P(|f(X) − Ef(X)| ≥ t) ≤ 2 exp
(
−

1

CD,α

min
1≤d≤D

min
I⊂[d]

min
J∈P (Ic)

( t

Md maxiI
‖(Ef(d)(X))iIc ‖J

) 2α
2|I|+α|J |

)
.

Note that if f(X) = fD,A(X) as in (1.7), only the D-th order tensor gives a contribu-

tion, i. e. we retrieve Proposition 1.2. We discuss Theorem 1.3 and compare it to known

results in Subsection 1.2. For illustration, let us consider some simple cases next. The

following corollary evaluates the cases of d = 1, 2.

Corollary 1.4. Let X1, . . . , Xn be a set of independent, centered random variables with

‖Xi‖Ψα
≤M for some α ∈ (0, 1].

1. Let a ∈ R
n. For any t ≥ 0 it holds

P

(∣∣
n∑

i=1

aiXi

∣∣ ≥ t
)
≤ 2 exp

(
− 1

Cα
min

( t2

M2|a|2 ,
tα

Mα maxi |ai|α
))
.
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2. Let A be a symmetric matrix. Writing EX2
i = σ2

i , we have for any t ≥ 0

P

(∣∣∑

i,j

aijXiXj −
n∑

i=1

σ2
i aii

∣∣ ≥ t
)
≤ 2 exp

(
− 1

Cα
η(A,α, t/M2)

)
,

where, setting ‖A‖∞ := maxi,j |aij |, we have

η(A,α, t) := min

(
t2

‖A‖2HS

,
t

‖A‖op
,
( t

maxi=1,...,n‖(aij)j‖2

) 2α
2+α

,

(
t

‖A‖∞

)α
2
)
.

Let us complement these results by some simple observations. First, up to constants,

Corollary 1.4 (1) gives back a classical result for the tails of a linear form in random

variables with sub-exponential tails for α = 1. For more general functions and similar

results under a Poincaré-type inequality, we refer to [7] (the first order case) and [11]

(the higher order case).

Moreover, Corollary 1.4 (2) is a sharpened version of Proposition 1.1. In compar-

ison, the more refined version contains two additional terms. The respective norms

maxi=1,...,n‖(aij)j‖2 and ‖A‖∞ can no longer be written in terms of the eigenvalues

of A (in contrast to ‖A‖HS and ‖A‖op). Indeed, we have ‖A‖∞ = maxi,j |〈ei, Aej〉| for
the standard basis (ei)i of R

n, and it can easily be seen that maxi=1,...,n‖(aij)j‖2 =

‖A‖2→∞ := max‖x‖2=1‖Ax‖∞. Moreover, the norms might have a very different scaling

in n. For example, for e = (1, . . . , 1) and A = eT e − Id we have ‖A‖HS ∼ ‖A‖op ∼ n,

maxi‖(aij)j‖2 ∼ n1/2 and ‖A‖∞ = 1.

Furthermore, let us provide a simplified version of Theorem 1.3 which only involves

Hilbert–Schmidt norms. These norms are typically easiest to calculate, and another

benefit is that in this situation, we may extend our results to any α ∈ (0, 2].

Theorem 1.5. Let X1, . . . , Xn be independent random variables satisfying ‖Xi‖Ψα
≤M

for some α ∈ (0, 2] and let f : Rn → R be a polynomial of total degree D ∈ N. Then for

all t ≥ 0 it holds

P(|f(X)− Ef(X)| ≥ t) ≤ 2 exp
(
− 1

CD,α
min

1≤d≤D

( t

Md‖Ef (d)(X)‖HS

)α
d
)
. (1.8)

In particular, if ‖Ef (d)(X)‖HS ≤ 1 for d = 1, . . . , D, then

E exp

(
1

CD,αMα
|f(X)− Ef(X)| α

D

)
≤ 2,

or equivalently ‖f(X)− Ef(X)‖Ψ α
D

≤ CD,αM
D.

Intuitively, Theorem 1.5 states that a polynomial in random variables with tail decay

as in (1.4) also exhibits α-sub-exponential tail decay whenever the Hilbert–Schmidt

norms in (1.8) are not too large. Moreover, the tail decay is “as expected”, i. e. one

just needs to account for the total degree D by taking the D-th root. For a d-th order

homogeneous chaos, Theorem 1.5 reads as follows:

Corollary 1.6. Let X1, . . . , Xn be independent random variables with ‖Xi‖Ψα
≤ M for

some α ∈ (0, 2] and let A be a symmetric d-tensor with vanishing diagonal and ‖A‖HS ≤ 1.

Then it holds

E exp
( 1

Cd,αMα
|fd,A(X)|αd

)
≤ 2.

Remark 1.7. With the help of these inequalities, it is possible to prove many results on

concentration of linear and quadratic forms in independent random variables scattered
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throughout the literature. For example, [27, Lemma A.6] is an immediate consequence

of Corollary 1.4 (combined with Lemma A.1 for f(X,X ′) = XiX
′
i). In a similar way, one

can deduce [36, Lemma C.4] by applying Corollary 1.4 to the random variable Zi := XiYi,

whenever (Xi, Yi) is a vector with sub-exponential marginal distributions. More generally,

one can consider a linear form (or higher order polynomial chaoses) in a product of k

random variables X1, . . . , Xk with sub-exponential tails, for which Lemma A.1 provides

estimates for the Ψ 1
k
norm. Lastly, the results in [9, Appendix B] can be sharpened for

α ∈ (0, 1] by a more general version of Corollary 1.4 (2), using the same arguments as in

[29, Section 3] to treat complex-valued matrices.

1.2 Discussion of related literature

Inequalities for the Lp-norms of polynomial chaos have been established in various

works. From these Lp norm inequalities one can quite easily derive concentration inequal-

ities. For a thorough discussion on inequalities involving linear forms in independent

random variables we refer to [8, Chapter 1].

Starting with linear forms, generalizations to certain classes of random variables as

well as multilinear forms of higher degree were shown. Among these are the two classes

of random variables with either log-convex or log-concave tails (i. e. t 7→ logP(|X| ≥ t)

is convex or concave, respectively). Two-sided Lp norm estimates for the log-convex

case were derived in [15] for linear forms and in [18] for chaoses of all orders. On

the other hand, for measures with log-concave tails similar two-sided estimates were

proven in [10, 20, 21, 23, 3] under different conditions. Moreover, two-sided estimates

for non-negative random variables have been derived in [25] and for chaos of order two

in symmetric random variables satisfying the inequality ‖X‖2p ≤ A‖X‖p in [26].

Our approach is closer to the work of Adamczak and Wolff [4], where the case of

polynomials in sub-Gaussian random variables has been treated. Lastly, let us mention

the two results [9, Lemma B.2, Lemma B.3] and [34, Corollary 1.6], proving concentration

inequalities for quadratic forms in independent random variables with α-sub-exponential

tails.

To be able to compare our results to the results listed above, let us discuss their

conditions. Firstly, the conditions of a bounded Orlicz norm and log-convex or log-

concave tails cannot be compared in general. It is known that random variables with

log-concave tails satisfy ‖X‖Ψ1
<∞. On the other hand, the tail function of any discrete

random variable X is a step function (for example, if X has the geometric distribution,

then logP(X ≥ t) = −⌊x⌋ log(1/(1− p))), which is neither log-convex nor log-concave but

can still have a finite Ψα norm for some α. For example, a Poisson-distributed random

variable X satisfies ‖X‖Ψ1
<∞.

Secondly, the condition ‖X‖2p ≤ α‖X‖p for all p ≥ 1 and some α > 1 used in the

works of Meller implies the existence of the Ψα̃-norm for α̃ := (log2 α)
−1. Especially in

the case α = 2d this yields the existence of the Ψ1/d norm. However, we want to stress

that the results in [3, 18, 25, 26] are two-sided and require very different tools.

Finally, the two works of Schudy and Sviridenko [32, 33] contain concentration

inequalities for polynomials in moment bounded random variables. Therein, a random

variable Z is called moment bounded with parameter L > 0, if for all i ≥ 1 it holds

E|Z|i ≤ iLE|Z|i−1
. Actually, using Stirling’s formula, it is easy to see that it implies

‖Z‖Ψ1
< ∞, but it is not clear whether the converse implication also holds. However,

there is no inequality of the form L ≤ C‖X‖Ψ1
, as can be seen in the Bernoulli case

X ∼ Ber(p). Considering the case of quadratic forms in random variables X which are

moment bounded and centered, one can easily see that (apart from the constants) the

bound in Corollary 1.4 (2) is sharper than the corresponding inequality in [33, Theorem

1.1]. Since for log-convex distributions there are two-sided estimates, Corollary 1.4 (2)

EJP 26 (2021), paper 48.
Page 6/22

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP606
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Concentration inequalities for polynomials in α-sub-exponential r.v.

is sharp in this class. Apart from quadratic forms, due to the different conditions and

quantities, it is difficult to compare [33] and Theorem 1.3 in general.

1.3 Outline

In Section 2 we formulate and prove several applications which can be deduced from

the main results. Section 3 contains the proofs of the results from Section 1. Lastly,

Appendix A contains some elementary properties of the Orlicz norms in particular for

α ∈ (0, 1].

2 Applications

In the following, we provide some applications of our main results. In particular, all

the results in this section follow from either Proposition 1.1 or Corollary 1.4 (2).

2.1 Concentration of the Euclidean norm of a vector with independent compo-

nents

As a start, Proposition 1.1 can be used to give concentration properties of the Eu-

clidean norm of a linear transformation of a random vector X consisting of independent,

normalized random variables with α-sub-exponential tails. We give two different forms

thereof. The first form is inspired by the results in [29] for the sub-Gaussian case.

Proposition 2.1. Let X1, . . . , Xn be independent random variables satisfying EXi =

0,EX2
i = 1, ‖Xi‖Ψα

≤ M for some α ∈ (0, 1] and let B 6= 0 be an m× n matrix. For any

t ≥ 0 we have

P

(
|‖BX‖2 − ‖B‖HS| ≥ t

)
≤ 2 exp

(
− 1

CαM4
min

( t2

‖B‖2−α
HS ‖B‖αop

,
tα

‖B‖αop

))
. (2.1)

Proof. First, we additionally assume that ‖B‖HS = 1. In this situation, let us apply

Proposition 1.1 to the matrix A := BTB. An easy calculation shows that trace(A) =

trace(BTB) = ‖B‖2HS = 1, so that we have

P

(
|‖BX‖22 − 1| ≥ t

)
≤ 2 exp

(
− 1

CαM4
min

( t2

‖B‖2op
,
( t

‖B‖2op

)α
2
))

≤ 2 exp
(
− 1

CαM4‖B‖αop
min(t2, t

α
2 )
)
.

(2.2)

Here, in the first step we have used the estimates ‖A‖2HS ≤ ‖B‖2op‖B‖2HS = ‖B‖2op and

‖A‖op ≤ ‖B‖2op as well as the fact that by Lemma A.2, EX2
i = 1 for any i implies

M ≥ Cα > 0, while the second step follows from ‖B‖op < 1.

Now, as in [29], we use the inequality |z− 1| ≤ min(|z2 − 1|, |z2 − 1|1/2), giving for any

t ≥ 0

P

(
|‖BX‖2 − 1| ≥ t

)
≤ P

(
|‖BX‖22 − 1| ≥ max(t, t2)

)
. (2.3)

Hence, a combination of (2.2), (2.3) and min(max(t, t2)2,max(t, t2)α/2) = min(t2, tα)

yields

P

(
|‖BX‖2 − 1| ≥ t

)
≤ 2 exp

(
− 1

CαM4‖B‖αop
min(t2, tα)

)
,

i. e. (2.1) for ‖B‖HS = 1. The general case now follows by considering B̃ := B‖B‖−1
HS,

noting that

P

(
|‖BX‖2 − ‖B‖HS| ≥ t

)
= P

(
|‖B̃X‖2 − 1| ≥ t‖B‖−1

HS

)
.
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The next corollary provides an alternative estimate for ‖BX‖22:
Corollary 2.2. Let X1, . . . , Xn be independent, centered random variables satisfying
‖Xi‖Ψα

≤ M for some α ∈ (0, 1] and EX2
i = σ2

i . For an n × n matrix B let A = BTB =

(aij). Then, for any x > 0, with probability at least 1− 2 exp(−x/Cα) we have

|‖BX‖22 −
n
∑

i=1

σ2
i

n
∑

j=1

b2ji| ≤ M2 max
(√

x‖A‖HS, x‖A‖op, x
2+α
2α max

i=1,...,n
‖(aij)j‖2, x

2
α ‖A‖∞

)

.

Let us briefly compare this result to the bound we obtain if we assume ‖Xi‖Ψ2
≤M

instead. In this case, proceeding in the same way as in the proof below but using the

Hanson–Wright inequality (1.3) yields

|‖BX‖22 −
n∑

i=1

σ2
i

n∑

j=1

b2ji| ≤M2(
√
x‖A‖HS + x‖A‖op)

with probability 1 − 2 exp(−x/C). In particular, we have similar terms corresponding

to
√
x and x, whereas in the α-sub-exponential case we need two additional terms to

account for the heavier tails of its components.

Proof. Define the quadratic form

Z := ‖BX‖22 = 〈BX,BX〉 = 〈X,BTBX〉 = 〈X,AX〉.

Using Corollary 1.4 (2) with the matrix A gives with probability 1− 2 exp(−x/Cα)

|Z − EZ| ≤M2 max
(√

x‖A‖HS, x‖A‖op, x
2+α
2α max

i=1,...,n
‖Ai·‖2, x

2
α ‖A‖∞

)
.

Noting that EZ = E〈X,AX〉 =∑n
i=1 σ

2
i

∑n
j=1 b

2
ji finishes the proof.

2.2 Projections of a random vector and distance to a fixed subspace

It is possible to apply Proposition 1.1 to any matrix A associated to an orthogonal

projection. In this case, the norms involved can be explicitly calculated, and they do

not depend on the structure of the subspace onto which one projects, but merely on its

dimension. This leads to the following corollary.

Corollary 2.3. Let X1, . . . , Xn be independent random variables satisfying EXi =

0,EX2
i = 1 and ‖Xi‖Ψα

≤ M for some α ∈ (0, 1]. Furthermore, let m < n and let

P denote a random orthogonal projection onto an m-dimensional subspace of Rn, inde-

pendent of X. For any x > 0, with probability at least 1− 2 exp(−x/Cα), we have

∣∣∣‖PX‖22 −m
∣∣∣ ≤M2 max

(√
xm, x

2
α

)
. (2.4)

Proof of Corollary 2.3. This is an application of Proposition 1.1. First, note that we have

for any fixed projection P onto an m-dimensional subspace

EX‖PX‖22 = EX〈X,PX〉 =
∑

i,j

Pij EX XiXj = tr(P ) =

n∑

i=1

λi(P ) = m

as well as ‖P‖2HS =
∑n

i=1 λi(P )
2 = m and ‖P‖op = 1. Consequently, by conditioning on P

and using the independence of X and P we have

P
(
|‖PX‖22 −m| ≥ t | P

)
≤ 2 exp

(
− 1

Cα
min

( t2

M4m
,
( t

M2

)α
2
))
.

Finally, it remains to integrate with respect to P .
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A very similar result which follows from Proposition 2.1 is the following variant of

[29, Corollary 3.1]. We use the notation d(x,E) = infe∈E d(x, e) for the distance between

an element x and a subset E of a metric space (M,d).

Corollary 2.4. Let X1, . . . , Xn be independent random variables satisfying EXi =

0,EX2
i = 1 and ‖Xi‖Ψα

≤ M for some α ∈ (0, 1], and let E be a subspace of Rn of

dimension d. For any t > 0 we have

P

(
|d(X,E)−

√
n− d| ≥ t

)
≤ 2 exp

(
− 1

CαM4
min

( t2

(n− d)(2−α)/2
, tα
))
.

Proof. This follows exactly as in [29, Corollary 3.1] by using Proposition 2.1.

2.3 Special cases

To pick out one example of random variables with finite Ψ1 norms, it is possible to

apply all results to random variables having a Poisson distribution, i. e. Xi ∼ Poi(λi) for

some λi ∈ (0,∞). By using the moment generating function of the Poisson distribution,

it is easily seen that

‖Xi‖Ψ1
=

1

log(log(2)λ−1
i + 1)

.

The function g is increasing and satisfies g(x) ∼ log(1/x) (for x→ 0) and g(x) ∼ x/ log(2)

(for x → ∞). More generally, if the random variable |X| has a moment generating

function ϕ|X| in a suitably large neighborhood of 0, it can be used to explicitly calculate

the Ψ1-norm. Indeed, we have E exp(|X|/t) = ϕ|X|(t
−1), and so ‖X‖Ψ1

= 1/ϕ−1
|X|(2).

Moreover, it follows from Lemma A.3 that

‖Xi − EXi‖Ψ1
≤
(
1 +

2

e log(2)

) 1

log(log(2)λ−1
i + 1)

=: g(λi).

Thus, as a special case of Corollary 1.4 (2), we obtain the following corollary.

Corollary 2.5. Let Xi ∼ Poi(λi), B := g(maxi=1,...,n λi) and A = (aij) be a symmetric

n× n matrix. We have for any t ≥ 0

P

(∣∣∣
∑

i,j

aij(Xi − λi)(Xj − λj)−
n∑

i=1

aiiλi

∣∣∣ ≥ B2t
)

≤ 2 exp

(
− 1

C
min

(
t2

‖A‖2HS

,
t

‖A‖op
,
( t

maxi‖(aij)j‖2

) 2
3

,

(
t

‖A‖∞

) 1
2

))

≤ 2 exp


− 1

C
min


 t2

‖A‖2HS

,

(
t

‖A‖op

) 1
2




 .

For Poisson chaos of arbitrary order d ∈ N, one may derive similar results by

evaluating Proposition 1.2 (for α = 1). Note though that already for d = 1, we lose a

logarithmic factor in the exponent.

Let us compare Corollary 2.5 to [16, Section 4], where results for U -statistics of order

2 for Poisson processes are shown (related estimates for higher orders can be found in

[1, Section 4]). For simplicity, we assume λ1 = . . . = λn =: λ. Let (Nt)t≥0 be a Poisson

process with intensity λ and compensator (λt)t≥0, and writeMt := Nt − λt. Taking

f(x, y) :=
∑

i<j

aij1(i−1,i](x)1(j−1,j](y)
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and t = n, the functional Zt from [16] reads Zn =
∑

i<j aij(Xi − λi)(Xj − λj), i. e. we

obtain a quadratic form without diagonal. In a slightly rewritten form, [16, Theorem 4.2]

now yields that for any ε, u > 0,

P(Zn > u) ≤ 2.77 exp

(
−min

(
u2

4(1 + ε)3C2
,

u

2η(ε)D
,

(
u

β(ε)B

)2/3

,

(
u

γ(ε)A

)1/2
))

.

Here, η(ε), β(ε) and γ(ε) are ε-dependent quantities which can be read off [16], while it

not hard to relate the quantities A, B, C and D to the norms which appear in Corollary

2.5. Therefore, up to constants, we arrive at a result similar to Corollary 2.5.

Other interesting examples of sub-exponential random variables arise in stochastic

geometry. Apart from standard examples like the uniform distribution or more generally

log-concave measures on convex bodies, let us mention the cone measure. Indeed, if

K ⊆ R
n is an isotropic, convex body and X is distributed according to the cone measure

on K, then ‖〈X, θ〉‖Ψ1
≤ c for some constant c and any θ ∈ Sn−1. For the details and the

proof we refer to [28, Lemma 5.1].

3 Proofs

To begin with, let us introduce some notation. For any subset C ⊆ [d] with cardinality

|C| > 1, we may introduce the “generalized diagonal” of [n]d with respect to C by

{i ∈ [n]d : ik = il for all k, l ∈ C}. (3.1)

This notion of generalized diagonals naturally extends to d-tensors A = (ai)i∈[n]d (obvi-

ously, the generalized diagonal of A with respect to C is the set of coefficients ai such

that i lies on the generalized diagonal of [n]d with respect to C). If d = 2 and C = {1, 2},
this gives back the usual notion of the diagonal of an n× n matrix. Moreover, write

[n]d := {i ∈ [n]d : i1, . . . , id are pairwise different}.

If A,B are d-tensors, we define 〈A,B〉 =∑
i∈[n]d aibi. Given a set of d vectors v1, . . . , vd ∈

R
n, we write v1 ⊗ . . .⊗ vd for the outer product

(v1 ⊗ . . .⊗ vd)i1...id :=

d∏

j=1

vjij .

To prove Theorem 1.3, we need a number of auxiliary results. The first group of

them provides Lp norm estimates. In the proof of [4, Theorem 1.4], moments of sums of

sub-Gaussian random variables are compared to moments of Gaussian random variables

(cf. (3.2) below). A similar result is needed for α-sub-exponential random variables, but

here we have to replace Gaussian by symmetric Weibull variables with shape parameter

α (and scale parameter 1), i. e. symmetric random variables w with P(|w| ≥ t) = exp(−tα).
Of course, in particular we have ‖w‖Ψα

<∞. We now have the following lemma:

Lemma 3.1. For any k ∈ N, any α > 0 and any p ≥ 1 the following holds. For any set of

independent, symmetric random variables Y1, . . . , Yn satisfying ‖Yi‖Ψα
k
≤M we have

∥∥∥
n∑

i=1

aiYi

∥∥∥
p
≤ 2cα,kM

∥∥∥
n∑

i=1

aiwi,1 · · ·wi,k

∥∥∥
p
,

where wi,j are symmetric i. i. d. Weibull random variables with shape parameter α and

cα,k := (k/(1− log(2)))k/α.
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Recall that if α = 2, by [4, Lemma 5.4] we have

∥∥
n∑

i=1

aiYi
∥∥
p
≤ CkM

∥∥
n∑

i=1

aigi,1 · · · gi,k
∥∥
p
, (3.2)

where gi,j are independent standard Gaussians. In particular, this allows to prove

analogues of Proposition 1.2 and Theorem 1.3 if α = 2/q for some q ∈ N solely based on

the use of Gaussian random variables. We will not pursue this idea further in this note.

Proof of Lemma 3.1. Due to homogeneity we assume M = 1, and for brevity we set

c := cα,k. By Markov’s inequality we have P(|Yi| ≥ t) ≤ 2 exp(−tα/k) for any i ∈ [n] and

all t ≥ 0.

The inclusion {c1/k|wi,1| ≥ t1/k, . . . , c1/k|wi,k| ≥ t1/k} ⊆ {c|wi,1 · · ·wi,k| ≥ t} holds for
any i ∈ [n] and t ≥ 0. This yields for all t ≥ 1

P(c|wi,1 · · ·wi,k| ≥ t) ≥
k∏

j=1

P(c1/k|wi,j | ≥ t1/k) = exp
(
− k
( t
c

)α/k)

= exp
(
− (1− log(2))tα/k

)
≥ 2 exp

(
− tα/k

)

≥ P(|Yi| ≥ t),

where the second inequality requires the condition t ≥ 1. Now the rest follows exactly

as in [4, Proof of Lemma 5.4].

Alternatively, one can extend the inequality to all t ≥ 0 by multiplying the left hand

side by a constant. Indeed, it is easy to see (by observing P(c|wi,1 · · ·wi,k| ≥ 1) ≥ 2/e)

that for all t ≥ 0 it holds

P(|Yi| ≥ t) ≤ e

2
P(c|wi,1 · · ·wi,k| ≥ t).

Thus, the contraction principle [19, Theorem 1] tells us that for any p ≥ 1 we have

∥∥∥
n∑

i=1

aiYi

∥∥∥
p
≤ e

2
cα,k

∥∥∥
n∑

i=1

aiwi,1 · · ·wi,k

∥∥∥
p
.

Moreover, we shall need estimates for the Lp norms of multilinear forms in Weibull

random variables. Adapting [18, Example 3] yields the following lemma:

Lemma 3.2. Let A = (ai)i∈[n]d be a d-tensor and (wj
i ), i ≤ n, j ≤ d, an array of i. i. d.

Weibull variables with shape parameter α ∈ (0, 1]. Then, for every p ≥ 2,

C−1
α,d

∑

I⊂[d]

∑

J∈P (Ic)

p|I|/α+|J |/2 max
iI

‖AiIc
‖J

≤ ‖〈A,w1 ⊗ . . .⊗ wd〉‖p ≤ Cα,d

∑

I⊂[d]

∑

J∈P (Ic)

p|I|/α+|J |/2 max
iI

‖AiIc
‖J .

Note that a similar result for Weibull variables with shape parameter α > 1 is not

known yet if d > 3, which explains the restriction to α ∈ (0, 1] in this article. The case of

α ∈ [1, 2] and polynomials of total degree D ≤ 3 has been discussed in [4, Proposition

6.2].

In the proof of Theorem 1.3, we actually show Lp estimates for f(X). The following

proposition provides the link to concentration inequalities. Results of this type are by

now standard, and we cite them in the form given in [31] with some smaller modifications

to address the situation considered in the present note.
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Proposition 3.3. Assume that a random variable Z satisfies for every p ≥ 2

‖Z − EZ‖p ≤
ν∑

k=1

(Ckp)
γk

for some ν ∈ N, some constants C1, . . . , Cν ≥ 0 and some exponents γk ∈ (0,∞) for which

we assume γ1 ≤ · · · ≤ γν . Let L := |{k : Ck > 0}| and r := min{k ∈ {1, . . . , ν} : Ck > 0}.
Then, for any t ≥ 0

P(|Z − EZ| ≥ t) ≤ 2 exp

(
− log(2)

2(Le)1/γr
min

k=1,...,ν

{
t1/γk

Ck

})
.

In the second group of auxiliary results, we discuss some properties of the norms

‖A‖J . To this end, recall the Hadamard product of two d-tensors A,B given by A ◦B :=

(aibi)i∈[n]d . For any C ⊂ [n]d, we may define “indicator tensors” 1C by setting 1C = (ai)i
with ai = 1 if i ∈ C and ai = 0 otherwise. If |J | > 1, we do not have

‖A ◦ 1C‖J ≤ ‖A‖J (3.3)

in general. However, [4, Lemma 5.2 and Corollary 5.3] show a number of situations in

which such an inequality does hold, e. g. “generalized rows” or “generalized diagonals”

as well as certain sets L(K). Here, for any partition K = {K1, . . . ,Kν} of [d] we define

L(K) = {i ∈ [n]d : ik = il ⇔ ∃j : k, l ∈ Kj}. (3.4)

That is, L(K) is the set of those indices for which the partition into level sets is equal to

K.
We need to extend these results to the “restricted” tensors AiIc

. That is, we examine

whether (a modification of) the inequality

‖(A ◦ 1C)iIc ‖J ≤ ‖AiIc
‖J (3.5)

still holds in the situation where J is a partition of Ic. Additionally, we show an analogue

of [4, Lemma 5.1].

Lemma 3.4. Let A = (ai)i∈[n]d be a d-tensor, I ⊂ [d] and iI ∈ [n]I fixed.

1. If C = {i : ik1
= j1, . . . , ikl

= jl} for some 1 ≤ k1 < . . . < kl ≤ d (“generalized row”),

then (3.5) holds.

2. If C = {i : ik = il ∀k, l ∈ K} for some K ⊂ [d] (“generalized diagonal”), then (3.5)

holds.

3. If C1, C2 ⊂ [n]d are such that (3.5) holds for any d-tensor A, then so is C1 ∩ C2.

4. If K ∈ Pd, then ‖(A ◦ 1L(K))iIc ‖J ≤ 2|K|(|K|−1)/2‖AiIc
‖J .

5. For any vectors v1, . . . , vd ∈ R
n, ‖(A ◦ ⊗d

i=1vi)iIc ‖J ≤ ‖AiIc
‖J
∏d

i=1‖vi‖∞.

Proof. To see (1), we may assume that {k1, . . . , kl}∩I = ∅ (note that if {k1, . . . , kl}∩I 6= ∅,
either the conditions are not compatible, in which case (A ◦ 1C)iIc = 0, or we can remove

some of the conditions and obtain a subset with {k1, . . . , kl̃}∩ I = ∅). In this case, if C is a

generalized row, then (A ◦ 1C)iIc = AiIc
◦ 1C′ for some generalized row C ′ in Ic, proving

(1).

If C is a generalized diagonal, we have to consider two situations. AssumingK∩I = ∅,
i. e. K is subset of Ic, we immediately obtain (2). On the other hand, if K ∩ I 6= ∅, then
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either (A ◦ 1C)iIc = 0 or (A ◦ 1C)iIc = AiIc
◦ 1C′ for some generalized row C ′ in Ic, readily

leading to (2) again.

(3) is clear. To see (4), observe that 1L(K) is the indicator matrix of a set C which can

be written as an intersection of |K| generalized diagonals and |K|(|K| − 1)/2 sets of the

form {i : ik 6= il} for k < l. Recall that

‖(B ◦ 1{ik 6=il})iIc ‖J = ‖(B −B ◦ 1{ik=il})iIc ‖J ≤ 2‖BiIc
‖J ,

using (2) in the last step. As a consequence, the claim follows by applying (2) again and

an interation of (3). Finally, noting that

‖(A ◦ ⊗d
i=1vi)iIc ‖J = sup

{∑

iIc

ai(⊗d
i=1vi)i

k∏

j=1

x
(j)
iJj

: ‖x(j)
iJj

‖2 ≤ 1
}

≤ sup
{∑

iIc

ai

k∏

j=1

x
(j)
iJi

: ‖x(j)
iJj

‖2 ≤ 1
} d∏

i=1

‖vi‖∞ = ‖AiIc
‖J

d∏

i=1

‖vi‖∞,

we arrive at (5).

We are now ready to prove Theorem 1.3. Before we start, let us give some final

definitions. For any multiindex i let |i| :=∑j ij . For the sake of brevity we define

Im,d := {(i1, . . . , im) ∈ N
m : |i| = d},

Im,≤d := {(i1, . . . , im) ∈ N
m : |i| ≤ d},

where by convention 0 /∈ N. Given two multiindices k, l of equal size, we write k ≤ l if

kj ≤ lj for all j, and k < l if k ≤ l and there is at least one index such that kj < lj . Lastly,

by f . g we mean an inequality of the form f ≤ CD,αg.

Proof of Theorem 1.3. The proof works by finding suitable estimates for the Lp norms

‖f(X) − Ef(X)‖p, from which we derive concentration bounds using Proposition 3.3.

We may assumeM = 1. For the general case, given random variables X1, . . . , Xn with

‖Xi‖Ψα
≤ M , define Yi := M−1Xi. The polynomial f = f(X) can be written as a

polynomial f̃ = f̃(Y ) by appropriately modifying the coefficients, i. e. multiplying each

monomial by Mr, where r is its total degree. Now it remains to see that ∂i1...ij f̃(Y ) =

M j∂i1...ijf(X).

Step 1. First, we reduce the problem to generalizations of chaos-type functionals

(1.7). Indeed, by sorting according to the total grade, f may be represented as

f(x) =

D∑

d=1

d∑

ν=1

∑

k∈Iν,d

∑

i∈[n]ν

c
(d)
(i1,k1),...,(iν ,kν)

xk1
i1
xk2
i2

· · ·xkν
iν

+ c0,

where the constants satisfy c
(d)
(i1,k1),...,(iν ,kν)

= c
(d)
(iπ1

,kπ1
),...,(iπν ,kπν )

for any permutation

π ∈ Sν . As in [4], by rearranging and making use of the independence of X1, . . . , Xn, this

leads to the estimate

|f(X)− Ef(X)| ≤
D∑

d=1

d∑

ν=1

∑

k∈Iν,d

∣∣∣
∑

i∈[n]ν

aki (X
k1
i1

− EXk1
i1
) · · · (Xkν

iν
− EXkν

iν
)
∣∣∣,

where

aki =

D∑

m=ν

∑

kν+1,...,km>0
k1+...+km≤D

∑

iν+1,...,im
(i1,...,im)∈[n]m

(
m

ν

)
c
(k1+...+km)
(i1,k1),...,(im,km)

m∏

β=ν+1

EX
kiβ

iβ
.
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Step 2. Let X(1), . . . , X(d) be independent copies of the random vector X. Take a set

of i. i. d. Rademacher variables (ε
(j)
i ), i ≤ n, j ≤ d, which are independent of the (X(j))j .

By standard decoupling and symmetrization inequalities (see [8, Theorem 3.1.1] and [8,

Lemma 1.2.6]) we have

‖f(X)−Ef(X)‖p .

D
∑

d=1

d
∑

ν=1

∑

k∈Iν,d

∥

∥

∥

∑

i∈[n]ν

a
k
i ((X

(1)
i1

)k1 −E(X
(1)
i1

)k1) · · · ((X
(ν)
iν

)kν −E(X
(ν)
iν

)kν )
∥

∥

∥

p

.

D
∑

d=1

d
∑

ν=1

∑

k∈Iν,d

∥

∥

∥

∑

i∈[n]ν

a
k
i ε

(1)
i1

(X
(1)
i1

)k1 · · · ε
(ν)
iν

(X
(ν)
iν

)kν

∥

∥

∥

p

Noting that ‖Xk
i ‖Ψα/k

= ‖Xi‖kΨα
≤ 1 (cf. Appendix A), an iteration of Lemma 3.1 hence

leads to

‖f(X)− Ef(X)‖p .

D∑

d=1

d∑

ν=1

∑

k∈Iν,d

∥∥∥
∑

i∈[n]ν

aki (w
(1)
i1,1

· · ·w(1)
i1,k1

) · · · (w(ν)
iν ,1

· · ·w(ν)
iν ,kν

)
∥∥∥
p
.

Here, (w
(j)
i,k ) is an array of i. i. d. symmetric Weibull variables with shape parameter α.

Moreover, the family (ak
i
)ν∈{1,...,d},k∈Iν,d,i∈[n]ν gives rise to a d-tensor Ad as follows.

Given any index i = (i1, . . . , id) there is a unique number ν ∈ {1, . . . , d} of distinct

elements j1, . . . , jν with each jl appearing exactly kl times in i. Consequently, we set

ai1...id := a
(k1,...,kν)
j1,...,jν

, and Ad = (ai)i∈[n]d . Note that this is well-defined due to the symmetry

assumption.
For any k ∈ Iν,d denote by K(k) = K(k1, . . . , kν) ∈ Pd the partition which is defined by

splitting the set {1, . . . , d} into consecutive intervals of length k1, . . . , kν . In other words,

K(k) = {K1, . . . ,Kν} with Kl = {∑l−1
i=1 ki + 1,

∑l−1
i=1 ki + 2, . . . ,

∑l
i=1 ki}, l = 1, . . . , ν. Now,

recalling the definition of L(K) (3.4), rewriting and applying Lemma 3.2 together with
Lemma 3.4 (4) yields

‖f(X) − Ef(X)‖p .
D∑

d=1

d∑

ν=1

∑

k∈Iν,d

‖〈Ad ◦ 1L(K(k1,...,kν )),⊗
ν
j=1 ⊗

kj
k=1 (w

(j)
i,k)i≤n〉‖p

.
D∑

d=1

d∑

ν=1

∑

k∈Iν,d

∑

I⊂[d]

∑

J∈P (Ic)

p
|I|/α+|J |/2

max
iI

‖(Ad ◦ 1L(K(k1,...,kν )))iIc ‖J

.
D∑

d=1

∑

I⊂[d]

∑

J∈P (Ic)

p
|I|/α+|J |/2

max
iI

‖(Ad)iIc ‖J .

Step 3. Next, we replace ‖Ad‖J by ‖Ef (d)(X)‖J . To this end, first note that for

i ∈ [n]d with distinct indices j1, . . . , jν which are taken l1, . . . , lν times, we have

E
∂df

∂xi1 . . . ∂xid
(X) =

∑

k:k≥l

D∑

m=ν

∑

kν+1,...,km>0
k1+...+km≤D

∑

jν+1,...,jm
(j1,...,jm)∈[n]m


(
m

ν

)
ν!c

(k1+...+km)
(j1,k1),...,(jm,km)

ν∏

β=1

EX
kβ−lβ
jβ

m∏

β=ν+1

EX
kβ

jβ

ν∏

β=1

kβ !

(kβ − lβ)!




= ν!l1! · · · lν !ai +R
(d)
i
,

where the “remainder term” R
(d)
i

corresponds to the set of indices k satisfying k > l. If

d = D, we clearly have R
(d)
i

= 0, and therefore

E
∂Df

∂xi1 . . . ∂xiD
(X) = ν!l1! · · · lν !ai = ν!|I1|! · · · |Iν |!ai, (3.6)
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where I = {I1, . . . , Iν} is the partition given by the level sets of the index i. It follows

that for any I ⊂ [D] and any partition J ∈ P (Ic),

‖(AD)iIc ‖J ≤
∑

K∈PD

‖(AD ◦ 1L(K))iIc ‖J ≤
∑

K∈PD

‖(Ef (D)(X) ◦ 1L(K))iIc ‖J

. ‖(Ef (D)(X))iIc ‖J ,
(3.7)

using the partition of unity 1 =
∑

K∈PD
1L(K) and the triangle inequality in the first,

equation (3.6) in the second and Lemma 3.4 (4) in the last step.

The proof is now completed by induction. More precisely, in the next step we show

that for any d = 1, . . . , D − 1, any I ⊂ [d] and any partitions I ∈ Pd, J ∈ P ([d]\I),

‖(R(d))iIc ‖J .

D∑

k=d+1

∑

K∈P ([k]\I)
|K|≥|J |

‖(Ak)iIc ‖K. (3.8)

Actually, one can see below that it is possible to restrict the second sum to partitions
K with |K| ∈ {|J |, |J |+ 1}. Once having proven (3.8), it follows from reverse induction
that

D
∑

d=1

∑

I⊂[d]

∑

J∈P (Ic)

p|I|/α+|J |/2 max
iI

‖(Ad)iIc ‖J .

D
∑

d=1

∑

I⊂[d]

∑

J∈P (Ic)

p|I|/α+|J |/2 max
iI

‖(Ef (d)(X))iIc ‖J .

Here, performing the induction, we consider sums
∑D

d=k and proceed from k = D to

k = 1. The base case k = D then immediately follows from (3.7). In the induction step

we moreover use that for any p ≥ 2 and any |K| ≥ |J | we have p|J |/2 ≤ p|K|/2. In view of

Step 2 and Proposition 3.3, this finishes the proof.

Step 4. Instead of (3.8), we actually show

‖(R(d) ◦ 1L(I))iIc ‖J .

D∑

k=d+1

∑

K∈P ([k]\I)
|K|≥|J |

‖(Ak)iIc ‖K,

from which (3.8) easily follows (cf. the arguments used in (3.7)). To this end, let us

analyze the “remainder tensors” R(d) in more detail. Fix d ∈ {1, . . . , D − 1}, I ⊂ [d], iI
and partitions I = {I1, . . . , Iν} ∈ Pd, J = {J1, . . . , Jµ} ∈ P ([d]\I). Here we assume I to

be “admissible” in the sense that there exists some j ∈ L(I) such that jI = iI (otherwise

(R(d) ◦ 1L(I))iIc = 0). For instance, if d = 3, I = {1, 2} and iI = (1, 1), I = {{1, 2, 3}} is

admissible but I = {{1}, {2, 3}} is not. Moreover, let l be the vector with lβ := |Iβ | (which
implies |l| = d).

For any k ∈ Iν,≤D with k > l, we define a d-tensor S
(d,k)
I = (s

(d,k1,...,kν)
i

)i∈[n]d =

(s
(d)
i

)i∈[n]d as follows:

s
(d)
i

= 1i∈L(I)

D∑

m=ν

∑

kν+1,...,km>0

k1+...+km≤D

∑

jν+1,...,jm

(j1,...,jm)∈[n]m

(m
ν

)
c
(k1+...+km)

(j1,k1),...,(jm,km)

ν∏

β=1

EX
kβ−lβ
jβ

m∏

β=ν+1

EX
kβ
jβ

.

Here, for β ≤ ν we denote by jβ the value of i on the level set Iβ . Clearly,

R(d) ◦ 1L(I) =
∑

k∈Iν,≤D

k>l

ν!
k1!

(k1 − l1)!
· · · kν !

(kν − lν)!
S
(d,k)
I .

Therefore, it remains to prove that there is a partition K ∈ P ([k]\I) with |K| ∈ {|J |, |J |+
1} such that

‖(S(d,k)
I )iIc ‖J . ‖(A|k|)iIc ‖K (3.9)
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for any iI . To this end, we introduce an auxiliary tensor which is given by an appropriate

embedding of S
(d,k)
I . Choose any partition Ĩ = {Ĩ1, . . . , Ĩν} ∈ P|k| with |Ĩβ | = kβ and

Iβ ⊂ Ĩβ for all β. Embedding the d-tensor S
(d,k)
I into the space of |k|-tensors is done by

defining a new tensor S̃|k| = (s̃
|k|
i

)i given by

s̃
|k|
i

= s
(d)
i[d]

1
i∈L(Ĩ). (3.10)

We now define the partition K = {K1, . . . ,Kµ+1} as follows: for j = 1, . . . , µ, we add

all elements of Jj to Kj , so that it remains to assign the elements r ∈ {d+ 1, . . . , |k|} to
the sets Kj . Since Ĩ is a partition of |k|, there is a unique k ∈ {1, . . . , ν} such that r ∈ Ĩk.

Take the smallest element t =: π(r) in Ĩk (since Ik ⊂ Ĩk, we have t ∈ [d]). If t ∈ Ic, it

follows that t ∈ Kj for some set Kj and we add r to Kj . If t ∈ I, we assign r to an “extra

set” Kµ+1. In particular, it may happen that Kµ+1 = ∅. In this case, we ignore β = µ+ 1

in the rest of the proof.

Figure 1: An illustration of the procedure of producing the partition K for d = 6, |k| = 8,

I = {2, 3}, J = {{1}, {4}, {5, 6}} and Ĩ = {{1, 2, 5}, {3, 6, 8}, {4, 7}}. In both figures we

used shapes to encode the partitions under consideration. In the first step (left figure),

we assign all elements of J to K. In the second step (right figure) we use the partition

Ĩ to assign the elements 7 and 8. Here, π(7) = 4 and π(8) = 3, so that 7 is added to K2

(see the left figure) and 8 is added to K4 as 3 ∈ I.

First off, we claim

‖(S(d,|k|)
I )iIc ‖J ≤ ‖(S̃|k|)iIc ‖K. (3.11)

To see (3.11), let x = (x(β)) = ((x
(β)
iJβ

)) be such that maxβ=1,...,µ‖x(β)‖2 ≤ 1. Based on this,

we define vectors y = (y(β))β=1,...,µ+1 via

y
(β)
iKβ

=

{
x
(β)
iKβ∩[d]

∏
r∈Kβ\[d]

1ir=iπ(r)
β = 1, . . . , µ

∏
r∈Kµ+1

1ir=iπ(r)
β = µ+ 1.

As y(µ+1) only has a single non-zero element, it is easy to see thatmaxi=1,...,µ+1‖y(β)‖2 ≤ 1.

Moreover, by the definition of the matrix S̃|k| and the fact that if i ∈ L(Ĩ), then for r > d,

ir = iπ(r), which implies y
(β)
iKβ

= x
(β)
iKβ∩[d]

= x
(β)
iJβ

for β ≤ µ as well as y
(µ+1)
iKµ+1

= 1 we have

〈(S(d,k))iIc ,

µ⊗

β=1

x(β)〉 = 〈(S̃(|k|))iIc ,

µ+1⊗

β=1

y(β)〉. (3.12)

Hence, the supremum on the left hand side of (3.11) is taken over a subset of the unit

ball with respect to maxi=1,...,µ+1‖x(β)‖2.
Finally, it remains to prove

‖(S̃|k|)iIc ‖K . ‖(A|k|)iIc ‖K (3.13)

for any partitionK ∈ P (Ic). To see this, note that i ∈ L(Ĩ) implies s̃
|k|
i

= a
|k|
i

∏ν
β=1 EX

kβ−lβ
jβ

.

As a consequence,

S̃|k| = (A|k| ◦ 1L(Ĩ)) ◦ ⊗
|k|
β=1vβ ,

EJP 26 (2021), paper 48.
Page 16/22

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP606
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Concentration inequalities for polynomials in α-sub-exponential r.v.

where the vectors vβ are defined by vβ = (EX
kβ−lβ
i )i≤n if β ∈ {min I1, . . . ,min Iν} and

vβ = (1, . . . , 1), otherwise. In particular, recallingM = 1 we always have ‖vβ‖∞ . 1, and

therefore, by Lemma 3.4 (5),

‖S̃|k|‖K . ‖A|k| ◦ 1L(Ĩ)‖K,

from where we easily arrive at (3.13) by applying Lemma 3.4 (4).

Combining (3.11) and (3.13) yields (3.9), which finishes the proof.

It remains to prove the corollary-type results presented in Section 1.

Proof of Proposition 1.1 and Corollary 1.4. Corollary 1.4 follows directly from Theorem

1.3 by calculating the derivatives. Moreover, Proposition 1.1 follows directly from

Corollary 1.4 (2).

Proof of Theorem 1.5. First let α ∈ (0, 1] and consider the bound given by Theorem 1.3.

Fix any d = 1, . . . , D. Then, for any I ⊂ [d], any iI and any J ∈ P (Ic), we have

‖(Ef (d)(X))iIc ‖J ≤ ‖(Ef (d)(X))iIc ‖HS ≤ ‖Ef (d)(X)‖HS

(using (1.6)) as well as
α

d
≤ 2α

2|I|+ α|J | ≤ 2.

If t/(Md‖Ef (d)(X)‖HS) ≥ 1, this immediately yields the result. Otherwise, note that the

tail bound given in Theorem 1.5 is trivial. (In fact, here one needs to ensure that CD,α is

sufficiently large, e. g. CD,α ≥ 1. It is not hard to see that in general this condition will

be satisfied anyway.)

To prove the result for α ∈ (1, 2], we need to modify the proof of Theorem 1.3. Here

we only provide a sketch, since many of the arguments can be easily adapted. We

continue working with symmetric Weibull variables with shape parameter α. As Lemma

3.1 holds true for any α > 0, the central task is to find a replacement for Lemma 3.2 (or

more precisely, an upper bound on ‖〈A,w1 ⊗ . . .⊗ wd〉‖p). Here we begin with the case

of d = 1. Using the notation from the lemma, we may deduce from [20, Theorem 1] that

‖〈A,w〉‖p ≤ C(‖〈A,w〉‖1 + ‖A‖N ,p),

where, writing xi = xiI(|xi| ≤ 1) + xiI(|xi| > 1) =: x̃i + x̂i,

‖A‖N ,p = sup
{ n∑

i=1

aixi :

n∑

i=1

min(x2i , |xi|α) ≤ p
}

≤ sup
{ n∑

i=1

aix̃i : ‖x̃‖2 ≤ p1/2
}
+ sup

{ n∑

i=1

aix̂i : ‖x̂‖α ≤ p1/α
}

≤ 2p1/α sup
{ n∑

i=1

aixi : ‖x‖2 ≤ 1
}
= 2p1/α‖A‖2,

which together with ‖〈A,w〉‖1 ≤ ‖〈A,w〉‖2 ≤ Cα‖A‖2 leads to

‖〈A,w〉‖p ≤ Cαp
1/α‖A‖2 (3.14)

for any p ≥ 1. This may be iterated to arrive at

‖〈A,w1 ⊗ . . .⊗ wd〉‖p ≤ Cd
αp

d/α‖A‖HS (3.15)
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for any d-tensor A and any p ≥ 2 with the same constant Cα as in (3.14). Indeed,

assuming we have proven (3.15) up to order d− 1, we obtain that

∥∥∥
∑

i1,...,id

ai1...idw
(1)
i1

· · ·w(d)
id

∥∥∥
2

p
≤ C2(d−1)

α p2(d−1)/α
∥∥∥(

∑

i1,...,id−1

(

n∑

id=1

ai1...idw
(d)
id

)2)1/2
∥∥∥
2

p

= C2(d−1)
α p2(d−1)/α

∥∥∥
∑

i1,...,id−1

(

n∑

id=1

ai1...idw
(d)
id

)2
∥∥∥
p/2

≤ C2(d−1)
α p2(d−1)/α

∑

i1,...,id−1

∥∥∥(
n∑

id=1

ai1...idw
(d)
id

)2
∥∥∥
p/2

= C2(d−1)
α p2(d−1)/α

∑

i1,...,id−1

∥∥∥
n∑

id=1

ai1...idw
(d)
id

∥∥∥
2

p

≤ C2d
α p2d/α

∑

i1,...,id−1

‖ai1···id−1·‖22 = C2d
α p2d/α‖A‖2HS.

Here we have used the assumption in the first step and (3.14) in the last inequality. This

establishes (3.15). Following the proof of Theorem 1.3 using (3.15), the conclusion of

Step 2 (in particular recalling the d-tensor Ad introduced there) reads

‖f(X)− Ef(X)‖p .

D∑

d=1

pd/α‖Ad‖HS.

The rest of the proof is easily adapted.

From here, the exponential moment bound follows by standard arguments, see for

example [6, Proof of Theorem 1.1].

A Properties of Orlicz quasinorms

As mentioned in the introduction, the Orlicz norms (1.5) satisfy the triangle inequality

only for α ≥ 1. However, for α ∈ (0, 1) it is still a quasinorm, which for many purposes

is sufficient. We shall collect some elementary results on Orlicz quasinorms in this

appendix. The first result is a Hölder-type inequality.

Lemma A.1. LetX1, . . . , Xk be random variables such that ‖Xi‖Ψαi
<∞ for some αi > 0

and let t := (
∑k

i=1 α
−1
i )−1. Then ‖∏k

i=1Xi‖Ψt
<∞ and

∥∥∥
k∏

i=1

Xi

∥∥∥
Ψt

≤
k∏

i=1

‖Xi‖Ψαi
.

Proof. By homogeneity we can assume ‖Xi‖Ψαi
= 1 for all i = 1, . . . , k. We will need the

general form of Young’s inequality, i. e. for all p1, . . . , pk > 1 satisfying
∑k

i=1 p
−1
i = 1 and

any x1, . . . , xk ≥ 0 we have
k∏

i=1

xi ≤
k∑

i=1

p−1
i xpi

i ,

which follows easily from the concavity of the logarithm. If we apply this to pi := αit
−1

and use the convexity of the exponential function, we obtain

E exp
( k∏

i=1

|Xi|t
)
≤ E exp

( k∑

i=1

p−1
i |Xi|αi

)
≤

k∑

i=1

p−1
i E exp

(
|Xi|αi

)
≤ 2.

Consequently, we have ‖∏k
i=1Xi‖Ψt

≤ 1.
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The random variables X1, . . . , Xk need not be independent, i. e. we can consider a

random vector X = (X1, . . . , Xk) with marginals having α-sub-exponential tails. The

special case αi = α for all i = 1, . . . , k gives

∥∥∥
k∏

i=1

Xi

∥∥∥
Ψα/k

≤
k∏

j=1

‖Xi‖Ψα
.

To state the other lemmas, for any α > 0 define

dα := (αe)1/α/2 and Dα := (2(α ∧ 1)e)1/α. (A.1)

Lemma A.2. For any α > 0 we have

dα sup
p≥1

‖X‖p
p1/α

≤ ‖X‖Ψα
≤ Dα sup

p≥1

‖X‖p
p1/α

. (A.2)

For α ≥ 1, we obtain α-independent lower and upper bounds on dα and Dα, i. e.

dα ≥ 1/2 and Dα ≤ 2e, agreeing with the bounds proven in [5, Section 8]. In the

proof below, we will closely follow the proof therein, but keep track of the α-dependent

constants.

Proof. We begin with the left inequality. By homogeneity, we assume ‖X‖Ψα
= 1. First

let us show that we have

g(x) := (αe)
−1/α

ex
α − x ≥ 0 for x ≥ 0. (A.3)

Note that g is continuous on [0,∞) and differentiable on (0,∞) with g(0) > 0 and

g(x) → ∞ as x→ ∞. Therefore, it suffices to find the critical points. We can rewrite the

condition g′(x) = 0 as eyy = y1/αα−1(αe)1/α, setting y := xα. From this representation it

can be seen that there can be at most two points x0 and x1 satisfying this condition. One

of these points is xα := α−1/α, and we have g(xα) = 0. A short calculation shows that

g′′(xα) = α1/α+1 > 0, so that xα is a global minimum, from which g ≥ 0 follows.

Next, from this we can infer for all p ≥ 1 and α > 0

xp ≤
( p

αe

)p/α
ex

α

.

Indeed, by a transformation y = xp and the change α̃ = α
p this is just an application of

(A.3). Consequently, for any p ≥ 1 we have

‖X‖pp ≤
( p

αe

)p/α
E exp (|X|α) ≤ 2

( p

αe

)p/α
≤ 2p

( p

αe

)p/α
.

For the second inequality in (A.2), again assume that supp≥1

‖X‖p

p1/α = 1. First, we

consider the case of α < 1 and extend the supremum to p ∈ [α,∞) as follows. For any

p ∈ [α, 1) we have

‖X‖p
p1/α

≤ ‖X‖1
p1/α

≤ 1

p1/α
≤ 1

α1/α
=⇒ sup

p≥α

‖X‖p
p1/α

≤ 1

α1/α
.

Now, by Taylor’s expansion and using the inequality nn ≤ enn! gives

E exp

( |X|α
tα

)
= 1 +

∞∑

n=1

E|X|αn
tαnn!

≤ 1 +
∞∑

n=1

nn

n!tαn
≤ 1 +

∞∑

n=1

( e
tα

)n
=

1

1− et−α
.

For t = (2e)1/α this is less or equal to 2, proving the assertion. These arguments can

easily be adapted to the case of α ≥ 1.
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Lemma A.3. For any α > 0 and any random variables X,Y we have

‖X + Y ‖Ψα
≤ Kα

(
‖X‖Ψα

+ ‖Y ‖Ψα

)
, (A.4)

‖EX‖Ψα
≤ 1

dα(log 2)1/α
‖X‖Ψα

, (A.5)

‖X − EX‖Ψα
≤ Kα

(
1 + (dα log 2)−1/α

)
‖X‖Ψα

, (A.6)

where Kα := 21/α if α ∈ (0, 1) and Kα = 1 if α ≥ 1.

Proof. First assume α ∈ (0, 1), let K := ‖X‖Ψα
and L := ‖Y ‖Ψα

and define t := 21/α(K +

L). We have

E exp

( |X + Y |α
tα

)
≤ E exp

(
(|X|+ |Y |)α

tα

)
≤ E exp

( |X|α + |Y |α
2(K + L)α

)

≤ E exp

( |X|α
2Kα

)
exp

( |Y |α
2Lα

)

≤ 1

2
E exp

( |X|α
Kα

)
+

1

2
E exp

( |Y |α
Lα

)
≤ 2.

Here, the second step follows from the inequality (x+ y)α ≤ xα + yα valid for all x, y ≥ 0

and α ∈ [0, 1], and the fourth one is an application of Young’s inequality ab ≤ a2/2 + b2/2

for all positive a, b.

For α ≥ 1 it is easy to see that ψ(x) = exp(xα) − 1 satisfies ψ(0) = 0, is convex and

non-decreasing on [0,∞). As a consequence, for K := ‖X‖Ψα
and L := ‖Y ‖Ψα

we have

ψ
( |X + Y |
K + L

)
≤ ψ

( |X|+ |Y |
K + L

)
≤ K

K + L
ψ
( |X|
K

)
+

L

K + L
ψ
( |Y |
L

)
,

and it remains to integrate this with respect to P.

To see (A.5), assuming ‖X‖Ψα
<∞, an application of Lemma A.2 gives

‖EX‖Ψα
=

|EX|
(log 2)1/α

≤ ‖X‖1
(log 2)1/α

≤ 1

dα(log 2)1/α
‖X‖Ψα

.

From here, (A.6) follows readily.
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