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Abstract We present a new and simple approach to concentration inequalities
in the context of dependent random processes and random fields. Our method
is based on coupling and does not use information inequalities. In case one
has a uniform control on the coupling, one obtains exponential concentration
inequalities. If such a uniform control is no more possible, then one obtains
polynomial or stretched-exponential concentration inequalities. Our abstract
results apply to Gibbs random fields, both at high and low temperatures and in
particular to the low-temperature Ising model which is a concrete example of
non-uniformity of the coupling.
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1 Introduction

By now, concentration inequalities for product measures have become a stan-
dard and powerful tool in many areas of probability and statistics, such as
density estimation [5], geometric probability [24], etc. A recent monograph
about this area is [12] where the reader can find much more information and
relevant references. Exponential concentration inequalities for functions of
dependent, strongly mixing random variables were obtained for instance in
[11,15–17,20,21]. In the context of dynamical systems, Collet et al. [3] obtained
an exponential concentration inequality for separately Lipschitz functions using
spectral analysis of the transfer operator. Külske [11] obtained an exponential
concentration inequality for functions of Gibbs random fields in the Dobrushin
uniqueness regime. Therein the main input is Theorem 8.20 in [9] which allows
to estimate uniformly the terms appearing in the martingale difference decom-
position in terms of the Dobrushin matrix. Marton [16] obtained exponential
concentration results for a class of Gibbs random fields under a strong mixing
condition lying between Dobrushin–Shlosman condition and its weakening in
the sense of E. Olivieri, P. Picco and F. Martinelli.

Besides exponential concentration inequalities, polynomial concentration
inequalities easily follow from upper bounds on moments. In the context of
product measures, bounds on the variance are well-known [4,5]. In the context
of dynamical systems, a bound on the variance is obtained in [2].

The approach followed in [15–17,21] uses coupling ideas and information
inequalities, such as Pinsker inequality. Such inequalities can only lead to expo-
nential concentration inequalities. This can be understood easily since it is
well-known [1] that there is equivalence between information inequalities and
exponential inequalities on the Laplace transform, the latter yielding exponen-
tial concentration inequalities by Chebychev’s inequality.

The purpose of the present paper is to derive abstract bounds allowing to
obtain not only exponential, but also polynomial and stretched-exponential
concentration inequalities. In particular, this means that we do not use infor-
mation inequalities. Going beyond the exponential case was motivated by the
low-temperature Ising model which can not satisfy an exponential concentra-
tion inequality for the magnetization. Here we obtain abstract concentration
inequalities using a coupling approach. Our setting is (dependent) random
variables indexed by Z

d, d ≥ 1, and taking values in a finite alphabet. We
are interested in obtaining concentration inequalities for “local” functions g
around their expectation Eg in terms of their variations. The inter-dependence
between random variables is measured by a “coupling matrix” which tells us
how “well” one can couple in the far “future” if the “past” is given. If the cou-
pling matrix can be uniformly controlled in the realization, then an exponential
concentration inequality follows. If the coupling matrix cannot be controlled
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uniformly in the realization, then we typically obtain bounds for moments and
for Luxembourg norms of g − Eg. In the former case this leads to polynomial
concentration inequalities, in the latter case this gives stretched-exponential
concentration inequalities.

As a first application of our abstract inequalities, we obtain an exponen-
tial concentration inequality for Gibbs random fields in a “high-temperature”
regime, complementary to the Dobrushin uniqueness regime studied in [11].
A second application is the “low-temperature” Ising model for which the cou-
pling matrix cannot be uniformly controlled in the realization, and for which the
previous methods [16,21] do not apply. We obtain polynomial, even stretched-
exponential, concentration inequalities for the low-temperature Ising model.
Let us mention that our concentration inequalities yield various non-trivial
applications which will be the subject of a forthcoming paper.

The paper is organized as follows. In Sect. 2, we state and prove our abstract
inequalities, first in the context of random fields indexed by Z, and next when
the index set is Z

d, d ≥ 2. Section 3 deals with high-temperature Gibbs measures
and the low-temperature Ising model.

2 Main results

Let A be a finite set. Let g : An → R be a function of n-variables. An element σ
of the set AN is an infinite sequence drawn from A, i.e., σ = (σ1, σ2, . . . , σi, . . .)
where σi ∈ A. With a slight abuse of notation, we also consider g as a function
on AN which does not depend on σk, for all k > n.

A concentration inequality is an estimate for the probability of concentration
of the function g from its expectation, i.e., an estimate for

P {|g − Eg| ≥ t} (1)

for all n ≥ 1 and all t > 0, within a certain class of probability measures P. For
example, an exponential concentration inequality is obtained by estimating the
expectation

E[eλ(g−Eg)]

for any λ ∈ R, and using the exponential Chebychev’s inequality.
However, there are natural examples where the exponential concentration

inequality does not hold (see the example of the low-temperature Ising model
below). In that case we are interested in bounding moments of the form

E[(g − Eg)2p]

to control the probability (1).
In this section, we use a combination of the classical martingale decompo-

sition of g − Eg and maximal coupling to perform a further telescoping which
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is adequate for the dependent case. This will lead us to a “coupling matrix”
depending on the realization σ ∈ AN. This matrix quantifies how “good” future
symbols can be coupled if past symbols are given according to σ . Typically,
we have in mind applications to Gibbs random fields. In that framework, the
elements of the coupling matrix can be controlled uniformly in σ in the “high-
temperature regime”. This uniform control leads naturally to an exponential
concentration inequality. At low temperature we can only control the coupling
matrix for “good” configurations, but not uniformly. Therefore an exponential
concentration inequality cannot hold (for all g). Instead we will obtain polyno-
mial and stretched-exponential concentration inequalities. This will be done by
controlling moments and Luxembourg norms of g − Eg.

2.1 The coupling matrix Dσ

We now present our method. For i = 1, 2, . . . , n, let Fi be the sigma-field gener-
ated by the random variables σ1, . . . , σi, and F0 be the trivial sigma-field {∅,�}.
We write

g(σ1, . . . , σn)− Eg =
n∑

i=1

Vi(σ ), (2)

where

Vi(σ ) := E[g|Fi](σ )− E[g|Fi−1](σ )
=
∫

P(dηi+1 · · · dηn|σ1, . . . , σi) g(σ1, . . . , σi, ηi+1, . . . , ηn)

−
∫

P(dηi · · · dηn|σ1, . . . , σi−1) g(σ1, . . . , σi−1, ηi, ηi+1, . . . , ηn)

=
∫

P(dηi+1 · · · dηn|σ1, . . . , σi) g(σ1, . . . , σi, ηi+1, . . . , ηn)

−
∫

P(dηi|σ1, . . . , σi−1)

∫
P(dηi+1 · · · dηn|σ1, . . . , σi−1, ηi) g

×(σ1, . . . , σi−1, ηi, ηi+1, . . . , ηn)

≤ max
a∈A

∫
P(dηi+1 · · · dηn|σ1, . . . , σi−1, σi = a)

×g(σ1, . . . , σi−1, a, ηi+1, . . . , ηn)

− min
b∈A

∫
P(dηi+1 · · · dηn|σ1, . . . , σi−1, σi = b)

×g(σ1, . . . , σi−1, b, ηi+1, . . . , ηn)

=: Yi(σ )− Xi(σ ). (3)

Denote by P
σ
i,a,b = P

σ<i
i,a,b the maximal coupling [13] of the conditional distri-

butions P(dη≥i+1|σ1, . . . , σi−1, σi = a) and P(dη≥i+1|σ1, . . . , σi−1, σi = b), that is,
the coupling Q for which the expected distance
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∫
d
(
η
(1)
j≥i+1, η(2)j≥i+1

)
dQ(η(1), η(2))

is minimal and equal to the Vasserstein distance between P(dη≥i+1|σ1, . . . , σi−1,
σi = a) and P(dη≥i+1|σ1, . . . , σi−1, σi = b) (see also [6]). Now we introduce the
(infinite) upper-triangular matrix Dσ defined for i, j ∈ N by

Dσ
ii := 1

Dσ
i,i+j := max

a,b∈A
P
σ
i,a,b

{
σ
(1)
i+j �= σ

(2)
i+j

}
. (4)

Notice that if the σi’s are mutually independent, then Dσ is the identity ma-
trix because the conditional distributions P(dη≥i+1|σ1, . . . , σi−1, σi = a) and
P(dη≥i+1|σ1, . . . , σi−1, σi = b) are equal. Hence we have a perfect coupling in
this case.

The matrix Dσ is the analogue of the matrix γ introduced in [21], but here
we keep the σ -dependence and do not take straight away the supremum over
σ . This has the advantage that “exceptional” σ for which the matrix elements
Dσ

i,i+j do not decay as j grows, can be dealt with by averaging “at the end.”
We proceed with the following simple telescoping identity:

g(σ1, . . . , σi−1, a, σ (1)i+1, . . . , σ (1)n )− g(σ1, . . . , σi−1, b, σ (2)i+1, . . . , σ (2)n )

= [g(σ1, . . . , σi−1, a, σ (1)i+1, . . . , σ (1)n )− g(σ1, . . . , σi−1, b, σ (1)i+1, . . . , σ (1)n )]
+[g(σ1, . . . , σi−1, b, σ (1)i+1, . . . , σ (1)n )− g(σ1, . . . , σi−1, b, σ (2)i+1, σ (1)i+2, . . . , σ (1)n )]
+[g(σ1, . . . , σi−1, b, σ (2)i+1, σ (1)i+2, . . . , σ (1)n )− g

×(σ1, . . . , σi−1, b, σ (2)i+1, σ (2)i+2, σ (1)i+3, . . . , σ (1)n )]
+ · · · + [g(σ1, . . . , σi−1, b, σ (2)i+1, σ (2)i+2, . . . , σ (2)n−1, σ (1)n )− g

×(σ1, . . . , σi−1, b, σ (2)i+1, . . . , σ (2)n )]

=:
n−i∑

j=0

∇12
i,i+jg .

We define the variation of g at site i by

δig := sup
σj=σ ′

j
∀j �=i

|g(σ )− g(σ ′)| ,

and by construction we have the inequality

∇12
i,i+jg ≤ δi+jg 1l

σ
(1)
i+j �=σ (2)i+j

.
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It follows from (3) and (4) that

Yi(σ )− Xi(σ ) = max
a,b∈A

{∫
P(dηi+1 · · · dηn|σ1, . . . , σi−1, σi = a)

×g(σ1, . . . , σi−1, a, ηi+1, . . . , ηn)

−
∫

P(dηi+1 · · · dηn|σ1, . . . , σi−1, σi = b)

×g(σ1, . . . , σi−1, b, ηi+1, . . . , ηn)

}

= max
a,b∈A

{∫
P
σ
i,a,b(dσ

(1)
≥i+1, dσ (2)≥i+1)

[
g(σ1, . . . , σi−1, a, σ (1)i+1, . . . , σ (1)n )

−g(σ1, . . . , σi−1, b, σ (2)i+1, . . . , σ (2)n )
]}

≤ max
a,b∈A

n−i∑

j=0

δi+jg P
σ
i,a,b

{
σ
(1)
i+j �= σ

(2)
i+j

}

≤
n−i∑

j=0

Dσ
i,i+j δi,i+jg = (Dσ δg)i,

where δg denotes the column vector with coordinates δjg, for j = 1, . . . , n, and
0 for j > n. Therefore, we get the inequality

Vi(σ ) = Yi(σ )− Xi(σ ) ≤ (Dσ δg)i . (5)

Applying the above reasoning to −g shows that the previous inequality also
applies to −Vi.

Remark 1 The advantage of the previous bound is that it only involves δg. One
could imagine to consider, for instance, the second moment of ∇12

i,i+jg instead.
This could lead to better results but it has the drawback that we need to know
much more about the coupling than we usually do.

2.2 Uniform decay of Dσ : exponential concentration inequality

Let Di,j := supσ∈AN Dσ
i,j.

We assume that the following operator �2(N)-norm is finite:

‖D‖2
�2(N)

:= sup
u∈�2(N),‖u‖

�2(N)=1
‖Du‖2

�2(N)
< ∞ . (6)

We have the following exponential concentration inequality.
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Theorem 1 Let n ∈ N be arbitrary. Assume that (6) holds. Then, for all functions
g : An → R, we have the inequality

P {|g − Eg| ≥ t} ≤ 2 exp

(
− 2t2

‖D‖2
�2(N)

‖δg‖2
�2(N)

)
· (7)

for all t > 0.

Proof We recall the following lemma which is proved in [5].

Lemma 1 Suppose F is a sigma-field and Z1, Z2, V are random variables such
that

1. Z1 ≤ V ≤ Z2
2. E(V|F) = 0
3. Z1 and Z2 are F-measurable.

Then, for all λ ∈ R, we have

E(eλV |F) ≤ eλ
2(Z2−Z1)

2/8 . (8)

We apply this lemma with V = Vi, F = Fi−1,
Z1 = Xi − E[g|Fi−1], Z2 = Yi − E[g|Fi−1]. Using inequality (5)

Vi(σ ) = Yi(σ )− Xi(σ ) ≤ (Dσ δg)i,

we obtain

E(eλVi |Fi−1)(σ ) ≤ eλ
2(Dσ δg)2i /8 . (9)

Therefore, by successive conditioning, and the exponential Chebychev’s
inequality,

P {g − Eg ≥ t} ≤ e−λt
E

(
eλ
∑n

i=1 Vi
)

≤ e−λt
E

(
E(eλVn |Fn−1)e

λ
∑n−1

i=1 Vi
)

≤ · · · ≤ e−λt exp

(
λ2

8
‖Dδg‖2

�2(N)

)

≤ e−λt exp

(
λ2

8
‖D‖2

�2(N)
‖δg‖2

�2(N)

)
. (10)

Now choose the optimal λ = 4t/(‖D‖2
�2(N)

‖δg‖2
2) to obtain

P {g − Eg ≥ t} ≤ exp

(
− 2t2

‖D‖2
�2(N)

‖δg‖2
�2(N)

)
·
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Combining the inequality for g and the one for −g yields (7). The theorem is
proved.

2.3 Non-uniform decay of Dσ : polynomial and stretched-exponential
concentration inequalities

If the dependence on σ of the elements of the coupling matrix cannot be con-
trolled uniformly, then in many cases we can still control the moments of the
coupling matrix. To this aim, we introduce the (non-random, i.e., not depending
on σ ) matrices

D(p)
i,j := E[(Dσ

i,j)
p]1/p (11)

for all p ∈ N.
A typical example of non-uniformity which we will encounter, for instance

in the low-temperature Ising model, is an estimate of the following form:

Dσ
i,i+j ≤ 1l{�i(σ ) ≥ j} + ψj, (12)

where ψj ≥ 0 does not depend on σ , and where �i are unbounded functions
of σ with a distribution independent of i. The idea is that the matrix elements
Dσ

i,i+j “start to decay” when j ≥ �i(σ ). The “good” configurations σ are those
for which �i(σ ) is “small”.

In the particular case when (12) holds, in principle one still can have an
exponential concentration inequality provided one is able to bound

E

(
eλ
∑n

i=1 �
2
i

)
.

However, in the example given below, the tail of the �i will be stretched expo-
nential. Henceforth, we cannot deduce an exponential concentration inequality
from these estimates.

We now prove an inequality for the variance of g which is a generalization
of an inequality derived in [4] in the i.i.d. case.

Theorem 2 Let n ∈ N be arbitrary. Then for all functions g : An → R we have
the inequality

E

[
(g − Eg)2

]
≤ ‖D(2)‖2

�2(N)
‖δg‖2

�2(N)
. (13)

Proof We start again from the decomposition (2). Recall the fact that
E[Vi|Fj] = 0 for all i > j, from which it follows that E[ViVj] = 0 for i �= j.
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Using (5) and Cauchy-Schwarz’s inequality we obtain

E

[
(g − Eg)2

]
= E

n∑

i=1

V2
i

≤ E

(
n∑

i=1

(Dδg)2i

)

=
n∑

i=1

n∑

k=1

n∑

l=1

E
(
Di,kDi,l

)
δkgδlg

≤
n∑

i=1

n∑

k=1

n∑

l=1

E

(
D2

i,k

) 1
2

E

(
D2

i,l

) 1
2
δkgδlg

= ‖D(2)δg‖2
�2(N)

≤ ‖D(2)‖2
�2(N)

‖δg‖2
�2(N)

.

Remark 2 In the i.i.d. case, the coupling matrix D is the identity matrix. Hence
inequality (13) reduces to

E

[
(g − Eg)2

]
≤ ‖δg‖2

�2(N)

which is the analogue of Theorem 4 in [4].

We now turn to higher moment estimates. We have the following theorem
from which we recover Theorem 2 but with a bigger constant.

Theorem 3 Let n ∈ N be arbitrary. For all functions g : An → R and for any
p ∈ N, we have

E

[
(g − Eg)2p

]
≤ (20p)2p ‖D(2p)‖2p

�2(N)
‖δg‖2p

�2(N)
.

Proof We start from (2) and get

E

[
(g − Eg)2p

]
= E

⎡

⎣
(

n∑

i=1

Vi

)2p
⎤

⎦ .

Now, by (2) and since E(Vi|Fj) = 0 for i > j, Mk := ∑k
i=1 Vi defines a mar-

tingale w.r.t. the filtration Fk, with Mn = g − Eg. Therefore, application of the
Burkholder-Gundy’s inequality [7, formula II.2.8, p. 41], gives for all q ≥ 2

E
[|g − Eg|q] 1

q ≤ 10q E

⎡

⎣
(

n∑

i=1

V2
i

) q
2
⎤

⎦

1
q

.
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Therefore, for q = 2p, p ∈ N, this gives at once

E

[
(g − Eg)2p

]
≤ (20p)2p

E

[(
n∑

i=1

V2
i

)p]
.

We now estimate the rhs by using (5):

E

[(
∑

i

V2
i

)p]
=
∑

i1

· · ·
∑

ip

E

(
V2

i1 · · · V2
ip

)
(14)

≤
∑

i1

· · ·
∑

ip

E

[
(Dδg)2i1 · · · (Dδg)2ip

]

=
∑

i1···ip

∑

j1···jp

∑

k1···kp

E

( p∏

r=1

Dir,jr Dir,kr

) ( p∏

r=1

δjr g δkr g

)

≤
∑

i1···ip

∑

j1···jp

∑

k1···kp

p∏

r=1

(
D(2p)

ir,jr
D(2p)

ir,kr
δjr g δkr g

)

= ‖D(2p)δg‖2p
�2(N)

≤ ‖D(2p)‖2p
�2(N)

‖δg‖2p
�2(N)

, (15)

where in the fourth step we used the inequality

E(f1 · · · f2p) ≤
2p∏

i=1

(E(f 2p
i ))

1
2p ,

which follows from Hölder’s inequality. �
In order to be able to apply Theorems 2 and 3, one needs to estimate

‖D(2p)‖�2(N).
Proposition 1 Assume inequality (12) holds, and let p ∈ N. We have the bound

‖D(2p)‖�2(N) ≤
∞∑

j=1

P
(
�0(σ ) ≥ j

)1/2p + ‖ψ‖
�1(N).

Proof We start by an upper estimate of D(2p). From the definition (11) and the
bound (12) we have using Minkowski’s inequality (for j ≥ i)

D(2p)
i,j = E

[
(Dσ

i,j)
2p]1/2p ≤ E

((
1l
{
�i(σ ) ≥ j − i

}+ ψj−i
)2p
) 1

2p

≤ E

[(
1l
{
�i(σ ) ≥ j − i

})2p
] 1

2p + ψj−i ≤ P
(
�0(σ ) ≥ j − i

) 1
2p + ψj−i =: ui−j , (16)

since the law of �i is independent of i.
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Now take v ∈ �2(N) with ‖v‖�2(N) = 1. We have

‖D(2p)v‖�2(N) ≤
∥∥∥∥∥

∞∑

k=1

D(2p)
i,k |vk|

∥∥∥∥∥
�2(N)

≤
∥∥∥∥∥

∞∑

k=1

u(i − k)|vk|
∥∥∥∥∥
�2(N)

,

where the second inequality comes from (16). Since we have the �2(N)-norm of
a convolution, we can apply Young’s inequality (see, e.g., [25]) to get

‖D(2p)‖�2(N) ≤ ‖u‖
�1(N) .

The result immediately follows. �
Before we state the next theorem, which is a corollary of Proposition 1 and

Theorem 3, we need the definition of some Orlicz spaces. We only deal here
with a restricted class useful in our applications, we refer to [19,25] for the
general definition. For 
 > 0, let �
 : R → R

+ be the Young function defined
by

�
(x) = e(|x|+h
)
 − eh

 ,

where h
 = ((1 − 
)/
)1/
1l{0 < 
 < 1}. These are the Young functions used in
particular in [22]. We recall that (see [25]) the Luxembourg norm with respect
to �
 of a random variable Z is defined by

∥∥Z
∥∥
�


= inf

{
λ > 0

∣∣∣∣ E

(
�


(
Z
λ

))
≤ 1
}

.

Remark 3 Note that for�p(x) = |x|p, the Luxembourg norm is nothing but the
Lp-norm.

Theorem 4 Let n ∈ N be arbitrary. Then, for all functions g : An → R, for any
p ∈ N and any ε > 0, we have

E
[
(g − Eg)2p]

≤ (20p)2p
(
ζ(1 + ε/(2p − 1))(2p−1)/2p

E
(
�

2p+ε
0

)1/2p + ‖ψ‖
�1(N)

)2p ‖δg‖2p
�2(N)

(17)

where ζ denotes Riemann’s zeta function. For any ϑ > 0, there is a constant
Cϑ > 0, such that for any 
 < ϑ/(1 + ϑ) satisfying ζ(ϑ(1 − 
)/
) ≥ 1, we have

∥∥∥∥
g − Eg
‖δg‖�2(N)

∥∥∥∥
�


≤ Cϑ

(
ζ

(
ϑ(1 − 
)




)
‖�0‖ϑ(1−
)/


�ϑ
+ ‖ψ‖

�1(N)

)
. (18)
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Remark 4 A similar result holds when ζ(ϑ(1 − 
)/
) < 1 with the square root
of the zeta function. Note also that when 
 increases to ϑ/(1 + ϑ), the number
ϑ(1 − 
)/
 decreases to one.

Proof We first estimate ‖D(2p)‖�2(N) in terms of some moment of �0. Let ε′ =
ε/(2p − 1). We have using Hölder inequality

∞∑

j=1

P
(
�0(σ ) ≥ j

)1/2p =
∞∑

j=1

j(2p−1)(1+ε′)/2p
P
(
�0(σ ) ≥ j

)1/2p j−(2p−1)(1+ε′)/2p

≤ ζ(1 + ε′)(2p−1)/2p

⎛

⎝
∞∑

j=1

j2p−1+ε
P
(
�0(σ ) ≥ j

)
⎞

⎠
1/2p

≤ ζ(1 + ε′)(2p−1)/2p
E
(
�

2p+ε
0

)1/2p .

Using Proposition 1 we get

‖D(2p)‖�2(N) ≤ ζ(1 + ε′)(2p−1)/2p
E
(
�

2p+ε
0

)1/2p + ‖ψ‖
�1(N),

and (17) follows using Theorem 3.
To prove (18), we first observe that from (17) we have, for q even

∥∥∥∥
g − Eg
‖δg‖�2(N)

∥∥∥∥
Lq(P)

≤ 10q
(
ζ(1 + ε/(q − 1))

q−1
q E(�

q+ε
0 )

1
q + ‖ψ‖

�1(N)

)
.

We now recall that for any 1 > 
 > 0, there is a constant C̃
 > 1 such that

C̃−1

 sup

q>2

‖Z‖Lq(P)

q1/

≤ ‖Z‖�
 ≤ C̃
 sup

q>2

‖Z‖Lq(P)

q1/

·

(See, e.g., [22] for a proof.) It is easy to verify using Young’s inequality that the
same inequality holds (with slightly different constants) when the supremum is
taken over the q even integers, and we will only consider such q below.

Therefore if 0 < 
 < ϑ/(1 + ϑ), taking

ε = ϑq
(

1



− 1
ϑ

− 1
)

,
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we get

∥∥∥∥
g − Eg
‖δg‖�2(N)

∥∥∥∥
�


≤ O(1) sup
q>2

q1−1/
ζ(1 + ε/(q − 1))(q−1)/q
E(�

q+ε
0 )1/q

+ O(1)‖ψ‖
�1(N)

≤ O(1) sup
q>2

ζ

(
1 + q(ϑ − 
 − ϑ
)


(q − 1)

)(q−1)/q

‖�0‖ϑ(1−
)/

�ϑ

+ O(1)‖ψ‖
�1(N)

≤ O(1) sup
q>2

ζ

(
ϑ(1 − 
)




)(q−1)/q

‖�0‖ϑ(1−
)/

�ϑ

+ O(1)‖ψ‖
�1(N)

since the function ζ is decreasing. Thus (18) is proved. The proof of the theorem
is now complete. �

It is easy to obtain from Theorem 4 the following concentration inequalities.

Proposition 2 Let n be an arbitrary positive integer.

• If E(�
2p+ε
0 ) < ∞ (for some ε > 0), and ‖ψ‖

�1(N) < ∞, we have

P {|g − Eg| > t} ≤ Cp

‖δg‖2p
�2(N)

t2p , (19)

where Cp ∈]0, ∞[, p ∈ N, for any g : An → R.
• Let 0 < 
 < 1. If ‖ψ‖

�1(N) < ∞, and ‖�0‖�ϑ < ∞ for some ϑ > 
/(1 − 
),
there exists a constant c
,ϑ ∈]0, ∞[ such that

P {|g − Eg| > t} ≤ 4 exp

(
−c
,ϑ

t


‖δg‖

�2(N)

)
, (20)

for any g : An → R.

Proof The proof of (19) is an immediate consequence of (17) applied to g and
−g and Chebychev’s inequality.

For the proof of (20), we have for any λ > 0 using Chebychev’s inequality

P(g − Eg > t) = P

(
g − Eg
λ‖δg‖�2(N)

>
t

λ‖δg‖�2(N)

)

≤ P

(
�


(
g − Eg
λ‖δg‖�2(N)

)
> �


(
t

λ‖δg‖�2(N)

))

≤ 1
�

(
t/(λ‖δg‖�2(N))

) E

[
�


(
g − Eg
λ‖δg‖�2(N)

)]
.
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We now take λ = ‖(g−Eg)/‖δg‖�2(N)‖�
 . By definition, E
[
�


(
g−Eg

λ‖δg‖
�2(N)

)]
= 1.

Thus we have

P(g − Eg > t) ≤ 1
�
(t/‖g − Eg‖�
)

·

Of course, the same inequality holds with −g. Applying (18) yields (20). The
proposition is proved. �

In concrete applications of inequality (19) we have to check that Cp < ∞,
otherwise the inequality is useless. To apply (20), we have to check that c
 > 0.
We will give an example of application below.

Inequality (19) is a “polynomial” concentration inequality whereas inequal-
ity (20) is a “stretched-exponential” concentration inequality.

Remark 5 The 4 in the r.h.s. of (20) is not optimal. It can be replaced by 2/(1−ε)
for any ε ∈]0, 1[.

2.4 Random fields

We now present the extension of our previous results to random fields. This
requires mainly notational changes. We work with lattice spin systems. The
configuration space is � = {−, +}Zd

, endowed with the product topology. We
could of course take any finite set A instead of {−, +}. For� ⊂ Z

d and σ , η ∈ �
we denote σ�η�c the configuration coinciding with σ (resp. η) on � (resp. �c).
A local function g : � → R is such that there exists a finite subset � ⊂ Z

d such
that for all σ , η,ω, g(σ�ω�c) = g(σ�η�c).

For σ ∈ � and x ∈ Z
d, σ x denotes the configuration obtained from σ by

“flipping” the spin at x. We denote δxg = supσ |g(σ x)− g(σ )| the variation of g
at x. δg denotes the map Z

d → R : x �→ δxg.
We introduce the spiraling enumeration � : Z

d → N illustrated in the figure
for the case d = 2.

We will use the abbreviation (≤ x) = {y ∈ Z
d : �(y) ≤ �(x)} and similarly

we introduce the abbreviations (< x). By definition F≤x denotes the sigma-field
generated by σ(y), y ≤ x and F<0 denotes the trivial sigma-field.

For any local function g : � → R, we have the analog decomposition as in (2):

g − Eg =
∑

x∈Zd

Vx, (21)

where

Vx := E
[
g|F≤x] − E[g|F<x

]
.
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Fig. 1 “Spiral” ordering of Z
2

1 2

45 3

6

7 8 9 10

The analog of the coupling matrix is the following matrix indexed by lattice
sites x, y ∈ Z

d

Dσ
x,y := P̂

σ
x,+,− {X1(y) �= X2(y)}, (22)

where P̂
σ
x,+,− denotes the maximal coupling between the conditional measures

P(·|σ<x,+x) and P(·|σ<x,−x). The notation “+x” (resp. “−x”) means that at coor-
dinate x in the configuration we put a “+” (resp. a “−”).

We first consider the case of uniform decay of D. In that case, the exponen-
tial concentration inequality of Theorem 1 holds with the norm of �2(Z

d), i.e.,
‖δg‖2

2 =∑x∈Zd(δxg)2 (which is trivially finite since g is a local function).

Theorem 5 Assume that

Dx,y := sup
σ

Dσ
x,y (23)

is a bounded operator in �2(Z
d). Then for all local functions g we have the

following inequality

P {|g − Eg| ≥ t} ≤ 2 exp

(
− 2t2

‖D‖2
�2(Zd)

‖δg‖2
�2(Zd)

)
(24)

for all t > 0.

In the non-uniform case, Theorems 3, 4 and Proposition 2 extend immedi-
ately as follows. The analog of (12) is

Dσ
x,y ≤ 1l{ �x(σ ) ≥ |y − x|} + ψ(|y − x|). (25)
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From now on, we assume that the distribution of �x is independent of x. We
extend the matrix D defined in (11) by putting

D(p)
x,y := E[(Dσ

x,y)
p]1/p

for x, y ∈ Z
d.

Theorem 6 For any local function g and for any p ∈ N, we have

E

[
(g − Eg)2p

]
≤ (20p)p ‖D(2p)‖2p

�2(Zd)
‖δg‖2p

�2(Zd)
.

Theorem 7 For any local function g, for any p ∈ N and any ε > 0, we have

E
[
(g − Eg)2p]

≤ (20p)2p
(
ζ(1 + ε/(2p − 1))(2p−1)/2p

E
(
�

2pd+ε
0

)1/2p + ‖ψ‖
�1(N)

)2p ‖δg‖2p
�2(Zd)

(26)

where, ζ denotes Riemann’s zeta function. For any ϑ > 0, there is a constant
Cϑ > 0, such that for any 
 < ϑ/(1 + ϑ) satisfying ζ(ϑ(1 − 
)/
) ≥ 1, we have

∥∥∥∥∥
g − Eg

‖δg‖
�2(Zd)

∥∥∥∥∥
�


≤ Cϑ

(
ζ

(
ϑ(1 − 
)




)
‖�d

0‖ϑ(1−
)/

�ϑ

+ ‖ψ‖
�1(N)

)
. (27)

Proposition 3 For any local function g we have the inequalities:

• If E(�
2pd+ε
0 ) < ∞ (for some ε > 0), and ‖ψ‖

�1(N) < ∞, we have

P {|g − Eg| > t} ≤ Cp

‖δg‖2p
�2(Zd)

t2p

where Cp ∈]0, ∞[, p ∈ N.
• Let 0 < 
 < 1. If ‖ψ‖

�1(N) < ∞, and ‖�d
0‖�ϑ < ∞ for some ϑ > 
/(1 − 
),

there exists a constant c
,ϑ ∈]0, ∞[ such that

P {|g − Eg| > t} ≤ 4 exp

(
−c
,ϑ

t


‖δg‖

�2(Zd)

)
·

Remark 6 It is immediate to extend the previous inequalities to integrable
functions g belonging to the closure of the set of local functions with the norm
|||g||| := ‖δg‖

�2(Zd).
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2.5 Existence of a coupling by bounding the variation

We continue with random fields and state a proposition which says that if we
have an estimate of the form

Vx ≤ (Dδg)x

for some matrix D, then there exists a coupling with coupling matrix D̂ such
that its matrix elements decay at least as fast as the matrix elements of D. We
formulate the proposition more abstractly:

Proposition 4 Suppose that P and Q are probability measures on � and for all
g : � → R we have the estimate

∣∣EP[g] − EQ[g]∣∣ ≤
∑

x∈Zd

ρ(x)δxg (28)

for some “weights” ρ : Z
d → R

+. Suppose ϕ : Z
d → R

+ is such that

∑

x∈Zd

ρ(x)ϕ(x) < ∞ .

Then there exists a coupling μ̂ of P and Q such that

∑

x∈Zd

μ̂ {X1(x) �= X2(x)}ϕ(x) ≤
∑

x∈Zd

ϕ(x)ρ(x) < ∞.

Proof Let Bn := [−n, n]d ∩ Z
d. Define the “cost” function

Cϕ
n(σ , σ ′) :=

∑

x∈Bn

|σx − σ ′
x| ϕ(x).

Denote by Pn, respectively, Qn, the joint distribution of {σx, x ∈ Bn} under P,
respectively, Q. Consider the class of functions

GCϕn := {g| g ∈ FBn , |g(σ )− g(σ ′)| ≤
∑

x∈Zd

ϕ(x)1l{σx �= σ ′
x}, ∀σ , σ ′ ∈ �} .

It is obvious from the definition that g ∈ GCϕn , if, and only if, g is FBn -measurable
and

(δxg)(σ ) ≤ ϕ(x) ∀x ∈ Bn, ∀σ ∈ � .

Therefore, if (28) holds, then for all g ∈ GCϕn ,

∣∣EP[g] − EQ[g]∣∣ ≤
∑

x∈Zd

ρ(x)δxg ≤
∑

x∈Zd

ρ(x)ϕ(x) .
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Hence, by the Kantorovich–Rubinstein duality theorem [18], there exists a
coupling μ̂n of Pn and Qn such that

Eμ̂n

(
Cϕ

n(σ , σ ′)
) = Eμ̂n

⎛

⎝
∑

x∈Bn

ϕ(x)1l{X1(x) �= X2(x)}
⎞

⎠ ≤
∑

x∈Zd

ϕ(x)ρ(x).

By compactness (in the weak topology), there exists a subsequence along which
μ̂n converges weakly to some probability measure μ̂. For any k ≤ n, we have

Eμ̂n

⎛

⎝
∑

x∈Bk

ϕ(x)1l{X1(x) �= X2(x)}
⎞

⎠

≤ Eμ̂n

⎛

⎝
∑

x∈Bn

ϕ(x)1l{X1(x) �= X2(x)}
⎞

⎠ ≤
∑

x∈Zd

ϕ(x)ρ(x).

Therefore, taking the limit n → ∞ along the above subsequence yields

Eμ̂

⎛

⎝
∑

x∈Bk

ϕ(x)1l{X1(x) �= X2(x)}
⎞

⎠ ≤
∑

x∈Zd

ϕ(x)ρ(x) .

We now take the limit k → ∞ and use monotonicity to conclude that

Eμ̂

⎛

⎝
∑

x∈Zd

ϕ(x)1l{X1(x) �= X2(x)}
⎞

⎠ ≤
∑

x∈Zd

ϕ(x)ρ(x).

�
We shall illustrate below this proposition with the example of Gibbs random

fields at high-temperature under the Dobrushin uniqueness condition.

3 Examples

3.1 High-temperature Gibbs measures

For the sake of convenience, we briefly recall a few facts about Gibbs measures.
We refer to [9] for details.

A finite-range potential (with range R) is a family of functions U(A, σ)
indexed by finite subsets A of Z

d such that the value of U(A, σ) depends only
on σA and such that U(A, σ) = 0 if diam(A) > R. If R = 1 then the potential is
nearest-neighbor.
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The associated finite-volume Hamiltonian with boundary condition η is then
given by

Hη
�(σ ) =

∑

A∩� �=∅
U(A, σ�η�c) .

The specification is then defined as

γ�(σ |η) = e−Hη
�(σ)

Zη�
·

We then say that P is Gibbs measure with potential U if γ�(σ |·) is a version of
the conditional probability P(σ�|F�c).

Before we state our result, we need some notions from [8]. What we mean
by “high temperature” will be an estimate on the variation of single-site con-
ditional probabilities, which will imply a uniform estimate for disagreement
percolation. For y ∈ Z

d, let

py := 2 sup
σ ,σ ′

∣∣∣P(σy = +|σ
Zd\y)− P(σ ′

y = +|σ ′
Zd\y)

∣∣∣ .

Writing p for (py)y, let νp denote the Bernoulli measure on {−, +}Zd
with

νp({X(y) = +}) = py, and νpy its single-site marginal.
From [8, Theorem 7.1] it follows that there exists a coupling P

σ
x,+,− of

the conditional distributions P(·|σ<x, +x) and P(·|σ<x, −x) such that under this
coupling

1. For y > x, the event X1(y) �= X2(y) coincides with the event that there exists
a path γ ⊂ Z

d \ (< x) from x to y such that, for all z ∈ γ , X1(z) �= X2(z).
We denote this event by “x�y”.

2. The distribution of 1l{X1(y) �= X2(y)} for y ∈ Z
d \ (≤ x) under P

σ
x,+,− is

dominated by the product measure

∏

y∈Zd\(≤x)

νpy .

Let pc = pc(d) be the critical percolation threshold for site-percolation on Z
d.

It then follows from statements 1 and 2 above that, if

sup{py : y ∈ Z
d} < pc (29)

then we have the uniform estimate
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P
σ
x,+,− {X1(y) �= X2(y)} ≤

∏

y∈Zd\(≤x)

νpy(x�y) ≤ e−c|x−y| . (30)

Then we can apply Theorem 5 to obtain

Theorem 8 Let U be a nearest-neighbor potential such that (29) holds. Then for
the coupling matrix (22) we have the uniform estimate

Dσ
x,y ≤ e−C|x−y|

for some C > 0. Hence we have the following exponential concentration inequal-
ity: for any local function g and for all t > 0

P {|g − Eg| ≥ t} ≤ 2 exp

⎛

⎝− 2t2

1
1−e−2C ‖δg‖2

�2(Zd)

⎞

⎠·

Remark 7 Theorem 8 can easily be extended to any finite-range potential.

Theorem 8 was obtained in [11] in the Dobrushin’s uniqueness regime [9,
Chapter 8] using a different approach. The high-temperature condition which
we use here is sometimes less restrictive than Dobrushin’s uniqueness condi-
tion, but sometimes it is more restrictive. However, Dobrushin’s uniqueness
condition is not limited to finite-range potentials. We now apply Proposition 4
to show that in the Dobrushin’s uniqueness regime, there does exist a coupling
of P(·|σ<x,+x) and P(·|σ<x,−x) such that the elements of the associated coupling
matrix decay at least as fast as the elements of the Dobrushin’s matrix. The
Dobrushin’s uniqueness condition is based on the matrix

Cx,y := 2 sup
σ ,σ ′:σ

Zd\y=σ ′
Zd\y

∣∣∣P(σx = +|σ
Zd\x)− P(σx = +|σ ′

Zd\x)

∣∣∣ .

This condition is defined by requiring that

sup
x∈Zd

∑

y∈Zd

Cx,y < 1

and the Dobrushin matrix is then defined as

�x,y :=
∑

n≥0

Cn
x,y .

We now have the following proposition:
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Proposition 5 Assume that the Dobrushin uniqueness condition holds. For any
ϕ : Z

d → R
+ such that for any x ∈ Z

d,

∑

y∈Zd

ϕ(y)�y,x < ∞.

Then there exists a coupling P̂
σ
x,+,− of P(·|σ<x,+x) and P(·|σ<x,−x) such that

∑

y∈Zd

ϕ(y) P̂
σ<x
x,+,− {X1(y) �= X2(y)} < ∞ .

Proof From [11, Lemma 1], we have the estimate

∣∣∣∣
∫

g(η) P(dη|σ<x,+x)−
∫

g(η) P(dη|σ<x,−x)

∣∣∣∣ ≤
∑

y∈Zd

(1lx,y +�y,x)δyg

(where 1lx,y denotes the Kronecker symbol).
We can apply Proposition 4 to conclude the proof. �
As an example we mention that if the potential is finite-range and transla-

tion-invariant and satisfies the Dobrushin uniqueness condition, we have for
large enough |x − y|

�y,x ≤ e−c|x−y|

and hence there exists a coupling P̂
σ<x
x,+,− such that

P̂
σ<x
x,+,− {X1(y) �= X2(y)} ≤ e−c′|x−y|

for all c′ < c and large enough |x − y|.
Unfortunately, we are not able to construct explicitly such a coupling.

3.2 The low-temperature Ising model

It is clear that for the Ising model in the phase coexistence region, no exponential
concentration inequalities can hold. Indeed, this would contradict the surface-
order large deviation bounds for the magnetization in that regime (see e.g. [10]
and references therein). Nevertheless, we shall show that we can control all
moments and obtain stretched-exponential inequalities (which are compatible
with large deviation bounds).

We consider the low-temperature plus phase of the Ising model on Z
d, d ≥ 2.

This is a probability measure P
+
β on lattice spin configurations σ ∈ �, defined



222 J.-R. Chazottes et al.

as the weak limit as � ↑ Z
d of the following finite-volume measures:

P
+
�,β(σ�) = exp

⎛

⎝β
∑

<xy>∈�
σxσy + β

∑

<xy>,x∈∂�, y/∈�
σx

⎞

⎠
/

Z+
�,β , (31)

where β ∈ R
+ is the inverse temperature, and Z+

�,β is the partition function. In
(31) 〈xy〉 denotes nearest neighbor bonds and ∂� the inner boundary, i.e., the
set of those x ∈ � having at least one neighbor y /∈ �. The existence of the limit
� ↑ Z

d of P
+
�,β is by a standard and well-known monotonicity argument, see

e.g. [9].
For any η ∈ � ,� ⊂ Z

d we denote by P
η
�,β the corresponding finite-volume

measure with boundary condition η:

P
η
�,β(σ�) = exp

⎛

⎝β
∑

<xy>∈�
σxσy + β

∑

x∈�, y/∈�
σxηx

⎞

⎠
/

Zη�,β .

Later on we will have to choose β large enough, in particular, greater than
the critical inverse temperature βc (β < βc implies uniqueness of the infinite-
volume measure).

We can now formulate our results on arbitrary local functions for the low-
temperature Ising model.

Theorem 9 Let P = P
+
β be the plus phase of the low-temperature Ising model

defined above. There exists β0 > βc, such that for all β > β0, for any local
function g, we have the following inequalities:

• For all p ∈ N, there exists a constant Cp ∈]0, ∞[ such that

E

[
(g − Eg)2p

]
≤ Cp ‖δg‖2p

�2(Zd)
.

Consequently, for all t > 0, we have the concentration inequalities

P {|g − Eg| > t} ≤ Cp

‖δg‖2p
�2(Zd)

t2p ·

• Moreover, there exists 0 < 
(β) < 1, such that for any 0 < 
 < 
(β) there is
a constant K
 > 0, such that we have, for any local function g,

‖g − Eg‖�
 ≤ K
 ‖δg‖
�2(Zd) .

Consequently, there exists a constant c
 ∈]0, ∞[ such that, for all t > 0,

P {|g − Eg| > t} ≤ 4 exp

(
−c


t


‖δg‖

�2(Zd)

)
·
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Proof This theorem is an application of Theorem 7 and Proposition 3. All we
have to do is to obtain the bound (25) with good decay properties for the tail
of the distribution of �0 to ensure the finiteness of E(�

2pd+ε
0 ), ‖�d

0‖�ϑ , and of
‖ψ‖

�1(N). This is an immediate consequence of the next proposition. �
Proposition 6 Let P = P

+
β be the plus phase of the low-temperature Ising model.

There exists β0 > βc such that for all β > β0, the inequality (25) holds together
with the estimate

ψ(n) ≤ Ce−cn

for all n ∈ N and

P{�0 ≥ n} ≤ C′e−c′nα

for some c, c′, C, C′ > 0 and 0 < α ≤ 1.

Proof We shall make a coupling of the conditional measures P(·|σ<x,+x) and
P(·|σ<x,−x). This coupling already appeared in [23] (see also [8]). Both condi-
tional measures are a distribution of a random field ωy, y /∈ (≤ x). We start
with the first site y1 > x according to the order induced by � (see Sect. 2.4).
We generate X1(y1) and X2(y1) as a realization of the maximal coupling be-
tween P(σy1 = ·|σ<x,+x) and P(σy1 = ·|σ<x,−x). Given that we have gener-
ated X1(y), X2(y), . . . , X1(yn), X2(yn) for y = y1, . . . , yn, we generate X1(yn+1),
X2(yn+1) for the smallest yn+1 > yn as a realization of the maximal coupling
between

P(σyn+1 = ·|X1(y1) · · · X1(yn)σ<x,+x) and P(σyn+1 = ·|X2(y1) · · · X2(yn)σ<x,−x).

By the Markov property of P we have the following: if there exists a contour
separating y from x such that for all sites z belonging to that contour we have
X1(z) = X2(z), then X1(y) = X2(y). The complement of this event (of having
such a contour) is contained in the event that there exists a path of disagreement
from x to y, i.e., a path γ ⊂ Z

d \ (< x) such that for all z ∈ γ , X1(z) �= X2(z).
Denote that event by Exy. Clearly its probability is bounded from above by the
probability of the same event in the product coupling. In turn the event Exy is
contained in the event E+

xy that there exists a path γ from x to y in Z
d \ (< x)

such that for all z ∈ γ , (X1(z), X2(z)) �= (+, +). In [14] (more precisely p. 531
estimate (48) and p. 535 estimate (63)), the probability of that event in the
product coupling is precisely estimated from above by

Ce−c|x−y| + 1l{�x(σ ) ≥ |x − y|} (32)

for some C, c > 0, where �x(σ ) is an unbounded function of σ with tail estimate

P(�x(σ ) ≥ n) = P(�0(σ ) ≥ n) ≤ C′e−c′nα
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for some C′, c′ > 0 and 0 < α < 1. For the reader’s convenience, we briefly
comment on these estimates. The idea is that the conditional measure P(·|ξ≤x)

resembles the original unconditioned plus phase (in Z
d \ (≤ x)) provided ξ

contains “enough” pluses. “Containing enough pluses” is exactly quantified by
the random variable �x(ξ): (�x(ξ) ≤ n) is the event that for all self-avoiding path
γ of length at least n, the magnetization along γ ,

mγ (ξ) := 1
|γ |
∑

z∈γ
ξz

is close “enough to one”. If this is the case then under the conditional measure
we still have a Peierls’ estimate, which produces the exponential term in (32).
We refer to [14] for more details. �
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