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Concentration inequalities quantify the deviation of a random variable from a fixed value. In spite of numer-
ous applications, such as opinion surveys or ecological counting procedures, few concentration results are
known for the setting of sampling without replacement from a finite population. Until now, the best general
concentration inequality has been a Hoeffding inequality due to Serfling [Ann. Statist. 2 (1974) 39–48]. In
this paper, we first improve on the fundamental result of Serfling [Ann. Statist. 2 (1974) 39–48], and further
extend it to obtain a Bernstein concentration bound for sampling without replacement. We then derive an
empirical version of our bound that does not require the variance to be known to the user.
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1. Introduction

Few results exist on the concentration properties of sampling without replacement from a finite
population X . However, potential applications are numerous, from historical applications such
as opinion surveys (Kish [9]) and ecological counting procedures (Bailey [2]), to more recent
approximate Monte Carlo Markov chain algorithms that use subsampled likelihoods (Bardenet,
Doucet and Holmes [3]). In a fundamental paper on sampling without replacement, Serfling
[14] introduced an efficient Hoeffding bound, that is, one which is a function of the range of
the population. Bernstein bounds are typically tighter when the variance of the random variable
under consideration is small, as their leading term is linear in the standard deviation of X , while
the range only influences higher-order terms. This paper is devoted to Hoeffding and Bernstein
bounds for sampling without replacement.

Setting and notations

Let X = (x1, . . . , xN) be a finite population of N real points. We use capital letters to denote
random variables on X , and lower-case letters for their possible values. Sampling without re-
placement a list (X1, . . . ,Xn) of size n from X can be described sequentially as follows: let
first I1 = {1, . . . , n}, sample an integer I1 uniformly on I1, and set X1 to be xI1 . Then, for each
i = 2, . . . , n, sample Ii uniformly on the remaining indices Ii = Ii−1 \ {Ii−1}. Hereafter, we
assume that N ≥ 2.
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Previous work

There have been a few papers on concentration properties of sampling without replacement;
see, for instance, Hoeffding [7], Serfling [14], Horvitz and Thompson [8], McDiarmid [13]. One
notable contribution is the following reduction result in Hoeffding’s seminal paper (Hoeffding
[7], Theorem 4):

Lemma 1.1. Let X = (x1, . . . , xN) be a finite population of N real points, X1, . . . ,Xn denote
a random sample without replacement from X and Y1, . . . , Yn denote a random sample with
replacement from X . If f :R → R is continuous and convex, then

Ef

(
n∑

i=1

Xi

)
≤ Ef

(
n∑

i=1

Yi

)
.

Lemma 1.1 implies that the concentration results known for sampling with replacement as
Chernoff bounds (Boucheron, Lugosi and Massart [4]) can be transferred to the case of sampling
without replacement. In particular, Proposition 1.2, due to Hoeffding [7], holds for the setting
without replacement.

Proposition 1.2 (Hoeffding’s inequality). Let X = (x1, . . . , xN) be a finite population of N

points and X1, . . . ,Xn be a random sample drawn without replacement from X . Let

a = min
1≤i≤N

xi and b = max
1≤i≤N

xi.

Then, for all ε > 0,

P

(
1

n

n∑
i=1

Xi − μ ≥ ε

)
≤ exp

(
− 2nε2

(b − a)2

)
, (1)

where μ = 1
N

∑N
i=1 xi is the mean of X .

The proof of Proposition 1.2 (see, e.g., Boucheron, Lugosi and Massart [4]) relies on a clas-
sical bound on the moment-generating function of a random variable, which we restate here as
Lemma 1.3 for further reference.

Lemma 1.3. Let X be a real random variable such that EX = 0 and a ≤ X ≤ b for some a, b ∈
R. Then, for all s ∈ R,

logEesX ≤ s2(b − a)2

8
.

When the variance of X is small compared to the range b − a, another Chernoff bound,
known as Bernstein’s bound (Boucheron, Lugosi and Massart [4]), is usually tighter than Propo-
sition 1.2.
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Proposition 1.4 (Bernstein’s inequality). With the notations of Proposition 1.2, let

σ 2 = 1

N

N∑
i=1

(xi − μ)2

be the variance of X . Then, for all ε > 0,

P

(
1

n

n∑
i=1

Xi − μ ≥ ε

)
≤ exp

(
− nε2

2σ 2 + (2/3)(b − a)ε

)
.

Although these are interesting results, it appears that the bounds in Propositions 1.2 and 1.4
are actually very conservative, especially when n is large, say, n ≥ N/2. Indeed, Serfling [14]
proved that the term n in the RHS of (1) can be replaced by n

1−(n−1)/N
; see Theorem 2.4 below,

where the result of Serfling is restated in our notation and slightly improved. As n approaches N ,
the bound of Serfling [14] improves dramatically, which corresponds to the intuition that when
sampling without replacement, the sample mean becomes a very accurate estimate of μ as n

approaches N .

Contributions and outline

In Section 2, we slightly modify Serfling’s result, yielding a Hoeffding–Serfling bound in Theo-
rem 2.4 that dramatically improves on Hoeffding’s in Proposition 1.2. In Section 3, we contribute
in Theorem 3.5 a similar improvement on Proposition 1.4, which we call a Bernstein–Serfling
bound. To allow practical applications of our Bernstein–Serfling bound, we finally provide an
empirical Bernstein–Serfling bound in Section 4, in the spirit of Maurer and Pontil [12], which
does not require the variance of X to be known beforehand. In Section 5, we discuss direct
applications and potential further improvements of our results.

Illustration

To give the reader a visual intuition of how the above mentioned bounds compare in prac-
tice and motivate their derivation, in Figure 1, we plot the bounds given by Proposition 1.2
and Theorem 2.4 for Hoeffding bounds, and Proposition 1.4 and Theorem 3.5 for Bernstein
bounds for ε = 10−2, in some common situations. We set X to be an independent sample of
size N = 104 from each of the following four distributions: unit centered Gaussian, log-normal
with parameters (1,1), and Bernoulli with parameter 1/10 and 1/2. An estimate of the probabil-
ity P(n−1 ∑n

i=1 Xi − μ ≥ 10−2) is obtained by averaging over 1000 repeated samples of size n

taken without replacement. In Figures 1(a), 1(b) and 1(c), Hoeffding’s bound and the Hoeffding–
Serfling bound of Theorem 2.4 are close for n ≤ N/2, after which the Hoeffding–Serfling bound
decreases to zero, outperforming Hoeffding’s bound. Bernstein’s and our Bernstein–Serfling
bound behave similarly, both outperforming their counterparts that do not make use of the vari-
ance of X . However, Figure 1(d) shows that one should not always prefer Bernstein bounds.
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Figure 1. Comparing known bounds on p = P(n−1 ∑n
i=1 Xi − μ ≥ 0.01) with our Hoeffding–Serfling

and Bernstein–Serfling bounds. X is here a sample of size N = 104 from each of the four distributions
written below each plot. An estimate (black plain line) of p is obtained by averaging over 1000 repeated
subsamples of size n, taken from X uniformly without replacement. (a) Gaussian N (0,1). (b) Log-normal
lnN (1,1). (c) Bernoulli B(0.1). (d) Bernoulli B(0.5).

In this case, the standard deviation is as large as roughly half the range, making Hoeffding’s
and Bernstein’s bounds identical, and Hoeffding–Serfling actually slightly better than Bernstein–
Serfling. We emphasize here that Bernstein bounds are typically useful when the variance is small
compared to the range.

2. A reminder of Serfling’s fundamental result

In this section, we recall an initial result and proof by Serfling [14], and slightly improve on his
final bound.



Concentration inequalities for sampling without replacement 1365

We start by identifying the following martingales structures. Let us introduce, for 1 ≤ k ≤ N ,

Zk = 1

k

k∑
t=1

(Xt − μ) and Z�
k = 1

N − k

k∑
t=1

(Xt − μ), where μ = 1

N

N∑
i=1

xi. (2)

Note that by definition ZN = 0, so that the σ -algebra σ(Zk+1, . . . ,ZN) is equal to σ(Zk+1, . . . ,

ZN−1).

Lemma 2.1. The following forward martingale structure holds for {Z�
k}k≤N :

E
[
Z�

k |Z�
k−1, . . . ,Z

�
1

] = Z�
k−1. (3)

Similarly, the following reverse martingale structure holds for {Zk}k≤N :

E[Zk|Zk+1, . . . ,ZN−1] = Zk+1. (4)

Proof. We first prove (3). Let 1 ≤ k ≤ N . We start by noting that

Z�
k = 1

N − k

k−1∑
t=1

(Xt − μ) + Xk − μ

N − k

(5)

= N − k + 1

N − k
Z�

k−1 + Xk − μ

N − k
.

Since Xk is uniformly distributed on the remaining elements of X after X1, . . . ,Xk−1 have been
drawn, its conditional expectation given X1, . . . ,Xk−1 is the average of the N − k + 1 remaining
points in X . Since points in X add up to Nμ, we obtain

E
[
Xk|Z�

k−1, . . . ,Z
�
1

] = E[Xk|Xk−1, . . . ,X1]

= Nμ − ∑k−1
i=1 Xi

N − k + 1
(6)

= μ − Z�
k−1.

Combined with (5), this yields (3).
We now turn to proving (4). First, let 1 ≤ k ≤ N . Since

(k + 1)Zk+1 = (N − k − 1)μ − Xk+2 − · · · − XN,

σ(Zk+1, . . . ,ZN−1) is equal to σ(Xk+2, . . . ,XN). Now, let us remark that the indices of
(X1, . . . ,XN) are uniformly distributed on the permutations of {1, . . . ,N}, so that (X1, . . . ,

XN−k) and (Xk+1, . . . ,XN) have the same marginal distribution. Consequently,

E[Xk+1|Zk+1, . . . ,ZN−1] = E[Xk+1|Xk+2 . . . ,XN ] = Sk+1

k + 1
,
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where we introduced the sum Sk+1 = ∑k+1
t=1 Xt . Finally, we prove (4) along the same lines as (3):

E[Zk|Zk+1, . . . ,ZN−1] = E

[
Sk − kμ

k

∣∣∣Zk+1, . . . ,ZN−1

]
= E

[
Sk+1 − Xk+1

k

∣∣∣Zk+1, . . . ,ZN

]
− μ

= Sk+1

k
− Sk+1

k(k + 1)
− μ

= Zk+1. �

A Hoeffding–Serfling inequality

Let us now state the main result of Serfling [14]. This is a key result to derive a concentration
inequality, a maximal concentration inequality and a self-normalized concentration inequality, as
explained in Serfling [14].

Proposition 2.2 (Serfling [14]). Let us denote a = min1≤i≤N xi , and b = max1≤i≤N xi . Then,
for any λ > 0, it holds that

logE exp(λnZn) ≤ (b − a)2

8
λ2n

(
1 − n − 1

N

)
.

Moreover, for any λ > 0, it also holds that

logE exp
(
λ max

1≤k≤n
Z�

k

)
≤ (b − a)2

8

λ2

(N − n)2
n

(
1 − n − 1

N

)
.

Proof. First, (5) yields that for all λ′ > 0,

λ′Z�
k = λ′Z�

k−1 + λ′ Xk − μ + Z�
k−1

N − k
. (7)

Furthermore, we know from (6) that −Z�
k−1 is the conditional expectation of Xk − μ given

X1, . . . ,Xk−1. Thus, since Xk − μ ∈ [a − μ,b − μ], Lemma 1.3 applies and we get that, for all
2 ≤ k ≤ n,

logE

[
exp

(
λ′ Xk − μ + Z�

k−1

N − k

)∣∣∣Z�
1, . . . ,Z

�
k−1

]
≤ (b − a)2

8

λ′2

(N − k)2
. (8)

Similarly, we can apply Lemma 1.3 to Z�
1 = (X1 − μ)/(N − 1) to obtain

logE exp
(
λ′Z�

1

) ≤ (b − a)2

8

λ′2

(N − 1)2
. (9)
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Upon noting that Zn = N−n
n

Z�
n, and combining (8) and (9) together with the decomposition (7),

we eventually obtain the bound

logE exp

(
λ′ n

N − n
Zn

)
≤ (b − a)2

8

n∑
k=1

λ′2

(N − k)2
.

In particular, for λ such that λ′ = (N − n)λ, the RHS of this equation contains the quantity

n∑
k=1

(N − n)2

(N − k)2
= 1 + (N − n)2

N−1∑
k=N−n+1

1

k2

≤ 1 + (N − n)2 ((N − 1) − (N − n))

(N − n)N
= 1 + (N − n)(n − 1)

N
(10)

= 1 + n − 1 − n
n − 1

N
= n

(
1 − n − 1

N

)
,

where we used in the second line the following approximation from (Serfling [14], Lemma 2.1):
for 1 ≤ j ≤ m, it holds

l∑
k=j+1

1

k2
≤ l − j

j (l + 1)
.

This concludes the proof of the first result of Proposition 2.2. The second result follows from
applying Doob’s maximal inequality for martingales combined with the previous derivation. �

The result of Proposition 2.2 reveals a powerful feature of the no replacement setting: the
factor n(1 − n−1

N
) in the exponent, as opposed to n in the case of sampling with replacement.

This leads to a dramatic improvement of the bound when n is large, as can be seen on Figure 1.
Serfling [14] mentioned that a factor 1 − n

N
would be intuitively more natural, as indeed when

n = N the mean μ is known exactly, so that ZN is deterministically zero.
Serfling did not publish any result with 1 − n

N
. However, it appears that a careful examina-

tion of the previous proof and of the use of equation (4), in lieu of (3), allows us to get such an
improvement. We detail this in the following proposition. More than a simple cosmetic modifi-
cation, it is actually a slight improvement on Serfling’s original result when n > N/2.

Proposition 2.3. Let (Zk) be defined by (2). For any λ > 0, it holds that

logE exp(λnZn) ≤ (b − a)2

8
λ2(n + 1)

(
1 − n

N

)
.

Moreover, for any λ > 0, it also holds that

logE exp
(
λ max

n≤k≤N−1
Zk

)
≤ (b − a)2

8

λ2

n2
(n + 1)

(
1 − n

N

)
.
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Proof. Let us introduce the notation Yk = ZN−k for 1 ≤ k ≤ N − 1. From (4), it comes

E[YN−k|Y1, . . . , YN−k−1] = YN−k−1.

By a change of variables, this can be rewritten as

E[Yk|Y1, . . . , Yk−1] = Yk−1.

Now we remark that the following decomposition holds:

λYk = λ

∑N−k
i=1 (Xi − μ)

N − k
(11)

= λYk−1 − λ
XN−k+1 − μ − Yk−1

N − k
.

Since Yk−1 is the conditional mean of XN−k+1 − μ ∈ [a − μ,b − μ], Lemma 1.3 yields that, for
all 2 ≤ k ≤ n,

logE

[
exp

(
λ′ XN−k+1 − μ − Yk−1

N − k

)∣∣∣Y1, . . . , Yk−1

]
≤ (b − a)2

8

λ′2

(N − k)2
. (12)

On the other hand it holds by definition of Y1 that

Y1 = ZN−1 =
∑N−1

i=1 (Xi − μ)

N − 1
∈ [a − μ,b − μ].

Along the lines of the proof of Proposition 2.2, we obtain

logE exp
(
λ′Y1

) ≤ (b − a)2

8

λ′2

(N − 1)2
. (13)

Combining equations (12) and (13) with the decomposition (11), it comes

logE exp
(
λ′Yn

) ≤ (b − a)2

8

n∑
k=1

λ′2

(N − k)2

≤ (b − a)2

8

λ′2

(N − n)2
n

(
1 − n − 1

N

)
,

where in the last line we made use of (10). Rewriting this inequality in terms of Z, we obtain
that, for all 1 ≤ n ≤ N − 1,

logE exp
(
λ(N − n)ZN−n

) ≤ (b − a)2

8
λ2n

(
1 − n − 1

N

)
,
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that is, by resorting to a new change of variable,

logE exp(λnZn) ≤ (b − a)2

8
λ2(N − n)

(
1 − N − n − 1

N

)
≤ (b − a)2

8
λ2(N − n)

n + 1

N

≤ (b − a)2

8
λ2(n + 1)

(
1 − n

N

)
.

The second part of the proposition follows from applying Doob’s maximal inequality for martin-
gales to Yn, similarly to Proposition 2.2. �

Theorem 2.4 (Hoeffding–Serfling inequality). Let X = (x1, . . . , xN) be a finite population of
N > 1 real points, and (X1, . . . ,Xn) be a list of size n < N sampled without replacement from X .
Then for all ε > 0, the following concentration bounds hold

P

(
max

n≤k≤N−1

∑k
t=1(Xt − μ)

k
≥ ε

)
≤ exp

(
− 2nε2

(1 − n/N)(1 + 1/n)(b − a)2

)
,

P

(
max

1≤k≤n

∑k
t=1(Xt − μ)

N − k
≥ nε

N − n

)
≤ exp

(
− 2nε2

(1 − (n − 1)/N)(b − a)2

)
,

where a = min1≤i≤N xi and b = max1≤i≤N xi .

Proof. Applying Proposition 2.3 together with Markov’s inequality, we obtain that, for all λ > 0,

P

(
max

n≤k≤N−1

∑k
t=1(Xt − μ)

k
≥ ε

)
≤ exp

(
−λε + (b − a)2

8

λ2

n2
(n + 1)(1 − n/N)

)
.

We now optimize the previous bound in λ. The optimal value is given by

λ� = ε
4

(b − a)2

n2

(n + 1)(1 − n/N)
.

This gives the first inequality of Theorem 2.4. The proof of the second inequality follows the
very same lines. �

Inverting the result of Theorem 2.4 for n < N and remarking that the resulting bound still
holds for n = N , we straightforwardly obtain the following result.

Corollary 2.5. For all n ≤ N , for all δ ∈ [0,1], with probability higher than 1 − δ, it holds∑n
t=1(Xt − μ)

n
≤ (b − a)

√
ρn log(1/δ)

2n
,
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where we define

ρn =

⎧⎪⎪⎨⎪⎪⎩
(

1 − n − 1

N

)
if n ≤ N/2,(

1 − n

N

)
(1 + 1/n) if n > N/2 .

(14)

3. A Bernstein–Serfling inequality

In this section, we consider σ 2 = N−1 ∑N
i=1(xi − μ)2 is known, and extend Theorem 2.4 to that

situation.
Similarly to Lemma 2.1, the following structural lemma will be useful:

Lemma 3.1. It holds

E
[
(Xk − μ)2|Z1, . . . ,Zk−1

] = σ 2 − Q�
k−1, where Q�

k−1 =
∑k−1

i=1 ((Xi − μ)2 − σ 2)

N − k + 1
,

where the Zi ’s are defined in (2). Similarly, it holds

E
[
(Xk+1 − μ)2|Zk+1, . . . ,ZN−1

] = σ 2 + Qk+1, where Qk+1 =
∑k+1

i=1 ((Xi − μ)2 − σ 2)

k + 1
.

Proof. We simply remark again that, conditionally on X1, . . . ,Xk−1, the variable Xk is dis-
tributed uniformly over the remaining points in X , so that

E
[
(Xk − μ)2|Z1, . . . ,Zk−1

] = E
[
(Xk − μ)2|X1, . . . ,Xk−1

]
= 1

N − k + 1

[
Nσ 2 −

k−1∑
i=1

(Xi − μ)2

]

= σ 2 − Q�
k−1.

The second equality of Lemma 3.1 follows from the same argument, as in the proof of
Lemma 2.1. �

Let us now introduce the following notations:

μ<,k+1 = E[Xk+1 − μ|Zk+1, . . . ,ZN−1],
μ>,k = E[Xk − μ|Z1, . . . ,Zk−1],

σ 2
<,k+1 = E

[
(Xk+1 − μ)2|Zk+1, . . . ,ZN−1

] − μ2
<,k+1,

σ 2
>,k = E

[
(Xk − μ)2|Z1, . . . ,Zk−1

] − μ2
>,k.

We are now ready to state Proposition 3.2, which is a Bernstein version of Proposition 2.2.
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Proposition 3.2. For any λ > 0, it holds that

logE exp

(
λnZn − λ2

N−n∑
k=1

ϕ

(
2(b − a)λ

N − k

)
σ 2

<,N−k+1n
2

(N − k)2

)
≤ 0,

logE exp

(
λnZn − λ2

n∑
k=1

ϕ

(
2(b − a)λ

N − n

N − k

)
σ 2

>,k(N − n)2

(N − k)2

)
≤ 0,

where we introduced the function ϕ(c) = ec−1−c

c2 . Moreover, for any λ > 0, it also holds that

logE exp

(
λ
(

max
1≤k≤n

Z�
k

)
−

n∑
k=1

ϕ

(
2(b − a)λ

N − k

)
σ 2

>,kλ
2

(N − k)2

)
≤ 0,

logE exp

(
λ
(

max
n≤k≤N−1

Zk

)
−

N−n∑
k=1

ϕ

(
2(b − a)λ

N − k

)
σ 2

<,N−k+1λ
2

(N − k)2

)
≤ 0.

Proof. The key point is to replace equations (8) and (9) in the proof of Proposition 2.2, which
make use of the range of X , by equivalent ones that involve the variance. We only detail the
proof of the first inequality, the proof of the three others follows the same steps.

A standard result from the proof of Bennett’s inequality (see Lugosi [10], page 11, or
Boucheron, Lugosi and Massart [4], proof of Theorem 2.9) applied to the random variable
XN−k+1 − μ, with conditional mean μ<,N−k+1 and conditional variance σ 2

<,N−k+1, yields

E

[
exp

(
λ′ XN−k+1 − μ + Yk−1

N − k
(15)

− σ 2
<,N−k+1ϕ

(
2(b − a)λ′

N − k

)
λ′2

(N − k)2

)∣∣∣Y1, . . . , Yk−1

]
≤ 1,

where we used the notation Yk = ZN−k of Proposition 2.3, and the function ϕ defined in the
statement of the proposition

ϕ(c) = ec − 1 − c

c2
.

Similarly, Y1 satisfies

logE exp
(
λ′Y1

) = logE exp

(
λ′ μ − XN

N − 1

)
≤ σ 2

<,Nϕ

(
2(b − a)λ′

N − 1

)
λ′2

(N − 1)2
, (16)

where σ 2
<,N = σ 2 is deterministic.
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Thus, combining (15) and (16) together with the decomposition (11), we eventually get the
bound

logE exp

(
λ′Yn −

n∑
k=1

ϕ

(
2(b − a)λ′

N − k

)
σ 2

<,N−k+1λ
′2

(N − k)2

)
≤ 0.

�

Using the result of Proposition 3.2, we could immediately derive a simple Bernstein inequality
for sampling without replacement via an application of Theorem 2.4 to the random variables
Zi = (Xi − μ)2. However, Maurer and Pontil [12] and Audibert, Munos and Szepesvári [1]
showed that, in the case of sampling with replacement, a careful use of self-bounded properties
of the variance yields better bounds. We now explain how to get a similar improvement on the
naive Bernstein inequality in the case of sampling without replacement. We start with a technical
lemma.

Lemma 3.3. For all δ ∈ [0,1], with probability larger than 1 − δ, it holds

max
1≤k≤n

σ 2
>,k ≤ σ 2 + σ(b − a)(n − 1)

N − n + 1

√
2 log(1/δ)

n − 1
. (17)

Similarly, with probability larger than 1 − δ, it holds

max
n≤k≤N−1

σ 2
<,k+1 ≤ σ 2 + σ(b − a)(N − n − 1)

n + 1

√
2 log(1/δ)

N − n − 1
. (18)

Remark 3.4. When N → ∞, the upper bound on max1≤k≤n σ 2
>,k reduces to σ 2. Indeed, this limit

case intuitively corresponds to sampling with replacement, for which the conditional variance
equals σ 2.

Proof of Lemma 3.3. We first prove (17). By definition and Lemma 3.1, it holds that

σ 2
>,k = σ 2 − Q�

k−1 − Z�
k−1

2

(19)

≤ σ 2 − 1

N − k + 1

k−1∑
i=1

[
(Xi − μ)2 − σ 2].

Let Vk−1 = 1
k−1

∑k−1
i=1 (Xi − μ)2. Equation (19) yields

max
1≤k≤n

σ 2
>,k ≤ σ 2 + max

1≤k≤n

k − 1

N − k + 1

(
σ 2 − Vk−1

)
.

The rest of the proof proceeds by establishing a suitable maximal concentration bound for the
quantity Vk−1, the mean of which is σ 2.
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We remark that −Q�
k−1 = k−1

N−k+1 (σ 2 − Vk−1) is a martingale. Indeed, it satisfies

E
[−Q�

k−1|Q�
k−2, . . . ,Q

�
1

]
= 1

N − k + 1
E

[
k−1∑
i=1

(
σ 2 − (Xi − μ)2)|Q�

k−2, . . . ,Q
�
1

]

= 1

N − k + 1

k−2∑
i=1

(
σ 2 − (Xi − μ)2) + 1

N − k + 1
E

[(
σ 2 − (Xk−1 − μ)2)|Q�

k−2, . . . ,Q
�
1

]
= −N − k + 2

N − k + 1
Q�

k−2 + 1

N − k + 1
Q�

k−2

= −Q�
k−2,

where we applied Lemma 3.1 in the third line. Doob’s maximal inequality thus yields that, for
all λ > 0,

P

(
max

1≤k≤n
−Q�

k−1 ≥ ε
)

= P

(
max

1≤k≤n
exp

(−λQ�
k−1

) ≥ exp(λε)
)

≤ E
[
exp

(−λQ�
n−1 − λε

)]
= E

[
exp

(
λ

n − 1

N − n + 1

(
σ 2 − Vn−1 − N − n + 1

n − 1
ε

))]
.

At this point, we fix λ > 0 and apply Lemma 1.1 to the random variables X′
i = (Xi − μ)2 and

function f :x → exp(−λ(n − 1)x). We deduce that, for all ε′ > 0 and λ > 0,

P

(
max

1≤k≤n
σ 2

>,k − σ 2 ≥ n − 1

N − n + 1
ε′

)
≤ E

[
exp

(−λ
(
Vn−1 − σ 2 + ε′))]

(20)
≤ E

[
exp

(−λ
(
Ṽn−1 − σ 2 + ε′))],

where we introduced in the last line the notation Ṽn−1 = 1
n−1

∑n−1
i=1 (Yi − μ)2, with the

{Yi}1≤i≤n−1 being sampled from X with replacement. Note that Ṽn−1 has mean σ 2 too.
Now, we check that the assumptions of Theorem 13 of Maurer [11] hold. We first introduce

the modification

Yj,y

1:n−1 = {Y1, . . . , Yj−1, y,Yj+1, . . . , Yn−1}
of Y1:n−1, where Yj is replaced by y ∈ X . Writing Ṽn−1 = Ṽn−1(Y1:n−1) to underline the de-
pendency on the sample set Y1:n−1, it straightforwardly comes, on the one hand, that for all
y ∈X

Ṽn−1(Y1:n−1) − Ṽn−1
(
Yj,y

1:n−1

) = 1

n − 1

(
(Yj − μ)2 − (y − μ)2)

≤ 1

n − 1
(Yj − μ)2 ≤ 1

n − 1
(b − a)2,
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and, on the other hand, that the following self-bounded property holds:

n−1∑
j=1

(
Ṽn−1(Y1:n−1) − inf

y∈X
Ṽn−1

(
Yj,y

1:n−1

))2 ≤ 1

(n − 1)2

n−1∑
j=1

(Yj − μ)4

≤ (b − a)2

n − 1
Ṽn−1(Y1:n−1).

We now apply of the proof of Theorem 13 of Maurer [11]1 to Z = n−1
(b−a)2 Ṽn−1, together with

(20), which yields

P

(
max

1≤k≤n
σ 2

>,k − σ 2 ≥ (b − a)2

N − n + 1
ε

)
≤ exp

(
−λε + λ2

2
E[Z]

)
= exp

(
− (b − a)2ε2

2(n − 1)σ 2

)
,

where we used the same value λ = ε
E[Z] = (b−a)2ε

(n−1)σ 2 as in Maurer [11], Theorem 13.
Finally, we have proven that for all δ ∈ [0,1], with probability higher than 1 − δ,

max
1≤k≤n

σ 2
>,k ≤ σ 2 + 2

√
σ 2 (b − a)(n − 1)

N − n + 1

√
log(1/δ)

2(n − 1)
,

which concludes the proof of (17).
We now turn to proving (18). First, we remark that

σ 2
<,k+1 ≤ E

[
(Xk+1 − μ)2|Zk+1, . . . ,ZN−1

]
= E

[
(Xk+1 − μ)2|Xk+2, . . . ,XN

]
= E

[
(YN−k − μ)2|Y1, . . . , YN−k−1

]
,

where in the second line we used that Zk+1 = μ − XN − · · · − Xk+2, and in the third line we
used the change of variables Yu = XN−u+1. It follows that

max
n≤k≤N−1

σ 2
<,k+1 ≤ max

n≤k≤N−1
E

[
(YN−k − μ)2|Y1, . . . , YN−k−1

]
= max

1≤k≤N−n
E

[
(Yk − μ)2|Y1, . . . , Yk−1

]
.

Now (Y1, . . . , YN−n) has the same marginal distribution as (X1, . . . ,XN−n), so that the proof of
(17) applies and yields the result. �

1The theorem is stated for P[E[Z] − Z ≥ ε] but, actually, E[exp(−λ(Z −E[Z] + ε))] is bounded in the proof.
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We emphasize that we used Hoeffding’s reduction Lemma 1.1 in the proof of Lemma 3.3. This
allowed us to apply the key result from Maurer [11]. We will discuss alternatives to this proof in
Section 5. We can now state our Bernstein–Serfling bound.

Theorem 3.5 (Bernstein–Serfling inequality). Let X = (x1, . . . , xN) be a finite population of
N > 1 real points, and (X1, . . . ,Xn) be a list of size n < N sampled without replacement from
X . Then, for all ε > 0 and δ ∈ [0,1], the following concentration inequality holds

P

(
max

1≤k≤n

∑k
t=1(Xt − μ)

N − k
≥ nε

N − n

)
≤ exp

[ −nε2/2

γ 2 + (2/3)(b − a)ε

]
+ δ, (21)

where

γ 2 = (1 − fn−1)σ
2 + fn−1cn−1(δ),

cn(δ) = σ(b − a)

√
2 log(1/δ)

n
, and fn−1 = n−1

N
. Similarly, it holds

P

(
max

n≤k≤N−1

∑k
t=1(Xt − μ)

k
≥ ε

)
≤ exp

[ −nε2/2

γ̃ 2 + (2/3)(b − a)ε

]
+ δ, (22)

where

γ̃ 2 = (1 − fn)

(
n + 1

n
σ 2 + N − n − 1

n
cN−n−1(δ)

)
.

Proof. We first prove (22). Applying Proposition 3.2 together with Markov’s inequality, we ob-
tain that for all λ, δ > 0,

P

(
max

n≤k≤N−1

∑k
t=1(Xt − μ)

k
≥ log(1/δ)

λ
+ λ

N−n∑
k=1

ϕ

(
2(b − a)λ

N − k

)
σ 2

<,N−k+1

(N − k)2

)
≤ δ. (23)

Thus, combining equations (23) and (18) with a union bound, we get that for all λ > 0 for all
δ, δ′, with probability higher than 1 − δ − δ′, it holds that

max
n≤k≤N−1

∑k
t=1(Xt − μ)

k

≤ log(1/δ)

λ
+ λ

N−n∑
k=1

ϕ

(
2(b − a)λ

N − k

)
1

(N − k)2

[
σ 2 + N − n − 1

n + 1
cN−n−1

(
δ′)]

≤ log(1/δ)

λ
+ λ

n2
ϕ

(
2(b − a)λ

n

)[
σ 2 + N − n − 1

n + 1
cN−n−1

(
δ′)]N−n∑

k=1

n2

(N − k)2

≤ log(1/δ)

λ
+ λ

n2
ϕ

(
2(b − a)λ

n

)[
σ 2 + N − n − 1

n + 1
cN−n−1

(
δ′)](n + 1)

(
1 − n

N

)
,
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where we introduced

cN−n−1
(
δ′) = σ(b − a)

√
2 log(1/δ′)
N − n − 1

,

where we used in the second line the fact that ϕ is nondecreasing and where we applied (10) in
the last line. For convenience, let us now introduce the quantities fn = n

N
and

γ̃ 2 = (1 − fn)

[
σ 2 + N − n − 1

n + 1
cN−n−1

(
δ′)].

The previous bound can be rewritten in terms of ε > 0 and δ′ only, in the form

P

(
max

n≤k≤N−1

∑k
t=1(Xt − μ)

k
≥ ε

)
≤ exp

(
−λε + λ2(n + 1)

n2
ϕ

(
2(b − a)λ

n

)
γ̃ 2

)
+ δ′. (24)

We now optimize the bound (24) in λ. Let us introduce the function

f (λ) = −λε + λ2(n + 1)

n2
ϕ

(
2(b − a)λ

n

)
γ̃ 2,

corresponding to the term in brackets in (24). By definition of ϕ, it comes

f (λ) = −λε + λ2

n2
ϕ

(
2(b − a)λ

n

)
γ̃ 2(n + 1)

= −λε +
(

exp

(
2(b − a)λ

n

)
− 1 − 2(b − a)λ

n

)
γ̃ 2

4(b − a)2
(n + 1).

Thus, the derivative of f is given by

f ′(λ) = −ε +
(

exp

(
2(b − a)λ

n

)
− 1

)
γ̃ 2(n + 1)

2(b − a)n
,

and the value λ� that optimizes f is given by

λ� = n

2(b − a)
log

(
1 + 2(b − a)εn

γ̃ 2(n + 1)

)
.

Let us now introduce for convenience the quantity u = 2(b−a)n

γ̃ 2(n+1)
. The corresponding optimal value

f (λ�) is given by

f
(
λ�

) = −ε
n

2(b − a)
log(1 + uε) + γ̃ 2

4(b − a)2
(n + 1)

(
uε − log(1 + uε)

)
= γ̃ 2(n + 1)

4(b − a)2

[−uε log(1 + uε) + uε − log(1 + uε)
]

= − n

2(b − a)u
ζ(uε),
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where we introduced in the last line the function ζ(u) = (1 + u) log(1 + u) − u. Now, using the
identify ζ(u) ≥ u2/(2 + 2u/3) for u ≥ 0, we obtain

P

(
max

n≤k≤N−1

∑k
t=1(Xt − μ)

k
≥ ε

)
≤ exp

(
− nε

2(b − a)

uε

2 + 2uε/3

)
+ δ′

≤ exp

(
− nε2

2γ̃ 2(n + 1)/n + 4
3 (b − a)ε

)
+ δ′,

which concludes the proof of (22). The proof of (21) follows the very same lines, simply using
(17) instead of (18). �

Inverting the bounds of Theorem 3.5, we obtain Corollary 3.6.

Corollary 3.6. Let n ≤ N and δ ∈ [0,1]. With probability larger than 1 − 2δ, it holds that∑n
t=1(Xt − μ)

n
≤ σ

√
2ρn log(1/δ)

n
+ κn(b − a) log(1/δ)

n
,

where we remind the definition of ρn (14)

ρn =
{

(1 − fn−1) if n ≤ N/2,
(1 − fn)(1 + 1/n) if n > N/2,

and where we introduced the quantity

κn =

⎧⎪⎪⎨⎪⎪⎩
4

3
+

√
fn

gn−1
if n ≤ N/2,

4

3
+ √

gn+1(1 − fn) if n > N/2,

(25)

with fn = n/N and gn = N/n − 1.

Proof. Let δ, δ′ ∈ [0,1]. From (21) in Theorem 3.5, it comes that, with probability higher than
1 − δ − δ′, ∑n

t=1(Xt − μ)

N − n
≤ εδ, where γ 2 + B

N − n

n
εδ = (N − n)2

2n log(1/δ)
ε2
δ ,

where we introduced for convenience B = 2
3 (b − a) and

γ 2 = (1 − fn−1)σ
2 + fn−1σ(b − a)

√
2 log(1/δ′)

n − 1
.
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Solving this equation in ε leads to

εδ = n log(1/δ)
B((N − n)/n) + √

B2((N − n)/n)2 + 4((N − n)2/(2n log(1/δ)))γ 2

(N − n)2

= 1

N − n

(√
B2 log(1/δ)2 + 2γ 2 log(1/δ)n + B log(1/δ)

)
≤ n

N − n

(√
2γ 2 log(1/δ)

n
+ 2B log(1/δ)

n

)
.

On the other hand, following the same lines but starting from (22) in Theorem 3.5, it holds
that, with probability higher than 1 − δ − δ′,

∑n
t=1(Xt − μ)

n
≤

√
2γ̃ 2 log(1/δ)

n
+ 2B log(1/δ)

n
,

where we introduced this time

γ̃ 2 = (1 − fn)

(
(1 + 1/n)σ 2 + N − n − 1

n
σ(b − a)

√
2 log(1/δ′)
N − n − 1

)
.

Finally, we note that

√
γ̃ 2 ≤ √

(1 − fn)(1 + 1/n)

(
σ + N − n − 1

n + 1
(b − a)

√
log(1/δ′)

2(N − n − 1)

)
.

Thus, when n ≤ N/2, we deduce that for all 1 ≤ n ≤ N − 1, with probability higher than
1 − 2δ, it holds∑n

t=1(Xt − μ)

n
≤ √

1 − fn−1

(
σ

√
2 log(1/δ)

n
+ n − 1

N − n + 1

(b − a) log(1/δ)√
n(n − 1)

)
+ 2B log(1/δ)

n

≤ σ

√
2(1 − fn−1) log(1/δ)

n
+ (b − a) log(1/δ)

n

(
4

3
+

√
n(n − 1)

N(N − n + 1)

)
;

whereas when N > n > N/2, it holds, with probability higher than 1 − 2δ, that∑n
t=1(Xt − μ)

n
≤ √

(1 − fn)(1 + 1/n)

(
σ

√
2 log(1/δ)

n
+ N − n − 1

n + 1

(b − a) log(1/δ)√
n(N − n − 1)

)
+ 2B log(1/δ)

n
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≤ σ

√
2(1 − fn)(1 + 1/n) log(1/δ)

n

+ (b − a) log(1/δ)

n

(
4

3
+

√
(N − n − 1)(N − n)

(n + 1)N

)
.

Finally we note that when n = N , gn+1(1 − fn) = 0 and ρn = 0. So the bound is still
satisfied. �

4. An empirical Bernstein–Serfling inequality

In this section, we derive a practical version of Theorem 3.5 where the variance σ 2 is replaced
by an estimate. A natural (biased) estimator is given by

σ̂ 2
n = 1

n

n∑
i=1

(Xi − μ̂n)
2 = 1

n2

n∑
i,j=1

(Xi − Xj)
2

2
, where μ̂n = 1

n

n∑
i=1

Xi. (26)

We also define, for notational convenience, the quantity σ̂n = √
σ̂ 2

n .
Before proving our empirical Bernstein–Serfling inequality, we first need to control the error

between σ̂n and σ . For instance, in the standard case of sampling with replacement, it can be
shown (Maurer and Pontil [12]) that, for all δ ∈ [0,1],

P

(
σ ≥ n

n − 1
σ̂n + (b − a)

√
2 ln(1/δ)

n − 1

)
≤ δ.

We now show an equivalent result in the case of sampling without replacement.

Lemma 4.1. When sampling without replacement from a finite population X = (x1, . . . , xN) of
size N , with range [a, b] and variance σ 2, the empirical variance σ̂ 2

n defined in (26) using n < N

samples satisfies the following concentration inequality (using the notation of Corollary 2.5)

P

(
σ ≥ σ̂n + (b − a)(1 + √

1 + ρn)

√
log(3/δ)

2n

)
≤ δ.

Remark 4.2. We conjecture that it is possible, at the price of a more complicated analysis, to
reduce the term (1+√

1 + ρn) to
√

4ρn, which would then be consistent with the analogous result
for sampling with replacement in Maurer and Pontil [12]. We further discuss this technically
involved improvement in Section 5.

Proof of Lemma 4.1. In order to prove Lemma 4.1, we again use Lemma 1.1, which allows us
to relate the concentration of the quantity Vn = 1

n

∑n
i=1(Xi − μ)2 to that of its equivalent

Ṽn = Ṽn(Y1:n) = 1

n

n∑
i=1

(Yi − μ)2,
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where the Yis are drawn from X with replacement. Let us introduce the notation Z =
n

(b−a)2 Ṽn(Y1:n). We know from the proof of Lemma 3.3 that Z satisfies the conditions of
application of Maurer [11], Theorem 13. Let us also introduce for convenience the constant

λ = − ε
E[Z] = − (b−a)2ε

nσ 2 . Using these notations, it comes

P

(
σ 2 − Vn ≥ (b − a)2

n
ε

)
≤ E

[
exp

(
−λ

(
n

(b − a)2
σ 2 − n

(b − a)2
Vn − ε

))]
≤ E

[
exp

(−λ
(
E[Z] − Z − ε

))]
≤ exp

(
λε + λ2

2
E[Z]

)
= exp

(
− (b − a)2ε2

2nσ 2

)
.

The first line results of the application of Markov’s inequality. The second line follows from the
application of Lemma 1.1 to X′

i = (Xi −μ)2 and f (x) = exp(−λ n

(b−a)2 x). The last steps are the
same as in the proof of Lemma 3.3.

So far, we have shown that, with probability at least 1 − δ,

σ 2 − 2
√

σ 2(b − a)

√
log(1/δ)

2n
≤ Vn. (27)

Let us remark that

1

n

n∑
i=1

(Xi − μ)2 − 1

n

n∑
i=1

(Xi − μ̂n)
2 = (μ̂n − μ)2,

that is, Vn = (μ̂n −μ)2 + σ̂ 2
n . In order to complete the proof, we thus resort twice to Theorem 2.4

to obtain that, with probability higher than 1 − δ, it holds

(μ̂n − μ)2 ≤ (b − a)2 ρn log(2/δ)

2n
. (28)

Combining equations (27) and (28) with a union bound argument yields that, with probability at
least 1 − δ,

σ̂ 2
n ≥ σ 2 − 2

√
σ 2

√
(b − a)2 log(3/δ)

2n
− (b − a)2 ρn log(3/δ)

2n

=
(

σ −
√

(b − a)2 log(3/δ)

2n

)2

− (b − a)2(1 + ρn)
log(3/δ)

2n
.

Finally, we obtain

P

(
σ ≥ σ̂n + (1 + √

1 + ρn)

√
(b − a)2 log(3/δ)

2n

)
≤ δ. �
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Eventually, combining Theorem 3.5 and Lemma 4.1 with a union bound argument, we finally
deduce the following result.

Theorem 4.3 (An empirical Bernstein–Serfling inequality). Let X = (x1, . . . , xN) be a finite
population of N > 1 real points, and (X1, . . . ,Xn) be a list of size n ≤ N sampled without
replacement from X . Then for all δ ∈ [0,1], with probability larger than 1 − 5δ, it holds∑n

t=1(Xt − μ)

n
≤ σ̂n

√
2ρn log(1/δ)

n
+ κ(b − a) log(1/δ)

n
,

where we remind the definition of ρn (14)

ρn =

⎧⎪⎪⎨⎪⎪⎩
(

1 − n − 1

N

)
if n ≤ N/2,(

1 − n

N

)
(1 + 1/n) if n > N/2 ,

and κ = 7
3 + 3√

2
.

Remark 4.4. First, Theorem 4.3 has the familiar form of Bernstein bounds. The alternative def-
inition of ρn guarantees that we get the best reduction out of the no replacement setting. In
particular, when n is large, the factor (1 − fn) replaces (1 − fn−1) and the corresponding factor
eventually equals 0 when n = N , a feature that was missing in Proposition 2.2. Second, the con-
stant κ is to relate to the constant 7/3 in Maurer and Pontil [12], Theorem 11, for sampling with
replacement.

Proof of Theorem 4.3. First, by application of Corollary 3.6, it holds for all δ ∈ [0,1] that, with
probability higher than 1 − 2δ,∑n

t=1(Xt − μ)

n
≤ σ

√
2ρn log(1/δ)

n
+ κn(b − a) log(1/δ)

n
,

where we remind the definition of ρn (14)

ρn =
{

(1 − fn−1) if n ≤ N/2,
(1 − fn)(1 + 1/n) if n > N/2,

and the definition of κn (25)

κn =

⎧⎪⎪⎨⎪⎪⎩
4

3
+

√
fn

gn−1
if n ≤ N/2,

4

3
+ √

gn+1(1 − fn) if n > N/2.
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We then apply Lemma 4.1 to get that, with probability higher than 1 − 5δ, if n ≤ N/2, then∑n
t=1(Xt − μ)

n
≤

√
σ̂ 2

n

√
2 log(1/δ)

n

√
1 − fn−1

+ (b − a) log(1/δ)

n

(
4

3
+

√
fn

gn−1
(29)

+ (1 + √
2 − fn−1)

√
1 − fn−1

)
,

and if n > N/2, then∑n
t=1(Xt − μ)

n

≤
√

σ̂ 2
n

√
2 log(1/δ)

n

√
(1 − fn)(1 + 1/n)

(30)

+ (b − a) log(1/δ)

n

(
4

3
+ √

gn+1(1 − fn)

+ √
(1 − fn)(1 + 1/n)

(
1 + √

1 + (1 − fn)(1 + 1/n)
))

.

We now simplify this result. Assume first that n ≤ N/2. We thus get

fn

gn−1
≤ 1

2gn−1
= n − 1

2(N − n + 1)
≤ 1

2
,

so that we deduce

4

3
+ (1 + √

2 − fn−1)
√

1 − fn−1 +
√

fn

gn−1
≤ 2 + 1

3
+ √

2 + 1√
2
. (31)

Assume now that n > N/2. In this case, it holds

gn+1(1 − fn) = N − n − 1

n + 1

N − n

N
≤ N − n

N
≤ 1

2
,

(1 − fn)(1 + 1/n) =
(

1 − n

N

)
(1 + 1/n) ≤ 1

2

(
1 + 2

N

)
,

so that we deduce, since N ≥ 2,

4

3
+ √

gn+1(1 − fn) + √
(1 − fn)(1 + 1/n)(1 + √

2 − fn−1) ≤ 2 + 1

3
+ 1√

2
+ √

2. (32)

Respectively combining (31) and (32) with equations (29) and (30) concludes the proof. �
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5. Discussion

In this section, we discuss the bounds of Theorem 3.5 and Theorem 4.3 from the perspective of
both theory and application.

First, both bounds involve either the factor 1 − fn−1 or 1 − fn, thus leading to a dramatic
improvement on the usual Bernstein or empirical Bernstein bounds, which do not make use of
the no replacement setting. This is crucial, for instance, when the user needs to rapidly compute
an empirical mean from a large number of samples up to some precision level. To better un-
derstand the improvement of Serfling bounds, we plot in Figure 2 the bounds of Corollaries 2.5
and 3.6, and Theorem 4.3 for an example where X is a sample of size N = 106 from each of
the following four distributions: unit centered Gaussian, log-normal with parameters (1,1), and
Bernoulli with parameter 1/10 and 1/2. As n increases, we keep sampling without replacement

Figure 2. Comparing the bounds of Corollaries 2.5 and 3.6, and Theorem 4.3. X is here a sample from
each of the four distributions written below each plot, of size N = 106. Unlike Figure 1, as n increases, we
keep sampling here without replacement until exhaustion. (a) Gaussian N (0,1). (b) Log-normal lnN (1,1).
(c) Bernoulli B(0.1). (d) Bernoulli B(0.5).
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from X until exhaustion, and report the corresponding bounds. Note that all our bounds have
their leading term exactly equal to zero when n = N , though our Hoeffding–Serfling bound only
is exactly zero. In all experiments, the loss of tightness as a result of using the empirical vari-
ance is small. Our empirical Bernstein–Serfling demonstrates here a dramatic improvement on
the Hoeffding–Serfling bound of Corollary 2.5 in Figures 2(a) and 2(b). A slight improvement
is demonstrated in Figure 2(c) where the standard deviation of X is roughly a third of the range.
Finally, Bernstein–Serfling itself does not improve on Hoeffding–Serfling in Figure 2(d), where
the standard deviation is roughly half of the range, again indicating that Bernstein bounds are not
uniformly better than Hoeffding bounds.

There is a number of nontrivial applications of our bounds. Scratch games, for instance, were
introduced in Féraud and Urvoy [6] as a variant of the multi-armed bandit problem, to model two
real world problems: selecting ads to display on web pages and optimizing e-mailing campaigns.
In particular, Féraud and Urvoy [6] discuss practical situations where an upper confidence bound
algorithm based on a Hoeffding–Serfling inequality outperforms a standard algorithm based on
Hoeffding’s inequality. Similar improvements should appear in practice when using our empir-
ical Bernstein–Serfling inequality. As another application, our results could be useful in opti-
mization. The stochastic dual-coordinate ascent algorithm (SDCA; Shalev-Shwartz and Zhang
[15]) is a state-of-the-art optimization algorithm used in machine learning. Shalev-Shwartz and
Zhang [15] introduce a variant of SDCA called SDCA-Perm, which – unlike SDCA – relies on
sampling without replacement, and achieves better empirical performance than SDCA. However,
the analysis in Shalev-Shwartz and Zhang [15] does not cover SDCA-Perm. We believe that the
use of Serfling bounds is an appropriate tool for that purpose.

To conclude, we discuss potential improvements of our bounds. A careful look at Lemmas 3.3
and 4.1 indicates that our bounds may be further improved, though at the price of a more intricate
analysis. Indeed, these two lemmas both resort to Hoeffding’s reduction Lemma 1.1, in order to
be able to apply concentration results known for self-bounded random variables to the setting of
sampling without replacement. As a result, we lose here a potential factor ρn for the confidence
bound around the variance, and we conjecture that the term 1 + √

1 + ρn in Lemma 4.1 could
ultimately be replaced with 2

√
ρn. A natural tool for this would be a dedicated tensorization

inequality for the entropy in the case of sampling without replacement (Boucheron, Lugosi and
Massart [4], Maurer [11], Bousquet [5]). Indeed, it is not difficult to show that σ̂ 2

n satisfies a self-
bounded property similar to that of Maurer and Pontil [12], Theorem 11, involving the factor ρn.
Thus, in order to be able to get a version of Maurer and Pontil [12], Theorem 11, in our setting,
a specific so-called tensorization inequality would be enough. Unfortunately, we are unaware
of the existence of such an inequality for sampling without replacement, where the samples
are strongly dependent. We are also unaware of any tensorization inequality designed for U -
statistics, which could be another possible way to get the desired result. Although we believe this
is possible, developing such tools goes beyond the scope of this paper, and the current results of
Theorem 3.5 and Theorem 4.3 are already appealing without resorting to further technicalities,
which would only affect second-order terms in the end.



Concentration inequalities for sampling without replacement 1385

Acknowledgements

This work was supported by both the 2020 Science program, funded by EPSRC grant number
EP/I017909/1, and the Technion.

References

[1] Audibert, J.-Y., Munos, R. and Szepesvári, Cs. (2009). Exploration-exploitation tradeoff using vari-
ance estimates in multi-armed bandits. Theoret. Comput. Sci. 410 1876–1902. MR2514714

[2] Bailey, N.T.J. (1951). On estimating the size of mobile populations from recapture data. Biometrika
38 293–306.

[3] Bardenet, R., Doucet, A. and Holmes, C. (2014). Towards scaling up MCMC: An adaptive subsam-
pling approach. In Proceedings of the 31st International Conference on Machine Learning (ICML).
JMLR W&CP 32 405–413. Brookline, MA: Microtome Publishing.

[4] Boucheron, S., Lugosi, G. and Massart, P. (2013). Concentration Inequalities: A Nonasymptotic The-
ory of Independence. Oxford: Oxford Univ. Press. With a foreword by Michel Ledoux. MR3185193

[5] Bousquet, O. (2003). Concentration inequalities for sub-additive functions using the entropy method.
In Stochastic Inequalities and Applications. Progress in Probability 56 213–247. Basel: Birkhäuser.
MR2073435

[6] Féraud, R. and Urvoy, T. (2013). Exploration and exploitation of scratch games. Machine Learning
1–25.

[7] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist.
Assoc. 58 13–30. MR0144363

[8] Horvitz, D.G. and Thompson, D.J. (1952). A generalization of sampling without replacement from a
finite universe. J. Amer. Statist. Assoc. 47 663–685. MR0053460

[9] Kish, L. (1965). Survey Sampling. New York: Wiley.
[10] Lugosi, G. (2009). Concentration-of-measure inequalities. Lecture notes. Available at

www.econ.upf.edu/~lugosi/anu.pdf.
[11] Maurer, A. (2006). Concentration inequalities for functions of independent variables. Random Struc-

tures Algorithms 29 121–138. MR2245497
[12] Maurer, A. and Pontil, M. (2009). Empirical Bernstein bounds and sample-variance penalization. In

COLT 2009 – The 22nd Conference on Learning Theory, Montreal, Quebec, Canada, June 18–21,
2009 1–9. Available at http://www.cs.mcgill.ca/~colt2009/papers/012.pdf.

[13] McDiarmid, C. (1997). Centering sequences with bounded differences. Combin. Probab. Comput. 6
79–86. MR1436721

[14] Serfling, R.J. (1974). Probability inequalities for the sum in sampling without replacement. Ann.
Statist. 2 39–48. MR0420967

[15] Shalev-Shwartz, S. and Zhang, T. (2013). Stochastic dual coordinate ascent methods for regularized
loss minimization. J. Mach. Learn. Res. 14 567–599. MR3033340

Received September 2013 and revised January 2014

http://www.ams.org/mathscinet-getitem?mr=2514714
http://www.ams.org/mathscinet-getitem?mr=3185193
http://www.ams.org/mathscinet-getitem?mr=2073435
http://www.ams.org/mathscinet-getitem?mr=0144363
http://www.ams.org/mathscinet-getitem?mr=0053460
http://www.econ.upf.edu/~lugosi/anu.pdf
http://www.ams.org/mathscinet-getitem?mr=2245497
http://www.cs.mcgill.ca/~colt2009/papers/012.pdf
http://www.ams.org/mathscinet-getitem?mr=1436721
http://www.ams.org/mathscinet-getitem?mr=0420967
http://www.ams.org/mathscinet-getitem?mr=3033340

	Introduction
	Setting and notations
	Previous work
	Contributions and outline
	Illustration

	A reminder of Serﬂing's fundamental result
	A Hoeffding-Serﬂing inequality

	A Bernstein-Serﬂing inequality
	An empirical Bernstein-Serﬂing inequality
	Discussion
	Acknowledgements
	References

