
ar
X

iv
:2

10
4.

05
05

4v
3 

 [
m

at
h.

PR
] 

 1
 O

ct
 2

02
1

Concentration Inequalities for Ultra Log-Concave Distributions

Heshan Aravinda, Arnaud Marsiglietti, James Melbourne

Abstract

We establish concentration inequalities in the class of ultra log-concave distributions.
In particular, we show that ultra log-concave distributions satisfy Poisson concentration
bounds. As an application, we derive concentration bounds for the intrinsic volumes of a
convex body, which generalizes and improves a result of Lotz, McCoy, Nourdin, Peccati,
and Tropp (2019).
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1 Introduction

A random variable X taking values in the set of natural numbers N = {0, 1, 2, . . . } is called
log-concave if its probability mass function p satisfies

p(n)2 ≥ p(n− 1)p(n + 1),

for all integers n ∈ N, and X has contiguous support. For example, Bernoulli, binomial,
geometric, and Poisson distributions are all log-concave. This class of discrete distributions
appears naturally in probability theory and combinatorics (see, e.g., [17], [8], [34], [31], [7]),
and has been an object of recent study [5, 30].

Ultra log-concave random variables, whose probability mass function satisfies

p(n)2 ≥ n+ 1

n
p(n− 1)p(n + 1), n ∈ N

on a contiguous support, form an important subclass of log-concave random variables. Equiv-
alently, such discrete random variables are log-concave with respect to the Poisson distribu-
tion. Examples include sums of independent binomial with arbitrary parameters and Poisson
distributions. Ultra log-concave distributions share important features. For example, the
sum of independent ultra log-concave distributions remains ultra log-concave (see [24], [14]),
and an information theoretic characterization of the Poisson distribution as maximizing the
Shannon entropy among ultra log-concave distributions under a mean constraint is proven in
[18] (see also [20]). Many sequences have been proved to be ultra log-concave in graph and
matroid theory (see, e.g., [27], [15], [10], [23], [2]). Recently, a fundamental ultra log-concave
sequence in convex geometry, namely the intrinsic volumes of a convex body, has been studied
in [25], where concentration inequalities are established. Concentration of (conic) intrinsic
volumes have been demonstrated to rigorously explain threshold phenomena in recovery of
signals and convex optimization problems with random data (see [1]).
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In this article, we establish concentration inequalities for all ultra log-concave sequences.
Our main result extends the classical Poisson tail bounds to the whole class of ultra log-
concave distributions. Let us recall the following function

h(x) = 2
(1 + x) log(1 + x)− x

x2
, x ∈ [−1,+∞), (1)

sometimes called the Bennett function.

Theorem 1.1. Let X be an ultra log-concave random variable. Then,

P(X − E[X] ≥ t) ≤ e
− t2

2E[X]
h( t

E[X]
)
, ∀ t ≥ 0,

and

P(X − E[X] ≤ −t) ≤ e
− t2

2E[X]
h(− t

E[X]
)
, ∀ 0 ≤ t ≤ E[X].

In the special case that X is Poisson, Theorem 1.1 is folklore. For this special case, an
alternate proof can be obtained from an application of Bennett’s inequality to i.i.d. sums of
Bernoulli random variables as outlined in [32] as exercise 16 (see also [6], [9], [35]).

Using the standard properties of the Bennett function, namely that h decreases from 2 to
0, h(0) = 1, and h(x) ≥ 1/(1 + x) for x ≥ 0, and the trivial fact that P(X − E[X] ≤ −t) = 0
when t > E[X] since X is supported on N, we deduce a sub-Gaussian bound for the small
deviations of an ultra log-concave random variable, and a sub-exponential bound for the large
deviations.

Corollary 1.1. Let X be an ultra log-concave random variable. Then, for all t ≥ 0,

P(X − E[X] ≥ t) ≤ e
− t2

2(t+E[X]) ,

and

P(X − E[X] ≤ −t) ≤ e
− t2

2E[X] .

Since the sum of independent ultra log-concave random variables is ultra log-concave,
Corollary 1.1 applies to X = Sn, where Sn =

∑n
k=1Xk, n ≥ 1, with Xk’s independent ultra

log-concave.
Let us note that Bennett type bounds have been established under a discrete Bakry-

Émery type log-concavity, called c-log-concavity, by Johnson [19]. Proposition 8.1 in [19]
gives the bound

P(X ≥ E[X] + t) ≤ e−
ct2

2
h(ct), (2)

for all c-log-concave random variables. According to [19, Lemma 5.1] and [19, Lemma 5.3], if
X is ultra log-concave then X is c-log-concave and c ≤ 1

E[X] . Since the function x 7→ xh(x)
is increasing, we deduce that

e
− t2

2E[X]
h( t

E[X]
) ≤ e−

ct2

2
h(ct).

Therefore, our bounds in Theorem 1.1 are always stronger than the bound (2) from [19]
for all ultra-log-concave distributions. In fact, for any ε > 0, there is an ultra log-concave
distribution Z such that Z is c-log-concave with c < ε and 1

E[Z] is bounded away from 0

(take, for example, a truncated Poisson distribution with parameter tending to +∞). For
such ultra log-concave distributions, the bound (2) becomes weak.
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Our results imply concentration bounds for the intrinsic volumes of a convex body in terms
of their central intrinsic volume without reference to the ambient dimension (see Section 3 for
the details). In the special case that ZK is the intrinsic volume random variable associated
to K convex body in R

n, an immediate application of Corollary 1.1 yields the bound

P(|ZK − E[ZK ]| ≥ t
√
n) ≤ 2e−

t2

2 , 0 ≤ t ≤
√
n,

see Corollary 3.1. This improves the bounds 2e
−3t2

28 from Lotz, McCoy, Nourdin, Peccati, and
Tropp [25].

As we will see in Section 3, our bounds give considerable improvement when the central
intrinsic volume is of order less than n, since if E[ZK ] is less than, say,

√
n, then our bounds

improve as the dimension grows to infinity, hence reflecting the high-dimensional aspect of
the concentration bound. Specifically, if E[ZK ] ≤ √

n, Corollary 1.1 yields

P(|ZK − E[ZK ]| ≥ t
√
n) ≤ 2e

− t2

2(t+1)

√
n
,

which goes to 0 exponentially fast with the dimension, for any fixed t > 0.
In high dimension, Poisson type concentration bounds are optimal for intrinsic volume

random variables. This can be seen by considering the following scaling of the unit cube
K = λ

n−λ
[0, 1]n for λ > 0. In this case, the intrinsic volume random variable ZK(n) is

Binomial with parameters n and p = λ
n
, so that ZK(n) tends to a Poisson with parameter λ

with n → ∞.
Our main theorem also implies the following estimate on the variance of an arbitrary ultra

log-concave random variable.

Proposition 1.2. Let X be an ultra log-concave random variable. Then,

Var(X) ≤ E[X],

with equality when X is Poisson.

In short, among ultra log-concave variables of fixed expectation, the Poisson has maximum
variance. In the context of intrinsic volumes, Proposition 1.2 says that the variance of an
intrinsic volume random variable is less than its central intrinsic volume. Moreover, this
variance bound is independent of the dimension of the ambient Euclidean space that a convex
body is embedded within.

Bounded ultra log-concave random variables, say X supported on {0, . . . , n}, satisfy
Var(X) ≤ n, by application of the trivial inequality E[X] ≤ n. Applying to the particu-
lar case that X is the intrinsic volume random variable associated to convex body in R

n,
improves the bound Var(ZK) ≤ 4n from [25]. Again, since an arbitrary Binomial can be
realized as the distribution of an intrinsic volume random variables, Proposition 1.2 is sharp
for intrinsic volume random variables.

The article is organised as follows. In Section 2 we prove our main result Theorem 1.1,
and derive Proposition 1.2. In Section 3 we apply our results to study the intrinsic volume
random variables.

2 Proofs of Theorem 1.1 and Proposition 1.2

The main ingredient of proofs is the following bound on the moment generating function of
an ultra log-concave distribution.
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Lemma 2.1. Let X be an ultra log-concave random variable. Then, for all t ∈ R,

E[etX ] ≤ E[etZ ], (3)

where Z is a Poisson distribution with parameter E[X].

Lemma 2.1 tells us that Poisson distributions maximize the moment generating function
in the class of ultra-log-concave random variable, under a mean constraint.

The proof of Lemma 2.1 rely on a discrete localization technique recently developed by
the second and third named authors in [28] (see also [21], [12], [13], [26], [11], [3], [4], [22] for
other aspects of the localization technique). The main idea is to reduce the desired inequality
to extreme points, and then prove the inequality for these extreme points. Let us recall the
results from [28].

For M,N ∈ Z, denote [M,N ] = {M, . . . ,N}. Let M,N ∈ Z. Let us denote by P([M,N ])
the set of all probability measures supported on [M,N ]. Let γ be a measure with contiguous
support on Z, and let h : [M,N ] → R be an arbitrary function. Let us consider Pγ

h ([M,N ])
the set of all distributions PX in P([M,N ]), log-concave with respect to γ, and satisfying
E[h(X)] ≥ 0, that is,

Pγ
h ([M,N ]) = {PX ∈ P([M,N ]) : X log-concave with respect to γ, E[h(X)] ≥ 0}.

Consider probability mass functions of the form

p(n) = Cpnq(n)1[k,l](n), (4)

for some C, p > 0, k, l ∈ [M,N ], where q is the mass function of γ.

Theorem 2.1 ([28]). Let Φ: Pγ
h ([M,N ]) → R be a convex function. Then

sup
PX∈Pγ

h
([M,N ])

Φ(PX) ≤ sup
PX∈Aγ

h
([M,N ])

Φ(PX),

where Aγ
h([M,N ]) = Pγ

h ([M,N ]) ∩ {PX : X with probability mass function of the form (4)}.

Proof of Lemma 2.1. Fix an ultra log-concave random variable X0. By approximation, one
may assume that X0 is compactly supported, say on {M, . . . ,N}. Fix t ∈ R. By Theorem 2.1,
applied to Φ(PX) = E[etX ], which is linear, and to the constraint function h(n) = E[X0]−n,
it suffices to prove inequality (3) for ultra log-affine random variables with respect to the
Poisson measure, that is, for distributions of the form (4) with q(n) = 1/n!:

p(n) = C
pn

n!
1[k,l](n)

for p > 0 and 0 ≤ k ≤ l, where 1
C
=

∑l
n=k

pn

n! . In this case we wish to prove for t ∈ R,

C

l∑

n=k

etnpn

n!
= E[etX ] ≤ eE[X](et−1) = eC

∑l
n=k

npn

n!
(et−1).

Write y = et and define, for K,L ∈ Z,

ΨK,L(x) =
L∑

n=K

xn

n!
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if L ≥ K ≥ 0, ΨK,L = Ψ0,L if K ≤ 0 ≤ L, and ΨK,L = 0 if L < 0. Note that

l∑

n=k

npn

n!
= p

l−1∑

n=k−1

pn

n!
= pΨk−1,l−1(p), C =

1

Ψk,l(p)
,

l∑

n=k

etnpn

n!
=

l∑

n=k

(yp)n

n!
= Ψk,l(yp).

Thus we wish to prove that for all y ≥ 0,

e
pΨk−1,l−1(p)

Ψk,l(p)
(y−1) ≥ Ψk,l(yp)

Ψk,l(p)
.

Taking logarithms and rearranging, this is equivalent to

f(y) :=
pΨk−1,l−1(p)

Ψk,l(p)
(y − 1)− log Ψk,l(yp) + logΨk,l(p) ≥ 0.

To this end, we claim that f(1) = f ′(1) = 0 and that f(y) is convex. Observe that

f(1) = 0− logΨk,l(p) + logΨk,l(p) = 0,

and

d

dx
Ψk,l(x) =

l∑

n=k

nxn−1

n!
=

l−1∑

n=k−1

xn

n!
= Ψk−1,l−1(x).

Thus,

f ′(y) =
pΨk−1,l−1(p)

Ψk,l(p)
− pΨk−1,l−1(yp)

Ψk,l(yp)

and f ′(1) = 0. Finally,

f ′′(y) = −p2
Ψk,l(yp)Ψk−2,l−2(yp)−Ψ2

k−1,l−1(yp)

Ψ2
k,l(yp)

.

Note that for fixed x ≥ 0 and m ∈ N, zl =
∑l

n=l−m
xn

n! , l ≥ m, can be seen as the convolution

of the sequence {xn} and {yn}, where xn = xn

n! for n ≥ 0 and xn = 0 for n < 0, and yn = 1
for n ∈ {0, . . . ,m} and yn = 0 otherwise. Both {xn} and {yn} are log-concave sequences.
Therefore, their convolution is also log-concave [16]. Hence, zl is log-concave in l, and by
choosing m = l − k in the inequality z2l−1 ≥ zlzl−2, we deduce that

Ψk,l(yp)Ψk−2,l−2(yp)−Ψ2
k−1,l−1(yp) ≤ 0.

Therefore, we conclude that f ′′(y) ≥ 0, and our result follows.

We now derive Theorem 1.1.

Proof of Theorem 1.1. Let X be an ultra log-concave random variable. It is standard that
concentration bounds follow from upper bounds on the moment generating function (see,
e.g., [6], [35]). Let x ≥ 0. Applying Markov’s inequality, we have for all t > 0

P(X ≥ E[X] + x) = P(etX ≥ et(E[X]+x)) ≤ e−t(E[X]+x)
E[etX ] ≤ e−t(E[X]+x)eE[X](et−1),
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where the last inequality comes from Lemma 2.1. Optimizing over t > 0, that is, taking
t = log(1 + x

E[X]), yields

P(X ≥ E[X] + x) ≤ e
− x2

2E[X]
h( x

E[X]
)
,

where the function h is defined in (1). The argument is similar for the small deviations. Let
x ∈ [0,E[X]]. Then, for all t > 0,

P(X ≤ E[X]− x) = P(e−tX ≥ e−t(E[X]−x)) ≤ et(E[X]−x)eE[X](e−t−1). (5)

Optimizing over all t > 0, that is, taking t = − log(1− x
E[X]) when x < E[X], yields

P(X ≤ E[X]− x) ≤ e
− x2

2E[X]
h(− x

E[X]
)
.

When x = E[X], taking t → ∞ in (5) yields the result, as h(−1) = 2.

We also deduce Proposition 1.2 from Lemma 2.1.

Proof of Proposition 1.2. If X is ultra log-concave and EX = λ > 0, then by Lemma 2.1

EetX ≤ EetZ

where Z is a Poisson random variable with parameter λ. Expanding the inequality, this is

1 + λt+
t2

2
E[X2] ≤ 1 + λt+

t2

2
E[Z2] + o(t2).

Cancelling terms, dividing by t2 and taking t → 0 gives E[X2] ≤ E[Z2] so that

Var(X) ≤ Var(Z) = λ.

3 Concentration for the intrinsic volumes of a convex body

In this section, we apply our results to obtain concentration bounds for the intrinsic volumes
of a convex body K. Our bounds improve upon [25].

For two convex bodies K,E ⊂ R
n, and t ∈ R

+, the mixed volumes of K and E, denoted
by Vi(K,E), are defined as the coefficients of the following polynomial describing the volume
(n-dimensional Lebesgue measure) of Minkowski sum of K and tE,

V (K + tE) =
n∑

i=0

(
n

i

)
Vi (K,E) ti. (6)

Let Bn
2 denote the n-dimensional Euclidean unit ball and κn denote the volume of Bn

2 . When
E = Bn

2 , the polynomial (6) becomes the Steiner polynomial which can be written via the
normalization Vi(K) =

(
n
i

)
Vn−i(K,Bn

2 )/κn−i as,

V (K + tBn
2 ) =

n∑

i=0

κn−iVi(K) tn−i,
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Here, Vi(K) is called the i-th intrinsic volume of K. We refer to [33] for further details about
intrinsic volumes.

The total intrinsic volume of a convex body K, called the Wills functional, is the quantity

W (K) =

n∑

i=0

Vi(K).

The normalized intrinsic volumes consists in the sequence {Ṽi(K) : i = 0, . . . , n}, where

Ṽi(K) =
Vi(K)

W (K)
.

Using the terminology from [25], the intrinsic volume random variable ZK associated with a
convex body K in R

n, takes non-negative integer values according to the following distribu-
tion,

P (ZK = j) = Ṽj(K), j = 0, . . . , n.

It is a consequence of the Alexandrov-Fenchel inequality that the intrinsic volumes of a
convex body form an ultra log-concave sequence [29] (see also [24], [14]). Consequently, the
intrinsic volume random variable ZK is ultra log-concave. Therefore, Corollary 1.1 tells us
the following.

Corollary 3.1. Let K be a convex body in R
n, and let ZK be the intrinsic volume random

variable associated with K. Then, for all 0 ≤ t ≤ √
n,

P(|ZK − E[ZK ]| ≥ t
√
n) ≤ 2e−

t2

2 .

Proof. If n < t
√
n + E[ZK ], then one trivially has P(ZK − E[ZK ] ≥ t

√
n) = 0 since ZK ≤ n.

If n ≥ t
√
n+ E[ZK ], then by Corollary 1.1,

P(ZK − E[ZK ] ≥ t
√
n) ≤ e

− t2

2
n

t
√

n+E[ZK ] ≤ e−
t2

2 .

For the small deviations, since E[Zk] ≤ n, by Corollary 1.1,

P(ZK − E[ZK ] ≤ −t
√
n) ≤ e

− t2

2
n

E[ZK ] ≤ e−
t2

2 .

On the other hand, if E[ZK ] is of order
√
n, say E[ZK ] ≤ c

√
n for some absolute constant

c > 0, Corollary 3.1 readily yields the bound

P(|ZK − E[ZK ]| ≥ t
√
n) ≤ 2e

− t2
√

n

2(t+c) .

In fact, any o(n) bound for E[ZK ] will yield a concentration bound that decay to 0 as the
dimension grows to ∞, for any fixed t > 0.

Note that if K is a fixed convex body in R
n, there is always a dilation parameter r > 0

(possibly dependent on the dimension) such that E[ZrK ] = o(n). As noted in [25], the
intrinsic volumes random variables of the scaled unit cube r[0, 1]n has a binomial distribution
with parameters n and r

1+r
, therefore

E[Zr[0,1]n ] = n
r

1 + r
.

Here, taking r = o(1) will yield E[Zr[0,1]n ] = o(n).
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Guanajuato, Gto 36023, México
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