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CONCENTRATION OF MEASURE AND SPECTRA OF
RANDOM MATRICES: APPLICATIONS TO
CORRELATION MATRICES, ELLIPTICAL

DISTRIBUTIONS AND BEYOND1

BY NOUREDDINE EL KAROUI

University of California, Berkeley

We place ourselves in the setting of high-dimensional statistical infer-
ence, where the number of variables p in a data set of interest is of the same
order of magnitude as the number of observations n. More formally, we study
the asymptotic properties of correlation and covariance matrices, in the set-
ting where p/n → ρ ∈ (0,∞), for general population covariance.

We show that, for a large class of models studied in random matrix theory,
spectral properties of large-dimensional correlation matrices are similar to
those of large-dimensional covarance matrices.

We also derive a Marc̆enko–Pastur-type system of equations for the lim-
iting spectral distribution of covariance matrices computed from data with
elliptical distributions and generalizations of this family. The motivation for
this study comes partly from the possible relevance of such distributional as-
sumptions to problems in econometrics and portfolio optimization, as well as
robustness questions for certain classical random matrix results.

A mathematical theme of the paper is the important use we make of con-
centration inequalities.

1. Introduction. It is increasingly common in multivariate statistics and var-
ious areas of applied mathematics and computer science to have to work with data
sets where the number of variables, p, is of the same order of magnitude as the
number of observations, n. When studying asymptotic properties of estimators in
this setting, usually under the assumption that p/n has a finite nonzero limit, we
often obtain convergence results that differ from those obtained under the “classi-
cal” assumptions that p is fixed and n goes to infinity.

A good example is provided by problems of portfolio optimization in quantita-
tive finance. Typically, if one is working with, say, the stocks making up the S&P
500 index over a period of one year and recording quantities daily, one will have to
work with a data matrix of size roughly 250 × 500. For many “large” portfolio op-
timization problems, the data matrices will have the characteristic that p/n is not
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very small. Since covariance matrices (and their inverses) play a key role in solv-
ing a number of portfolio optimization problems and, in particular, Markowitz’s
formulation (see, e.g., [13]), it is important to understand how well our estimators
perform in this “new” type of asymptotics. This should help us to assess the qual-
ity of our empirical choices of portfolio and their proximity to the theoretically
optimal ones. We refer the reader who is particularly interested in these questions
to [31] for an early and interesting application of random matrix ideas to portfolio
optimization problems.

The realization of the fact that there might be problems in estimating the spec-
tral properties of large-dimensional covariance matrices when p/n is not small is
not recent: the first paper in the area is probably [35], where the authors studied
the behavior of the eigenvalues of large-dimensional sample covariance matrices
for diagonal population covariance matrices and with some assumptions on the
structure of the data. The surprising result they found was that, in the case of i.i.d.
data with variance 1, the eigenvalues of the sample covariance matrix X∗X/n do
not concentrate around 1 (the value of all population eigenvalues), but rather were
spread out on the interval [(1 − √

p/n)2, (1 + √
p/n)2] when p ≤ n. Moreover,

their empirical distribution is asymptotically nonrandom. We note that this seminal
paper is much richer than just described and refer the reader to it for more details.
A simple lesson to be taken from this is that when p/n is not small, the sample
covariance matrix is not a good estimator of the population covariance.

Since this result, there has been a flurry of activity, especially in recent years,
concerning the behavior of the largest eigenvalue of sample covariance matrices
[21, 50], their fluctuation behavior in the null case [14, 19, 28, 29] and under al-
ternatives [6, 16, 40], as well as fluctuation results for linear spectral statistics of
those matrices [1, 5, 30]. Even more recently, some of these results have started to
be used to develop better estimators of these large-dimensional covariance matri-
ces ([11, 17] and [42]). We also note that from a statistical point of view, other ap-
proaches to estimation using regularization have been taken, with sometime strik-
ing results [8, 32].

As noted above, the random matrix results in question concern, somewhat exclu-
sively, sample covariance matrices. However, in practice, sample correlation ma-
trices are often used, for instance for principal component analysis (PCA). A ques-
tion we were asked several times by practitioners is the extent to which the random
matrix results would hold if one were concerned with correlation matrices and not
covariance matrices. Part of the answer is already known from a paper due to [27],
where he considered the case of i.i.d. data. The answer was that spectral distribu-
tion results, as well as a.s. convergence of extreme eigenvalue results, held in this
situation. However, in practice, the assumption of i.i.d. data is not very reasonable
and, in most cases, practitioners would actually hope to be in the presence of an
interesting covariance structure, away from the no-information case represented
by the identity covariance matrix. In this paper, we tackle the case where the popu-
lation covariance is not Idp and show that classic random matrix results hold then
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too, with the population covariance matrix replaced by the population correlation
matrix. This means that recently developed methods that make use of random ma-
trix theory to better estimate the eigenvalues of population covariance matrices can
also be used to estimate the spectrum of population correlation matrices.

As explained below, such results can be shown for Gaussian and some non-
Gaussian data. Therefore, a natural question is to wonder how robust to these
distributional assumptions the results are. In particular, a recent paper [20] and
a recent monograph [37] make an interesting case for modeling financial data
through elliptical distributions. As explained in [20] and [37], this has to do with
certain tail-dependence properties that are absent from Gaussian data and present
in a certain class of elliptically distributed data. As mentioned above, understand-
ing the spectral properties of sample covariance matrices with these distributions
should help us better understand the properties of empirical solutions to the clas-
sical Markowitz portfolio optimization problem. This is one of the many applica-
tions these results could have. Though this paper does not deal with this specific
problem, in the second part of the paper, we show that for elliptically distributed
data (and generalizations), the spectrum of the sample covariance matrix is as-
ymptotically nonrandom and we characterize the limit through the use of Stieltjes
transforms. In particular, the result shows that the Marc̆enko–Pastur equation is
not robust to deviation from the “Gaussian+” model usually considered in random
matrix theory (see [44] and Theorem 1 below for an example of those assump-
tions). The result also explains some of the numerical results obtained by [20].
From a more theoretical standpoint, our approach allows us to break away from
models for which the data vectors are linear transformations of random vectors
with independent entries. Rather, what we need are concentration properties for
1-Lipschitz (with respect to the Euclidean norm) functionals of these data vectors.
We note that some of our results can be obtained when the concentration proper-
ties are limited to convex 1-Lipschitz functions. Hence, our approach will show
that some classical results in random matrix theory hold in wider generality than
was previously known. For instance, it shows that classical random matrix results
apply to data drawn, for instance, from a Gaussian copula (see [38]), under some
restrictions on the operator norm of the corresponding correlation matrix. We note
that the Gaussian copula problem appears to be quite far from what can be obtained
using currently available results.

As it turns out, central to the proofs to be presented are the concentration prop-
erties of certain quadratic forms. Below, we make use of a number of concentration
inequalities, recent and less recent. The usefulness of these inequalities in random
matrix theory has already been illustrated in [26], in a different context from that
which we develop below. A very good reference on the topic of concentration is
[33].

The fact that we rely on concentration of quadratic forms for many of these
results also yields some practical insights about possible limitations of the mod-
els considered in the random matrix literature. In particular, applying the concen-
tration results to the standard random matrix models considered in, for example,
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Theorem 1 (or their generalizations in Theorem 2, with λi = 1 in the notation of
this latter theorem) shows that the corresponding data vectors have norms (when
divided by the square root of the dimension) that are all almost equal. Similarly,
one can show (see, e.g., [15] for more details) that the concentration results we
need also imply that for standard models, the data vectors are almost orthogonal to
one another. More precisely, one can show that the maximum angle between data
vectors goes to zero almost surely. Before applying or using these random matrix
results and, in particular, the Marc̆enko–Pastur equation, it therefore appears that
practitioners should pay attention to these features of the data by, for instance,
drawing histograms of the angles between data vectors and norms of the data vec-
tor divided by the square root of the dimension. If those are not “concentrated,”
this might call into question the quality of the fit of the standard models and the
relevance of the insights drawn from random matrix results.

The paper is organized as follows. In Section 2, we study the problem of spectral
characteristics of correlation matrices with data drawn from standard random ma-
trix models. In Section 3, we characterize the limiting spectrum of covariance ma-
trices computed from data drawn from a generalization of elliptical distributions.
In terms of concentration results, Section 2 can be viewed as using concentration
results for the norm of the columns of the data matrices of interest. On the other
hand, Section 3 relies on concentration properties for the rows of the data matrices
of interest.

2. On large dimensional correlation matrices. We recall that a correlation
matrix is a matrix that contains the correlations between the entries of a vector. So,
if R is the correlation matrix of the vector v,

Ri,j = cov(vi, vj )√
var(vi)

√
var(vj )

.

We will naturally focus on empirical correlation matrices. We assume that we
are given a sample of data {yk}nk=1, where yk ∈ R

p . Let us call r̄·,i = 1/n
∑n

k=1 yk,i

the mean of the ith component of our data vectors. We call si the standard estimate
of standard deviation of {yk,i}nk=1, that is,

s2
i = 1

n − 1

n∑
i=1

(yk,i − ȳ·,i)2.

By definition, R̂, the empirical correlation matrix of the data, is

R̂i,j = 1/(n − 1)
∑n

k=1(yk,i − ȳ·,i)(yk,j − ȳ·,j )
sisj

.

These matrices play an important role in many multivariate statistical methods.
In particular, in techniques like principal component analysis, there are sometimes
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debates as to whether one should use the correlation matrix of the data or their
covariance matrix. It is therefore important for practitioners to have information
about the behavior of correlation matrices in high dimensions.

We now turn to our study of sample correlation matrices. The main result is The-
orem 1, which states that under the model considered there (related to the classical
one in random matrix theory), results concerning the spectral distribution and the
largest eigenvalue carry over, without much modification, from sample covariance
matrices to sample correlation matrices.

Before we proceed, we need to establish some notation. In the remainder of the
paper, C

+ = {z ∈ C : Im[z] > 0}. We call v′ the transpose of the vector v and use
the same notation for matrices. We use |‖M|‖2 to denote the operator norm of a
matrix M , that is, its largest singular value. For a positive semidefinite matrices, it
is obviously its largest eigenvalue. If Y is an n × p matrix, we naturally denote by
Yi,j its (i, j) entry and call Ȳ the matrix whose j th column is constant and equal
to Ȳ·,j . Finally, the sample covariance matrix of the data stored in matrix Y is

Sp = 1

n − 1
(Y − Ȳ )′(Y − Ȳ ).

2.1. A simple lemma. The crux of our argument is going to be that correlation
matrices can be represented as the products of certain matrices, one of them being
a covariance matrix. Hence, we will have solved our problem if we can show that
these other matrices are “not too far” from matrices we understand well and if
we can show that “nothing” (as far as spectral properties are concerned) is lost
when replacing them by these better understood matrices. Before we state our
main theorem and prove it, we state two results of independent interest, on which
we will rely in the proof.

LEMMA 1. Suppose that Mp is a p × p Hermitian random matrix whose
spectral characteristics [spectral distribution Fp or largest eigenvalue λ1(Mp)]
converge a.s. to a limit and whose spectral norm is (a.s.) bounded as p → ∞.
Suppose that Dp is a p ×p diagonal matrix and that |‖Dp − Idp |‖2 → 0 a.s. Then
the spectral characteristics of DpMpDp and D−1

p MpD−1
p have the same limits as

those of Mp .

PROOF. The assumption |‖Dp − Idp |‖2 → 0 implies that for p large enough,
Dp is invertible. Now,

|‖Mp − DpMpDp|‖2 = |‖Mp − MpDp + MpDp − DpMpDp|‖2

≤ |‖Mp|‖2|‖Dp − Idp |‖2 + |‖Dp − Idp |‖2|‖Dp|‖2|‖Mp|‖2

→ 0 a.s.
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Using Weyl’s inequality (see [7], Corollary III.2.6), that is, the fact that for Her-
mitian matrices A and B, and any i, if λi(A) denotes the ith eigenvalue of A,
ordered in decreasing order, |λi(A) − λi(B)| ≤ |‖A − B|‖2, we conclude that

max
k=1,...,p

|λk(Mp) − λk(DpMpDp)| → 0 a.s.

Because |‖Mp|‖2 is bounded a.s., the two sequences are a.s. asymptotically distrib-
uted (see [25], page 62, or [24]). Therefore, if Fp(Mp) converges weakly to F ,
then Fp(DpMpDp) also converges to F .

If |‖Dp − Idp |‖2 → 0, then |‖D−1
p − Idp |‖2 → 0 too. So, the same results hold

when we replace Dp by D−1
p . �

The previous lemma is helpful in our context thanks to the following elementary
fact, which is standard in multivariate statistics.

FACT 1 (Correlation matrix as function of covariance matrix). Let Cp denote
the correlation matrix of our data and Sp the covariance matrix of the data. Let
Dp(Sp) denote the diagonal matrix consisting of the diagonal of Sp . We then have

Cp = [Dp(Sp)]−1/2Sp[Dp(Sp)]−1/2.

PROOF. This is just a simple consequence of the fact that if D is a diagonal
matrix, then

(DHD)i,j = di,iHi,j dj,j .

Note that Cp(i, j) = Sp(i, j)/
√

Sp(i, i)Sp(j, j) and the assertion follows. �

As a consequence of the previous lemma and fact, we will deduce the asymp-
totic spectral properties of correlation matrices from those of covariance matrices
by simply showing convergence of the diagonal of Sp (or a scaled version of it) to
Idp in operator norm.

2.2. Spectra of large-dimensional correlation matrices. We are now ready to
state the main theorem of this section.

THEOREM 1. Suppose that X is an n × p matrix of i.i.d. random vari-
ables with variance 1. Assume, without loss of generality, that their com-
mon mean is 0. Denote by Xi,j the (i, j)th entry of X. Assume, further, that
E(|Xi,j |4(log(|Xi,j |))2+2ε) < ∞. Suppose that �p is a p × p covariance matrix
and let �p denote the corresponding correlation matrix. Assume that |‖�p|‖2 < K

for all p.
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Let

• Y = X�
1/2
p (Y is the observed data matrix—the n observed data vectors are

stored in the rows of Y );
• Y1 = X�

1/2
p .

The spectral properties of corr(Y ), the sample correlation matrix of the data,
are then the same as the spectral properties of �

1/2
p (X − X̄)′(X − X̄)�

1/2
p /(n− 1)

= (Y1 − Ȳ1)
′(Y1 − Ȳ1)/(n − 1).

In particular, the Stieltjes transform of the limiting spectral distribution of
corr(Y ) satisfies the Marc̆enko–Pastur equation, with parameter the spectral dis-
tribution of �p . Namely, if Hp , the spectral distribution of �p , has a.s. a limit H ,
if p/n has a finite limit ρ and if mn is the Stieltjes transform of corr(Y ), we have,
letting wn = −(1 − p/n)/z + (p/n)mn(z),

wn(z) → w(z) a.s., which satisfies − 1

w(z)
= z − ρ

∫
λdH(λ)

1 + λw(z)
,

and w is the unique function mapping C
+ into C

+ to satisfy this equation.
Also, if the norm of �

1/2
p (X − X̄)′(X − X̄)�

1/2
p /(n − 1) has a limit in which �p

intervenes only through its eigenvalues, the norm of corr(Y ) has the same limit.

This theorem is related to that of [27], which was concerned with �p = Idp ,
which would amount to doing multivariate analysis with i.i.d. variables, an as-
sumption that, for obvious statistical reasons, practitioners are not willing to make.
Here, by contrast, we are able to handle general covariance structures, assuming
that the spectral norm of �p is bounded. However, [27] required only four mo-
ments and we require a little more. We explain in Section 2.3.2 why this is the
case.

We note that the proof can actually handle cases where |‖�p|‖2 grows slowly
with p. We refer the reader to [44] for more information on the Marc̆enko–Pastur
equation. We note that the paper [44] is an important strengthening of the result of
[35], dealing, in particular, with nondiagonal covariance matrices.

Recent progress has led to fairly explicit characterization of the norm of large-
dimensional sample covariance matrices, a fact that makes these results potentially
useful in, among other fields, statistics. In particular, results concerning limiting
spectral distributions do not, in general, provide any information about the local-
ization of the largest eigenvalue of the corresponding matrices. For many practi-
tioners and, in particular, those dealing with principal component analysis (see,
e.g., [36]), it is important to have this localization information. Our analysis, com-
bined with recent results, allows us to characterize the limit of the largest eigen-
value of sample correlation matrices in certain cases.

In particular, the following consequence for the norm of the correlation matrix
can be drawn from the recent article [16], specifically Fact 2 there (which is partly
a consequence of a deep result in [4]).
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COROLLARY 1. Under the assumptions of Theorem 1, if λ1(�p) tends to the
endpoint of the support of H and the model {�p,n,p} is in the class G defined in
[16], then

|‖ corr(Y )|‖2 − μn,p → 0 a.s.,

where

μn,p = 1

c0

(
1 + p

n

∫
λc0

1 − λc0
dH(λ)

)
,

n

p
=

∫ (
λc0

1 − λc0

)2

dH(λ), c0 ∈ [
0,1/λ1(�p)

)
.

Although the result might seem somewhat cryptic (the conditions set forth in
[16] are rather complicated to describe), it basically says that if the largest eigen-
values of �p are sufficiently close to one another (the precise mathematical mean-
ing of this statement is contained in the assumptions made in [16]), then the largest
eigenvalue of Cp will converge to the endpoint of the limiting spectral distribution
of corr(Y ). We insist on the fact that the quantities above (c0 and μn,p) are fairly
easy to compute explicitly with a computer, making them relevant in practice. We
refer the reader to [16] for more information about these problems, as well as ex-
amples of matrices �p for which the results hold.

2.3. Proof of Theorem 1. The proof is in three steps. The first involves show-
ing that to understand the spectral properties of corr(Y ), we need to focus only on
the matrix Y ′

1Y1 [or (Y1 − Ȳ1)
′(Y1 − Ȳ1)]. We then need a truncation and centraliza-

tion step for the entries of X. Finally, we use a concentration-of-measure results to
show that the diagonal of the corresponding covariance matrix indeed converges
in operator norm to the identity. We postpone a formal proof of Theorem 1 to
Section 2.3.5, where we put all of the elements together.

2.3.1. Replacing �p by �p . Since the correlation coefficient is invariant under
shifting and (positive) scaling of random variables, we see that for any diagonal
matrix D with positive entries,

corr(Y ) = corr(YD)

since (YD)i,j = Yi,j djj . In particular, for D, we can use (diag(�p))−1/2, which
clearly has positive entries. After this adjustment, the data matrix we will focus on,
Y2, takes the form

Y2 = XG, where G = �1/2
p (diag(�p))−1/2 = �1/2

p D,

and G′G = �p . Note, in particular, that since �p is a correlation matrix, its diago-
nal consists of 1’s. Because G is not symmetric, it is not, in general, equal to

√
�p .
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We thus need to explain why we will be able to rely on existing random matrix
results since, for example, [44] requires the data to have the form X�

1/2
p .

Since G is similar to D1/2�
1/2
p D1/2, all of its eigenvalues are real and nonneg-

ative. Further, because G′G = �p , the eigenvalues of G are equal to the square

root of the eigenvalues of �p . Because �
1/2
p and D are invertible, so is �

1/2
p D.

Therefore, the spectrum of the matrix of interest, Y ′
2Y2/n, is the same as the spec-

trum of X′X�
1/2
p D2�

1/2
p /n. Even though, in general, �

1/2
p D2�

1/2
p 
= �p , these

matrices have the same eigenvalues. Because the Marc̆enko–Pastur equation in-
volves only the eigenvalues of the deterministic matrix in question, the limiting
spectral distribution of Y ′

2Y2/n is the same as the limiting spectral distribution of

�
1/2
p X′X�

1/2
p /n = Y ′

1Y1/n. A similar conclusion applies to the largest eigenvalue
if it depends only of �p through �p’s spectrum.

So, in what follows, we only need to investigate corr(Y2) or corr(Y1) to under-
stand corr(Y ).

2.3.2. Truncation and centralization step. In this subsubsection, we show that
we can truncate the entries of X, the n × p matrix full of i.i.d. random variables,
at level

√
n/(logn)(1+ε)/2 = √

n/δn and almost surely not change the value of
corr(Y ), at least for p large enough. The same holds when the truncated values are
then re-centered. The conclusion of this subsubsection is that it is enough to study
matrices X whose entries are i.i.d. with mean 0 and bounded in absolute value by
C

√
n/(logn)(1+ε)/2.

The proof is similar to the argument given for the proof of Lemma 2.2 in [50].
However, because the term 1/(logn)(1+ε)/2 is crucial in our later arguments and
the authors of [50] gloss over the details of their choice of δn, we feel a full ar-
gument is needed to give a convincing proof, although we do not claim that the
arguments are new. This is where we need a slightly stronger assumption that just
the finite fourth moment assumption made in [50]. (Our problem is with Remark 1
in [50], which is not clearly justified. There also appears to be counterexamples
to this claim. However, it does not seem that (the full strength of) this remark is
ever really used in that paper and the rest of the arguments are clear.) We have the
following lemma, which closely follows Lemma 2.2 in [50].

LEMMA 2 (Truncation). Let X be an infinite double array of identically dis-
tributed (i.d.) random variables. Suppose that Xn is an n × p matrix of identically
distributed random variables, with mean 0, variance 1 and whose entries, Xi,j ,
satisfy E(|Xi,j |4(log(|Xi,j |))2+2ε) < ∞. Xn corresponds to the upper-left corner
of X. Suppose that p/n has a finite limit ρ. Let Tn denote the matrix with (i, j)th
entry Xi,j 1|Xi,j |<√

n/(logn)(1+ε)/2 . Then,

P(Xn 
= Tn i.o.) = 0.
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PROOF. Because of the moment assumption made on Xi,j , we have, if we let
fε(x) = x4(logx)2(1+ε),∫ ∞

0
f ′

ε(y)P (|Xi,j | > y)dy =
∞∑

m=0

∫ um+1

um

f ′
ε(y)P (|Xi,j | > y)dy < ∞

for any increasing sequence {um}∞m=0, with u0 = 0 and um → ∞ as m → ∞. Now,
when y is large enough, f ′

ε(y) ≥ 0, so∫ um+1

um

f ′
ε(y)P (|Xi,j | > y)dy ≥ P(|Xi,j | > um+1)

(
fε(um+1) − fε(um)

)
.

Let γm = 2m and um =
√

γm/(logγm)1+ε . Note that um is increasing for
m sufficiently large. Elementary computations show that as m tends to ∞,
u4

m(logum)2+2ε ∼ 22m−(2+2ε). Consequently, fε(um+1) − fε(um) ∼ 3 × 22(m−1).
Note that our moment requirements therefore imply that

∞∑
m=1

22mP (|Xi,j | > um) < ∞.

Now, for n satisfying γm−1 ≤ n < γm, we threshold Xn(i, j) at level um−1. (In
what follows, 2ργm should be replaced by the smallest integer greater than this
number, but to avoid cumbersome notation, we do not stress this particular fact.)
We have

P(Xn 
= Tn i.o.) ≤
∞∑

m=k

P

( ⋃
γm−1≤n<γm

n⋃
i=1

p⋃
j=1

(|Xn(i, j)| > um−1
))

≤
∞∑

m=k

P

( ⋃
γm−1≤n<γm

γm⋃
i=1

2ργm⋃
j=1

(|Xn(i, j)| > um−1
))

=
∞∑

m=k

P

( γm⋃
i=1

2ργm⋃
j=1

(|Xn(i, j)| > um−1
))

≤ 2ρ

∞∑
m=k

γ 2
mP (|Xi,j | > um−1)

= 8ρ

∞∑
m=k

22(m−1)P (|Xi,j | > um−1).

The right-hand side tends to 0 when k tends to infinity and the left-hand side is
independent of k. We conclude that

P(Xn 
= Tn i.o.) = 0. �
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LEMMA 3 (Centralization). Let T Cn denote the matrix with entries T Cn(i,

j) = Tn(i, j) − ETn(i, j). Then,

1

n
|‖T ′

nTn − T C′
nT Cn|‖2 → 0 a.s.

PROOF. The proof would be a simple repetition of the arguments in the proof
of Lemma 2.3 in [50], with r = 1/2 and δ = (logn)−(1+ε)/2 in the notation of their
papers, so we omit it. Note that that proof finds a bound on the spectral norm of
T ′

nTn − T C′
nT Cn. �

The centralization lemma (Lemma 3) guarantees that the spectral characteristics
of G′T C′

nT CnG/n are asymptotically the same as those of G′T ′
nTnG/n: this is a

consequence of the fact that |‖G|‖2
2 = λ1(�p) is uniformly bounded, as well as of

Weyl’s inequality,

max
i

|λi(G
′T C′

nT CnG/n) − λi(G
′T ′

nTnG)/n|
≤ |‖G′(T C′

nT Cn − T ′
nTn)G/n|‖2

≤ |‖G′G|‖2|‖(T C′
nT Cn − T ′

nTn)/n|‖2.

Therefore, the spectral characteristics of G′T C′
nT CnG/n and those of �1/2 ×

X′
nXn�

1/2/n = Y ′
2Y2/n are also asymptotically the same, by the truncation

lemma, since a.s. �1/2X′
nXn�

1/2/n = �1/2T ′
nTn�

1/2/n.

2.3.3. Controlling the diagonal in operator norm. Now that we have seen that
a.s. we can replace Xn by T Cn without incurring any loss in operator norm, we
will essentially focus in the analysis on the matrices obtained by replacing Xn by
T Cn since the results will be a.s. the same. Recall that the entries of T Cn are
bounded by C

√
n/(logn)(1+ε)/2.

We turn our attention to showing that the diagonal of G′X′XG/n is close
to 1. We remind the reader that G = �1/2(diag(�p))−1/2 and assume, with-
out loss of generality, that C ≤ 2. As a matter of fact, since E(Tn(i, i)) →
E(Xn(i, i)) = 0, |T Cn(i, j)| ≤ |Xn(i, j)| + 1 for n large enough and since
|Xn(i, j)| ≤ √

n/(logn)(1+ε)/2, |T Cn(i, j)| ≤ 2
√

n/(logn)(1+ε)/2 for n large
enough. This shows that we can take C ≤ 2 without loss of generality.

LEMMA 4. Let us focus on Sp = 1
n
Y ′

2Y2 = 1
n
G′X′XG, a quantity often studied

in random matrix theory.
When p  n, we have

max
i=1,...,p

∣∣√Sp(i, i) − 1
∣∣ → 0 a.s.
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PROOF. First, let Wp = G′T C′
nT Cn/n. We note that, according to results in

the previous subsubsection,

|Sp(i, i) − Wp(i, i)| = |e′
i (Sp − Wp)ei | ≤ |‖Sp − Wp|‖2 → 0 a.s.

Hence, the result will be shown if we can show it for Wp(i, i).
We let vi denote the ith column of G. Letting M = X′X/n, we note that

Sp(i, i) = v′
iMvi = ∥∥Xvi/

√
n
∥∥2

2.

Now, consider the function fi from R
np to R defined by turning the vector x into

the matrix X, by first filling the rows of X, and then computing the Euclidean norm
of Xvi . In other words,

fi(x) = ‖Xvi‖2.

This function is clearly convex and 1-Lipschitz with respect to the Euclidean norm.
As a matter of fact, for θ ∈ [0,1] and x, z ∈ R

np ,

fi

(
θx + (1 − θ)z

) = ∥∥(θX + (1 − θ)Z
)
vi

∥∥
2 ≤ ‖θXvi‖2 + ‖(1 − θ)Zvi‖2

= θfi(x) + (1 − θ)fi(z).

Similarly,

|fi(x) − fi(z)| = ∣∣‖Xvi‖2 − ‖Zvi‖2
∣∣ ≤ ‖(X − Z)vi‖2 ≤ ‖X − Z‖F ‖vi‖2

= ‖x − z‖2,

using the Cauchy–Schwarz inequality and the fact that ‖vi‖2
2 = (G′G)(i, i) =

�(i, i) = 1. The same is true when X is replaced by T Cn.
Because the T Cn(i, j) are independent and bounded, we can apply recent re-

sults concerning concentration of measure of convex Lipschitz functions. In par-
ticular, from Corollary 4.10 in [33] (a consequence of Talagrand’s inequality—see
[46] and Theorem 4.6 in [33]), we see that for any r > 0, we have, if mfi

is a
median of fi(T Cn),

P
(|fi(T Cn) − mfi

| ≥ r
) ≤ 4 exp

(−r2/
(
16C2n/(logn)(1+ε))).

In particular, since
√

Wp(i, i) = f (T Cn)/
√

n, letting mi,i denote a median of

fi(T Cn)/
√

n, we see that

P
(∣∣√Wp(i, i) − mi,i

∣∣ ≥ r
) ≤ 4 exp

(−r2(logn)(1+ε)/16C2).
Finally,

P
([

max
i

∣∣√Wp(i, i) − mi,i

∣∣] ≥ r
)

≤ 4p exp
(−r2(logn)(1+ε)/(16C2)

)
,

so, since p  n, using the first Borel–Cantelli lemma, we see that

max
1≤i≤p

∣∣√Wp(i, i) − mi,i

∣∣ → 0 a.s.
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All we have to do now is to show that the mi,i are all close to 1. We let υn =
var(T Cn(i, j)). Note that υn is independent of i, j and that υn → 1 as n → ∞.

Since we have Gaussian concentration, using Proposition 1.9 in [33], we have∣∣E(√Wp(i, i)
)− mi,i

∣∣ ≤ 8C
√

π(logn)−(1+ε)/2

and since E(Wp(i, i)) = ‖vi‖2
2υn = �(i, i)υn = υn, the variance inequality in the

same proposition gives

0 ≤ υn − E
(√

Wp(i, i)
)2 ≤ 64C2

(logn)(1+ε)
.

Consequently,

− 8C
√

π

(logn)(1+ε)/2 +
√

υn − 64C2

(logn)(1+ε)
≤ mi,i ≤ υn + 8C

√
π

(logn)(1+ε)/2 .

Therefore, maxi |mi,i − 1| = O(max(|1 − υn|, (logn)−(1+ε)/2)) and we have

max
1≤i≤p

∣∣√Wp(i, i) − 1
∣∣ → 0 a.s.

We can therefore conclude that we also have

max
1≤i≤p

∣∣√Sp(i, i) − 1
∣∣ → 0 a.s. �

We now turn to the more interesting situation of a covariance matrix.

LEMMA 5 (Covariance matrix). We now focus on the matrix

Sp = 1

n − 1
(Y2 − Ȳ2)

′(Y2 − Ȳ2).

For this matrix, we also have

max
1≤i≤p

∣∣√Sp(i, i) − 1
∣∣ → 0 a.s.

PROOF. As before, we let Wp denote the equivalent of Sp computed by re-
placing X by T Cn.

Note that Y2 − Ȳ2 = (Idn − 1
n

11′)Y2 = (Idn − 1
n

11′)XG. Now, Sp(i, i) = v′
i ×

X′(Idn − 1
n

11′)Xvi/(n − 1), so the same strategy as above can be employed, with
f now defined as

f (x) = f (X) =
∥∥∥∥(Idn −1

n
11′

)
Xvi

∥∥∥∥
2
.

This function is again a convex 1-Lipschitz function of x. Convexity is a simple
consequence of the fact that norms are convex; the Lipschitz coefficient is equal
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to ‖vi‖2|‖ Idn − 1
n

11′|‖2. The eigenvalues of the matrix Idn − 1
n

11′ are (n − 1) ones
and one zero. Its operator norm is therefore 1. We therefore have Gaussian con-
centration when replacing X by T Cn. Also, we have the same bounds as before
on maxi |Sp(i, i) − Wp(i, i)|. All we need to check to conclude the proof is that
E(Wp(i, i)) → 1. By renormalizing by 1/

√
n − 1, we ensure that E(Wp(i, i)) =

υn and so, as before, the proof is complete. �

2.3.4. A remark on |‖(X − X̄)′(X − X̄)/n − 1|‖2. We now turn to providing
a justification for Corollary 1. This amounts to understanding the behavior of the
largest eigenvalue of (Y − Ȳ )′(Y − Ȳ )/n − 1, which differs slightly from what is
usually investigated in the literature, namely S̃p = Y ′Y/n, if, say, Y is assumed to
have mean zero entries.

Since in (statistical) practice Sp = (Y − Ȳ )′(Y − Ȳ )/(n − 1) is almost always
used, it is of interest to know what happens for this matrix in terms of largest
eigenvalue. Note that |‖Sp − S̃p|‖2 does not go to zero in general, so a coarse

bound of the type |λ1(Sp)−λ1(S̃p)| ≤ |‖Sp − S̃p|‖2 is not enough to determine the
behavior of λ1(Sp) from that of λ1(S̃p).

However, letting Hn = Idn − 1
n

11′, we see that

Y − Ȳ = HnY.

Therefore, since σ1, the largest singular value, is a matrix norm, we have

σ1(Y − Ȳ )/
√

n ≤ σ1(Hn)σ1
(
Y/

√
n
) = σ1

(
Y/

√
n
)

since Hn is a symmetric matrix with (n− 1) eigenvalues equal to 1 and one eigen-
value equal to 0.

Now, because Y ′Y/n and (Y − Ȳ )′(Y − Ȳ )/n − 1 have, asymptotically, the
same spectral distribution, letting l1 denote the right endpoint of the support of
this limiting distributions (if it exists), we conclude that

lim infσ 2
1
(
(Y − Ȳ )/

√
n − 1

) ≥ l1.

Hence, when |‖Y ′Y/n|‖2 → l1, we also have

|‖(Y − Ȳ )′(Y − Ȳ )/(n − 1)|‖2 → l1.

This justifies the assertion made in Corollary 1 and, more generally, the fact that
when the norm of a sample covariance matrix which is not re-centered (whose
entries have mean 0) converges to the right endpoint of the support of its limiting
spectral distribution, so does the norm of the centered sample covariance matrix.

Finally, we note that when dealing with Sp , the mean of the entries of Y does
not matter, so we can assume without loss of generality that it is 0.
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2.3.5. Proof of Theorem 1. We now put all of the elements together and give
the proof of Theorem 1.

PROOF OF THEOREM 1. As noted in Section 2.2.1, corr(Y ) = corr(Y2). So,
to understand the spectral properties of corr(Y ), it is enough to study those of
corr(Y2).

Let Sp = (Y2 − Ȳ2)
′(Y2 − Ȳ2)/(n − 1) and DSp = diag(Sp). We have seen in

Lemma 5 that

|‖DSp − Idp |‖2 → 0 a.s.

Now, using the remark made in Section 2.3.4, and [50], we have

|‖(X − X̄)′(X − X̄)/(n − 1)|‖2 → (
1 +√

p/n
)2 a.s.

Since |‖�p|‖2 is bounded, we have

|‖Sp|‖2 ≤ |‖�p|‖2|‖(X − X̄)′(X − X̄)/(n − 1)|‖2.

Therefore, |‖Sp|‖2 is a.s. bounded and the assumptions of Lemma 1 are verified.
Using Fact 1 and Lemma 1, we therefore have

|‖Sp − corr(Y2)|‖2 → 0 a.s.

Hence,

|‖Sp − corr(Y )|‖2 → 0 a.s.

Finally, as explained in Section 2.3.1, the spectral properties of Sp , when they
involve only the spectral distribution of G′G, are the same as those of (Y1 −
Ȳ1)

′(Y1 − Ȳ1)/(n − 1). �

3. Elliptically distributed data and generalizations. We now turn our at-
tention to the problem of finding a Marc̆enko–Pastur-type system of equations to
characterize the limiting spectral distribution of sample covariance matrices com-
puted from elliptically distributed data and generalizations of these distributions.
Our aim in doing so is manifold. From a statistical standpoint, one issue is to try
and explain the lack of robustness in high dimensions of this estimate of scat-
ter and to explain some of the numerical findings highlighted in [20]. From a more
mathematical point of view, elliptical distributions raise a question concerning data
vectors with a somewhat more complicated dependence structure than is usually
investigated in random matrix theory. Their study will therefore force us to con-
front this difficulty and show that our tools allow a generalization of the results
beyond elliptical distributions (and classical models).

Elliptical distributions are considered to be good models for financial data. We
refer to [20] and to the book [37] for interesting discussions of the potential rel-
evance of elliptical distributions to problems arising in the analysis of this type



CONCENTRATION AND SPECTRA OF RANDOM MATRICES 2377

of data. Naturally, the study of corresponding covariance matrices is relevant to
problems of portfolio optimization, where sample covariance matrices are used to
estimate the covariance matrix between assets. This latter matrix is key in these
problems since the optimal portfolio weights depend on the assets’ covariance
matrix in many formulations. Let us mention two other properties that make el-
liptical distributions appealing in the financial modeling context. First, we have
the tail-dependence properties that they induce between components of data vec-
tors, something that, in practice, is found in financial data and cannot be accounted
for by, say, multivariate Gaussian data. Second, at least some of these distribu-
tions allow for a certain amount of “heavy-tailedness” in the observations. This is
often mentioned as an important feature in modeling financial data. By contrast,
it is sometimes advocated in the random matrix community that matrices with,
say, i.i.d. heavy-tailed entries should be studied as models for those financial data
and, in particular, returns or log-returns of stocks. We find that these more simple
heavy-tail models suffer at least from one deep flaw: in the case of a crash, many
companies or stocks suffer on the same day and a model of i.i.d. heavy-tailed en-
tries does not account for this, whereas models based on elliptical distributions
can. Besides the particulars of different models, it is also important to notice that
the limiting spectra will be drastically different under the two types of models and
the behavior of extreme eigenvalues is also very likely to be so. Before we return to
our study, we refer the reader to [2] and [18] for thorough introductions to elliptical
distributions.

We are therefore particularly interested in problems where we observe n i.i.d.
observations of an elliptically distributed vector v in R

d . Specifically, v can be
written as

v = μ + λ�r,

where μ is a deterministic d-dimensional vector, λ is a real-valued random vari-
able, r is uniformly distributed on the unit sphere in R

p (i.e., ‖r‖2 = 1) and � is
a d × p matrix. We let S = ��′. Here, S, a d × d matrix, is assumed to be deter-
ministic, and λ and r are independent. We call the corresponding data matrix X,
which is n × d , that is, the vectors of observations are stacked horizontally in this
matrix. Below, we will assume that n/p and d/p have finite limits.

As it turns out, the models for r which we can handle allow for more compli-
cated dependence structures than the one induced by a uniform distribution on the
unit sphere in R

p . So, for r , we will focus on random vectors whose distribution
satisfies certain concentration of measure properties. For more details, we refer the
reader to Section 3.2.

Note that when studying the limiting spectral distribution of a properly scaled
version of X′X/n, we can, without loss of generality, assume that μ = 0 and
E(r) = 0. As a matter of fact, if we define X̃ to be the data matrix obtained by
replacing vi by λi�(ri − E(ri)), it is clear that X̃′X̃ is a finite rank perturbation of
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X′X and hence properly scaled versions of these matrices have the same limiting
spectral distributions. Also, since (X − X̄)′(X − X̄) is a rank one perturbation of
X′X, we see that, after proper scaling, it has the same limiting spectral distribution
as the properly scaled X̃′X̃. In what follows, we will therefore assume that

vi = λi�
(
ri − E(ri)

)
, i = 1, . . . , n.

As is now classical, we will obtain our main result on the question of character-
izing the limiting spectral distribution of a properly scaled version of (X−X̄)′(X−
X̄) (Theorem 2) by making use of Stieltjes transform arguments. If needed, we re-
fer the reader to [22] for background on the connection between weak convergence
of distributions and pointwise convergence of Stieltjes transforms.

We note that our model basically falls into the class of covariance matrices of
the type T

1/2
p X∗

n,pLnXn,pT
1/2
p , where Xn,p is a random matrix, independent of the

square matrices Tp (p × p) and Ln (n × n), which can also be assumed to be ran-
dom, as long as their spectral distributions converge to a limit. These matrices have
been the subject of investigations already: see [47] Theorem 2.43, which refers to
[9, 34] and [23] and the recent [41], which refers to [12] and to [51] for systems
of equations involving Stieltjes transforms similar to the one we will derive. We
note that under some distributional restrictions, methods of free probability using
the S-transform (see [49]) could be used to derive a characterization of the limit.

However, in all of these papers, the entries of Xn,p are assumed to be indepen-
dent. Naturally, this is not the case in the situation we are considering and, as we
make clear below, the dependence structures of the models we are considering can
be quite complicated, as the example of the Gaussian copula (see below) indicates.
Similarly, elliptically distributed data have a certain amount of dependence in the
entries of the vector r since its norm is 1. (We note that [35] allowed for depen-
dence, too, and one of our questions was whether one could recover (and gener-
alize) those results from a different angle than the one taken in [35].) Also, our
matrix � is d × p and usually only square matrices are considered. Interestingly,
the result shows that the ratio d/p plays a nontrivial role in the limiting spectral
measure. One of our aims here is to show that independence in the entries of Xn,p

is not the key element; rather, we will rely on the fact that the rows of Xn,p are
independent and that the distribution of the corresponding vectors satisfies certain
concentration properties.

As our proof will make clear, using the “rank one perturbation” method origi-
nally proposed in [45] and [44], proofs of convergence of spectra of random matri-
ces basically boil down to concentration of certain quadratic forms and concentra-
tion of Stieltjes transforms, the latter being achievable using Azuma’s inequality.
We discuss these two aspects in Section 3.2 and Section 3.1, respectively. We chose
to separate the results of these two subsections from the main proof because we
believe that the results are of interest in their own right and that their technical na-
ture would obscure the proof of Theorem 2 if they were treated there. As far as we
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know, many results covered by Theorem 2 are new and cannot be achieved with
other methods involving (in one way or another) moment computations.

One of our points is that the importance of concentration inequalities in this
context appears not to have been realized and that they permit generalizations of
random matrix results to problems that look intractable by other methods.

3.1. Concentration of Stieltjes transforms. We present a result of independent
interest, namely, the fact that the Stieltjes transform of a matrix which is the sum
of n independent rank one matrices is asymptotically equivalent to a determinis-
tic function. We have somewhat more than this: we show concentration around its
mean, which also immediately gives us some lower bounds on the rate of conver-
gence.

Naturally, the result (and its extension, Remark 1) is needed in our proof (see
page 2397), which is why it is included here. Another reason to highlight it is
the fact that it shows that certain existing results that have been obtained with
“only” convergence in probability actually hold almost surely, by simply using the
Borel–Cantelli lemma and the following lemma. Finally, it answers some practical
questions raised in [17], which relied on Stieltjes transforms to perform spectral
estimation in connection with random matrix results.

LEMMA 6 (Concentration of Stieltjes transforms). Suppose that M is a p ×p

matrix such that

M =
n∑

i=1

rir
∗
i ,

where ri are independent random vectors in R
p . Let

mp(z) = 1

p
trace

(
(M − z Idp)−1).

Then, if Im[z] = v,

P
(|mp(z) − E(mp(z))| > r

) ≤ 4 exp
(−r2p2v2/(16n)

)
.

Note that the lemma makes no assumptions whatsoever about the structure of
the vectors {ri}ni=1 other than the fact that they are independent.

PROOF OF LEMMA 6. We define Mk = M − rkr
∗
k . We let Fi denote the filtra-

tion generated by {rl}il=1. The first classical step (see [3], page 649) is to write the
random variable of interest as sum of martingale differences:

mp(z) − E(mp(z)) =
n∑

k=1

E(mp(z)|Fk) − E(mp(z)|Fk−1).
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We now note that E(trace((Mk − z Idp)−1)|Fk) = E(trace((Mk − z Idp)−1)|
Fk−1). So,∣∣E(mp(z)|Fk

)− E
(
mp(z)|Fk−1

)∣∣
=

∣∣∣∣E(mp(z)|Fk

)− E
(

1

p
trace

(
(Mk − z Idp)−1)∣∣∣Fk

)

+ E
(

1

p
trace

(
(Mk − z Idp)−1)∣∣∣Fk−1

)
− E

(
mp(z)|Fk−1

)∣∣∣∣
≤
∣∣∣∣E(mp(z) − 1

p
trace

(
(Mk − z Idp)−1)∣∣∣Fk

)∣∣∣∣
+
∣∣∣∣E(mp(z) − 1

p
trace

(
(Mk − z Idp)−1)∣∣∣Fk−1

)∣∣∣∣
≤ 2

pv
,

the last inequality following from [45], Lemma 2.6. So, mp(z) − E(mp(z)) is a
sum of bounded martingale differences. Note that the same would be true for its
real and imaginary parts. For both of them, we can apply Azuma’s inequality (see
[33], Lemma 4.1) to get that

P
(|Re[mp(z) − E(mp(z))]| > r

) ≤ 2 exp
(−r2p2v2/(8n)

)
,

and similarly for its imaginary part. We therefore conclude that

P
(|mp(z) − E(mp(z))| > r

) ≤ P
(|Re[mp(z) − E(mp(z))]| > r/

√
2
)

+ P
(| Im[mp(z) − E(mp(z))]| > r/

√
2
)

≤ 4 exp
(−r2p2v2/(16n)

)
. �

We have the following, immediate, corollary.

COROLLARY 2. Suppose that we consider the following sequence of ran-
dom matrices: for each p, select n independent p-dimensional vectors. Let M =∑n

i=1 rir
∗
i . Assume that p/n remains bounded away from 0. Then,

∀z ∈ C
+ mp(z) − E(mp(z)) → 0 a.s.

and also

∀z ∈ C
+

√
p

(logp)(1+α)/2 |mp(z) − E(mp(z))| → 0 a.s., for α > 0.

In other words, mp(z) is asymptotically deterministic.
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PROOF. The proof is an immediate consequence of the first Borel–Cantelli
lemma. �

REMARK 1. We note that if � is a matrix independent of the ri , similar results
would apply to

1

p
trace

(
(M − z Idp)−1�l)

after we replace v by v/|‖�|‖l
2. In particular, if |‖�|‖2 ≤ C(logp)m for some m,

we have

1

p
trace

(
(M − z Idp)−1�l)− E

(
1

p
trace

(
(M − z Idp)−1�l)) → 0 a.s.

However, the rate in the second part of the previous corollary needs to be adjusted.

REMARK 2. We note that the rate given by Azuma’s inequality does not match
the rate that appears in results concerning fluctuation behavior of linear spectral
statistics, which is n and not

√
n. Of course, our result encompasses many sit-

uations that are not covered by the currently available results on linear spectral
statistics, which might help to explain this discrepancy. The “correct” rate can be
recovered using ideas similar to the ones discussed in [26] and [33], Chapter 8,
Section 5. As a matter of fact, if we consider the Stieltjes transform of the mea-
sure that puts mass 1/p at each of the singular values of M = X∗X/n, it is an
easy exercise to see that this function (of X) is 1/(

√
npv2)-Lipschitz with respect

to the Euclidean (or Frobenius) norm. Hence, if the np-dimensional vector made
up of the entries of X has a distribution that satisfies a dimension-free concentra-
tion property with respect to the Euclidean norm, we find that the fluctuations of
the Stieltjes transform at z are of order

√
np, which corresponds to the “correct”

rate found in the analysis of these models. (Note, however, that results have been
shown beyond the case of distributions with dimension-free concentration.)

The conclusion of this discussion is that since the spectral distribution of ran-
dom matrices is characterized by their Stieltjes transforms, it is not surprising that
they are asymptotically nonrandom for a very wide class of data matrices of co-
variance type. We now turn to the examination of another type of concentration
which we will crucially need in our proof, namely the concentration of certain
quadratic forms.

3.2. Concentration of quadratic forms. The key property we will rely on in
the proof of our main theorem is a concentration property of quadratic forms. This
property is summarized in Corollary 4 and we now give important sufficient con-
ditions to reach it.
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LEMMA 7 (Case of Gaussian concentration). Suppose that the random vec-
tor r ∈ R

p has the property that for any convex 1-Lipschitz (with respect to the
Euclidean norm) function F from R

p to R, we have, if mF denotes a median of
F(r),

P
(|F(r) − mF | > t

) ≤ C exp(−c(p)t2),

where C and c(p) are independent of F and C is independent of p. We allow c(p)

to be a constant or to go to zero with p like p−α , 0 ≤ α < 1. Suppose, further, that
E(r) = 0, E(rr∗) = �, with |‖�|‖2 ≤ log(p).

If M is a complex deterministic matrix such that |‖M|‖2 ≤ ξ , where ξ is inde-
pendent of p, then

1

p
r ′Mr is strongly concentrated around its mean,

1

p
trace(M�).

In particular, if, for ε > 0, tp(ε) = log(p)1+ε/
√

pc(p), then

log
{
P

(∣∣∣∣ 1

p
r ′Mr − 1

p
trace(M�)

∣∣∣∣ > tp(ε)

)}
 −(logp)1+2ε.

If E(r) 
= 0, then the same results are true when one replaces r by r − E(r)

everywhere and � is the covariance of r .
Finally, if ξ is allowed to vary with p, then the same results hold when one

replaces tp(ε) by tp(ε)ξ or, equivalently, divides M by ξ .

PROOF. In what follows, K denotes a generic constant that may change from
occurrence to occurrence, but which is independent of p. First, it is clear that we
can rewrite M as M = RM + iIM , where RM and IM are real matrices. Further,
the spectral norm of those matrices is less than ξ [of course, RM = (M + M1)/2,
where M1 is the (entrywise) complex conjugate of M].

Now, strong concentration for r ′RMr/p and r ′IMr/p will imply strong con-
centration for the sum of those two terms. We note that since r ′RMr is real,
r ′RMr = (r ′RMr)′ and

r ′RMr = r ′
(

RM + RM ′

2

)
r.

Hence, instead of working on RM , we can work on its symmetrized version.
Let us now decompose (RM +RM ′)/2 into RM+ +RM−, where RM+ is pos-

itive semidefinite and −RM− is positive definite [or 0 if (RM + RM ′)/2 itself is
positive semidefinite]. This is possible because (RM + RM ′)/2 is real symmet-
ric and we carry out this decomposition by simply following its spectral decom-
position. Note that both matrices have spectral norm less than ξ . Now, the map
φ : r → √

r ′RM+r/p is
√

ξ/p-Lipschitz (with respect to the Euclidean norm) and
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convex, which is easily seen after one notes that
√

r ′RM+r/p = ‖RM
1/2
+ r/

√
p‖2.

This guarantees, by our assumption, that

P
(∣∣√r ′RM+r/p − mφ

∣∣ > t
) ≤ C exp

(−pc(p)t2/ξ
)
,

where mφ is a median of φ(r).
Now, using Proposition 1.9 in [33], letting μφ denote the mean of φ(r) and

observing that var(φ(r)) = E(r ′RM+r/p) − μ2
φ , we have

|μφ − mφ| ≤ C
√

π

2

√
1

pc(p)
and

0 ≤ E(r ′RM+r/p) − μ2
φ ≤ C

pc(p)
.

We hence deduce, using the fact that
√

a + b ≤ √
a + √

b for nonnegative reals,
that ∣∣√E(r ′RM+r/p) − mφ

∣∣ ≤ κp = C
√

π/2 + √
C√

pc(p)
.

We also have, trivially,

E(r ′RM+r/p) = trace(RM+�)

p

since E(r) = 0. Therefore, we have that for u > 0,

P
(∣∣√r ′RM+r/p −

√
trace(RM+�/p)

∣∣ > u + κp

) ≤ C exp
(−pc(p)u2/ξ

)
.

On the other hand, if 0 < t < κp , then we have

P
(∣∣√r ′RM+r/p −

√
trace(RM+�/p)

∣∣ > t
)

≤ 1 ≤ exp
(
pc(p)κ2

p/ξ
)

exp
(−pc(p)(t − κp)2/ξ

)
≤ max

(
C, exp

(
pc(p)κ2

p/ξ
))

exp
(−pc(p)(t − κp)2/ξ

)
.

Since pc(p)κ2
p = (C

√
π/2 + √

C)2, we conclude that for any t > 0,

P
(∣∣√r ′RM+r/p −

√
trace(RM+�/p)

∣∣ > t
) ≤ K exp

(−pc(p)(t − κp)2/ξ
)
,

where K depends on C and ξ , but not on p. Note that κp → 0 since pc(p) → ∞
and C does not depend on p.

We now turn to finding a deviation inequality for the quadratic form of interest.
Let us define

ζp = trace(RM+�/p),

A = {|r ′RM+r/p − ζp| > t},
B = {√

r ′RM+r/p ≤
√

ζp + 1
}
.
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Our aim is to show that the probability of A is “exponentially small” in p. Of
course, we have P(A) ≤ P(A∩B)+P(Bc). We note that P(Bc) is “exponentially
small” in p since

P(Bc) = P
(√

r ′RM+r/p −
√

trace(RM+�/p) ≥ 1
) ≤ K exp

(
pc(p)(1 − κp)2/ξ

)
and pc(p) → ∞, at least as fast as p1−α , with α > 0. Now, note that

A ∩ B ⊆ D =
{∣∣√r ′RM+r/p −

√
ζp

∣∣ > t

2
√

ζp + 1

}
.

To see this, note simply that for positive reals, |x − y| = |√x − √
y|(√x +√

y). Finally, because of our bounds on the norm of � and the fact that
|‖RM+|‖2 ≤ ξ , we see that trace(RM+�/p) = ζp ≤ log(p)ξ . Hence, P(D) ≤
K exp(−pc(p)(t/(2

√
ζp + 1) − κp)2/ξ) for some K independent of p and we

therefore have

P(A) ≤ K
[
exp

(−pc(p)
(
t/
(
2
√

ζp + 1
)− κp

)2
/ξ

)+ exp
(−pc(p)(1 − κp)2/ξ

)]
= gp(t).

Similarly, we can obtain the same type of bounds for
√−r ′RM−r/p. From those,

we conclude that

P
(|r ′RMr/p − trace(RM�p)/p| > t

) ≤ 2gp(t/2).

Finally,

P
(|r ′Mr/p − trace(M�p)/p| > t

) ≤ 4gp

(
t/2

√
2
)
.

From the way gp(t) behaves, we obtain the result concerning strong concentra-
tion. Now, studying the asymptotics of gp(tp(ε)) for large p gives the statement
concerning the log probability in the lemma.

The last statement in the lemma, concerning the replacement of r by r − E(r)

if E(r) 
= 0, follows simply from the fact that, for any given μ, the map φ(r) =√
(r − μ)′�(r − μ)/p is convex and

√
ξ/p-Lipschitz since the composition of a

convex mapping and an affine one is convex. (See, e.g., Section 3.2.2 in [10].)
�

Motivated by examples we will see below, we also note that we have the fol-
lowing corollary, which is applicable when concentration is not limited to convex
1-Lipschitz functions, but holds for any 1-Lipshitz function.

COROLLARY 3 (Gaussian concentration of nonconvex functionals). Suppose
that the random vector v ∈ R

p has the property that for any 1-Lipschitz (with
respect to the Euclidean norm) function F from R

p to R, we have, if mF denotes
a median of F(v),

P
(|F(v) − mF | > t

) ≤ C exp(−c(p)t2),
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where C and c(p) are independent of F and C is independent of p. We allow c(p)

to be a constant or to go to zero with p like p−α , 0 ≤ α < 1.
Consider r = �(v), where � is a 1-Lipschitz map from R

p to R
d , also with

respect to the Euclidean norm. Suppose, as above, that E(r) = 0, E(rr∗) = �,
with |‖�|‖2 ≤ log(p).

If M is a complex deterministic matrix such that |‖M|‖2 ≤ ξ , where ξ is inde-
pendent of p, then

1

p
r ′Mr is strongly concentrated around its mean,

1

p
trace(M�).

In particular, if for ε > 0, tp(ε) = log(p)1+ε/
√

pc(p), then

log
{
P

(∣∣∣∣ 1

p
r ′Mr − 1

p
trace(M�)

∣∣∣∣ > tp(ε)

)}
 −(logp)1+2ε.

If E(r) 
= 0, then the same is true when one replaces r by (r − E(r)) everywhere
and � is the covariance of r . Finally, if ξ is allowed to vary with p, then the same
results hold when one replaces tp(ε) by tp(ε)ξ or, equivalently, divides M by ξ .

PROOF. The proof follows easily from the arguments developed for Lemma 7
after we note that the map φ :Rp → R with φ(v) = √

r ′RM+r/p =√
�(v)′RM+�(v)/p is

√
ξ/p-Lipschitz with respect to the Euclidean norm. The

concentration properties of v can then be invoked and the proof follows along
similar lines as above. �

For applications, it is important to extend the results beyond Gaussian concen-
tration. We therefore state the following lemma.

LEMMA 8 (Beyond Gaussian concentration). Suppose that the random vector
r ∈ R

p has the property that for any convex 1-Lipschitz (with respect to the Euclid-
ean norm) function F from R

p to R, we have, for b > 0 independent of p and mF

a median of F ,

P
(|F(r) − mF | > t

) ≤ C exp(−c(p)tb),

where C and c(p) are independent of F and C is independent of p. We allow c(p)

to be a constant or to go to zero with p like p−α , 0 ≤ α < b/2. Suppose, further,
that E(r) = 0, E(rr∗) = �, with |‖�|‖2 ≤ log(p).

If M is a complex deterministic matrix such that |‖M|‖2 ≤ ξ , where ξ is inde-
pendent of p, then

1

p
r ′Mr is strongly concentrated around its mean,

1

p
trace(M�).
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In particular, if, for ε > 0, tp(ε) = log(p)1/2+1/b+ε/

√
pc2/b(p), then

log
{
P

(∣∣∣∣ 1

p
r ′Mr − 1

p
trace(M�)

∣∣∣∣ > tp(ε)

)}
 −(logp)1+bε.

If E(r) 
= 0, then the same is true when one replaces r by (r − E(r)) everywhere
and � is the covariance of r .

Finally, if ξ is allowed to vary with p, then the same results hold when one
replaces tp(ε) by tp(ε)ξ or, equivalently, divides M by ξ .

PROOF. We only give a sketch of the proof. The ideas are exactly the same
as those above. However, when studying the concentration of

√
r ′RM+r/p, the

exponent of the exponential is, to leading order, pb/2c(p)(t − κp)b. We note that
κp will be somewhat different in its form than it was in the Gaussian concentration
case. This comes from the fact, following the analysis in Proposition 1.9 of [33],
that the inequalities we now have, if μF denotes the mean of F , are

|μF − mF | ≤ C

bc1/b
�

(
1

b

)
and var(F ) ≤ 2C

bc2/b
�

(
2

b

)
,

where � denotes the Gamma function. With this adjustment, the previous proof
proves the present lemma. �

A corollary similar to Corollary 3 holds for the variant of Lemma 8 where con-
centration is not limited to convex 1-Lipschitz functionals, but is valid for any
1-Lipschitz (with respect to the Euclidean norm) functional.

Examples of distributions for which the previous results apply.

• Gaussian random variables with |‖�|‖2 ≤ log(p). Lemma 7 and Corollary 3
apply, according to [33], Theorem 2.7, with c(p) = 1/|‖�|‖2.

• Vectors of the type
√

pr , where r is uniformly distributed on the unit (�2-)
sphere in dimension p. Theorem 2.3 in [33] shows that Lemma 7 (and Corol-
lary 3) applies, with c(p) = (1−1/p)/2, after noting that a 1-Lipschitz function
with respect to the Euclidean norm is also 1-Lipschitz with respect to the geo-
desic distance on the sphere. As we will see below, this will allow us to treat the
case of elliptically distributed data.

• Vectors �
√

pr , with r uniformly distributed on the unit (�2-) sphere in R
p and

with ��′ = � having the characteristics explained in Lemma 7.
• Vectors of the type p1/br , 1 ≤ b ≤ 2, where r is uniformly distributed in the

unit �b ball or sphere in R
p . (See [33], Theorem 4.21, which refers to [43] as

the source of the theorem.) Lemma 8 applies to them, with c(p) depending only
on b.
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• Vectors with log-concave density of the type e−U(x), with the Hessian of U

satisfying, for all x, Hess(U) ≥ c Idp , where c > 0 has the characteristics of
c(p) in Lemma 7; see [33], Theorem 2.7. Here, we also need |‖�|‖2 to satisfy
the assumptions of Lemma 7. Corollary 3 also applies here.

• Vectors (r) distributed according to a (centered) Gaussian copula, with corre-
sponding correlation matrix � such that |‖�|‖2 is bounded. Here, we can apply
Corollary 3 since if r̃ has a Gaussian copula distribution, then its ith entry sat-
isfies r̃i = �(vi), where v is multivariate normal with covariance matrix �, �

being a correlation matrix, that is, its diagonal is 1. Here, � is the cumulative
distribution function of a standard normal distribution, which is trivially Lip-
schitz. Now, taking r = r̃ − 1/2 gives a centered Gaussian copula. The fact that
the covariance matrix of r then has bounded operator norm requires a little work
and is shown in the Appendix.

• Vectors with i.i.d. entries bounded by 1/
√

c(p). See Corollary 4.10 in [33] for
the concentration part, which shows that Lemma 7 applies. We crucially need
the fact that the concentration of measure result is valid “only” for convex 1-
Lipschitz functions. As we will explain below, in our main theorem, this result
will enable us to work with random variables with bounded second moment
since using an argument similar to those in [45], those random variables can be
truncated at log(p) without (a.s.) changing the limiting spectral distribution.

It also appears possible to use this method to treat more “exotic” examples in-
volving vectors sampled uniformly from certain Riemannian submanifolds of R

p ,
a question which is sometimes of interest in multivariate statistics and computer
science. We refer to [33], Theorems 2.4 and 3.1, for the concentration aspects of
these questions.

We also have the following, important, corollary that will play a key role in the
proof of Theorem 2.

COROLLARY 4. Suppose that {ri}ni=1 are independent random vectors whose
distributions satisfy the hypotheses of Lemmas 7 or 8, or Corollary 3. Suppose that
n  p. Suppose that Mi are random matrices, Mi being independent of ri and such
that |‖Mi |‖2 ≤ K , where K is nonrandom. Suppose, further, that for some matrix
M, some Kp with Kp = O(K/p) and all Hermitian matrices A,

∀i

∣∣∣∣ 1

p
trace(MiA) − 1

p
trace(MA)

∣∣∣∣ ≤ |‖A|‖2Kp.

Then, for any ε > 0, if r̃i = ri − E(ri), we have√
pc2/b(p)

(logp)(1/2+1/b+ε)K
max

i=1,...,n

∣∣∣∣ 1

p
r̃ ′
iMi r̃i − 1

p
trace(M�)

∣∣∣∣ → 0 a.s.(1)
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PROOF. From the previous results, we have

P

(
max

i

∣∣∣∣ 1

p
r̃ ′
iMi r̃i − 1

p
trace(Mi�)

∣∣∣∣ > t

)

≤
n∑

i=1

P

(∣∣∣∣ 1

p
r̃ ′
iMi r̃i − 1

p
trace(Mi�)

∣∣∣∣ > t

)
≤ 4ngp

(
t/2

√
2
)
,

by conditioning on Mi to compute each probability in the sum. Therefore, using
the first Borel–Cantelli lemma, the results above and the fact that n  p, we have√

pc2/b(p)

(logp)(1/2+1/b+ε)K
max

i

∣∣∣∣ 1

p
r̃ ′
iMi r̃i − 1

p
trace(Mi�)

∣∣∣∣ → 0 a.s.

and because | 1
p

trace(Mi�) − 1
p

trace(M�)| ≤ Kp|‖�|‖2 ≤ Kp log(p), we con-
clude that √

pc2/b(p)

(logp)(1/2+1/b+ε)K
max

i

∣∣∣∣ 1

p
r̃ ′
iMir̃i − 1

p
trace(M�)

∣∣∣∣ → 0 a.s. �

We also have the following technical result that will be useful below.

COROLLARY 5. We assume that Lemma 7, Lemma 8 or Corollary 3 applies
and that trace(�)/p is bounded by K independent of p. If {ri}ni=1 is a triangu-
lar array of independent random variables and n/p remains bounded, then the
spectral distribution of An = ∑n

i=1 rir
∗
i /n is a.s. tight.

PROOF. We first assume that E(ri) = 0. Let Rn denote the matrix whose
ith row is r ′

i . We consider the first moment of the spectral distribution of
An = R∗

nRn/n, which is equal to M1, with M1 = 1/n
∑n

i=1 trace(rir∗
i /p). Its

mean is trace(�)/p. As we just saw, r∗
i ri/p is strongly concentrated around

trace(�)/p(= E(M1)) and this property transfers to M1 using the fact that
P(|M1 − E(M1)| > t) ≤ nP (|r∗

i ri/p − E(r∗
i ri/p)| > t). Because trace(�)/p is

assumed to be bounded, we see that M1 is a.s. bounded by K + 1. Because
it is the first moment of the spectral distribution of An, we conclude that, if
we let FAn denote the c.d.f. of the spectral distribution of An, we have a.s.
FAn([M,∞)) ≤ (K + 1)/M for n sufficiently large. Since the spectral distribu-
tion of An is supported on [0,∞), we conclude that it is a.s. tight.

In the case where ri do not have mean 0, we can work with r̃i = ri − E(ri). The
resulting matrix R̃n is a perturbation of Rn of rank at most 3 and therefore gener-
ates the same limiting spectral distribution as that generated by Rn. Therefore, the
previous arguments applied to R̃n give the result for Rn. �

We conclude this concentration discussion by considering some practical con-
sequences.
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Practical geometric consequences of concentration. If we apply the previous
results to the matrix M = Idp , we see that our concentration results indicate that if
E(r) = 0, then ‖r‖2/p is strongly concentrated around trace(�p)/p. In particular,
if n  p, we see that maxi=1,...,n |‖r‖2/p− trace(�p)/p| will tend to 0 a.s. Hence,
the vectors ri/

√
p appear to be located close to a sphere. By properly choosing M ,

for instance, as a block matrix with 0 on the block diagonal and Idp off the di-
agonal, we can also show (see [15] for details) that maxi 
=j |r ′

i rj /p| tends to 0
a.s. and hence so does the maximal angle between two such vectors. So, perhaps
surprisingly, the vectors ri appear to be almost orthogonal to one another. These
remarks suggest that although the models we study are quite general, their geomet-
ric properties are somewhat peculiar. Hence, one should probably check (even just
graphically) whether such geometric features are present in the data before using
random matrix results.

3.3. Marc̆enko–Patur-type system for covariance matrices computed from gen-
eralized elliptically distributed data. We refer the reader to the discussion intro-
ducing Section 3 for a review of literature concerning elliptically distributed data
and some motivation for the theorem that follows. In what follows, we assume
that we have a triangular “array” of random variables, where the nth line con-
tains n i.i.d. λi’s and n i.i.d. ri’s in R

p satisfying concentration inequalities as in
Lemma 7, Lemma 8 or Corollary 3. We assume that the ri ’s have covariance ma-
trix � such that |‖�|‖2 ≤ log(p). We also have to work with a d ×p matrix �. The
data vectors we will focus on are therefore the “array” of

vi = μ + λi�ri,

which we say have generalized elliptical distributions. In what follows, we allow
S = ��′ to be random, as long as it is independent of the vectors ri . For all prac-
tical purposes, however, S can be considered deterministic.

We present the theorem in the form that makes it most natural for elliptically
distributed data, our original motivation.

THEOREM 2. Let {{vi}ni=1}∞n=1 form a triangular array of independent ran-
dom vectors, “generalized-elliptically” distributed, as described above. In partic-
ular, recall that they are in R

d .

• Define θn = d/p, ρn = p/n, ξn = d2/np = θ2
nρn.

• Let Gd denote the spectral distribution of ��′ = S, Hd the spectral distribu-
tion of ���′ = T (S and T are d × d) and νn the spectral distribution of the
diagonal matrix containing the λi ’s.

• Assume that Hd converges weakly a.s. to a probability distribution H 
= 0. As-
sume, further, that

∫
τ dHd(τ) remains bounded.

• Assume that Gd converges weakly a.s. to a probability distribution G 
= 0.
• Assume that νn converges weakly a.s. to a probability distribution ν 
= 0.
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Let X denote the n × d data matrix whose ith row is vi . Consider the matrix

Bn = d

p

1

n
X′X = θn

n

n∑
i=1

viv
′
i �

n∑
i=1

uiu
′
i .

If ρn has a finite nonzero limit ρ and θn has a finite nonzero limit θ , then ξn ob-
viously has a finite nonzero limit ξ and the Stieltjes transform of Bn, mn, converges
a.s. to a deterministic limit m satisfying the equations

m(z) =
∫

dH(τ)

τ
∫

θλ2/(1 + ξλ2w(z)) dν(λ) − z
and

w(z) =
∫

τdH(τ)

τ
∫

θλ2/(1 + ξλ2w(z)) dν(λ) − z
.

w is the unique solution of this equation mapping C
+ into C

+. (The intuitive mean-
ing of w is explained below. We also remind the reader that m uniquely character-
izes the limiting spectral distribution of Bn.)

We note, further, that we have

1 + zm(z) = w(z)

∫
θλ2

1 + ξλ2w(z)
dν(λ).

The same results hold for the scaled sample covariance matrix d/p(X −
X̄)′(X − X̄)/n since it is a finite-rank perturbation of Bn.

The conclusion is that the limiting spectral distribution of Bn is a nonrandom
probability measure and is uniquely characterized by the previous system of two
equations.

We note that our finite-rank perturbation arguments (see the introduction to Sec-
tion 3) allow μ and E(r) to be arbitrary. However, in the proof, we can, and will,
assume (without loss of generality) that μ = 0 and E(r) = 0.

In the proof, we do not actually need the λi ’s to be independent of each other.
We only need them to be independent of the r’s and their empirical distribution to
converge a.s. to a deterministic limit, ν. In the case of i.i.d. λi’s, we note that νn has
an almost sure limit ν by the Glivenko–Cantelli theorem ([48], Theorem 19.1) for
triangular arrays. (A simple modification to the proof given in [48], which is not
for triangular arrays, can be obtained using Hoeffding’s inequality for the variables
1λi≤t , which guarantees that the result is true for triangular arrays.)

We note that, perhaps interestingly, the proof could be adapted to show that
quantities of the type trace(T k(Bn − z Idp)−1)/d satisfy the same equation as w,
with τ raised to the power k at the numerator and the same denominator involving
w, provided the Hd ’s have enough moments. (Note that this is the case for m, with
k = 0 and w which basically corresponds to k = 1.)

To make the theorem more concrete, we now give a few examples of distrib-
utions to which it can be applied. The concentration justifications appear in Sec-
tion 3.2.
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• Elliptical distributions. In this case, ri = √
pr̃i , with r̃i uniformly distributed on

the sphere, so � = Idp . Note, in particular, that λi can have a Cauchy distribu-
tion or any heavy-tailed distribution. The theorem hence describes the limiting
measure obtained when using data sampled according to the multivariate t or
Cauchy distributions.

• Data distributed according to a Gaussian copula, with corresponding correlation
matrix, R, bounded in operator norm. In this case, λi = 1, ri = �(r̃i), where
r̃i = N (0,R), and � is the c.d.f. of the standard normal distribution. The the-
orem then says that the Marc̆enko–Pastur equation holds when ri is sampled
according to this distribution. This example, in particular, appears to be out of
reach of methods relying in one way or another on moment computations.

• ri = p1/br̃i , where r̃i is sampled uniformly from the unit �b-ball or sphere, 1 ≤
b ≤ 2, in R

p . We refer the reader to [33] pages 37–38 for some of the subtleties
which arise for the sphere when 1 < b < 2.

• ri has i.i.d. entries with finite second moment. Then, using the truncation ar-
guments in [45], we see that we can truncate ri at level log(p) without a.s.
affecting the limiting spectral distribution. (The arguments in [45] are rank argu-
ments and carry directly over to our situation.) We then have c(p) = (log(p))−2

when using Lemma 7. Here, the convexity assumption mentioned in Lemma 7
is necessary, as we rely crucially on Corollary 4.10 in [33] for the concentration
arguments.

• We note that if λi = 1 and d = p, then we recover the Marc̆enko–Pastur equa-
tion. The theorem therefore provides an extension of the known range of validity
of this result. (We note that our result is in that case related to [39].) In this set-
ting, the practical geometric remark made at the end of Section 3.2 applies and,
hence, one should probably perform simple graphical diagnostics on the data
before relying on insights drawn from random matrix results.

The system of equations we have found is unfortunately not trivial to exploit in
order to gain further understanding of the spectra of the matrices at stake; we
postpone a detailed investigation of its consequences to a further project. We now
turn to the proof of Theorem 2.

3.3.1. Preliminaries. We note that the matrix we are considering is of the
form �X′DX�′, where D is a diagonal matrix containing the λ2

i ’s, that is,
Di,j = 1i=jλ

2
i . We let si denote the eigenvalues of S = ��′.

We denote by ‖F‖ the value supx |F(x)| and by FM the c.d.f. of the spectral
distribution of the matrix M . We see, using Lemma 2.5 in [45], that

‖FQ∗T1Q − FQ̃∗T̃1Q̃‖ ≤ 1

p

(
rank(T1 − T̃1) + 2 rank(Q̃ − Q)

)
.
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In our situation, we have Q = X�′ and T1 = D, so, using the fact that rank(AB) ≤
min(rank(A), rank(B)), we conclude that

‖FQ∗T1Q − FQ̃∗T̃1Q̃‖ ≤ 1

p

(
rank(D − D̃) + 2 rank(�̃′ − �′)

)
.

Let us now choose for D̃ the diagonal matrix with entries λ2
i 1λ2

i ≤αp
, which we ab-

breviate by D1|D|≤αp , and let �̃′ = �′1|S|≤βp (this is understood using the singular
value decomposition of �′, where we keep the singular values that are less than√

βp and replace the others by 0).
We see that rank(D − D̃) = ∑n

i=1 1λ2
i >αp

and, similarly, 0 ≤ rank(�′ − �̃′) ≤∑d
i=1 1|si |>βp . Since we assumed that Gd converges weakly a.s. to G and νn con-

verges weakly a.s. to ν, we conclude that for αp = βp = logp, rank(�′ − �̃′)/p →
0 a.s. and rank(D − D̃)/p → 0 a.s. Here, it is important that d/p and p/n have
finite nonzero limits.

So, to prove the theorem, it is sufficient to prove it for D and S bounded in
operator norm by, for instance, logp since we just showed that by truncating S

and D at these levels, we will not change the limiting spectral distribution of the
matrices of interest, provided it exists.

3.3.2. Proof of Theorem 2. As explained in Section 3.3.1, we can, and do,
assume that all of the eigenvalues of S = ��′ are less than logp and, similarly, we
assume that |λi | <

√
logp since, as we have explained, these assumptions do not

affect the limiting spectral distribution of Bn. We also recall that we assume that
|‖�|‖2 ≤ log(p). We call the spectral measures obtained after truncation G̃d , H̃d

and ν̃n, to keep track of the modifications we have induced by truncation. However,
to avoid cumbersome notation, we use S, T and � to refer to the matrices we
deal with. (S̃ and T̃ might have been more appropriate, but the notation would
be too heavy.) The approach we use follows the “rank one perturbation” approach
developed in [45] and [44].

We remind the reader that, as clearly explained in, for instance, [22], one can
show vague convergence of distributions by showing pointwise convergence of
Stieltjes transforms. This is the approach we take and we will therefore show con-
vergence at fixed z of the Stieltjes transforms of interest. Finally, we will need a
tightness result to go from vague to weak convergence. We now turn to the actual
proof.

Recall that uk = √
θn/nλk�rk , θn = d/p and Bn = ∑n

i=1 uiu
′
i . We define

• B(k) = Bn − uku
′
k = ∑

i 
=k uiu
′
i ,

• Mk = (Bn − uku
′
k − z Idd)−1 = (B(k) − z Idd)−1,

• Mn = (Bn − z Idd)−1
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and

β(z) = 1

n

n∑
k=1

θnλ
2
k

1 + u′
kMkuk

.

We note that Bn is d × d , as are all of the other matrices involved here. Using the
first resolvent identity A−1 − B−1 = A−1(B − A)B−1 and the fact that (see [44])

Bn(Bn − z Idd)−1 = Idd +z(Bn − z Idd)−1 =
n∑

k=1

uku
′
kMk

1 + u′
kMkuk

,(2)

we have(
β(z)T − z Idd

)−1 − (Bn − z Idd)−1

= (
β(z)T − z Idd

)−1
[

n∑
k=1

uku
′
kMk

1 + u′
kMkuk

− β(z)T (Bn − z Idd)−1

]

and, hence,(
β(z)T − z Idd

)−1 − (Bn − z Idd)−1

=
n∑

k=1

1

1 + u′
kMkuk

[(
β(z)T − z Idd

)−1
uku

′
kMk

− θn

n
λ2

k

(
β(z)T − z Idd

)−1
T (Bn − z Idd)−1

]
.

Taking traces and dividing by d , we get∫
dH̃d(τ )

β(z)τ − z
− mn(z)

= 1

d

n∑
k=1

1

1 + u′
kMkuk

[
u′

kMk

(
β(z)T − z Idd

)−1
uk(3)

− θn

n
λ2

k trace
((

β(z)T − z Idd

)−1
T Mn

)]
.

Now, using, for instance, equation (2.3) in [44], we easily obtain∣∣∣∣ 1

1 + u′
kMkuk

∣∣∣∣ ≤ |z|
v

.

On the other hand, it is clear that Im[β(z)] ≤ 0. As a matter of fact, the eigenvalues
of Mk all have positive imaginary part [if z = u + iv, they are 1/(λj (B(k)) − u −
iv)]. Note, also, that |‖Mk|‖2 ≤ 1/v. According to our first remark, the imaginary
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part of 1 + u′
kMkuk is positive and the imaginary part of 1/(1 + u′

kMkuk) is nega-
tive. Hence, the imaginary part of the eigenvalues of β(z)T − z Idd is smaller than
−v (T is positive semidefinite) and their modulus is greater than v. Therefore,∣∣∥∥Re

[(
β(z)T − z Idd

)−1]∣∣∥∥
2 ≤ 1

v
and

∣∣∥∥Im
[(

β(z)T − z Idd

)−1]∣∣∥∥
2 ≤ 1

v
.

Now, β(z) depends on all the uk’s in a nontrivial way, so we cannot apply our
concentration results directly. Also, recall that T is positive semidefinite, so we
can write T = ∑d

i=1 τieie
′
i , with τi ≥ 0. So, if b(z) is another complex number, we

have

(
β(z)T − z Idd

)−1 − (
b(z)T − z Idd

)−1 =
d∑

i=1

τi(b(z) − β(z))

(τib(z) − z)(τib(z) − z)
eie

′
i

and

T m[(β(z)T − z Idd

)−1 − (
b(z)T − z Idd

)−1]
T l

=
d∑

i=1

τ l+m+1
i (b(z) − β(z))

(τib(z) − z)(τib(z) − z)
eie

′
i .

Therefore, if b(z) is such that |β(z) − b(z)| ≤ ε and Im[b(z)] ≤ 0, we have,∣∣∥∥(β(z)T − z Idd

)−1 − (
b(z)T − z Idd

)−1∣∣∥∥
2 ≤ ε|‖T |‖2

v2 ,(4)

∣∣u′
kMk

(
β(z)T − z Idd

)−1
uk − u′

kMk

(
b(z)T − z Idd

)−1
uk

∣∣ ≤ 1

v3 ε|‖T |‖2‖uk‖2
2(5)

and ∣∣∣∣1

d
trace

(
T lMk

[(
β(z)T − z Idd

)−1 − (
b(z)T − z Idd

)−1])∣∣∣∣ ≤ 4|‖T |‖l+1
2 ε

v3 ,(6)

by decomposing the matrices appearing in the trace into real and imaginary parts,
which are both symmetric in this instance, and using a well-known result (see, e.g.
[2], Theorem A.4.7) on bounds of the trace of a product of symmetric matrices.

Consider

bn(z) = θn

n

n∑
k=1

λ2
k

1 + ξnλ
2
kE(�1(z))

with �1(z) = 1

d
trace

(
T (Bn − z Idp)−1).

Since T is positive semidefinite, it is clear that Im[bn(z)] ≤ 0. Our aim in the
next few lines is to show that |bn(z) − β(z)| is small. Recall that, according to
Lemma 2.6 in [45], we have, for any Hermitian matrix A,∣∣trace

(
(Mk − Mn)A

)∣∣ ≤ |‖A|‖2

v
.
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Applying Corollary 4, page 2387, to ri and the random matrices �′Mi�, whose
norms are bounded by K = log(p)/v, we see that, for any fixed ε > 0 and δ > 0,

max
i

∣∣∣∣1

d
r ′
i�

′Mi�ri − E(�1(z))

∣∣∣∣ ≤ ε
(logp)(3/2+1/b+δ)

v
√

pc(p)θn

� εγp a.s.

When this happens, we have, if we let αk = r ′
k�

′Mk�rk/d = u′
kMkuk/(ξnλ

2
k)

and α = E(�1(z)),

|β(z) − bn(z)| =
∣∣∣∣∣θn

n

n∑
k=1

(
λ2

k

1 + ξnλ
2
kαk

− λ2
k

1 + ξnλ
2
kα

)∣∣∣∣∣
≤ ξnθn

n

n∑
k=1

λ4
kεγp

|(1 + ξnλ
2
kαk)(1 + ξnλ

2
kα)| ≤ ξnθnε|z|2γp

nv2

n∑
k=1

λ4
k.

So, finally, since |λk| ≤ √
log(p), we have, for C(z) independent of p,

|β(z) − bn(z)| ≤ C(z)ε
(logp)4+1/b

√
pc(p)

a.s.

Therefore, since |‖T |‖2 ≤ (logp)2, using equation (4), we have∣∣∣∣∫ dH̃d(τ )

β(z)τ − z
− dH̃d(τ )

bn(z)τ − z

∣∣∣∣ ≤ ε
ξnθn|z|2γp(logp)2

nv2

n∑
k=1

λ4
k

≤ ε
ξnθn|z|2γp

v2 (logp)4 → 0 a.s.

Similarly, using our concentration bounds from Corollary 4 applied to[
u′

kMk

(
bn(z)T − z Idd

)−1
uk/λ

2
k − θn

n
trace

((
bn(z)T − z Idd

)−1
T Mn

)]
,

we see that a.s.

max
1≤k≤p

∣∣∣∣[u′
kMk

(
bn(z)T − z Idd

)−1
uk/λ

2
k − θn

n
trace

((
bn(z)T − z Idd

)−1
T Mn

)]∣∣∣∣
≤ εξnγp

v

and therefore

|�(bn(z))| �
∣∣∣∣∣1

d

n∑
k=1

1

1 + u′
kMkuk

[
u′

kMk

(
bn(z)T − z Idd

)−1
uk

− θn

n
λ2

k trace
((

bn(z)T − z Idd

)−1
T Mn

)]∣∣∣∣∣(7)

≤ Cεγp

|z|
v2

ξn

d

n∑
k=1

λ2
k → 0 a.s.
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We now need to show that |�(β(z))| tends to 0 almost surely. To do so, we study
|�(β(z)) − �(bn(z))|. Using equation (6), we have∣∣∣∣∣1

d

n∑
k=1

λ2
k

1 + u′
kMkuk

[
θn

n
trace

((
β(z)T − z Idd

)−1
T Mn

)

− θn

n
trace

((
bn(z)T − z Idd

)−1
T Mn

)]∣∣∣∣∣
≤ θn

4|‖T |‖2
2|bn(z) − β(z)||z|

v4

1

n

n∑
k=1

λ2
k → 0 a.s.

On the other hand, using equation (5), we find that∣∣∣∣∣1

d

n∑
k=1

1

1 + u′
kMkuk

[
u′

kMk

(
bn(z)T − z Idd

)−1
uk − u′

kMk

(
β(z)T − z Idd

)−1
uk

]∣∣∣∣∣
≤ |bn(z) − β(z)||z|

v4 |‖T |‖2
1

n

n∑
k=1

λ2
k

1

p
r ′
k�

′�rk.

Applying Lemma 8, with the matrix M = �′�, whose operator norm is bounded
by log(p), we get, as above, that

max
k

∣∣∣∣ 1

p
r ′
k�

′�rk − 1

p
trace(T )

∣∣∣∣ ≤ ε
(logp)3/2+1/b+δ

√
pc(p)

a.s.

Because |‖T |‖2 ≤ (logp)2, we conclude that a.s.

max
k

∣∣∣∣ 1

p
r ′
k��′rk

∣∣∣∣ ≤ 3(logp)2.

Therefore,

|bn(z) − β(z)||z|
v4 |‖T |‖2

1

n

n∑
k=1

λ2
k

1

p
r ′
k�

′�rk → 0 a.s.

Hence,

|�(β(z))| ≤ |�(β(z)) − �(bn(z))| + |�(bn(z))| → 0 a.s.

Since, by equation (3),

�(β(z)) =
∫

dH̃d(τ )

β(z)τ − z
− mn(z),

we can finally conclude that∫
dH̃d(τ )

bn(z)τ − z
− mn(z) → 0 a.s.
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This corresponds to the first part of the theorem. Now, note that Im[bn(z)] ≤ 0
and therefore |1/(bn(z)τ − z)| ≤ 1/v. Because

∫ |dH̃d(τ ) − dHd(τ)| → 0, we
conclude that ∫

dHd(τ)

bn(z)τ − z
− mn(z) → 0 a.s.

To get to the second part of the theorem, we instead consider

T
(
β(z)T − z Idd

)−1 − T (Bn − z Idd)−1.

Taking traces and dividing by d , we get∫
τ dH̃d(τ )

τβ(z) − z
− 1

d
trace

(
T (Bn − z Idd)−1).

To control this quantity, we can use the same expansions we used before, every-
where replacing (β(z)T − z Idd)−1 by T (β(z)T − z Idd)−1. This has the effect of
multiplying the upper bounds by |‖T |‖2, which, under our assumptions, is bounded
by (logp)2. So, we conclude that∫

τ dH̃d(τ )

τbn(z) − z
− �1(z) → 0 a.s.

Now, the result we obtained using Azuma’s inequality shows clearly (see Re-
mark 1) that

�1(z) − E(�1(z)) → 0 a.s.

Letting wn(z) = E(�1(z)), we have shown that⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

τ dH̃d(τ )

τ
∫

θnλ2 dν̃n(λ)/(1 + ξnλ2wn(z)) − z
− wn(z) → 0 a.s. and∫

dH̃d(τ )

τ
∫

θnλ2 dν̃n(λ)/(1 + ξnλ2wn(z)) − z
− mn(z) → 0 a.s.

(8)

• Subsequence argument to reach the conclusion of Theorem 2
We now need to turn to technical arguments to get from the statement of equa-

tion 8 to that of Theorem 2. Because of our assumption that
∫

τ dHd(τ) < K for
all d (or p, which is equivalent), with K fixed and independent of d , we see that
|wn(z)| ≤ trace(T )/(dv) < K/v. So, at fixed z, wn(z) is bounded. From this se-
quence, let us extract a convergent subsequence wm(n)(z), or wm for short, that
converges to w. Through tightness arguments (see below), we see that w ∈ C

+.
We will now show that w(z) satisfies∫

τ dH(τ)

τ
∫

θλ2 dν(λ)/(1 + ξλ2w(z)) − z
− w(z) = 0

and that there is a unique solution to this equation in C
+. Let bm(z) = ∫

θm ×
λ2 dν̃m(λ)/(1 + ξmλ2wm(z)). We first show that bm → b = ∫

θλ2 dν(λ)/(1 +
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ξλ2w(z)). To do so, note that λ2/(1+wmλ2)−λ2/(1+wλ2) = (w−wm)λ4/[(1+
wλ2)(1 + wmλ2)]. Now, because wm → w ∈ C

+, their imaginary parts are uni-
formly bounded below by δ, from which we conclude that, if wm → w ∈ C

+,∫
λ2 dν̃m

1 + wmλ2 −
∫

λ2 dν̃m

1 + wλ2 → 0.

On the other hand, for w ∈ C
+, λ2/(1 +wλ2) is a bounded continuous function of

λ. Since νm ⇒ ν and, therefore, ν̃m ⇒ ν, we conclude that∫
λ2 dν̃m

1 + aλ2 →
∫

λ2 dν

1 + aλ2 .

Therefore, since θm → θ , bm(z) → b(z). Because we have assumed that ν 
= 0, we
have b(z) ∈ C

−. By essentially the same arguments, using the fact that | Im[bm(z)]|
is bounded below by δ and b(z) ∈ C

−, we conclude that∫
τ dH̃d(m(n))(τ )

τbm(n)(z) − z
−
∫

τ dH(τ)

τb(z) − z
→ 0.

In other words, ∫
τ dH(τ)

τb(z) − z
− w(z) = 0,

where

b(z) =
∫

θλ2 dν(λ)

1 + ξλ2w(z)
.

Similarly, we can show that along this subsequence,∫
dHd(τ)

τbm(z) − z
→

∫
dH(τ)

τb(z) − z

and so we also get the first equation in Theorem 2.
• Uniqueness of possible limit
We now prove that there is a unique solution in C

+ to the equation character-
izing w, the only question remaining to tackle being uniqueness. To do so, we
employ an argument similar to that given in [45], although the details are slightly
different.

Suppose we have two solutions in C
+ to the equation characterizing w(z). Let

us call them w1 and w2, where b1 and b2 are the corresponding b’s. We have

w1 − w2 =
∫ (

τ

τb1 − z
− τ

τb2 − z

)
dH(τ)

= (b2 − b1)

∫
τ 2

(τb1 − z)(τb2 − z)
dH(τ)
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= θ(w1 − w2)

∫
λ4ξ dν(λ)

(1 + ξλ2w1(z))(1 + ξλ2w2(z))

×
∫

τ 2

(τb1 − z)(τb2 − z)
dH(τ).

Let us call f the quantity multiplying w1 − w2 in the previous equation. We
want to show that |f | < 1. As in [45], using Hölder’s inequality, we have, given
that θ > 0,

|f | ≤
(
θ

∫
λ4ξ dν(λ)

|1 + ξλ2w1(z)|2
∫

τ 2

|τb1 − z|2 dH(τ)

)1/2

×
(
θ

∫
λ4ξ dν(λ)

|1 + ξλ2w2(z)|2
∫

τ 2

|τb2 − z|2 dH(τ)

)1/2

.

Let us write w1 = a + ic, z = u+ iv and b1 = α − iγ . By writing the definition of
b1 in terms of w1, we see immediately that

γ = c

∫
θξλ4

|1 + ξλ2w1|2 dν(λ),

so
∫ θξλ4

|1+ξλ2w1|2 dν(λ) = − Im[b1]/ Im[w1]. Since ν 
= 0 by our assumptions, we
see that γ > 0. On the other hand, using the definition of w1 in terms of b1, we see
that

Im[w1] =
∫

− Im[b1] τ 2

|τb1 − z|2 dH(τ) + Im[z]
∫

τ

|τb1 − z|2 dH(τ)

and, therefore, Im[w1] > − Im[b1] ∫ τ 2

|τb1−z|2 dH(τ) since H 
= 0.
Hence, (∫

θλ4ξ dν(λ)

|1 + ξλ2w1(z)|2
∫

τ 2

|τb1 − z|2 dH(τ)

)1/2

< 1

and |f | < 1. We conclude that w2 = w1, so there is at most one solution to the
equation characterizing w.

• Tightness of Bn and consequences for w

Finally, we need to show that the spectral distribution FBn is tight a.s. and
deduce consequences for w. It is shown (via Lemma 2.3) in [45] that if Bn =
T

1/2
n Y ∗

n YnT
1/2
n , if the spectral distributions of the Tn’s form a tight sequence and

so do the spectral distributions of the Y ∗
n Yn’s, then FBn form a tight sequence. We

note that in our case Bn = �R∗
nD2

nRn�
′/n, which, up to a number of zeros, has the

same eigenvalues as S1/2R∗
nD2

nRnS
1/2/n; we temporarily denote by Rn the matrix

containing our vectors ri . So, all we have to show is that FR∗
nD2

nRn/n forms a tight
sequence. Note that our assumption on the convergence of the spectral distribution
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of the λ’s implies that the spectral distributions of the D2
n’s form a tight sequence.

So, all we need do in order to conclude is to show that FR∗
nRn/n also forms a tight

sequence. But we showed this in Corollary 5. So, FBn forms a tight sequence, a.s.
Recall that when trace(�)/p is uniformly bounded by K , we showed in Corol-
lary 5 that a.s. FR∗

nRn/n([M,∞)) ≤ (K + 1)/M . So, for any ε, we can find Mε

such that FBn[Mε,∞) < ε, a.s. Using the second inequality in Lemma 2.3 in [45]
and the fact that H and ν are deterministic, as well as the fact that if Xn ⇒ X and
C is a closed set, lim supP(Xn ∈ C) ≤ P(X ∈ C), we see that Mε can be chosen
uniformly in ω.

We now want to show that w ∈ C
+; to do so, we will show that a.s., Im[wn]

is bounded away from zero. Note that Im[(Bn − z Id)−1] is a symmetric matrix.
Its eigenvalues, which we denote by ak , are, if lk denote the eigenvalues of Bn,
v/((lk − u)2 + v2) ≥ v/(2(l2

k + u2) + v2). Assume that a1 ≥ a2 ≥ · · · ≥ ad . Using
Theorem A.4.7 in [2], we see that, if we denote by τi the decreasingly ordered
eigenvalues of T ,

Im[�1(z)] = Im
[

1

d
trace

(
T (Bn − z Idp)−1)] ≥ 1

d

d∑
i=1

τiad−i+1.

Now, all we need to show is that a.s. a fixed nonzero proportion of τiad−i stay
bounded away from 0. Because H 
= 0, we can find η such that H(η,∞) > ε for
some ε > 0. Let us choose such an ε 
= 0. In particular, the proportion of indices
for which τi > η is a.s. greater than ε because lim infHd(η,∞) ≥ H(η,∞), a.s.
For this ε, we can find mε < ∞ such that FBn[0,mε] ≥ 1 − ε/2 a.s., from our
arguments above. So, the proportion of i’s such that ad−i+1 ≥ v/(2(m2

ε + u2) +
v2) is greater than 1 − ε/2. So, the proportion of i’s for which both τi > η and
ad−i+1 ≥ v/(2(m2

ε + u2) + v2) must be greater than ε/2, a.s. Hence, Im[�1(z)] ≥
δ > 0, a.s. Now, we saw that wn(z) = E(�1(z)) is such that wn(z) − �1(z) → 0
a.s. Hence, Im[wn(z)] ≥ δ > 0 a.s. and we can conclude that w is in C

+. So,
the subsequence argument given above is valid and we can go from the result of
equation (8) to the main result of Theorem 2.

So, using the connection between pointwise convergence of Stieltjes transforms
(see [22]) and vague convergence, we have shown that the spectral distribution of
Bn converges vaguely a.s. to a nonrandom distribution, which is uniquely char-
acterized by the system of equations described in Theorem 2. The a.s. tightness
result we obtained for FBn ensures that the limiting spectral distribution of Bn is a
probability measure and, hence, we have a.s. weak convergence, as announced in
Theorem 2. This completes the proof.

4. Conclusion. We have shown that the concentration of measure phenom-
enon can be seen as an essential tool in the understanding of the behavior of the
limiting spectral distributions of a number of random matrix models.
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Motivated by applications, we have used one aspect of this phenomenon to
deduce spectral properties of sample correlation matrices from the correspond-
ing properties for sample covariance matrices. On the other hand, for more com-
plicated models, we have generalized known results about random covariance-
type matrices to sample covariance matrices computed from elliptically distrib-
uted data, a type of assumption that is popular in financial modeling and, further,
to generalized elliptically distributed data. We have done this almost entirely from
concentration properties of certain quadratic forms. An interesting aspect of the
proof is that it leads to new results for data coming from distributions for which
the dependence between entries of the data vector cannot be broken up in a lin-
ear fashion. The concentration approach also highlights the fact that data vectors
coming from a distribution having the dimension-free concentration property we
used repeatedly have, after proper normalization, almost the same norm and are
almost orthogonal to one another (in concrete terms, this remark applies to models
considered in Theorems 1 and 2 when λi = 1). Since this peculiar geometric fea-
ture may not be present in data sets to be analyzed, practitioners should probably
perform corresponding diagnostic checks before relying on random matrix results
of the type discussed in this and other papers.

Interestingly, in all of the models considered, the results tell us that only the
covariance or the correlation between the entries of the data vector matters and the
more complicated dependence structure is irrelevant as far as limiting distributions
of eigenvalues are concerned.

APPENDIX

On the covariance matrix of data distributed according to a Gaussian cop-
ula. The concentration results we developed in Section 3.2 require the covariance
matrices of the data at stake to be bounded in operator norm by log(p). To be able
to apply the results to data distributed according to a Gaussian copula, we therefore
need to show that this is the case. We have the following fact.

FACT 2. Suppose r is distributed according to a Gaussian copula with corre-
sponding correlation matrix R. Then, if � is the covariance matrix of r , we have

|‖�|‖2 ≤ 1

2π

(|‖R|‖2/2 + 4|‖R|‖2
2(π/6 − 1/2)

)
.

PROOF. Recall that if r is distributed according to a Gaussian copula with
corresponding correlation matrix R, r can be generated in the following way: draw
v according to a multivariate normal N (0,R). Because R is a correlation matrix,
vi , the ith entry of v is N (0,1). Now, calling � the c.d.f. of the standard normal
distribution, ri = �(vi).
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We also recall the standard fact (see [37], Definition 5.28, Proposition 5.29 and
Theorem 5.36) that

�(i, j) = cov(ri, rj ) = 1

2π
arcsin(Ri,j /2).

Note that |Ri,j | ≤ 1. Recall the series expansion of arcsin(x), valid for x < 1:

arcsin(x) =
∞∑

n=0

unx
2n+1, with un = (2n)!

4n(n!)2(2n + 1)
.

Denote by E ◦ M the Hadamard (i.e. entrywise) product of matrices E and M . In
[15], it is shown that if M has nonnegative entries, and M and E are symmetric,
then

|‖E ◦ M|‖2 ≤ max
i,j

(|Ei,j |)|‖M|‖2.

Call g(R/2) the matrix with entries arcsin(Ri,j /2). Then

g(R/2) = R

2
+

∞∑
n=1

un

[
R

2

]◦2n−1

◦
[
R

2

]◦2

,

where A◦n is the nth Hadamard power (i.e. entrywise) of matrix A. Now
maxi,j |Ri,j /2| ≤ 1/2, so

max
i,j

|(Ri,j /2)2n−1| ≤ 1

22n−1 .

Now, using e.g. [7], Problem I.6.13, we have

|‖R ◦ R|‖2 ≤ |‖R|‖2
2.

We therefore have∣∣∣∣∥∥∥∥g(R

2

)∣∣∣∣∥∥∥∥
2
≤ |‖R|‖2

2
+

∞∑
n=1

un

1

22n−1 |‖R|‖2
2

≤ |‖R|‖2

2
+ 4|‖R|‖2

2

∞∑
n=1

un

1

22n+1

≤ |‖R|‖2

2
+ 4|‖R|‖2

2
(
arcsin(1/2) − 1/2

)
.

The result follows since arcsin(1/2) = π/6. �
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