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Abstract

Concentration-of-measure inequalities are studied in order to gain an

understanding on the fluctuations of complicated random objects.

These inequalities have been considerably developed during the last

four decades, playing a significant role in various fields which include

probability theory, functional analysis, geometry, high-dimensional

statistics, information theory, learning theory, statistical physics, and

theoretical computer science.

This monograph is focused on several key modern mathematical

tools which are used for the derivation of concentration inequalities, on

their links to information theory, and a sample of their applications to

information theory, communications and coding. In addition to serving

as a survey, it also includes new recent results derived by the authors,

and new information-theoretic proofs of published results.

The first part of the monograph introduces classical concentration

inequalities for martingales, including some of their recent refinements

and extensions. The power and versatility of the martingale approach

is mainly exemplified in the context of coding theory, random graphs,

and codes defined on graphs and iterative decoding algorithms.

Its second part introduces the entropy method, an information-

theoretic approach for the derivation of concentration inequalities. The

basic ingredients of the entropy method are discussed in the context of

logarithmic Sobolev inequalities, which underlie the so-called functional

approach to concentration of measure, and then from a complementary

information-theoretic viewpoint which is based on transportation-cost

inequalities and probability in metric spaces. Representative results on

concentration for dependent random variables are briefly summarized,

with emphasis on their connections to the entropy method. We discuss

applications of the entropy method to information theory, including

strong converses, empirical distributions of good channel codes, and an

information-theoretic converse for concentration of measure.
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Introduction

1.1 An overview and a brief history

Concentration-of-measure inequalities provide upper bounds on the

probability that a random variable X deviates from its mean, median

or any other typical value x by a given amount. These inequalities

have been studied for several decades, with several fundamental and

substantial contributions. Very roughly speaking, the concentration of

measure phenomenon was stated by Talagrand in the following simple

way:

“A random variable that depends in a smooth way on many

independent random variables (but not too much on any of

them) is essentially constant” [1].

The exact meaning of such a statement needs to be clarified rigorously,

but it often means that such a random variable X concentrates around

x in a way that the probability of the event {|X − x| ≥ t}, for t > 0,

decays exponentially in t. Detailed treatments of the concentration of

measure phenomenon, including historical accounts, can be found, e.g.,

in [2, 3, 4, 5, 6, 7].

3



4 Introduction

Concentration-of-measure inequalities are studied in order to gain

an understanding on the fluctuations of complicated random objects.

These inequalities have been considerably developed during the last

four decades, playing a significant role in various fields which include

probability theory, functional analysis, geometry, high-dimensional

statistics, information theory, learning theory, statistical physics, and

theoretical computer science. Several techniques have been developed

so far to prove concentration of measure inequalities. These include:

• The martingale approach (see, e.g., [6, 8, 9], [10, Chapter 7],

[11, 12]), and its information-theoretic applications (see, e.g.,

[13] and references therein, [14]). This methodology is covered

in Chapter 2, which is focused on concentration inequalities

for discrete-time martingales with bounded differences, as well

as on some of their applications in information theory, coding

and communications. A recent interesting avenue that follows

from the martingale-based concentration inequalities, presented

in Chapter 2, is their generalization to random matrices (see, e.g.,

[15, 16]).

• The entropy method and logarithmic Sobolev inequalities (see,

e.g., [3, Chapter 5], [4] and references therein). This methodology

and its remarkable links to information theory are considered in

Chapter 3.

• Transportation-cost inequalities that originated from information

theory (see, e.g., [3, Chapter 6], [17], and references therein). This

methodology, which is closely related to the entropy method and

log-Sobolev inequalities, is considered in Chapter 3.

• Talagrand’s inequalities for product measures (see, e.g., [1], [6,

Chapter 4], [7] and [18, Chapter 6]) and their information-

theoretic links [19]. These inequalities proved to be very useful in

combinatorial applications (such as the study of common and/or

increasing subsequences), in statistical physics, and in functional

analysis. We do not discuss Talagrand’s inequalities in detail.
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• Stein’s method (or the method of exchangeable pairs) has been

recently used to prove concentration inequalities (see, e.g., [20,

21, 22, 23, 24, 25, 26, 27, 28]).

• Concentration inequalities that follow from rigorous methods in

statistical physics (see, e.g., [29, 30, 31, 32, 33, 34, 35, 36]).

• The so-called reverse Lyapunov inequalities were recently used

to derive concentration inequalities for multi-dimensional log-

concave distributions [37] (see also a related work in [38]).

The concentration inequalities in [37] imply an extension of the

Shannon–McMillan–Breiman strong ergodic theorem to the class

of discrete-time processes with log-concave marginals.

The last three items are not addressed in this monograph. We now

give a synopsis of some of the main ideas underlying the martingale

approach (Chapter 2) and the entropy method (Chapter 3).

The Azuma–Hoeffding inequality, which is introduced in Chapter 2,

is a useful tool for establishing concentration results for discrete-time

bounded-difference martingales. This inequality is due to Hoeffding [9],

who proved it for sums of independent and bounded random variables,

and to Azuma [8], who extended it to bounded-difference martingales.

This inequality was introduced into the computer science literature by

Shamir and Spencer [39], proving the concentration of the chromatic

number1 for ensembles of random graphs. More specifically, they proved

in [39] a concentration result of the chromatic number for the Erdös–

Rényi ensemble of random graphs, characterized by the property that

any pair of vertices in this graph is, independently to all other pairs of

vertices, connected by an edge in probability p ∈ (0, 1). This approach

has been imported into coding theory in [40], [41] and [42], especially

for exploring concentration of measure phenomena pertaining to codes

defined on graphs (e.g., turbo and low-density parity-check codes) and

their iterative message-passing decoding algorithms. The last decade

has seen an ever-expanding use of the Azuma–Hoeffding inequality for

1The chromatic number of a graph is defined as the minimal number of colors
required to color all the vertices of this graph such that no two adjacent vertices
have the same color.
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proving concentration inequalities in coding theory (see, e.g., [13] and

references therein). All these concentration inequalities serve to justify

theoretically the ensemble approach to codes defined on graphs; much

stronger concentration of measure phenomena are, however, observed

in practice.

Let f : Rn → R be a function that has bounded differences, i.e.,

the value of f changes by a bounded amount whenever any of its n

input variables is changed while the others are held fixed. A common

method for proving concentration of such a function of n independent

random variables, around its expected value E[f ], revolves around the

so-called McDiarmid’s inequality or “independent bounded-differences

inequality” [6]. This inequality, introduced in Chapter 2, was originally

proved via the martingale approach [6]; although its proof has some

similarity to the proof of the Azuma–Hoeffding inequality, the bounded-

difference assumption on f that is used for the derivation of the former

inequality yields an improvement in the exponent by a factor of 4. Nice

applications of martingale-based concentration inequalities in discrete

mathematics and random graphs, based on the Azuma–Hoeffding and

McDiarmid inequalities, are exemplified in [6], [10], [13] and [18].

Although the martingale approach can be used to assert a large

variety of concentration of measure phenomena, as it was pointed out

in [1, p. 10] “for all its qualities, the martingale method has a great

drawback: it does not seem to yield results of optimal order in several

key situations. In particular, it seems unable to obtain even a weak

version of concentration of measure phenomenon in Gaussian space.”

Chapter 3 of this monograph focuses on a different set of techniques,

fundamentally rooted in information theory, which provide very strong

concentration inequalities. These techniques, commonly referred to as

the entropy method, have originated in the work of Michel Ledoux [43]

by finding a different route to a class of concentration inequalities for

product measures originally derived by Talagrand [7] using an ingenious

inductive technique. Specifically, Ledoux noticed that the well-known

Chernoff bounding technique, which bounds the deviation probability

of the form P(|X − x̄| > t), for an arbitrary t > 0, in terms of the

moment-generating function (MGF) E[exp(λX)], can be combined with
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the so-called logarithmic Sobolev inequalities, which can be used to

control the MGF in terms of the relative entropy.

One of the best known log-Sobolev inequalities, first referred to as

such by Leonard Gross [44], pertains to the standard n-dimensional

Gaussian measure on the Euclidean space R
n. This inequality gives an

upper bound on the relative entropy D(P∥Gn) between an arbitrary

probability distribution P on R
n and the standard Gaussian measure

Gn, expressed in terms of an “energy-like” quantity which is related

to the squared norm of the gradient of the density of P with respect

to Gn. Based on a clever analytic argument which Gross attributed to

an unpublished note by Ira Herbst, he used his Gaussian log-Sobolev

inequality to show that the logarithmic MGF Λ(λ) , lnE[exp(λU)] of

U = f(Xn), where Xn ∼ Gn and f : Rn → R is an arbitrary sufficiently

smooth function with ∥∇f∥ ≤ 1, can be bounded as Λ(λ) ≤ λ2/2.

This bound then yields the optimal Gaussian concentration inequality

P (|f(Xn) − E[f(Xn)]| > t) ≤ 2 exp
(−t2/2) for Xn ∼ Gn and t > 0.

It should be pointed out that the Gaussian log-Sobolev inequality has

a curious history, and it seems to have been discovered independently

in various equivalent forms by several people, e.g., by Stam [45] in the

context of information theory, and by Federbush [46] in the context of

mathematical quantum field theory. Through the work of Stam [45],

the Gaussian log-Sobolev inequality has been linked to several other

information-theoretic notions, such as the concavity of entropy power

[47, 48, 49, 50].

In a nutshell, the entropy method takes this successful idea and

applies it beyond the Gaussian case. In abstract terms, the log-Sobolev

inequalities are functional inequalities that relate the relative entropy

between an arbitrary distribution Q with respect to the distribution

P of interest to some “energy functional” of the density dQ
dP . If one is

interested in studying the concentration properties of some function

U = f(Z) with Z ∼ P , then the core of the entropy method consists in

applying an appropriate log-Sobolev inequality to the tilted probability

distributions P (λf) with dP (λf)

dP ∝ exp(λf) for λ ∈ R. Provided the

function f is well-behaved in the sense of having bounded “energy,” one

can use the Herbst argument to pass from the log-Sobolev inequality to
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the bound lnE[exp(λU)] ≤ cλ2/(2C), where c > 0 depends only on the

distribution P , while C > 0 is determined by the energy content of f .

While there is no general technique to derive log-Sobolev inequalities,

there are nevertheless some underlying principles that can be exploited

for that purpose. We discuss some of these principles in Chapter 3.

More information on log-Sobolev inequalities can be found in several

excellent monographs and lecture notes [3, 5, 51, 52, 53], as well as in

recent papers [54, 55, 56, 57, 58] and references therein.

Around the same time that Michel Ledoux introduced the entropy

method [43], Katalin Marton showed in a breakthrough paper [59]

that one can bypass functional inequalities and work directly on the

level of probability measures (see also [60], written by Marton in the

occasion of her 2013 Shannon Award lecture). More specifically, she

showed that Gaussian concentration bounds can be deduced from the

so-called transportation-cost inequalities. These inequalities, studied in

Section 3.4, relate information-theoretic measures, such as the relative

entropy, to a class of distances between probability measures on the

metric space where the random variables of interest are defined. These

so-called Wasserstein distances have been a subject of intense research

activity which play a prominent role in probability theory, statistics,

functional analysis, dynamical systems, partial differential equations,

statistical physics, differential geometry, and they have been also used

in information theory (see, e.g., [61, 62, 63, 64, 65]). A great deal of

information on the field of optimal transportation can be found in two

books by Cédric Villani — [66] offers a concise and fairly elementary

introduction, while the more recent book [67] is a lot more detailed

and encyclopedic. Various connections between optimal transportation,

concentration of measure, and information theory are also explored in

[17, 19, 68, 69, 70, 71, 72].

The first explicit invocation of concentration inequalities in an

information-theoretic context appears in the work of Ahlswede et

al. [73, 74]. These authors demonstrated that a delicate probabilistic

inequality, which was referred to as the “blowing up lemma”, and which

we now (thanks to the contributions by Marton [59, 75]) recognize as

a Gaussian concentration bound in the Hamming space, can be used
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to derive strong converses for a wide variety of information-theoretic

problems, including multi-terminal scenarios. The importance of sharp

concentration inequalities for characterizing fundamental limitations of

coding schemes in information theory is evident from the recent flurry

of activity on finite-blocklength analysis of source and channel codes

(see, e.g., [76, 77, 78, 79, 80, 81, 82, 83]). Thus, it is timely to revisit

the use of concentration-of-measure ideas in information theory from

a modern perspective. We hope that our treatment, which, above all,

aims to distill the core information-theoretic ideas underlying the study

of concentration of measure, will be helpful to graduate students and

researchers in information theory and related fields.

1.2 A reader’s guide

This monograph is focused on the interplay between concentration of

measure inequalities and information theory, and on applications of

concentration phenomena to problems related to information theory,

communications and coding. For this reason, it is primarily aimed at

researchers and graduate students working in information theory and

related fields. The necessary mathematical background is real analysis,

a first graduate course in probability theory and stochastic processes,

and elementary functional analysis. As a refresher textbook for this

mathematical background, the reader is referred, e.g., to [84].

Chapter 2 is focused on the derivation of concentration inequalities

for martingales, and the use of these inequalities in communication

and information-theoretic applications. This chapter has the following

structure: Section 2.1 lists key definitions and basic facts pertaining to

discrete-time sub/super-martingales, Section 2.2 provides the two basic

ingredients for the derivation of concentration inequalities by using

martingales, Section 2.3 introduces the Efron-Stein-Steele inequalities,

and Section 2.4 presents basic inequalities that form the basis of the

considered approach to concentration of measure. The concentration

inequalities in Section 2.4 include the celebrated Azuma–Hoeffding and

McDiarmid inequalities, and Section 2.5 is focused on the derivation

of refined versions of the former inequality. Section 2.6 discusses the
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connections of the concentration inequalities introduced in Section 2.5

to classical limit theorems in probability theory. Section 2.7 forms the

second part of Chapter 2, applying earlier concentration inequalities to

problems in information theory, communications and coding. A brief

summary of Chapter 2 is given in Section 2.8.

Chapter 3 on the entropy method, log-Sobolev and transportation-

cost inequalities is structured as follows: Section 3.1 introduces the

main ingredients of the entropy method, and it sets up the major

themes that recur throughout the chapter. Section 3.2 focuses on the

logarithmic Sobolev inequality for Gaussian measures, as well as on its

numerous links to information-theoretic ideas. The general scheme of

logarithmic Sobolev inequalities is introduced in Section 3.3, and then

applied to a variety of continuous and discrete examples, including an

alternative derivation of McDiarmid’s inequality that does not rely on

martingale methods. Thus, Sections 3.2 and 3.3 present an approach

to deriving concentration bounds based on functional inequalities. In

Section 3.4, concentration is examined through the lens of geometry

in probability spaces equipped with a metric. This viewpoint centers

around intrinsic properties of probability measures, and has received

a great deal of attention since the pioneering work of Marton [59, 75]

on transportation-cost inequalities. Although the focus in Chapter 3 is

mainly on concentration for product measures, Section 3.5 contains a

brief summary of results on concentration for functions of dependent

random variables, and discusses the connection between these results

and the information-theoretic machinery that has been the subject of

the chapter. Applications of concentration of measures to problems in

information theory are surveyed in Section 3.6, and finally Section 3.7

concludes with a brief summary.



2

Concentration Inequalities via the Martingale

Approach

This chapter introduces concentration inequalities for discrete-time

martingales with bounded differences, and it provides several of their

potential applications in information theory, digital communications

and coding. It introduces the basic concentration inequalities of Efron-

Stein-Steele, Azuma–Hoeffding, McDiarmid, and various refinements.

It then moves to applications, which include concentration for random

binary linear block codes, concentration for random regular bipartite

graphs, concentration for low-density parity-check (LDPC) codes, and

concentration for orthogonal-frequency-division-multiplexing (OFDM)

signals.

2.1 Discrete-time martingales

This section provides a brief review of martingales to set definitions

and notation.

Definition 2.1 (Discrete-time martingales). Consider a probability space

(Ω,F ,P). A sequence {Xi,Fi}n
i=0, n ∈ N, where the Xi’s are random

variables and the Fi’s are σ-algebras, is a discrete-time martingale if

the following conditions are satisfied:

11
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1. The Fi’s form a filtration, i.e., F0 ⊆ F1 ⊆ . . . ⊆ Fn ⊆ F ;

usually, F0 = {∅,Ω} and Fn is the full σ-algebra F .

2. Xi ∈ L
1(Ω,Fi,P) for every i ∈ {0, . . . , n}; this means that each

Xi is defined on the same sample space Ω, it is Fi-measurable,

and E[|Xi|] =
∫

Ω |Xi(ω)|P(dω) < ∞.

3. For all i ∈ {1, . . . , n}, the following equality holds almost surely:

Xi−1 = E[Xi|Fi−1]. (2.1.1)

In general, relations between random variables such as X = Y , X ≤ Y

or X ≥ Y are assumed to hold almost surely (a.s.).

Here are some useful facts about martingales.

Fact 1. Since {Fi}n
i=0 is a filtration, it follows from the tower property

for conditional expectations that

Xj = E[Xi|Fj ], ∀ i > j. (2.1.2)

Also E[Xi] = E
[
E[Xi|Fi−1]

]
= E[Xi−1], so, it follows from (2.1.2) that

the expectations of all Xi’s of a martingale sequence are equal to E[X0].

Note that, since Xi is Fi-measurable, (2.1.2) also holds for i = j.

Fact 2. It is possible to generate martingale sequences by the following

procedure: Given a random variable X ∈ L
1(Ω,F ,P) and an arbitrary

filtration {Fi}n
i=0, let

Xi = E[X|Fi], ∀ i ∈ {0, 1, . . . n}. (2.1.3)

Then, the sequence X0, X1, . . . , Xn forms a martingale (with respect

to the above filtration) since

1. The random variable Xi = E[X|Fi] is Fi-measurable, and

E[|Xi|] ≤ E[|X|] < ∞.

2. By assumption, {Fi}n
i=0 is a filtration.

3. For every i ∈ {1, . . . , n}
E[Xi|Fi−1] = E

[
E[X|Fi]|Fi−1

]
(2.1.4)

= E[X|Fi−1] (since Fi−1 ⊆ Fi) (2.1.5)

= Xi−1. (2.1.6)
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In the particular case where F0 = {∅,Ω} and Fn = F , we see that

X0, X1, . . . , Xn is a martingale sequence with

X0 = E[X|F0] = E[X], Xn = E[X|Fn] = X. (2.1.7)

That is, we get a martingale sequence where the first element is the

expected value of X and the last element is X itself (a.s.). This has

the following interpretation: at the beginning, we don’t know anything

about X, so we estimate it by its expected value. At each step, more

and more information about the random variable X is revealed, until

its value is known almost surely.

Example 2.1. Let U1, . . . , Un be independent random variables which

are defined on a common probability space (Ω,F ,P), and assume that

E[Uk] = 0 and E[|Uk|] < ∞ for every k. Let us define

Xk =
k∑

j=1

Uj , ∀ k ∈ {1, . . . , n} (2.1.8)

with X0 = 0. Define the natural filtration where F0 = {∅,Ω}, and

Fk = σ(X1, . . . , Xk) (2.1.9)

= σ(U1, . . . , Uk), ∀ k ∈ {1, . . . , n}. (2.1.10)

Note that Fk = σ(X1, . . . , Xk) denotes the minimal σ-algebra that

includes all the sets of the form

D(α1, . . . , αk) =
{
ω ∈ Ω: X1(ω) ≤ α1, . . . , Xk(ω) ≤ αk

}
(2.1.11)

where αj ∈ R ∪ {−∞,+∞} for j ∈ {1, . . . , k}. It is easy to verify

that {Xk,Fk}n
k=0 is a martingale sequence; this implies that all the

concentration inequalities that apply to discrete-time martingales (like

those introduced in this chapter) can be particularized to concentration

inequalities for sums of independent random variables.

If the equality in (2.1.1) is relaxed, we obtain sub- and super-

martingales. More precisely, to define sub- and super-martingales, we

keep the first two conditions in Definition 2.1, and (2.1.1) is replaced

by one of the following:
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• E[Xi|Fi−1] ≥ Xi−1 holds a.s. for sub-martingales.

• E[Xi|Fi−1] ≤ Xi−1 holds a.s. for super-martingales.

From the tower property for conditional expectations, it follows that

E[Xi|Fj ] ≥ Xj , ∀ i > j (2.1.12)

for sub-martingales, and

E[Xi|Fj ] ≤ Xj , ∀ i > j (2.1.13)

for super-martingales. By taking expectations on both sides of (2.1.12)

or (2.1.13), it follows that the expectations of the terms of a sub/super-

martingale form, respectively, a monotonically increasing/decreasing

sequence. Clearly, every random process that is both a sub- and super-

martingale is a martingale, and vice versa. Furthermore, {Xi,Fi} is

a sub-martingale if and only if {−Xi,Fi} is a super-martingale. The

following properties are direct consequences of Jensen’s inequality for

conditional expectations.

Theorem 2.1.1. The following holds for mappings of martingales or

sub/ super martingales:

• If {Xi,Fi} is a martingale, h is a convex (concave) function and

E
[|h(Xi)|

]
< ∞, then {h(Xi),Fi} is a sub- (super-) martingale.

• If {Xi,Fi} is a super-martingale, h is a monotonically increasing

and concave function, and E
[|h(Xi)|

]
< ∞, then {h(Xi),Fi} is

a super-martingale. Similarly, if {Xi,Fi} is a sub-martingale, h

is a monotonically increasing and convex function, and as before

E
[|h(Xi)|

]
< ∞, then {h(Xi),Fi} is a sub-martingale.

Example 2.2. The following are special cases of Theorem 2.1.1:

• If {Xi,Fi} is a martingale, then {|Xi|,Fi} is a sub-martingale.

• If {Xi,Fi} is a martingale and Xi ∈ L
2(Ω,Fi,P), then {X2

i ,Fi}
is a sub-martingale.

• If {Xi,Fi} is a non-negative sub-martingale which satisfies that

Xi ∈ L
2(Ω,Fi,P) (i.e., for every i, the random variable Xi is

defined on the same sample space Ω, it is Fi-measurable, and

E[X2
i ] < ∞), then {X2

i ,Fi} is a sub-martingale.
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2.2 The main ingredients of the martingale method

We now turn to the main topic of the chapter, namely the martingale

approach to proving concentration inequalities, i.e., sharp bounds on

the deviation probabilities P (|U − EU | ≥ r) for all r ≥ 0, where U is

a real-valued random variable with some additional “structure" — for

instance, U may be a function of a large number n of independent

or weakly dependent random variables X1, . . . , Xn. In a nutshell, the

martingale approach has two basic ingredients:

1. The martingale decomposition — we construct a suitable

filtration {Fi}n
i=0 on the probability space (Ω,F ,P) that carries

U , where F0 = {∅,Ω} is the trivial σ-algebra, and Fn = F .

Then, we decompose the difference U − EU as

U − EU = E[U |Fn] − E[U |F0] (2.2.1)

=
n∑

i=1

(E[U |Fi] − E[U |Fi−1]) . (2.2.2)

The idea is to choose the σ-algebras {Fi} in such a way that the

differences ξi = E[U |Fi] −E[U |Fi−1] are bounded in some sense,

e.g., almost surely.

2. The Chernoff bound — using Markov’s inequality, the problem

of bounding the deviation probability P(|U−EU | ≥ r) is reduced

to the analysis of the logarithmic moment-generating function

Λ(t) , lnE[exp(tU)], t ∈ R. Moreover, exploiting the martingale

decomposition (2.2.1), we may write

Λ(t) = tE[U ] + lnE

[
n∏

i=1

exp(tξi)

]
, (2.2.3)

which allows us to focus on the behavior of individual terms

exp(tξi), i = 1, . . . , n. Now, the logarithmic moment-generating

function plays a key role in the theory of large deviations [85],

which can be thought of as a (mainly) asymptotic analysis of

the concentration of measure phenomenon. Thus, its prominent

appearance here is not entirely unexpected.
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There are more sophisticated variants of the martingale approach, some

of which we will have the occasion to see later on, but the above two

ingredients are a good starting point. In the remainder of this chapter,

we will elaborate on these ideas and examine their basic consequences.

2.3 Bounding the variance: Efron-Stein-Steele Inequalities

The basic idea behind the martingale method is to start with the Doob

martingale decomposition

Z − E[Z] =
n∑

k=1

ξk, (2.3.1)

where

ξk , E[Z|Xk] − E[Z|Xk−1] (2.3.2)

with

Xk , (X1, . . . , Xk) (2.3.3)

and to exploit any information about the sensitivity of f to local

changes in its arguments in order to control the sizes of the increments

ξk. The following inequality was first obtained in a restricted setting

by Efron and Stein [86], and it was then generalized by Steele [87].

Theorem 2.3.1 (Efron–Stein–Steele inequality). If Z = f(Xn) where

f is a real-valued function and X1, . . . , Xn are independent random

variables, then

Var[Z] ≤
n∑

k=1

E

[
Var[Z|Xk]

]
. (2.3.4)

where for k ∈ {1, . . . , n}
Xk , (X1, . . . , Xk−1, Xk+1, . . . , Xn). (2.3.5)

is the vector whose entries are X1, . . . , Xn with Xk being excluded.

Proof. From (2.3.1), we have

Var(Z) = E



(

n∑

k=1

ξk

)2

 =

n∑

k=1

E[ξ2
k] + 2

∑

l>k

E[ξl ξk]. (2.3.6)
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We exploit the fact that {ξk}n
k=1 in (2.3.2) is a martingale difference

sequence with respect to Xn, i.e., for all k ∈ {1, . . . , n}

E[ξk|Xk−1] = 0. (2.3.7)

Hence, for all l and k such that 1 ≤ k < l ≤ n, (2.3.2) and (2.3.7) yield

E[ξlξk] = E

[
E[ξlξk |X l−1]

]
(2.3.8)

= E

[
ξk E[ξl |X l−1]

]
(2.3.9)

= E[ξk · 0] = 0 (2.3.10)

which, from (2.3.6) and (2.3.8)–(2.3.10), imply that

Var[Z] =
n∑

k=1

E[ξ2
k]. (2.3.11)

The independence of X1, . . . , Xn implies that (2.3.2) can be rewritten

in the form

ξk = E

[
Z − E[Z|Xk] |Xk

]
(2.3.12)

and, from Jensen’s inequality,

ξ2
k ≤ E

[(
Z − E[Z|Xk]

)2 |Xk
]
. (2.3.13)

Using again the independence of X1, . . . , Xn yields

E[ξ2
k] ≤ E

[(
Z − E[Z|Xk]

)2]

= E

[
Var[Z|Xk]

]
, (2.3.14)

and substituting (2.3.14) into (2.3.11) yields (2.3.4).

The Efron–Stein–Steele inequality (2.3.4) is our first example of

tensorization: it upper-bounds the variance of Z = f(X1, . . . , Xn) by

the sum of the expected values of the conditional variances of Z given all

but one of the variables. In other words, we say that Var[f(X1, . . . , Xn)]

tensorizes. This fact has immediate useful consequences. For example,

we can use any convenient technique for upper-bounding variances to

control each term on the right-hand side of (2.3.11), and thus obtain

many useful variants of the Efron–Stein–Steele inequality:
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1. For every random variable U with a finite second moment,

Var[U ] = 1
2 E[(U − U ′)2] (2.3.15)

where U ′ is an i.i.d. copy of U (i.e., U and U ′ are i.i.d.). Thus, if

we let

Z ′
k = f(X1, . . . , Xk−1, X

′
k, Xk+1, . . . , Xn), (2.3.16)

where X ′
k is an i.i.d. copy of Xk, then Z and Z ′

k are i.i.d. given

Xk. This implies that

Var[Z|Xk] = 1
2 E

[
(Z − Z ′

k)2
∣∣Xk

]
(2.3.17)

for k ∈ {1, . . . , n}, yielding the following variant of (2.3.4):

Var[Z] ≤ 1
2

n∑

i=1

E[(Z − Z ′
k)2]. (2.3.18)

Inequality (2.3.18) is sharp: if Z =
∑n

k=1Xk, then

E[(Z − Z ′
k)2] = 2Var[Xk], (2.3.19)

and (2.3.18) holds with equality. This therefore shows that for

independent random variables X1, . . . , Xn, their sum is the least

concentrated among all functions of Xn.

2. For every random variable U with a finite second moment and

for all c ∈ R,

Var[U ] ≤ E[(U − c)2]. (2.3.20)

Thus, by conditioning on Xk, we let Zk = fk(Xk) for arbitrary

real-valued functions fk (with k ∈ {1, . . . , n}) of n − 1 variables

to obtain

Var[Z|Xk] ≤ E[(Z − Zk)2|Xk]. (2.3.21)

From (2.3.14), this yields another variant of (2.3.4):

Var[Z] ≤
n∑

i=1

E[(Z − Zk)2]. (2.3.22)



2.3. Bounding the variance: Efron-Stein-Steele Inequalities 19

3. Suppose we know that, by varying just one of the arguments of

f while holding all others fixed, we cannot change the value of

f by more than some bounded amount. More precisely, suppose

that there exist finite constants c1, . . . , cn ≥ 0, such that

sup
x
f(x1, . . . , xk−1, x, xk+1, . . . , xn)

− inf
x
f(x1, . . . , xk−1, x, xk+1, . . . , xn) ≤ ck (2.3.23)

for all k ∈ {1, . . . , n} and all x1, . . . , xk−1, xk+1, . . . , xn. Then, for

all k,

Var[Z|Xk] ≤ 1
4 c

2
k (2.3.24)

and therefore from (2.3.4) and (2.3.14)

Var[Z] ≤ 1
4

n∑

k=1

c2
k. (2.3.25)

Example 2.3 (Kernel Density Estimation). As an example of the use

of the Efron–Stein–Steele inequalities, the kernel density estimation

(KDE) is considered. It is a nonparametric procedure for estimating an

unknown probability density function (pdf) ϕ of a real-valued random

variable X, based on observing n i.i.d. samples X1, . . . , Xn drawn from

ϕ [88, Chap. 9]. A kernel is a function K : R → R
+ satisfying the

following conditions:

1. It is integrable and normalized:

∫ ∞

−∞
K(u)du = 1. (2.3.26)

2. It is an even function: K(u) = K(−u) for all u ∈ R.

3.

lim
h↓0

1

h
K

(
x− u

h

)
= δ(x− u), (2.3.27)

where δ denotes the Dirac delta function.
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The KDE is given by

ϕn(x) =
1

nhn

n∑

i=1

K

(
x−Xi

hn

)
, (2.3.28)

where hn > 0 is called the smoothing parameter. From the properties

of the kernel K, for each x ∈ R we have

E[ϕn(x)] =
1

hn

∫ ∞

−∞
K

(
x− u

hn

)
ϕ(u) du (2.3.29)

hn↓0−−−→ ϕ(x) (2.3.30)

where (2.3.30) follows from (2.3.27). Thus, we expect the KDE ϕn to

concentrate around the true pdf ϕ whenever hn ↓ 0. To quantify this,

let us examine the L1 error

Zn = f(X1, . . . , Xn) =

∫ ∞

−∞
|ϕn(x) − ϕ(x)| dx. (2.3.31)

A simple calculation shows that
∣∣f(x1, . . . , xk−1, xk, xk+1, . . . , xn) − f(x1, . . . , xk−1, x

′
k, xk+1, . . . , xn)

∣∣

≤ 1

nhn

∫ ∞

−∞

∣∣∣∣K
(
x− xk

hn

)
−K

(
x− x′

k

hn

)∣∣∣∣ dx (2.3.32)

≤ 1

nhn

[ ∫ ∞

−∞
K

(
x− xk

hn

)
dx+

∫ ∞

−∞
K

(
x− x′

k

hn

)
dx

]
(2.3.33)

=
2

n
(2.3.34)

for all x1, . . . , xk−1, xk, x
′
k, xk+1, . . . , xn ∈ R where (2.3.32) follows from

the triangle inequality and (2.3.28); (2.3.33) holds due to another use

of the triangle inequality, and (2.3.34) is due to (2.3.26). This implies

that the function f satisfies (2.3.23) with

c1 = . . . = cn =
2

n
, (2.3.35)

and, consequently, (2.3.25) and (2.3.35) yield

Var[Zn] ≤ 1

n
. (2.3.36)
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2.4 Basic concentration inequalities

2.4.1 The Chernoff bounding technique and the Hoeffding lemma

An ingredient of the martingale method is the well-known Chernoff

bounding technique1: Using Markov’s inequality, for every t > 0 and

r ∈ R,

P(U ≥ r) = P
(

exp(tU) ≥ exp(tr)
)

(2.4.1)

≤ exp(−tr)E[exp(tU)]. (2.4.2)

Equivalently, if we define the logarithmic moment generating function

Λ(t) , lnE[exp(tU)], ∀ t ∈ R, (2.4.3)

we can write

P(U ≥ r) ≤ exp
(
Λ(t) − tr

)
, ∀ t > 0. (2.4.4)

To bound the probability of the lower tail, P(U ≤ −r), we follow the

same steps, but with −U instead of U . Now the success of the whole

enterprize hinges on our ability to obtain tight upper bounds on Λ(t).

One of the basic tools available for that purpose is the following lemma

due to Hoeffding [9]:

Lemma 2.4.1 (Hoeffding). Let U ∈ R be a random variable, such that

U ∈ [a, b] a.s. for some finite a < b. Then, for every t ∈ R,

E
[
exp

(
t(U − EU)

)] ≤ exp
(

1
8 t

2(b− a)2
)
. (2.4.5)

Proof. For every p ∈ [0, 1] and λ ∈ R, let us define the function

Hp(λ) , ln
(
peλ(1−p) + (1 − p)e−λp

)
. (2.4.6)

Let ξ = U − EU , where ξ ∈ [a − EU, b − EU ]. Using the convexity of

1The name of H. Chernoff is associated with this technique because of his 1952
paper [89]; however, its roots go back to S.N. Bernstein’s 1927 textbook on the
theory of probability [90].
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the exponential function, we can write

exp(tξ)

= exp

(
U − a

b− a
· t(b− EU) +

b− U

b− a
· t(a− EU)

)
(2.4.7)

≤
(
U − a

b− a

)
exp

(
t(b− EU)

)
+

(
b− U

b− a

)
exp

(
t(a− EU)

)
. (2.4.8)

Taking expectations on both sides of (2.4.7) and (2.4.8) yields

E[exp(tξ)]

≤
(
EU − a

b− a

)
exp

(
t(b− EU)

)
+

(
b− EU

b− a

)
exp

(
t(a− EU)

)
(2.4.9)

= exp
(
Hp(λ)

)
(2.4.10)

where (2.4.10) holds in view of (2.4.6) with

p =
EU − a

b− a
and λ = t(b− a). (2.4.11)

In the following, we show that for every λ ∈ R

Hp(λ) ≤ 1
8λ

2, ∀ p ∈ [0, 1]. (2.4.12)

From (2.4.6), we have

Hp(λ) = −λp+ ln
(
peλ + (1 − p)

)
, (2.4.13)

H ′
p(λ) = −p+

peλ

peλ + 1 − p
, (2.4.14)

H ′′
p (λ) =

p(1 − p)eλ

(
peλ + (1 − p)

)2 . (2.4.15)

From (2.4.13)–(2.4.15), we have Hp(0) = H ′
p(0) = 0, and

H ′′
p (λ) ≤ 1

4 , ∀λ ∈ R, p ∈ [0, 1] (2.4.16)

where the last inequality holds since ab ≤ 1
4(a + b)2 for all a, b ∈ R.

Using a Taylor’s series expansion, there exists an intermediate value

θ ∈ [0, λ] (or θ ∈ [λ, 0] if t < 0) such that

Hp(λ) = Hp(0) +H ′
p(0)λ+ 1

2 H
′′
p (θ)λ2 (2.4.17)

so, consequently, (2.4.12) holds. Substituting (2.4.12) into (2.4.10) and

using the definitions of p and λ in (2.4.11), we get (2.4.5).
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2.4.2 The Azuma–Hoeffding inequality

The Azuma–Hoeffding inequality, stated in Theorem 2.4.2 below, is a

useful concentration inequality for bounded-difference martingales. It

was first proved by Hoeffding [9] for sums of independent and bounded

random variables, followed by a short note on the suitability of this

result in the generalized setting of a sum of bounded random variables

which forms a martingale. This inequality was independently obtained

four years later by Azuma [8] in this generalized setting of bounded-

difference martingales. The proof of the Azuma–Hoeffding inequality

that we present below is a nice concrete illustration of the general

approach outlined in Section 2.2. We will have several occasions to

revisit this proof in order to obtain various refinements of the Azuma–

Hoeffding inequality.

Theorem 2.4.2 (The Azuma–Hoeffding inequality). Let {Xk,Fk}n
k=0

be a real-valued martingale sequence. Suppose that there exist non-

negative reals d1, . . . , dn, such that |Xk − Xk−1| ≤ dk a.s. for all

k ∈ {1, . . . , n}. Then, for every r > 0,

P(|Xn −X0| ≥ r) ≤ 2 exp

(
− r2

2
∑n

k=1 d
2
k

)
. (2.4.18)

Proof. For an arbitrary r > 0,

P(|Xn −X0| ≥ r) = P(Xn −X0 ≥ r) + P(Xn −X0 ≤ −r). (2.4.19)

Let ξk , Xk − Xk−1 for k ∈ {1, . . . , n} denote the differences of the

martingale sequence. By hypothesis, |ξk| ≤ dk and E[ξk | Fk−1] = 0 a.s.

for every k ∈ {1, . . . , n}.

We now apply the Chernoff bounding technique:

P(Xn −X0 ≥ r)

= P

(
n∑

k=1

ξk ≥ r

)

≤ exp(−tr)E
[
exp

(
t

n∑

k=1

ξk

)]
, ∀ t ≥ 0. (2.4.20)
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By the law of iterated expectations, the expectation on the right side

of (2.4.20) is equal to

E

[
exp

(
t

n∑

k=1

ξk

)]

= E

[
E

[
exp

(
t

n∑

k=1

ξk

) ∣∣∣∣Fn−1

]]

= E

[
exp

(
t

n−1∑

k=1

ξk

)
E
[
exp(tξn) | Fn−1

]
]

(2.4.21)

where the last equality holds since Yn , exp
(
t
∑n−1

k=1 ξk

)
is Fn−1-

measurable. We now apply the Hoeffding lemma with the conditioning

on Fn−1. Indeed, we know that E[ξn|Fn−1] = 0 and that ξn ∈ [−dn, dn]

a.s., so Lemma 2.4.1 gives that

E
[
exp(tξn) | Fn−1

] ≤ exp

(
t2 d2

n

2

)
. (2.4.22)

Continuing recursively in a similar manner, we can bound the quantity

in (2.4.21) by

E

[
exp

(
t

n∑

k=1

ξk

)]
≤

n∏

k=1

exp

(
t2 d2

k

2

)
= exp

(
t2

2

n∑

k=1

d2
k

)
. (2.4.23)

Substituting this bound into (2.4.20), we obtain

P(Xn −X0 ≥ r) ≤ exp

(
−tr +

t2

2

n∑

k=1

d2
k

)
, ∀ t ≥ 0. (2.4.24)

Finally, choosing t = r
(∑n

k=1 d
2
k

)−1
to minimize the right side of

(2.4.24) yields

P(Xn −X0 ≥ r) ≤ exp

(
− r2

2
∑n

k=1 d
2
k

)
. (2.4.25)

Since {Xk,Fk} is a martingale with bounded differences, so is

{−Xk,Fk} (with the same bounds on its differences). This implies that

the same bound is also valid for the probability P(Xn−X0 ≤ −r). Using

these bounds in (2.4.19) completes the proof of Theorem 2.4.2.
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Remark 2.1. In [6, Theorem 3.13], the Azuma–Hoeffding inequality is

stated as follows: Let {Yk,Fk}n
k=0 be a martingale-difference sequence

with Y0 = 0 (i.e., Yk is Fk-measurable, E[|Yk|] < ∞ and E[Yk|Fk−1] = 0

a.s. for every k ∈ {1, . . . , n}). Assume that, for every k, there exist some

numbers ak, bk ∈ R such that, a.s., ak ≤ Yk ≤ bk. Then, for every r ≥ 0,

P

(∣∣∣∣
n∑

k=1

Yk

∣∣∣∣ ≥ r

)
≤ 2 exp

(
− 2r2

∑n
k=1(bk − ak)2

)
. (2.4.26)

Consider a real-valued martingale sequence {Xk,Fk}n
k=0 for which

there exist ak, bk ∈ R such that ak ≤ Xk − Xk−1 ≤ bk a.s. for

all k. Let Yk , Xk − Xk−1 for every k ∈ {1, . . . , n}. It is easy

to verify that {Yk,Fk}n
k=0 is a martingale-difference sequence. Since∑n

k=1 Yk = Xn −X0, it follows from (2.4.26) that

P (|Xn −X0| ≥ r) ≤ 2 exp

(
− 2r2

∑n
k=1(bk − ak)2

)
, ∀ r > 0.

Example 2.4. Let {Yi}∞
i=0 be i.i.d. binary random variables which take

values ±d with equal probability, where d > 0 is some constant. Let

Xk =
∑k

i=0 Yi for k ∈ {0, 1, . . . , }, and define the natural filtration

F0 ⊆ F1 ⊆ F2 . . . where

Fk = σ(Y0, . . . , Yk) , ∀ k ∈ {0, 1, . . . , }
is the σ-algebra generated by Y0, . . . , Yk. Note that {Xk,Fk}∞

k=0 is a

martingale sequence, and (a.s.) |Xk − Xk−1| = |Yk| = d, ∀ k ∈ N. It

therefore follows from the Azuma–Hoeffding inequality that

P(|Xn −X0| ≥ α
√
n) ≤ 2 exp

(
− α2

2d2

)
(2.4.27)

for every α ≥ 0 and n ∈ N. Since the random variables {Yi}∞
i=0 are i.i.d.

with zero mean and variance d2, the Central Limit Theorem (CLT) says

that 1√
n

(Xn −X0) = 1√
n

∑n
k=1 Yk converges in distribution to N (0, d2).

Therefore, for every α ≥ 0,

lim
n→∞

P(|Xn −X0| ≥ α
√
n) = 2Q

(α
d

)
(2.4.28)

where

Q(x) ,
1√
2π

∫ ∞

x
exp

(
− t2

2

)
dt, ∀x ∈ R (2.4.29)
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is the complementary standard Gaussian CDF (also known as the Q-

function), for which we have the following exponential upper and lower

bounds (see, e.g., [91, Section 3.3]):

1√
2π

x

1 + x2
· exp

(
−x2

2

)
< Q(x) <

1√
2π x

· exp

(
−x2

2

)
, ∀x > 0.

(2.4.30)

From (2.4.28) and (2.4.30), it follows that the exponent on the right

side of (2.4.27) is exact.

Example 2.5. Fix some γ ∈ (0, 1]. Let us generalize Example 2.4 above

by considering the case where the i.i.d. binary random variables {Yi}∞
i=0

have the probability law

P(Yi = +d) =
γ

1 + γ
, P(Yi = −γd) =

1

1 + γ
.

Therefore, each Yi has zero mean and variance σ2 = γd2. Define the

martingale sequence {Xk,Fk}∞
k=0 as in Example 2.4. By the CLT,

1√
n

(Xn − X0) = 1√
n

∑n
k=1 Yk converges weakly to N (0, γd2), so for

every α ≥ 0

lim
n→∞

P(|Xn −X0| ≥ α
√
n) = 2Q

(
α√
γ d

)
. (2.4.31)

From the bounds on the Q-function given in (2.4.30), it follows that

the right side of (2.4.31) scales exponentially like e
− α2

2γd2 . Hence, the

exponent in this example is improved by a factor of 1
γ in comparison

to the Azuma–Hoeffding inequality (which gives the same bound as in

Example 2.4 since |Xk −Xk−1| ≤ d for every k ∈ N). This indicates that

a refinement of the Azuma–Hoeffding inequality is possible if additional

information on the variance is available. Refinements of this sort were

studied extensively in the probability literature, and they are the focus

of Section 2.5.2.

2.4.3 McDiarmid’s inequality

A prominent application of the martingale approach is the derivation

of a powerful inequality due to McDiarmid (see [92, Theorem 3.1] or
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[93]), also known as the bounded-difference inequality. Let X be a set,

and let f : X n → R be a function that satisfies the bounded difference

assumption

sup
x1,...,xn,x′

i
∈X

∣∣∣f(x1, . . . , xi−1, xi, xi+1 . . . , xn)

− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

∣∣∣ ≤ di (2.4.32)

for every 1 ≤ i ≤ n, where d1, . . . , dn are arbitrary nonnegative real

constants. This is equivalent to saying that, for every given i, the vari-

ation of the function f with respect to its i-th coordinate is upper

bounded by di. (We assume that each argument of f takes values in

the same set X mainly for simplicity of presentation; an extension to

different domains for each variable is easy.)

Theorem 2.4.3 (McDiarmid’s inequality). Let {Xk}n
k=1 be independent

(though not necessarily i.i.d.) random variables taking values in a set

X . Consider a random variable U = f(Xn) where f : X n → R is a

measurable function that satisfies the bounded difference assumption

(2.4.32), and Xn , (X1, . . . , Xn). Then, for every r ≥ 0,

P
(∣∣U − EU

∣∣ ≥ r
) ≤ 2 exp

(
− 2r2

∑n
k=1 d

2
k

)
. (2.4.33)

Remark 2.2. One can use the Azuma–Hoeffding inequality for a deriva-

tion of a concentration inequality in the considered setting. However,

the following proof provides an improvement by a factor of 4 in the

exponent of the bound.

Proof. Let F0 = {∅,Ω} be the trivial σ-algebra, and for k ∈ {1, . . . , n}
let Fk = σ(X1, . . . , Xk) be the σ-algebra generated by X1, . . . , Xk. For

every k ∈ {1, . . . , n}, define

ξk , E
[
f(Xn) | Fk

]− E
[
f(Xn) | Fk−1

]
. (2.4.34)

Note that F0 ⊆ F1 . . . ⊆ Fn is a filtration, and

E
[
f(Xn) | F0

]
= E

[
f(Xn)

]
,

E
[
f(Xn) | Fn

]
= f(Xn). (2.4.35)
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From the last three equalities, it follows that

f(Xn) − E
[
f(Xn)

]
=

n∑

k=1

ξk.

In the following, we need a lemma:

Lemma 2.4.4. For every k ∈ {1, . . . , n}, the following properties hold

a.s.:

1. E[ξk | Fk−1] = 0 and ξk is Fk-measurable, so {ξk,Fk} is a

martingale-difference.

2. |ξk| ≤ dk.

3. ξk ∈ [Ak, Ak + dk] where Ak is a non-positive and Fk−1-measurable

random variable.

Proof. The random variable ξk, defined in (2.4.34), is Fk-measurable

since Fk−1 ⊆ Fk, and ξk is a difference of two functions where one is

Fk-measurable and the other is Fk−1-measurable. Furthermore, since

{Fi} is a filtration, it follows from (2.4.34) and the tower principle for

conditional expectations that E[ξk | Fk−1] = 0. This proves the first

item. The second item follows from the first and third items since the

latter two items imply that

Ak = E[Ak|Fk−1]

≤ E[ξk|Fk−1] = 0

≤ E[Ak + dk|Fk−1]

= Ak + dk (2.4.36)

where the first and last equalities hold since Ak is Fk−1-measurable.

Hence, 0 ∈ [Ak, Ak + dk] which implies that [Ak, Ak + dk] ⊆ [−dk, dk];

consequently, it follows from the third item that |ξk| ≤ dk.

To prove the third item, note that ξk = fk(X1, . . . , Xk) holds a.s.

for the Fk-measurable function fk : X k → R which is given by

fk(x1, . . . , xk)

= E
[
f(x1, . . . , xk, Xk+1, . . . , Xn)

]− E
[
f(x1, . . . , xk−1, Xk, . . . , Xn)

]
.

(2.4.37)
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Equality (2.4.37) holds due to the definition of {ξk} in (2.4.34) with

Fk = σ(X1, . . . , Xk) for k ∈ {1, . . . , n}, and the independence of the

random variables {Xk}n
k=1. Let us define, for every k ∈ {1, . . . , n},

Ak , inf
x∈X

fk(X1, . . . , Xk−1, x),

Bk , sup
x∈X

fk(X1, . . . , Xk−1, x)

which are Fk−1-measurable2, and by definition ξk ∈ [Ak, Bk] holds

almost surely. Furthermore, for every point (x1, . . . , xk−1) ∈ X k−1, we

obtain from (2.4.37) that

sup
x∈X

fk(x1, . . . , xk−1, x) − inf
x′∈X

fk(x1, . . . , xk−1, x
′)

= sup
x,x′∈X

{
fk(x1, . . . , xk−1, x) − fk(x1, . . . , xk−1, x

′)
}

= sup
x,x′∈X

{
E
[
f(x1, . . . , xk−1, x,Xk+1, . . . , Xn)]

− E
[
f(x1, . . . , xk−1, x

′, Xk+1, . . . , Xn)]
}

(2.4.38)

= sup
x,x′∈X

{
E
[
f(x1, . . . , xk−1, x,Xk+1, . . . , Xn)

− f(x1, . . . , xk−1, x
′, Xk+1, . . . , Xn)]

}

≤ dk (2.4.39)

where (2.4.38) follows from (2.4.37), and (2.4.39) follows from the

bounded-difference condition in (2.4.32). Hence, Bk − Ak ≤ dk a.s.,

which implies that ξk ∈ [Ak, Ak + dk]. Note that the third item of the

lemma gives better control on the range of ξk than what we had in

the proof of the Azuma–Hoeffding inequality (i.e., item 2 asserts that

ξk is contained in the interval [−dk, dk] which is twice longer than the

sub-interval [Ak, Ak + dk] in the third item, see (2.4.36)).

2This is certainly the case if X is countably infinite. For uncountable spaces, one
needs to introduce some regularity conditions to guarantee measurability of infima
and suprema. We choose not to dwell on these technicalities here to keep things
simple; the book by van der Vaart and Wellner [94] contains a thorough treatment
of these issues.
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We now proceed in the same manner as in the proof of the Azuma–

Hoeffding inequality. Specifically, for k ∈ {1, . . . , n}, ξk ∈ [Ak, Ak + dk]

a.s., where Ak is Fk−1-measurable, and E[ξk|Fk−1] = 0. Thus, we may

apply the Hoeffding lemma (see Lemma 2.4.1) with a conditioning on

Fk−1 to get

E

[
etξk

∣∣∣Fk−1

]
≤ exp

(
t2d2

k

8

)
. (2.4.40)

Similarly to the proof of the Azuma–Hoeffding inequality, by repeatedly

using the recursion in (2.4.21), the last inequality implies that

E

[
exp

(
t

n∑

k=1

ξk

)]
≤ exp

(
t2

8

n∑

k=1

d2
k

)
(2.4.41)

and, from (2.4.20),

P(f(Xn) − E[f(Xn)] ≥ r)

= P

(
n∑

k=1

ξk ≥ r

)

≤ exp

(
−tr +

t2

8

n∑

k=1

d2
k

)
, ∀ t ≥ 0. (2.4.42)

The choice t = 4r
(∑n

k=1 d
2
k

)−1
minimizes the expression in (2.4.42), so

P

(
f(Xn) − E[f(Xn)] ≥ r

)
≤ exp

(
− 2r2

∑n
k=1 d

2
k

)
. (2.4.43)

By replacing f with −f , it follows that this bound is also valid for the

probability P
(
f(Xn) − E[f(Xn)] ≤ −r), so

Pr
(∣∣∣f(Xn) − E[f(Xn)]

∣∣∣ ≥ r
)

= Pr
(
f(Xn) − E[f(Xn)] ≥ r

)
+ P

(
f(Xn) − E[f(Xn)] ≤ −r

)

≤ 2 exp

(
− 2r2

∑n
k=1 d

2
k

)

which gives the bound in (2.4.33).
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Example 2.6. Let g : {1, . . . , n} → {1, . . . , n} be a random where all nn

such possible functions are equally likely. Let L(g) denote the number

of elements y ∈ {1, . . . , n} such that g(x) ̸= y for all x ∈ {1, . . . , n}. By

the linearity of the expectation, we have

E[L(g)] = n

(
1 − 1

n

)n

, (2.4.44)

and consequently, it is easy to show that for every n ∈ N,

n− 1

e
< E[L(g)] <

n

e
. (2.4.45)

In [10, Theorem 7.5.1], the following concentration result for L(g)

around its expected value is introduced. Construct a martingale se-

quence {Xk,Fk}n
k=0 (see Fact 2) by

Xk = E[L(g) | Fk], ∀ k ∈ {0, . . . , n}
with the natural filtration Fk = σ

(
g(1), . . . , g(k)

)
which denotes the

σ-algebra that is generated by revealing the first k values of the random

function g, for k ∈ {1, . . . , n}, and F0 is the minimal σ-algebra that

includes the empty set and the sample space. By this construction,

X0 = E[L(g)] and Xn = L(g). Since a modification of one value of g

cannot change L(g) by more than 1, it follows that |Xk − Xk−1| ≤ 1

for every k ∈ {1, . . . , n}. From the Azuma-Hoeffding inequality and

(2.4.45), it follows that

P

(∣∣∣L(g) − n

e

∣∣∣ > α
√
n+ 1

)
≤ 2 exp

(
−α2

2

)
, ∀α > 0. (2.4.46)

The concentration result in (2.4.46), as given in [10, Theorem 7.5.1],

can be improved as follows: let f : {1, . . . , n}n → {1, . . . , n} be defined

by L(g) , f
(
g(1), . . . , g(n)

)
so, the function f maps the n-length vec-

tor (g(1), . . . , g(n)) to the number of elements y ∈ {1, . . . , n} where

g(x) ̸= y for every x ∈ {1, . . . , n}. Since by assumption g(1), . . . , g(n)

are independent random variables, the variation of f with respect to

each of its arguments (while all the other n−1 arguments of f are kept

fixed) is no more than 1. Consequently, from McDiarmid’s inequality,

P

(∣∣∣L(g) − n

e

∣∣∣ > α
√
n+ 1

)
≤ 2 exp

(−2α2), ∀α > 0, (2.4.47)
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which implies that the exponent of the concentration inequality (2.4.46)

is improved by a factor of 4.

Example 2.7. Let B be a normed space, and {vk}n
k=1 be n vectors in

B. Let {Θk}n
k=1 be independent Bernoulli

(
1
2

)
random variables with

P(Θk = 1) = P(Θk = −1) = 1
2 , and let X =

∥∥∥
∑n

k=1 Θk vk

∥∥∥. By setting

f(θ1, . . . , θn) =

∥∥∥∥∥

n∑

k=1

θk vk

∥∥∥∥∥ , ∀ θk ∈ {−1,+1}, k ∈ {1, . . . , n}

the variation of f with respect to its k-th argument is upper bounded

by 2∥vk∥. Consequently, since {Θk} are independent, it follows from

McDiarmid’s inequality that

P
(|X − E[X]| ≥ α

) ≤ 2 exp

(
− α2

2
∑n

k=1 ∥vk∥2

)
, ∀α > 0.

Remark 2.3. Due to the large applicability of McDiarmid’s inequality,

there is an interest to improve this inequality for sub-classes of Lipschitz

functions of independent random variables. An improvement of this

inequality for separately Lipschitz functions of independent random

variables has been recently derived in [95] (see also a recent follow-up

paper in [96]).

2.4.4 Hoeffding’s inequality and its improved versions

The following concentration inequality for sums of independent and

bounded random variables, originally due to Hoeffding [9, Theorem 2],

can be viewed as a special case of McDiarmid’s inequality:

Theorem 2.4.5 (Hoeffding’s inequality). Let {Uk}n
k=1 be a sequence of

independent and bounded random variables where, for k ∈ {1, . . . , n},

Uk ∈ [ak, bk] holds a.s. for some finite constants ak, bk ∈ R (ak < bk).

Let µn ,
∑n

k=1 E[Uk]. Then,

P

(∣∣∣∣∣

n∑

k=1

Uk − µn

∣∣∣∣∣ ≥ r

)
≤ 2 exp

(
− 2r2

∑n
k=1(bk − ak)2

)
, ∀ r ≥ 0.

(2.4.48)
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Proof. Apply Theorem 2.4.3 to the function

f(un) ,
n∑

k=1

uk, ∀un ∈
n∏

k=1

[ak, bk].

An alternative elementary proof combines the Chernoff bound with

Lemma 2.4.1 to get

P

(
n∑

k=1

Uk − µn ≥ r

)

= P

(
n∑

k=1

(
Uk − E[Uk]

) ≥ r

)

≤ exp(−tr)E
[
exp

(
t

n∑

k=1

(
Uk − E[Uk]

)
)]

∀ t ≥ 0

= exp(−tr)
n∏

k=1

E

[
exp

(
t
(
Uk − E[Uk]

))]

≤ exp(−tr)
n∏

k=1

exp

(
t2(bk − ak)2

8

)

= exp
(
−tr +

t2

8

n∑

k=1

(bk − ak)2
)
. (2.4.49)

Optimization of the right side of (2.4.49) with respect to t gives

t =
4r∑n

k=1(bk − ak)2

and its substitution into (2.4.49) yields that, for every r ≥ 0,

P

(
n∑

k=1

Uk − µn ≥ r

)
≤ exp

(
− 2r2

∑n
k=1(bk − ak)2

)
.

The same bound holds for P (
∑n

k=1 Uk − µn ≤ −r), which leads to the

inequality in (2.4.48).

Recall that a key step in the proof of McDiarmid’s inequality is

to invoke Hoeffding’s lemma (Lemma 2.4.1). However, a careful look

at the proof of Lemma 2.4.1 reveals a potential source of slack in the

bound

lnE

[
exp

(
t(U − E[U ])

)]
≤ t2(b− a)2

8
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— namely, that this bound is the same regardless of the location of

the mean E[U ] relative to the endpoints of the interval [a, b]. As it

turns out, one does indeed obtain an improved version of Hoeffding’s

inequality by making use of this information. An improved version of

Hoeffding’s inequality was derived by Kearns and Saul [97], and it

has been recently further improved by Berend and Kontorovich [98].

The following improvement of Hoeffding’s inequality (Lemma 2.4.1) is

obtained in [98]:

Lemma 2.4.6 (Berend and Kontorovich). Let U be a real-valued random

variable, such that U ∈ [a, b] a.s. for finite a < b. Then, for every t ≥ 0,

E
[
exp

(
t(U − EU)

)] ≤ exp
(
cBK(p) t2(b− a)2

)
(2.4.50)

where

cBK(p) =





0, if p = 0

1 − 2p

4 ln
(

1−p
p

) , if 0 < p <
1

2

p(1 − p)

2
, if

1

2
≤ p ≤ 1

(2.4.51)

with

p =
E[U ] − a

b− a
. (2.4.52)

Proof. Recall the definition of Hp(λ) in (2.4.6). We deviate from the

proof of Lemma 2.4.1 at the point where the bound Hp(λ) ≤ λ2

8 in

(2.4.12) is replaced by the improved bound

Hp(λ) ≤ cBK(p)λ2, ∀λ ≥ 0, p ∈ [0, 1]. (2.4.53)

where cBK(p) is introduced in (2.4.51); for a proof of (2.4.53), the reader

is referred to the proofs of [98, Theorem 3.2] and [98, Lemma 3.3].

Remark 2.4. The bound on the right side of (2.4.50) depends on the

location of E[U ] in the interval [a, b], and it therefore refines Hoeffd-

ing’s inequality in Lemma 2.4.1. The worst case where p = 1
2 (i.e., if

E[U ] = a+b
2 is in the middle of the interval [a, b]) coincides however



2.4. Basic concentration inequalities 35

with Hoeffding’s inequality (since, from (2.4.51), cBK(p) = 1
8 if p = 1

2).

The bound on Hp(λ) in (2.4.53) can be weakened to

Hp(λ) ≤ cKS(p)λ2, ∀λ ∈ R, p ∈ [0, 1] (2.4.54)

where the abbreviation ’KS’ on the right side of (2.4.54) stands for the

Kearns-Saul inequality in [97], and it is given by

cKS(p) =





0, if p = 0, 1

1
8 , if p = 1

2

1−2p

4 ln
(

1−p
p

) , if p ∈ (0, 1) \ {1
2}.

(2.4.55)

From (2.4.51) and (2.4.55), we have

cBK(p) = cKS(p), ∀ p ∈
[
0, 1

2

]

0 ≤ cBK(p) ≤ cKS(p) ≤ 1
8 , ∀ p ∈ [0, 1]

where the equality cBK(p) = cKS(p) = 1
8 holds if and only if p = 1

2 (see

Figure 2.1). Note that

lim
p→ 1

2

cBK(p) = lim
p→ 1

2

cKS(p) = 1
8

which implies the continuity of cBK(·) and cKS(·) over the interval [0, 1].

The improved bound in Lemma 2.4.6 (cf. Lemma 2.4.1) leads to

the following improvement of Hoeffding’s inequality (Theorem 2.4.5):

Theorem 2.4.7 (Berend and Kontorovich inequality). Let {Uk}n
k=1 be

a sequence of independent and bounded random variables such that,

for every k ∈ {1, . . . , n}, Uk ∈ [ak, bk] holds a.s. for some constants

ak, bk ∈ R. Let µn ,
∑n

k=1 E[Uk]. Then,

P

(∣∣∣∣∣

n∑

k=1

Uk − µn

∣∣∣∣∣ ≥ r

)
≤ 2 exp

(
− r2

4
∑n

k=1 ck (bk − ak)2

)
, ∀ r ≥ 0

(2.4.56)

where ck , cBK(pk) (see (2.4.51)) with

pk =
E[Uk] − ak

bk − ak
. (2.4.57)
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Figure 2.1: A comparison between upper bounds on the Hoeffding function Hp(λ)
in (2.4.6); these bounds are of the type Hp(λ) ≤ c(p) λ2 for every p ∈ [0, 1] and
λ ≥ 0 (see Eqs. (2.4.12), (2.4.53) and (2.4.54) with c(p) = 1

8
or c(p) in (2.4.51)

and (2.4.55), respectively; these values of c(p) correspond to the dotted, solid and
dashed lines, respectively, as a function of p ∈ [0, 1].)

Proof. Inequality (2.4.56) follows from a combination of the Chernoff

bound and Lemma 2.4.6 (similarly to the proof of Theorem 2.4.5 that

relies on the Chernoff bound and Lemma 2.4.1).

A loosening of the bound in Theorem 2.4.56, by a replacement of

ck , cBK(pk) with c̃k , cKS(pk) (see (2.4.51), (2.4.52) and (2.4.55)),

gives the Kearns-Saul inequality in [97]:

Corollary 2.4.8 (Kearns–Saul inequality). Let {Uk}n
k=1 be a sequence

of independent and bounded random variables such that, for every

k ∈ {1, . . . , n}, Uk ∈ [ak, bk] holds a.s. for some constants ak, bk ∈ R.

Let µn ,
∑n

k=1 E[Uk]. Then, for every r ≥ 0,

P

(∣∣∣∣∣

n∑

k=1

Uk − µn

∣∣∣∣∣ ≥ r

)
≤ 2 exp

(
− r2

4
∑n

k=1 ck (bk − ak)2

)
(2.4.58)
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where ck = cKS(pk) with cKS(·) and pk in (2.4.55) and (2.4.57), respec-

tively. The bound in (2.4.58) improves Hoeffding’s inequality in (2.4.48)

unless pk = 1
2 (i.e., if E[Uk] = ak+bk

2 ) for every k ∈ {1, . . . , n}; in the

latter case, both bounds coincide.

An information-theoretic proof of the basic inequality that leads

to the Kearns-Saul inequality is given in Section 3.4.3. Another recent

refinement of Hoeffding’s inequality is provided in [99].

2.5 Refined versions of the Azuma–Hoeffding inequality

The following section considers generalized and refined versions of the

Azuma-Hoeffding inequality (see Sections 2.5.1 and 2.5.2). A derivation

of one-sided inequalities for sub and super martingales is considered as

well (see Section 2.5.3).

2.5.1 A generalization of the Azuma–Hoeffding inequality

The following theorem generalizes the Azuma-Hoeffding inequality for

real-valued martingale sequences {Xk,Fk}n
k=0 with bounded differ-

ences in the case where the differences ξk , Xk − Xk−1 are bounded

between the endpoints of asymmetric intervals around zero. Further-

more, it states that the same bound holds not only for the probability

of the event where |Xn−X0| ≥ r, for some r ≥ 0, but also for the proba-

bility of the more likely event where there exists an index k ∈ {1, . . . , n}
such that |Xk −X0| ≥ r; the idea that strengthens the bound to hold

for the latter event applies to all the concentration inequalities derived

in this chapter.

Theorem 2.5.1 (A generalization of the Azuma-Hoeffding Inequality).

Let {Xk,Fk}n
k=0 be a real-valued martingale sequence. Suppose that

a1, b1, . . . , an, bn are constants such that ak ≤ Xk − Xk−1 ≤ bk holds

a.s. for every k ∈ {1, . . . , n}. Then, for every r ≥ 0,

P

(
max

k∈{1,...,n}
|Xk −X0| ≥ r

)
≤ 2 exp

(
− r2

4
∑n

k=1 ck (bk − ak)2

)
(2.5.1)
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where ck = c(pk) with

pk = − ak

bk − ak
∈ [0, 1], ∀ k ∈ {1, . . . , n},

and c(·) = cBK(·) is introduced in (2.4.51) over the interval [0, 1].

Remark 2.5. In the following, it is shown that the Azuma-Hoeffding

inequality (Theorem 2.4.2) is a special case of Theorem 2.5.1. Con-

sider the setting in the Azuma-Hoeffding inequality where the intervals

[ak, bk] in Theorem 2.5.1 are symmetric around zero, i.e., bk = −ak = dk

for every k ∈ {1, . . . , n}, and for some non-negative reals d1, . . . , dn.

In this special case, it follows from Theorem 2.5.1 that pk = 1
2 , and

c(pk) = 1
8 for every k. Hence, from (2.5.1), we have

P(|Xn −X0| ≥ r) ≤ P

(
max

k∈{1,...,n}
|Xk −X0| ≥ r

)

≤ 2 exp

(
− r2

2
∑n

k=1 d
2
k

)
, ∀ r ≥ 0,

which gives the Azuma-Hoeffding inequality in (2.4.18).

Proof. In the following, the proof of the Azuma-Hoeffding inequality is

modified for a derivation of the generalized inequality in (2.5.1). As a

first step, the equality in (2.4.19) is replaced by the equality

P

(
max

k∈{1,...,n}
|Xk −X0| ≥ r

)

= P

(
max

k∈{1,...,n}
(Xk −X0) ≥ r

)
+P

(
max

k∈{1,...,n}
(X0 −Xk) ≥ r

)
. (2.5.2)

Let ξk = Xk −Xk−1 be the differences of the martingale sequence, then

E[ξk|Fk−1] = 0 and ak ≤ ξk ≤ bk hold a.s. for every k ∈ {1, . . . , n}.

Recall that a composition of a convex function with a martingale

gives a sub-martingale with respect to the same filtration (see The-

orem 2.1.1). Since {Xk − X0,Fk}n
k=1 is a martingale and ft(x) =

exp(tx) is a convex function over R for every t ∈ R, it follows

that
{
exp

(
t(Xk −X0)

)
,Fk

}n

k=1
is a sub-martingale for every t ∈ R.

From the maximal inequality for sub-martingales (a.k.a. the Doob-
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Kolmogorov inequality), which states that if {Yk,Fk}n
k=1 is a sub-

martingale then

P

(
max

1≤k≤n
Yk ≥ λ

)
≤ E[|Yn|]

λ
, ∀λ > 0

(see, e.g., [84, Theorem 14.3.1]), it follows that for every t ≥ 0

P

(
max

k∈{1,...,n}
(Xk −X0) ≥ r

)

= P

(
max

k∈{1,...,n}
exp

(
t(Xk −X0)

) ≥ exp(tr)

)

≤ exp(−tr)E [exp
(
t(Xk −X0)

)]

= exp(−tr)E
[
exp

(
t

n∑

k=1

ξk

)]
. (2.5.3)

Hence, by applying the maximal inequality for sub-martingales instead

of the Chernoff bound, inequality (2.4.20) is replaced with the stronger

result in (2.5.3). Similarly to the proof of the Azuma-Hoeffding inequal-

ity, by the law of iterated expectations, we have from (2.4.21)

E

[
exp

(
t

n∑

k=1

ξk

)]
= E

[
exp

(
t

n−1∑

k=1

ξk

)
E
[
exp(tξn) | Fn−1

]
]
.

In the following, Lemma 2.4.6 is applied with the conditioning on Fn−1.

Based on the information that E[ξn|Fn−1] = 0 and ξn ∈ [an, bn] a.s., it

follows that

E
[
exp(tξn) | Fn−1

] ≤ exp
(
cn(bn − an)2t2

)
(2.5.4)

where cn , cBK(pn) is given in (2.4.51) with (see (2.4.52))

pn =
E[ξn|Fn−1] − an

bn − an
= − an

bn − an
.

(If bn = −an , dn for a non-negative real number dn then pn = 1
2 and

cn = cBK(pn) = 1
8 , and inequality (2.5.4) is particularized to (2.4.22);

the latter inequality can be obtained by applying Hoeffding’s lemma,

as in the proof of the Azuma-Hoeffding lemma.) Continuing recursively
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in a similar manner, in parallel to (2.4.23), the quantity in (2.4.21) is

upper-bounded by

E

[
exp

(
t

n∑

k=1

ξk

)]
≤ exp

(
t2

n∑

k=1

ck(bk − ak)2

)
.

The combination of this bound with (2.5.3) gives that, for every r ≥ 0,

P

(
max

k∈{1,...,n}
(Xk −X0) ≥ r

)

≤ exp

(
−tr + t2

n∑

k=1

ck(bk − ak)2

)
, ∀ t ≥ 0. (2.5.5)

An optimization with respect to the non-negative parameter t gives

t =
r

2
∑n

k=1 ck(bk − ak)2

and the substitution of this optimized value into (2.5.5) yields that, for

every r ≥ 0,

P

(
max

k∈{1,...,n}
(Xk −X0) ≥ r

)
≤ exp

(
− r2

4
∑n

k=1 ck(bk − ak)2

)
. (2.5.6)

The same bound as in (2.5.6) holds for P

(
maxk∈{1,...,n}(X0 −Xk) ≥ r

)
.

Using these two bounds on the right side of (2.5.2) completes the proof

of Theorem 2.5.1.

2.5.2 On martingales with uniformly bounded differences

Example 2.5 serves to motivate a derivation of an improvement of

the Azuma-Hoeffding inequality with a constraint on the conditional

variance of the martingale sequence. In the following, we assume that

|Xk − Xk−1| ≤ d holds a.s. for every k (note that d does not depend

on k, so it is a global bound on the differences of the martingale). A

new condition is added for the derivation of the next concentration

inequality, where it is assumed that a.s.

var(Xk | Fk−1) = E
[
(Xk −Xk−1)2 | Fk−1

] ≤ γd2
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for some constant γ ∈ (0, 1].

One of the weaknesses of the Azuma–Hoeffding and McDiarmid’s

inequalities (see Theorems 2.4.2 and 2.4.3) is their insensitivity to the

variance, leading to suboptimal exponents compared to the central limit

theorem (CLT) and moderate deviation principle (MDP). The following

result in [93] (see also [85, Corollary 2.4.7]) relies on a constraint on

the conditional variance:

Theorem 2.5.2. Let {Xk,Fk}n
k=0 be a discrete-time real-valued mar-

tingale. Assume that, for some constants d, σ > 0, the following two

requirements are satisfied a.s. for every k ∈ {1, . . . , n}:

|Xk −Xk−1| ≤ d,

var(Xk|Fk−1) = E
[
(Xk −Xk−1)2 | Fk−1

] ≤ σ2

Then, for every α ≥ 0,

P(|Xn −X0| ≥ αn) ≤ 2 exp

(
−nH

(
δ + γ

1 + γ

∥∥∥∥
γ

1 + γ

))
(2.5.7)

where

γ ,
σ2

d2
, δ ,

α

d
(2.5.8)

and

H(p∥q) , p ln
(p
q

)
+ (1 − p) ln

(1 − p

1 − q

)
, ∀ p, q ∈ [0, 1] (2.5.9)

denotes the binary relative entropy. If δ > 1, the probability on the left

side of (2.5.7) is equal to zero.

Proof. The proof of this bound goes along the same lines as the proof of

the Azuma–Hoeffding inequality, up to (2.4.21). The new ingredient in

this proof is the use of the so-called Bennett’s inequality (see, e.g., [85,

Lemma 2.4.1]), which improves upon Lemma 2.4.1 by incorporating a

bound on the variance: Let X be a real-valued random variable with

x = E(X) and E[(X −x)2] ≤ σ2 for some σ > 0. Furthermore, suppose

that X ≤ b a.s. for some b ∈ R. Then, for every λ ≥ 0, Bennett’s

inequality states that

E
[
eλX] ≤

eλx

[
(b− x)2e− λσ2

b−x + σ2eλ(b−x)

]

(b− x)2 + σ2
. (2.5.10)
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The proof of (2.5.10) is provided in Appendix 2.A for completeness.

We now apply Bennett’s inequality (2.5.10) to the conditional law of

ξk given the σ-algebra Fk−1. Since E[ξk|Fk−1] = 0, var[ξk|Fk−1] ≤ σ2

and ξk ≤ d a.s. for k ∈ N, we have

E [exp(tξk) | Fk−1] ≤
σ2 exp(td) + d2 exp

(
− tσ2

d

)

d2 + σ2
, a.s.. (2.5.11)

From (2.4.21) and (2.5.11) it follows that, for every t ≥ 0,

E

[
exp

(
t

n∑

k=1

ξk

)]
≤


σ2 exp(td) + d2 exp

(
− tσ2

d

)

d2 + σ2


E

[
exp

(
t

n−1∑

k=1

ξk

)]
.

Repeating this argument recursively, we conclude that, for every t ≥ 0,

E

[
exp

(
t

n∑

k=1

ξk

)]
≤


σ2 exp(td) + d2 exp

(
− tσ2

d

)

d2 + σ2




n

.

Using the definition of γ in (2.5.8), we can rewrite this inequality as

E

[
exp

(
t

n∑

k=1

ξk

)]
≤
(
γ exp(td) + exp(−γtd)

1 + γ

)n

, ∀ t ≥ 0. (2.5.12)

Let x , td (so x ≥ 0). We can now use (2.5.12) with the Chernoff

bounding technique to get that for every α ≥ 0 (from the definition of

δ in (2.5.8), αt = δx)

P(Xn −X0 ≥ αn)

≤ exp(−αnt)E
[
exp

(
t

n∑

k=1

ξk

)]

≤
(
γ exp

(
(1 − δ)x

)
+ exp

(−(γ + δ)x
)

1 + γ

)n

, ∀x ≥ 0. (2.5.13)

Consider first the case where δ = 1 (i.e., α = d). Then (2.5.13) becomes

P(Xn −X0 ≥ dn) ≤
(
γ + exp

(−(γ + 1)x
)

1 + γ

)n

, ∀x ≥ 0
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and the expression on the right side is minimized in the limit as x → ∞.

This gives the inequality

P(Xn −X0 ≥ dn) ≤
(

γ

1 + γ

)n

. (2.5.14)

Otherwise, if δ ∈ [0, 1), we minimize the base of the exponent on the

right side of (2.5.13) with respect to the free parameter x ≥ 0. Setting

the derivative of this exponent to zero yields that the optimal value of

x is given by

x =

(
1

1 + γ

)
ln

(
γ + δ

γ(1 − δ)

)
. (2.5.15)

Substituting (2.5.15) into the right side of (2.5.13) gives that, for every

α ≥ 0,

P(Xn −X0 ≥ αn) ≤


(
γ + δ

γ

)− γ+δ
1+γ

(1 − δ)
− 1−δ

1+γ




n

= exp

(
−nH

(
δ + γ

1 + γ

∥∥∥∥
γ

1 + γ

))
(2.5.16)

where H(·∥·) is introduced in (2.5.9). Finally, if δ > 1 (i.e., α > d), the

exponent is equal to +∞. The application of inequality (2.5.16) to the

martingale {−Xk,Fk}∞
k=0 gives the same upper bound for the other

tail probability P(Xn −X0 ≤ −αn). Overall, we get the bound (2.5.7),

which completes the proof of Theorem 2.5.2.

Remark 2.6. The divergence (a.k.a. Kullback-Leibler distance or rel-

ative entropy) between two probability measures P and Q is de-

noted, throughout this monograph, by D(P∥Q). The notation H(p∥q)
is used in (2.5.9) for the divergence in the special case where P and

Q are Bernoulli(p) and Bernoulli(q), respectively. In this case, where

P = Bernoulli(p) and Q = Bernoulli(q), we have D(P∥Q) , H(p∥q).

Here is an illustration of how one can use Theorem 2.5.2 for getting

better bounds in comparison to the Azuma–Hoeffding inequality:

Example 2.8. Let d > 0 and ε ∈ (0, 1
2 ] be some constants. Consider a

discrete-time real-valued martingale {Xk,Fk}∞
k=0 where a.s. X0 = 0,



44 Concentration Inequalities via the Martingale Approach

and for every m ∈ N

P(Xm −Xm−1 = d | Fm−1) = ε ,

P

(
Xm −Xm−1 = − εd

1 − ε

∣∣∣Fm−1

)
= 1 − ε .

This implies that E[Xm − Xm−1 | Fm−1] = 0 a.s. for every m ∈ N,

and, since Xm−1 is Fm−1-measurable, we have E[Xm | Fm−1] = Xm−1

almost surely. Moreover, since ε ∈ (0, 1
2 ],

|Xm −Xm−1| ≤ max

{
d,

εd

1 − ε

}
= d a.s.

so the Azuma–Hoeffding inequality gives

P(Xk ≥ kx) ≤ exp

(
−kx2

2d2

)
, ∀x ≥ 0 (2.5.17)

independently of the value of ε (note that X0 = 0 a.s.). However, we

can use Theorem 2.5.2 to get a better bound; since for every m ∈ N

E
[
(Xm −Xm−1)2 | Fm−1

]
=

d2ε

1 − ε
, a.s.

it follows from (2.5.16) that

P(Xk ≥ kx) ≤ exp

(
−kH

(
x(1 − ε)

d
+ ε

∥∥∥ ε
))

, ∀x ≥ 0. (2.5.18)

Consider the case where ε → 0. Then, for arbitrary x > 0 and k ∈ N,

the Azuma–Hoeffding inequality in (2.5.17) provides an upper bound

that is strictly positive independently of ε, whereas the one-sided con-

centration inequality of Theorem 2.5.2 implies a bound in (2.5.18) that

tends to zero.

Corollary 2.5.3. Let {Xk,Fk}n
k=0 be a discrete-time real-valued mar-

tingale, and assume that |Xk −Xk−1| ≤ d holds a.s. for some constant

d > 0 and for every k ∈ {1, . . . , n}. Then, for every α ≥ 0,

P(|Xn −X0| ≥ αn) ≤ 2 exp (−nf(δ)) (2.5.19)
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where δ , α
d ,

f(δ) =





ln(2)
[
1 − h2

(
1−δ

2

)]
, 0 ≤ δ ≤ 1

+∞, δ > 1
(2.5.20)

and h2(x) , −x log2(x)− (1−x) log2(1−x) for 0 ≤ x ≤ 1 is the binary

entropy function (base 2).

Proof. By substituting γ = 1 in Theorem 2.5.2 (since there is no con-

straint on the conditional variance, one can take σ2 = d2), the corre-

sponding exponent in (2.5.7) is equal to

H

(
1 + δ

2

∥∥∥
1

2

)
= f(δ), (2.5.21)

since, from (2.5.9), it is easy to verify that H(p∥1
2) = ln 2

[
1 − h2(p)

]

for every p ∈ [0, 1].

An alternative proof of Corollary 2.5.3, which provides some further

insight, is suggested in the following.

Proof. As a first step, a refined version of Hoeffding’s lemma is provided

(cf. Lemma 2.4.1).

Lemma 2.5.4. Let U ∈ R be a random variable, such that U ∈ [a, b]

a.s. for some finite a < b, and EU = a+b
2 . Then, for every t ≥ 0,

E
[
exp

(
t(U − EU)

)] ≤ cosh

(
t(b− a)

2

)
. (2.5.22)

Proof. This refinement of (2.4.5), if EU = a+b
2 , follows from (2.4.10).

The proof of Corollary 2.5.3 continues by following the proof of the

Azuma–Hoeffding inequality. Recall that ξk = Xk −Xk−1, for all k ∈ N,

form the differences of the martingale sequence with |ξk| ≤ d (in the

case where dk = d, independently of k) and E[ξk|Fk−1] = 0. Using a

conditional version of Lemma 2.5.4, the bound in (2.4.22) is improved

to

E
[
exp(tξn) | Fn−1

] ≤ cosh(td), ∀ t ≥ 0 (2.5.23)
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and continuing recursively, the quantity in (2.4.21) is upper bounded

by

E

[
exp

(
t

n∑

k=1

ξk

)]
≤ coshn(td), ∀ t ≥ 0.

Based on Chernoff’s inequality, the following refinement of (2.4.24)

holds

P(Xn −X0 ≥ αn) ≤ exp(−αnt) coshn(td)

= exp
(
−n[αt− ln cosh(td)

])
, ∀ t ≥ 0. (2.5.24)

Due to the bounded differences assumption, we have (a.s.)

|Xn −X0| ≤
n∑

k=1

|Xk −Xk−1| ≤ nd

so, if α > d, we have P(Xn − X0 ≥ αn) = 0. If 0 ≤ α < d, an

optimization of the free parameter t on the right side of (2.5.24) gives

t = 1
d tanh−1 (α

d

)
. Substituting this optimized value of t into (2.5.24),

combined with the use of the following two identities for hyperbolic

functions:

tanh−1(x) =
1

2
ln

(
1 + x

1 − x

)
, ∀ |x| < 1,

cosh(x) =
1√

1 − tanh2(x)
, ∀x ∈ R,

yield that the exponent on the right side of (2.5.24) is equal to

αt− ln cosh(td)

=
α

2d
ln

(
1 + α

d

1 − α
d

)
+

1

2
ln

(
1 − α2

d2

)

=
1

2

(
1 +

α

d

)
ln

(
1 +

α

d

)
+

1

2

(
1 − α

d

)
ln

(
1 − α

d

)

= ln 2

[
1 − h2

(
1

2

(
1 − α

d

))]

= f(δ)

where the last equality follows from (2.5.8) and (2.5.20). This gives the

exponential bound in Corollary 2.5.3 for α ∈ [0, d). Finally, the result
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of this corollary for α = d is obtained by letting t tend to infinity in

the exponential bound on the right side of (2.5.24). This gives

lim
t→∞

(
td− ln cosh(td)

)
= ln 2, ∀ d > 0

and, consequently,

P(Xn −X0 ≥ dn) ≤ 2−n

which proves Corollary 2.5.3 for α = d. Note that the factor 2 in the

bound of (2.5.19) was justified in the proof of Theorem 2.4.2.

Remark 2.7. Corollary 2.5.3, which is a special case of Theorem 2.5.2

with γ = 1, forms a tightening of the Azuma–Hoeffding inequality

for the case where dk = d (independently of k). This follows from

Pinsker’s inequality, which implies that f(δ) > δ2

2 for δ > 0. Figure 2.2

plots the two exponents of the Azuma–Hoeffding inequality and its

improvement in Corollary 2.5.3, and they nearly coincide for δ ≤ 0.4.

The exponential bound of Theorem 2.5.2 is improved as the value of

γ ∈ (0, 1) is reduced (see Figure 2.2); this holds since the additional

constraint on the conditional variance in Theorem 2.5.2 has a growing

effect by reducing the value of γ.

Theorem 2.5.2 can also be used to analyze the probabilities of small

deviations, i.e., events of the form {|Xn − X0| ≥ α
√
n} for α ≥ 0 (in

contrast to large-deviation events of the form {|Xn −X0| ≥ αn}):

Proposition 2.1. Let {Xk,Fk} be a discrete-time real-valued martin-

gale that satisfies the conditions of Theorem 2.5.2. Then, for every

α ≥ 0,

P(|Xn −X0| ≥ α
√
n) ≤ 2 exp

(
− δ2

2γ

)(
1 +O

(
n− 1

2
))
. (2.5.25)

Remark 2.8. From Proposition 2.1, for an arbitrary α ≥ 0, the upper

bound on P(|Xn −X0| ≥ α
√
n) improves the exponent of the Azuma–

Hoeffding inequality by a factor of 1
γ .
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Figure 2.2: Plot of the lower bounds on the exponents in the Azuma–Hoeffding
inequality and the improved bounds in Theorem 2.5.2 and Corollary 2.5.3. The
pointed line refers to the exponent in Corollary 2.5.3, and the three solid lines for
γ = 1

8
, 1

4
and 1

2
refer to the exponents in Theorem 2.5.2.

Proof. Let {Xk,Fk}∞
k=0 be a discrete-time martingale that satisfies the

conditions in Theorem 2.5.2. From (2.5.7), for every α ≥ 0 and n ∈ N,

P(|Xn −X0| ≥ α
√
n) ≤ 2 exp

(
−nH

(
δn + γ

1 + γ

∥∥∥∥
γ

1 + γ

))
(2.5.26)

where, following (2.5.8),

γ ,
σ2

d2
, δn ,

α√
n

d
=

δ√
n
. (2.5.27)

With these definitions, we have

H

(
δn + γ

1 + γ

∥∥∥∥
γ

1 + γ

)
=

γ

1 + γ

[(
1 +

δ

γ
√
n

)
ln

(
1 +

δ

γ
√
n

)

+
1

γ

(
1 − δ√

n

)
ln

(
1 − δ√

n

)]
. (2.5.28)
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Using the power series expansion

(1 + u) ln(1 + u) = u+
∞∑

k=2

(−u)k

k(k − 1)
, −1 < u ≤ 1

in (2.5.28), it follows that for every n > δ2

γ2

nH

(
δn + γ

1 + γ

∥∥∥∥
γ

1 + γ

)
=
δ2

2γ
− δ3(1 − γ)

6γ2

1√
n

+ . . .

=
δ2

2γ
+O

(
1√
n

)
.

Substituting this into the exponent on the right side of (2.5.26) gives

(2.5.25).

2.5.3 Inequalities for sub- and super-martingales

Upper bounds on the probability P(Xn−X0 ≥ r) for r ≥ 0, derived ear-

lier in this section for martingales, can be adapted to super-martingales

(similarly to, e.g., [11, Chapter 2] or [12, Section 2.7]). Alternatively,

by replacing {Xk,Fk}n
k=0 with {−Xk,Fk}n

k=0, we may obtain upper

bounds on the probability P(Xn−X0 ≤ −r) for sub-martingales. For ex-

ample, the adaptation of Theorem 2.5.2 to sub- and super-martingales

gives the following inequality:

Corollary 2.5.5. Let {Xk,Fk}∞
k=0 be a discrete-time real-valued super-

martingale. Assume that, for some constants d, σ > 0, the following two

requirements are satisfied a.s.:

Xk − E[Xk | Fk−1] ≤ d,

var(Xk|Fk−1) , E

[(
Xk − E[Xk | Fk−1]

)2 | Fk−1

]
≤ σ2

for every k ∈ {1, . . . , n}. Then, for every α ≥ 0,

P(Xn −X0 ≥ αn) ≤ exp

(
−nH

(
δ + γ

1 + γ

∥∥∥∥
γ

1 + γ

))
(2.5.29)

where γ and δ are defined in (2.5.8), and the binary divergence

H(p∥q) is introduced in (2.5.9). Alternatively, if {Xk,Fk}∞
k=0 is a sub-

martingale, the same upper bound in (2.5.29) holds for the probability

P(Xn −X0 ≤ −αn). If δ > 1, these two probabilities are zero.
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Proof. It is similar to the proof of Theorem 2.5.2; the only differ-

ence is that, for a super-martingale, Xn − X0 =
∑n

k=1(Xk − Xk−1) ≤∑n
k=1 ξk a.s., where ξk , Xk − E[Xk | Fk−1] is Fk-measurable. There-

fore, we have P(Xn − X0 ≥ αn) ≤ P
(∑n

k=1 ξk ≥ αn
)

where, a.s.,

ξk ≤ d, E[ξk | Fk−1] = 0, and var(ξk | Fk−1) ≤ σ2. The rest of

the proof coincides with the proof of Theorem 2.5.2 (starting from

(2.4.20)). The other inequality for sub-martingales holds due to the

fact that if {Xk,Fk} is a sub-martingale then {−Xk,Fk} is a super-

martingale.

The reader is referred to [100] for an extension of Hoeffding’s in-

equality to super-martingales with differences bounded from above (or

sub-martingales with differences bounded from below), and to [101] for

large deviation exponential inequalities for super-martingales.

2.6 Relations to classical results in probability theory

2.6.1 The martingale central limit theorem

A relation between Proposition 2.1 and the martingale central limit

theorem (CLT) is considered in the following.

Let (Ω,F ,P) be a probability space. Given a filtration {Fk}, we

say that {Yk,Fk}∞
k=0 is a martingale-difference sequence if, for every

k,

1. Yk is Fk-measurable,

2. E[|Yk|] < ∞,

3. E
[
Yk | Fk−1

]
= 0.

Let

Sn =
n∑

k=1

Yk, ∀n ∈ N

and S0 = 0; then {Sk,Fk}∞
k=0 is a martingale. Assume that the se-

quence of random variables {Yk} is bounded, i.e., there exists a constant

d such that |Yk| ≤ d a.s., and furthermore, assume that the limit

σ2 , lim
n→∞

1

n

n∑

k=1

E
[
Y 2

k | Fk−1

]
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exists in probability and is positive. The martingale CLT asserts that,

under the above conditions,
{

Sn√
n

}
converges in distribution (or weakly)

to the Gaussian distribution N (0, σ2); we denote this convergence by
Sn√

n
⇒ N (0, σ2). (There exist more general versions of this statement

— see, e.g., [102, pp. 475–478]).

Let {Xk,Fk}∞
k=0 be a real-valued martingale with bounded differ-

ences where there exists a constant d such that a.s.

|Xk −Xk−1| ≤ d, ∀ k ∈ N.

Define, for every k ∈ N,

Yk , Xk −Xk−1

and Y0 , 0. Then {Yk,Fk}∞
k=0 is a martingale-difference sequence, and

|Yk| ≤ d a.s. for every k ∈ N ∪ {0}. Assume also that there exists a

constant σ > 0, such that, for all k,

E[Y 2
k | Fk−1] = E[(Xk −Xk−1)2 | Fk−1] = σ2, a.s.

Consequently, from the martingale CLT, it follows that

Xn −X0√
n

=⇒ N (0, σ2),

so, for every α ≥ 0,

lim
n→∞

P

(
|Xn −X0| ≥ α

√
n
)

= 2Q
(α
σ

)

where the Q-function is defined in (2.4.29). In terms of the notation in

(2.5.8), we have α
σ = δ√

γ , so that

lim
n→∞

P

(
|Xn −X0| ≥ α

√
n
)

= 2Q

(
δ√
γ

)
. (2.6.1)

From the fact that

Q(x) ≤ 1

2
exp

(
−x2

2

)
, ∀x ≥ 0

it follows that, for every α ≥ 0,

lim
n→∞P(|Xn −X0| ≥ α

√
n) ≤ exp

(
− δ2

2γ

)
.
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This inequality coincides with the large-n limit of the inequality in

Proposition 2.1, except for the additional factor of 2 in the pre-exponent

(see the right side of (2.5.25)). Note also that the proof of Proposi-

tion 2.1 is applicable for finite n, and not only in the asymptotic regime

n → ∞. Furthermore, from the exponential upper and lower bounds

on the Q-function in (2.4.30) and from (2.6.1), it follows that the ex-

ponent in the concentration inequality (2.5.25) cannot be improved

without imposing additional conditions on the martingale sequence.

2.6.2 The moderate deviations principle

The moderate deviations principle (MDP) on the real line (see, e.g.,

[85, Theorem 3.7.1]) states the following: Let {Xi}n
i=1 be a sequence of

real-valued i.i.d. random variables such that ΛX(λ) , lnE[eλXi ] < ∞
in some neighborhood of zero, and also assume that E[Xi] = 0 and

σ2 = var(Xi) > 0. Let {an}∞
n=1 be a non-negative sequence such that

an → 0 and nan → ∞ as n → ∞, and let

Zn ,

√
an

n

n∑

i=1

Xi, ∀n ∈ N. (2.6.2)

Then, for every measurable set Γ ⊆ R,

− 1

2σ2
inf

x∈Γ0
x2 ≤ lim inf

n→∞
an lnP(Zn ∈ Γ)

≤ lim sup
n→∞

an lnP(Zn ∈ Γ)

≤ − 1

2σ2
inf
x∈Γ

x2 (2.6.3)

where Γ0 and Γ denote, respectively, the interior and the closure of Γ.

Let η ∈ (1
2 , 1) be an arbitrary fixed number, and let {an}∞

n=1 be the

non-negative sequence

an = n1−2η, ∀n ∈ N

so that an → 0 and nan → ∞ as n → ∞. Let α ∈ R
+, and Γ ,

(−∞,−α] ∪ [α,∞). Note that, from (2.6.2),

P

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ ≥ αnη

)
= P(Zn ∈ Γ) (2.6.4)
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so, by the MDP,

lim
n→∞

n1−2η lnP

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ ≥ αnη

)
= − α2

2σ2
, ∀α ≥ 0. (2.6.5)

We show in Appendix 2.B that, in contrast to the Azuma–Hoeffding

inequality, Theorem 2.5.2 provides an upper bound on the left side

of (2.6.4) which coincides with the asymptotic limit in (2.6.5). The

analysis in Appendix 2.B provides another interesting link between

Theorem 2.5.2 and a classical result in probability theory, and thus

emphasizes the significance of the refinements of the Azuma–Hoeffding

inequality.

2.6.3 Functions of discrete-time Markov chains

An interesting relation between discrete-time Markov chains and mar-

tingales is the following (see, e.g., [103, p. 473]): Let {Xn}∞
n=0 be a

discrete-time Markov chain taking values in a countable state space S
with transition matrix P. Let ψ : S → R be a harmonic function of the

Markov chain, i.e.,
∑

s∈S
ps′,sψ(s) = ψ(s′), ∀ s′ ∈ S (2.6.6)

and assume also that ψ is a measurable and bounded function. Let

Yn , ψ(Xn) for every n ≥ 0, and let {Fn} be the natural filtration

where Fn = σ(X0, . . . , Xn). It is a remarkable fact that {Yn,Fn} is a

martingale; this property holds since Yn is Fn-measurable, E[|Yn|] < ∞
(due to the requirement that ψ is bounded), and from (2.6.6)

E[Yn | Fn−1] =
∑

s∈S
pXn−1,s ψ(s) = ψ(Xn−1) = Yn−1, ∀n ∈ N.

(2.6.7)

This relation between Markov chains and martingales enables to ap-

ply the concentration inequalities of this chapter to the composition

of a bounded harmonic function and a Markov chain; note that the

boundedness of ψ implies that the differences of the martingale se-

quence are uniformly bounded (this holds since, for every n, we have

|Yn − Yn−1| ≤ 2∥ψ∥∞ < ∞).
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More generally, let ψ be a right eigenvector of the transition matrix

P such that ∥ψ∥∞ < ∞, and let λ be its corresponding eigenvalue such

that |λ| ≥ 1. Let S = {s1, s2, . . .} be the countable state space of the

Markov chain, and let ψ : S → R be a real-valued function such that

ψ(si) is equal to the i-th entry of the vector ψ. Then, the following

equality holds:
∑

s∈S
ps′,sψ(s) = λψ(s′), ∀ s′ ∈ S

which generalizes (2.6.6) (i.e., if λ = 1, the function ψ is harmonic).

Similarly to (2.6.7), for every n ≥ 1,

E[ψ(Xn) | Fn−1] = λψ(Xn−1).

Defining Yn = λ−n ψ(Xn), for n ≥ 0, implies that E[Yn|Fn−1] = Yn−1.

Since |λ| ≥ 1 and ∥ψ∥∞ < ∞ then E[|Yn|] < ∞. Consequently,

{Yn,Fn} is a martingale sequence, and its differences are uniformly

bounded. The latter property holds since, for every n ≥ 1,

|Yn − Yn−1|

≤ |λ|−n |ψ(Xn)| + |λ|−(n−1) |ψ(Xn−1)|
≤ |ψ(Xn)| + |ψ(Xn−1)|
≤ 2∥ψ∥∞ < ∞.

Since {Yn,Fn} is demonstrated to be a discrete-time martingale with

uniformly bounded differences, the concentration inequalities of this

chapter are applicable here as well.

Exponential deviation bounds for an important class of Markov

chains, so-called Doeblin chains, were derived by Kontoyiannis [104].

These bounds are essentially identical to the Hoeffding inequality in

the special case of i.i.d. random variables (see [104, Remark 1]).

2.7 Applications in information theory and coding

This section is focused on applications of the concentration inequalities,

derived in this chapter via the martingale approach, in information

theory, communications and coding.
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2.7.1 Minimum distance of binary linear block codes

Consider the ensemble of binary linear block codes of length n and rate

R, where the codes are chosen uniformly at random. The asymptotic

average value of the normalized minimum distance is equal to (see [105,

Section 2.C])

lim
n→∞

E[dmin(C)]

n
= h−1

2 (1 −R)

where h−1
2 : [0, 1] → [0, 1

2 ] denotes the inverse of the binary entropy

function to the base 2.

Let H denote an n(1 −R) × n parity-check matrix of a linear block

code C from this ensemble. The minimum distance of the code is equal

to the minimal number of columns in H that are linearly dependent.

Note that the minimum distance is a property of the code, and it does

not depend on the choice of the particular parity-check matrix which

represents the code.

Let us construct a sequence of integer-valued random variables

{Xi}n
i=0 where Xi is defined to be the minimal number of linearly de-

pendent columns of a random parity-check matrix H, chosen uniformly

from the ensemble, given that the first i columns of H are already re-

vealed; this refers to a random process where sequentially, at every time

instant, a new column of the random parity-check matrix H is revealed.

Recalling Fact 2 from Section 2.1, we see that this is a martingale

sequence with the natural filtration {Fi}n
i=0 where Fi is the σ-algebra

that is generated by all subsets of n(1 − R) × n binary parity-check

matrices whose first i columns are fixed. This martingale sequence has

bounded differences, and it satisfies |Xi −Xi−1| ≤ 1 for i ∈ {1, . . . , n};

this can be verified by noticing that the observation of a new column of

the random parity-check matrix H can change the minimal number of

linearly dependent columns by at most 1. Note that the random variable

X0 is the expected minimum Hamming distance of the ensemble, and

Xn is the minimum distance of a particular code from the ensemble

(since once all the n columns of H are revealed, the code is known

exactly). Hence, by the Azuma–Hoeffding inequality,

P

(
|dmin(C) − E[dmin(C)]| ≥ α

√
n
)

≤ 2 exp

(
−α2

2

)
, ∀α > 0.



56 Concentration Inequalities via the Martingale Approach

This leads to the following concentration theorem of the minimum

distance around the expected value:

Theorem 2.7.1. Let C be chosen uniformly at random from the ensem-

ble of binary linear block codes of length n and rate R. Then for every

α > 0, with probability at least 1−2 exp
(
−α2

2

)
, the minimum distance

of C lies in the interval [nh−1
2 (1 −R) − α

√
n, n h−1

2 (1 −R) + α
√
n].

Remark 2.9. Note that some well-known capacity-approaching families

of binary linear block codes have a minimum Hamming distance that

grows sublinearly with the block length n. For example, the class of

parallel concatenated convolutional (turbo) codes was proved to have

minimum distance that grows at most as the logarithm of the inter-

leaver length [106].

2.7.2 Expansion properties of random regular bipartite graphs

The Azuma–Hoeffding inequality is useful for analyzing the expan-

sion properties of random bipartite graphs. The following theorem was

proved by Sipser and Spielman [42, Theorem 25] in the context of bit-

flipping decoding algorithms for expander codes. It is stated, in the

following, in a more precise form that captures the relation between

the deviation from the expected value and the exponential convergence

rate of the resulting probability:

Theorem 2.7.2. Let G be a bipartite graph that is chosen uniformly at

random from the ensemble of bipartite graphs with n vertices on the

left, a left degree l, and a right degree r. Let α ∈ (0, 1) and δ > 0 be

fixed numbers. Then, with probability at least 1 − exp(−δn), all sets

of αn vertices on the left side of G are connected to at least

n

[
l
(
1 − (1 − α)r

)

r
−
√

2lα
(
h(α) + δ

)
]

(2.7.1)

vertices (neighbors) on the right side of G, where h is the binary entropy

function to base e (i.e., h(x) = −x ln(x)−(1−x) ln(1−x) for x ∈ [0, 1]).
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Proof. The proof starts by looking at the expected number of neigh-

bors, and then exposing one neighbor at a time to bound the probability

that the number of neighbors deviates significantly from this mean.

Let V denote a given set of nα vertices on the left side of the selected

bipartite graph G. The set V has nαl outgoing edges in G. Let X(G) be

a random variable which denotes the number of neighbors of V on the

right side of G, and let E[X(G)] be the expected value of neighbors of

V where all the bipartite graphs are chosen uniformly at random from

the ensemble. This expected number is equal to

E[X(G)] =
nl
(
1 − (1 − α)r

)

r
(2.7.2)

since, for each of the nl
r vertices on the right side of G, the probability

that it has at least one edge in the subset of nα chosen vertices on the

left side of G is 1 − (1 − α)r.

Let us form a martingale sequence to estimate, via the Azuma–

Hoeffding inequality, the probability that the actual number of neigh-

bors deviates by a certain amount from the expected value in (2.7.2).

The set of nα vertices in V has nαl outgoing edges. Let us reveal

the destination of each of these edges one at a time. More precisely,

let Si be the random variable denoting the vertex on the right side of

G which the i-th edge is connected to, where i ∈ {1, . . . , nαl}. Let us

define, for i ∈ {0, . . . , nαl},

Xi = E[X(G)|S1, . . . , Si−1].

Note that this forms a martingale sequence where X0 = E[X(G)] and

Xnαl = X(G). For every i ∈ {1, . . . , nαl}, we have |Xi − Xi−1| ≤ 1

since every time only one connected vertex on the right side of G is

revealed, so the number of neighbors of the chosen set V cannot change

by more than 1 at every single time. Hence, from the one-sided Azuma–

Hoeffding inequality in Section 2.4.2,

P

(
E[X(G)] −X(G) ≥ λ

√
lαn

)
≤ exp

(
−λ2

2

)
, ∀λ > 0. (2.7.3)

Since there are
( n

nα

)
choices for the set V, the event that there exists

a set of size nα with less than E[X(G)] − λ
√
lαn neighbors occurs
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with probability at most
( n

nα

)
exp

(−λ2

2

)
, by the union bound. Based

on the inequality
( n

nα

) ≤ enh(α), we get the exponential upper bound

exp
(
nh(α) − λ2

2

)
. Finally, choosing λ =

√
2n
(
h(α) + δ

)
in (2.7.3) gives

the bound in (2.7.1).

2.7.3 Concentration of the crest factor for OFDM signals

Orthogonal-frequency-division-multiplexing (OFDM) is a widely used

modulation scheme that converts a high-rate data stream into a large

number of closely spaced orthogonal sub-carrier signals. These sub-

carriers are used to transmit data steams over parallel narrow-band

channels. OFDM signals are used in various international standards for

digital television and audio broadcasting, DSL internet access, wireless

networks, and the fourth generation (4G) mobile communications. For

a textbook treatment of OFDM, the reader is referred to, e.g., [107,

Chapter 19].

The primary advantage of OFDM signals over single-carrier modu-

lation schemes is in their immunity to severe channel conditions (e.g.,

attenuation of high frequencies in a long copper wire, narrowband inter-

ference and frequency-selective fading due to multipath propagation)

without using complex equalization filters. This important advantage

arises from the fact that channel equalization is significantly simplified

due to the fact that the OFDM modulation scheme can be viewed as

using many slowly-varying modulated narrowband signals rather than

one rapidly-varying modulated wideband signal. Nevertheless, one of

the significant problems of OFDM signals is that the peak amplitude of

such a signal is typically much larger than its average amplitude. The

high peak-to-average power ratio (PAPR) of OFDM signals makes their

transmission sensitive to non-linear devices in the communication path,

such as digital-to-analog converters, mixers and high-power amplifiers.

As a result of this drawback, linear transmitter circuitry is required for

OFDM signals, which suffers from a poor power efficiency. For a recent

comprehensive tutorial that considers this long-lasting problem of the

high PAPR, and some related issues, the reader is referred to [108].

Given an n-length codeword {Xi}n−1
i=0 , a single OFDM baseband
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symbol is described by

s(t) =
1√
n

n−1∑

i=0

Xi exp
(j 2πit

T

)
, 0 ≤ t ≤ T. (2.7.4)

Let us assume that X0, . . . , Xn−1 are complex random variables, and

|Xi| = 1 a.s. (for the moment, these random variables may be depen-

dent; however, later in this section, some concentration inequalities are

derived for the case where these random variables are independent).

Since the sub-carriers are orthonormal over [0, T ], the signal power

over the interval [0, T ] is 1 a.s.:

1

T

∫ T

0
|s(t)|2dt = 1. (2.7.5)

The crest factor (CF) of the signal s, composed of n sub-carriers, is

defined as

CFn(s) , max
0≤t≤T

|s(t)|. (2.7.6)

Commonly, the impact of nonlinearities is described by the distribution

of the CF of the transmitted signal [109], but its calculation involves

time-consuming simulations even for a small number of sub-carriers.

From [110, Section 4] and [111], it follows that the CF scales with high

probability like
√

lnn for large n. In [109, Theorem 3 and Corollary 5],

a concentration inequality was derived for the CF of OFDM signals. It

states that, for an arbitrary c ≥ 2.5,

P

(∣∣∣CFn(s) −
√

lnn
∣∣∣ <

c ln lnn√
lnn

)
= 1 −O

(
1

(
lnn

)4

)
.

Remark 2.10. The analysis used to derive this rather strong concentra-

tion inequality (see [109, Appendix C]) requires some assumptions on

the distribution of the Xi’s (see the two conditions in [109, Theorem 3]

followed by [109, Corollary 5]). These requirements are not needed in

the following analysis, and the derivation of concentration inequalities

that are introduced in this subsection is much simpler and provides

some insight into the problem, although the resulting concentration

result is weaker than the one in [109, Theorem 3].
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In the following, the concentration of the crest factor of OFDM sig-

nals is studied via the Azuma–Hoeffding inequality, its refinement in

Proposition 2.1, and McDiarmid’s inequality. It is assumed in the fol-

lowing that the symbols {Xj}n−1
j=0 are independent complex-valued ran-

dom variables with magnitude 1, attaining the M points of an M -ary

PSK constellation with equal probability. The material in this section

presents in part the work in [112].

Concentration via the Azuma–Hoeffding inequality: Let us define

the random variables

Yi = E[ CFn(s) |X0, . . . , Xi−1], i = 0, . . . , n. (2.7.7)

Based on a standard construction of martingales, {Yi,Fi}n
i=0 is a mar-

tingale, where Fi is the σ-algebra generated by the first i symbols

(X0, . . . , Xi−1) in (2.7.4). Hence, F0 ⊆ F1 ⊆ . . . ⊆ Fn is a filtration.

This martingale also has bounded differences:

|Yi − Yi−1| ≤ 2√
n
, i ∈ {1, . . . , n}

since revealing the additional i-th coordinate Xi affects the CF, as

defined in (2.7.6), by at most 2√
n

(see the first part of Appendix 2.C). It

therefore follows from the Azuma–Hoeffding inequality that, for every

α > 0,

P(|CFn(s) − E[CFn(s)]| ≥ α) ≤ 2 exp

(
−α2

8

)
, (2.7.8)

which demonstrates concentration around the expected value.

Concentration of the crest factor via Proposition 2.1: We will now

use Proposition 2.1 to derive an improved concentration result. For the

martingale sequence {Yi}n
i=0 in (2.7.7), Appendix 2.C gives that a.s.

|Yi − Yi−1| ≤ 2√
n
, E

[
(Yi − Yi−1)2|Fi−1

] ≤ 2

n
(2.7.9)

for every i ∈ {1, . . . , n}. Note that the conditioning on the σ-algebra

Fi−1 is equivalent to conditioning on the symbols X0, . . . , Xi−2, and
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there is no conditioning for i = 1. Further, let Zi =
√
nYi for 0 ≤ i ≤ n.

Proposition 2.1 therefore implies that, for an arbitrary α > 0,

P(|CFn(s) − E[CFn(s)]| ≥ α)

= P(|Yn − Y0| ≥ α)

= P(|Zn − Z0| ≥ α
√
n)

≤ 2 exp

(
−α2

4

(
1 +O

(
1√
n

)))
(2.7.10)

(since δ = α
2 and γ = 1

2 in the setting of Proposition 2.1). Note that the

exponent in the last inequality is doubled as compared to the bound

that was obtained in (2.7.8) via the Azuma–Hoeffding inequality, and

the term that scales likeO
(

1√
n

)
on the right side of (2.7.10) is expressed

explicitly for finite n (see the proof of Proposition 2.1).

Establishing concentration via McDiarmid’s inequality: We use in

the following McDiarmid’s inequality (see Theorem 2.4.3) in order to

prove a concentration inequality for the crest factor of OFDM signals.

To this end, let us define

U , max
0≤t≤T

∣∣s(t;X0, . . . , Xi−1, Xi, . . . , Xn−1)
∣∣

V , max
0≤t≤T

∣∣s(t;X0, . . . , X
′
i−1, Xi, . . . , Xn−1)

∣∣

where the two vectors (X0, . . . , Xi−1, Xi, . . . , Xn−1) and

(X0, . . . , X
′
i−1, Xi, . . . , Xn−1) may only differ in their i-th coordi-

nate. This then implies that

|U − V | ≤ max
0≤t≤T

∣∣s(t;X0, . . . , Xi−1, Xi, . . . , Xn−1)

−s(t;X0, . . . , X
′
i−1, Xi, . . . , Xn−1)

∣∣

= max
0≤t≤T

1√
n

∣∣∣
(
Xi−1 −X ′

i−1

)
exp

(j 2πit

T

)∣∣∣

=
|Xi−1 −X ′

i−1|√
n

≤ 2√
n

where the last inequality holds since |Xi−1| = |X ′
i−1| = 1. Hence, Mc-
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Diarmid’s inequality in Theorem 2.4.3 implies that, for every α ≥ 0,

P(|CFn(s) − E[CFn(s)]| ≥ α) ≤ 2 exp
(
−α2

2

)
(2.7.11)

which demonstrates concentration of the CF around its expected value.

The improvement of McDiarmid’s inequality is by a factor of 2 in com-

parison to the refined version of the Azuma–Hoeffding inequality in

Proposition 2.1. As will be seen in Chapter 3, there are some deep

connections between McDiarmid’s inequality and information-theoretic

aspects; McDiarmid’s inequality will be proved in Chapter 3 by the use

of the entropy method and information-theoretic tools, and it will be

proved useful in information-theoretic problems.

To conclude, three concentration inequalities for the crest factor

(CF) of OFDM signals have been derived in this section under the as-

sumption that the symbols are independent. The first two concentration

inequalities rely on the Azuma–Hoeffding inequality and its refinement

in Proposition 2.1, whereas the third bound is based on McDiarmid’s

inequality. Although these concentration results are weaker than some

existing results in the literature (see [109] and [111]), they establish

concentration in a rather simple way and provide some additional in-

sight to the problem. McDiarmid’s inequality improves the exponent

of the Azuma–Hoeffding inequality by a factor of 4, and the exponent

of the refined version of the Azuma–Hoeffding inequality from Propo-

sition 2.1 by a factor of 2. Note, however, that Proposition 2.1 may,

in general, be tighter than McDiarmid’s inequality (this happens to be

the case if γ < 1
4 in the setting of Proposition 2.1).

2.7.4 Concentration of the cardinality of the fundamental system
of cycles for LDPC code ensembles

Low-density parity-check (LDPC) codes are linear block codes that are

represented by sparse parity-check matrices [113]. A sparse parity-check

matrix allows one to represent the corresponding linear block code by

a sparse bipartite graph, and to use this graphical representation for

implementing low-complexity iterative message-passing decoding. The

low-complexity decoding algorithms used for LDPC codes and some
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of their variants are remarkable in that they achieve rates close to

the Shannon capacity limit for properly designed code ensembles (see,

e.g., [13]). As a result of their remarkable performance under practical

decoding algorithms, these coding techniques have revolutionized the

field of channel coding, and have been incorporated in various digital

communication standards during the last decade.

In the following, we consider ensembles of binary LDPC codes. The

codes are represented by bipartite graphs, where the variable nodes are

located on the left side of the graph and the parity-check nodes are on

the right. The parity-check equations that define the linear code are rep-

resented by edges connecting each check node with the variable nodes

that are involved in the corresponding parity-check equation. The bi-

partite graphs representing these codes are sparse in the sense that the

number of edges in the graph scales linearly with the block length n of

the code. Following standard notation, let λi and ρi denote the fraction

of edges attached, respectively, to variable and parity-check nodes of

degree i. The LDPC code ensemble is denoted by LDPC(n, λ, ρ), where

n is the block length of the codes, and the pair λ(x) ,
∑

i λix
i−1 and

ρ(x) ,
∑

i ρix
i−1 represents, respectively, the left and right degree dis-

tributions of the ensemble from the edge perspective. It is well-known

that linear block codes that can be represented by cycle-free bipar-

tite (Tanner) graphs have poor performance even under ML decoding

[114]. The bipartite graphs of capacity-approaching LDPC codes should

therefore have cycles. Thus, we need to examine the cardinality of the

fundamental system of cycles of a bipartite graph. For preliminary ma-

terial, the reader is referred to Sections II-A and II-E of [115]. In [115]

and [116], the following question is addressed:

Consider a sequence of LDPC code ensembles with block

lengths tending to infinity, and let the communication take

place over a memoryless binary-input output-symmetric

channel. Assume that this sequence achieves a rate which

is equal to a fraction 1 − ε of the channel capacity with a

block error probability that tends to zero. Then, how small

can the number of loops in their bipartite graphs be as a

function of ε (i.e., the fractional gap in rate to capacity)?
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An information-theoretic lower bound on the average cardinality

of the fundamental system of cycles was derived in [115, Corollary 1].

This bound was expressed in terms of the achievable gap to capacity

(even under ML decoding) when the communication takes place over a

memoryless binary-input output-symmetric channel. More explicitly, it

was shown that the number of fundamental cycles should grow at least

like log 1
ε , where ε denotes the gap in rate to capacity. This lower bound

diverges as the gap to capacity tends to zero, which is consistent with

the findings in [114] on cycle-free codes, and expresses quantitatively

the necessity of cycles in bipartite graphs that represent good LDPC

code ensembles. As a continuation of this work, we will now provide a

large-deviations analysis of the cardinality of the fundamental system

of cycles for LDPC code ensembles.

Let the triplet (n, λ, ρ) represent an LDPC code ensemble, and let

G be a bipartite graph that corresponds to a code from this ensemble.

Then the cardinality of the fundamental system of cycles of G, denoted

by β(G), is equal to

β(G) = |E(G)| − |V (G)| + c(G)

where E(G) and V (G) are the edge and the vertex sets of G, and c(G)

denotes the number of connected components of G, and |A| denotes

the cardinality of a set A. Let Rd ∈ [0, 1) denote the design rate of the

ensemble. Then, in every bipartite graph G drawn from the ensemble,

there are n variable nodes and m = n(1 − Rd) parity-check nodes, for

a total of |V (G)| = n(2 −Rd) nodes. If we let aR designate the average

right degree (i.e., the average degree of the parity-check nodes), then

the number of edges in G is given by |E(G)| = maR. Therefore, for

a code from the (n, λ, ρ) LDPC code ensemble, the cardinality of the

fundamental system of cycles satisfies the equality

β(G) = n
[
(1 −Rd)aR − (2 −Rd)

]
+ c(G) (2.7.12)

where the design rate and the average right degree can be computed

from the degree distributions λ and ρ as

Rd = 1 −
∫ 1

0 ρ(x) dx
∫ 1

0 λ(x) dx
, aR =

1
∫ 1

0 ρ(x) dx
.
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Let

E , |E(G)| = n(1 −Rd)aR (2.7.13)

denote the number of edges of an arbitrary bipartite graph G from

the ensemble (for a fixed ensemble, we will use the terms “code" and

“bipartite graph" interchangeably). Let us arbitrarily assign numbers

1, . . . , E to the E edges of G. Based on Fact 2, let us construct a mar-

tingale sequence X0, . . . , XE , where Xi (for i = 0, 1, . . . , E) is a random

variable that denotes the conditional expected number of components

of a bipartite graph G chosen uniformly at random from the ensemble,

given that the first i edges of the graph G have been revealed. Note

that the corresponding filtration F0 ⊆ F1 ⊆ . . . ⊆ FE in this case is

defined so that Fi is the σ-algebra generated by all the sets of bipartite

graphs from the considered ensemble whose first i edges are fixed. For

this martingale sequence,

X0 = ELDPC(n,λ,ρ)[β(G)], XE = β(G)

and (a.s.) |Xk −Xk−1| ≤ 1 for k = 1, . . . , E (since revealing a new edge

of G can change the number of components in the graph by at most 1).

By Corollary 2.5.3, it follows that for every α ≥ 0

P

(
|c(G) − ELDPC(n,λ,ρ)[c(G)]| ≥ αE

)
≤ 2e−f(α)E

⇒ P

(
|β(G) − ELDPC(n,λ,ρ)[β(G)]| ≥ αE

)
≤ 2e−f(α)E (2.7.14)

where the implication is a consequence of (2.7.12), and the function f

was defined in (2.5.20). Hence, for α > 1, this probability is zero (since

f(α) = +∞ for α > 1). Note that, from (2.7.12), ELDPC(n,λ,ρ)[β(G)]

scales linearly with n. The combination of Eqs. (2.5.20), (2.7.13),

(2.7.14) gives the following statement:

Theorem 2.7.3. Let LDPC(n, λ, ρ) be the LDPC code ensemble with

block length n and a pair (λ, ρ) of left and right degree distributions

(from the edge perspective). Let G be a bipartite graph chosen uni-

formly at random from this ensemble. Then, for every α ≥ 0, the

cardinality of the fundamental system of cycles of G, denoted by β(G),

satisfies the following inequality:

P

(∣∣β(G) − ELDPC(n,λ,ρ)[β(G)]
∣∣ ≥ αn

)
≤ 2 · 2

−[1−h2( 1−η
2 )] αn

η (2.7.15)
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where h2 is the binary entropy function to the base 2, η , α
(1−Rd) aR

,

and Rd and aR are, respectively, the design rate and average right

degree of the ensemble. Consequently, if η > 1, this probability is zero.

Remark 2.11. We can obtain the following weakened version of (2.7.15)

from the Azuma–Hoeffding inequality: for every α ≥ 0,

P

(
|β(G) − ELDPC(n,λ,ρ)[β(G)]| ≥ αn

)
≤ 2e− αηn

2

where η is defined in Theorem 2.7.3 (note that α
η = E

n is equal to the

average degree of the variable nodes). The exponential decay of the last

two bounds is similar for values of α close to zero (see the exponents

of the Azuma–Hoeffding inequality and Corollary 2.5.3 in Figure 2.2).

Remark 2.12. For various capacity-achieving sequences of LDPC code

ensembles on the binary erasure channel, the average right degree scales

like log 1
ε where ε denotes the fractional gap to capacity under belief-

propagation decoding (i.e., Rd = (1−ε)C) [40]. Therefore, for small val-

ues of α, the exponential decay rate in the inequality of Theorem 2.7.3

scales like
(
log 1

ε

)−2
. This large-deviations result complements the re-

sult in [115, Corollary 1], which provides a lower bound on the average

cardinality of the fundamental system of cycles that scales like log 1
ε .

Remark 2.13. Consider small deviations from the expected value that

scale like
√
n. Note that Corollary 2.5.3 is a special case of Theo-

rem 2.5.2 when γ = 1 (i.e., when only an upper bound on the dif-

ferences of the martingale sequence is available, but there is no non-

trivial upper bound on the conditional variance). Hence, it follows from

Proposition 2.1 that, in this case, Corollary 2.5.3 does not provide any

improvement in the exponent of the concentration inequality (in com-

parison to the Azuma–Hoeffding inequality) when small deviations are

considered.

2.7.5 Concentration theorems for LDPC code ensembles over ISI
channels

Concentration analysis of the number of erroneous variable-to-check

messages for random ensembles of LDPC codes was introduced in
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[41] and [117] for memoryless channels. It was shown that the per-

formance of an individual code from the ensemble concentrates around

the expected (average) value over this ensemble when the length of the

block length of the code tends to infinity, and that this average per-

formance converges asymptotically to the performance in the cycle-free

case (when the bipartite graph that represents a linear code contains no

cycles, the messages that are delivered by the message-passing decoder

through the edges of the graph are statistically independent [13]). These

concentration results were later generalized in [118] for intersymbol-

interference (ISI) channels. The proofs of [118, Theorems 1 and 2],

which refer to regular LDPC code ensembles, are revisited in the fol-

lowing in order to derive an explicit expression for the exponential rate

of the concentration inequality. It is then shown that particularizing

the expression for memoryless channels provides a tightened concen-

tration inequality in comparison to [41] and [117]. The presentation in

the following is based on [119].

The ISI channel and its message-passing decoding

We start by briefly describing the ISI channel and the graph used for

its message-passing decoding. For a detailed description, the reader is

referred to [118]. Consider a binary discrete-time ISI channel with a

finite memory length, denoted by I. The channel output Yj at time

instant j is given by

Yj =
I∑

i=0

hiXj−i +Nj , ∀ j ∈ Z

where {Xj} is a sequence of {−1,+1}-valued binary inputs, {hi}I
i=0

is the input response of the ISI channel, and {Nj} is a sequence of

i.i.d. Gaussian random variables with zero mean and variance σ2. It

is assumed that an information block of length k is encoded by using

a regular (n, dv, dc) LDPC code, and the resulting n coded bits are

converted into a channel input sequence before its transmission over the

channel. For decoding, we consider the windowed version of the sum-

product algorithm when applied to ISI channels (for specific details

about this decoding algorithm, the reader is referred to [118] and [120];
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Figure 2.3: Message flow neighborhood of depth 1. This figure corresponds to the
parameters (I, W, dv = L, dc = R) = (1, 1, 2, 3).

in general, it is an iterative message-passing decoding algorithm). The

variable-to-check and check-to-variable messages are computed as in

the sum-product algorithm for the memoryless case with the difference

that a message that is received from the channel at a variable node

is not only a function of the channel output that corresponds to the

considered symbol, but it is also a function of the 2W neighboring

channel outputs and 2W neighboring variables nodes (as is illustrated

in Fig. 2.3).

Concentration

We prove that, for a large n, a neighborhood of depth ℓ of a variable-to-

check node message is tree-like with high probability. Using this result

in conjunction with the Azuma–Hoeffding inequality, we will then show

that, for most graphs and channel realizations, if s is the transmitted

codeword, then the probability of a variable-to-check message being

erroneous after ℓ rounds of message-passing decoding is highly con-

centrated around its expected value. This expected value is shown to

converge to the value of p(ℓ)(s) that corresponds to the cycle-free case.
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In the following theorems, we consider an ISI channel and windowed

message-passing decoding algorithm, where the code graph is chosen

uniformly at random from the ensemble of graphs with variable and

check node degrees dv and dc, respectively. Let N (ℓ)
e⃗ denote the neigh-

borhood of depth ℓ of an edge e⃗ = (v, c) between a variable-to-check

node. Let N
(ℓ)
c , N

(ℓ)
v and N

(ℓ)
e denote, respectively, the total number

of check nodes, variable nodes and code-related edges in this neighbor-

hood. Similarly, let N
(ℓ)
Y denote the number of variable-to-check node

messages in the directed neighborhood of depth ℓ of a received symbol

of the channel (explicit expressions are given in Appendix 2.D).

Theorem 2.7.4. Let P
(ℓ)

t
≡ Pr

{
N (ℓ)

e⃗ not a tree
}

denote the probabil-

ity that the sub-graph N (ℓ)
e⃗ is not a tree (i.e., it contains cycles). Then,

there exists a positive constant γ , γ(dv, dc, ℓ) that does not depend

on the block-length n, such that P
(ℓ)

t
≤ γ

n . More explicitly, one can

choose γ(dv, dc, ℓ) ,
(
N

(ℓ)
v
)2

+
(

dc

dv
·N (ℓ)

c
)2

.

Proof. This proof is a straightforward generalization of the proof in [41]

(for binary-input output-symmetric memoryless channels) to binary-

input ISI channels. A detailed proof is available in [119].

The following concentration inequalities follow from Theorem 2.7.4

and the Azuma–Hoeffding inequality:

Theorem 2.7.5. Let s be the transmitted codeword, and let Z(ℓ)(s) be

the number of erroneous variable-to-check messages after ℓ rounds of

the windowed message-passing decoding algorithm. Let p(ℓ)(s) be the

expected fraction of incorrect messages passed through an edge with

a tree-like directed neighborhood of depth ℓ. Then there exist some

positive constants β and γ that do not depend on the block-length n,

such that the following statements hold:

Concentration around the expected value. For any ε > 0,

P

(∣∣∣∣∣
Z(ℓ)(s)

ndv
− E[Z(ℓ)(s)]

ndv

∣∣∣∣∣ > ε/2

)
≤ 2e−βε2n. (2.7.16)
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Convergence of the expected value to the cycle-free case. For

any ε > 0 and n > 2γ
ε , we have a.s.
∣∣∣∣∣
E[Z(ℓ)(s)]

ndv
− p(ℓ)(s)

∣∣∣∣∣ ≤ ε/2. (2.7.17)

Concentration around the cycle-free case. For any ε > 0 and

n > 2γ
ε ,

P

(∣∣∣∣∣
Z(ℓ)(s)

ndv
− p(ℓ)(s)

∣∣∣∣∣ > ε

)
≤ 2e−βε2n. (2.7.18)

More explicitly, the above statements hold for

β , β(dv, dc, ℓ) =
d2

v

8
(
4dv(N

(ℓ)
e )2 + (N

(ℓ)
Y )2

) ,

and

γ , γ(dv, dc, ℓ) =
(
N (ℓ)

v

)2
+

(
dc

dv
·N (ℓ)

c

)2

.

Proof. See Appendix 2.D.

The concentration inequalities in Theorem 2.7.5 extend the results

in [41] from the special setting of memoryless binary-input output-

symmetric (MBIOS) channels to ISI channels. One can particularize

the above expression for β to MBIOS channels by setting W = 0 and

I = 0. Since the proof of Theorem 2.7.5 uses exact expressions for N
(ℓ)
e

and N
(ℓ)
Y , one would expect a tighter bound in comparison to the value

of β in [41], which is given by 1
β = 544d2ℓ−1

v d2ℓ
c . As an example, for

(dv, dc, ℓ) = (3, 4, 10), one gets an improvement by a factor of about

1 million. However, even with this improvement, the required size of

n according to the analysis in this section can be absurdly large. This

is because the proof is very pessimistic in the sense that it assumes

that any change in an edge or the decoder’s input introduces an error

in every message it affects. This is especially pessimistic if a large ℓ is

considered, because the neighborhood grows with ℓ, so each message is a

function of many edges and received output symbols from the channel.

The same concentration phenomena that are established above for

regular LDPC code ensembles can be extended to irregular LDPC code
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ensembles as well. In the special case of MBIOS channels, the following

theorem was proved by Richardson and Urbanke in [13, pp. 487–490],

based on the Azuma–Hoeffding inequality (we use here the same nota-

tion for LDPC code ensembles as in Section 2.7.4):

Theorem 2.7.6. Let C, a code chosen uniformly at random from the

ensemble LDPC(n, λ, ρ), be used for transmission over an MBIOS chan-

nel characterized by its L-density aMBIOS (this denotes the conditional

pdf of the log-likelihood ratio L , l(Y ) = ln
(

pY |X(Y |1)

pY |X(Y |−1)

)
, given that

X = 1 is the transmitted symbol). Assume that the decoder performs l

iterations of message-passing decoding, and let Pb(C, aMBIOS, l) denote

the resulting bit error probability. Then, for every δ > 0, there exists a

positive α where α = α(λ, ρ, δ, l) is independent of the block length n,

such that the following concentration inequality holds:

P

(
|Pb(C, aMBIOS, l) − ELDPC(n,λ,ρ)[Pb(C, aMBIOS, l)]| ≥ δ

)
≤ exp(−αn).

This theorem asserts that the performance of all codes, except for a

fraction which is exponentially small in the block length n, is with high

probability arbitrarily close to the ensemble average. Hence, assuming a

sufficiently large block length, the ensemble average is a good indicator

for the performance of individual codes; it is therefore reasonable to

focus on the design and analysis of capacity-approaching ensembles

(via the density evolution technique [41]). This forms a fundamental

result in the theory of codes on graphs and iterative decoding.

2.7.6 On the concentration of the conditional entropy for LDPC
code ensembles

A large-deviation analysis of the conditional entropy for random en-

sembles of LDPC codes was introduced by Méasson, Montanari and

Urbanke in [121, Theorem 4] and [35, Theorem 1]. The following the-

orem is proved in [121, Appendix I], based on the Azuma–Hoeffding

inequality (although here we rephrase it to consider small deviations of

order
√
n, instead of large deviations of order n):

Theorem 2.7.7. Let C be chosen uniformly at random from the ensem-

ble LDPC(n, λ, ρ). Assume that the transmission of the code C takes
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place over an MBIOS channel. Let H(X|Y) denote the conditional en-

tropy of the transmitted codeword X given the received sequence Y

from the channel. Then, for every ξ > 0,

P
(∣∣H(X|Y) − ELDPC(n,λ,ρ)[H(X|Y)]

∣∣ ≥ ξ
√
n
) ≤ 2 exp(−Bξ2)

where B , 1
2(dmax

c +1)2(1−Rd)
, dmax

c is the maximal check-node degree,

and Rd is the design rate of the ensemble.

In this section, we revisit the proof of Theorem 2.7.7, originally

given in [121, Appendix I], in order to derive a tightened version of this

bound. To that end, let G be a bipartite graph that represents a code

chosen uniformly at random from the ensemble LDPC(n, λ, ρ). Define

the random variable

Z = HG(X|Y),

i.e., the conditional entropy when the transmission is over an MBIOS

channel with transition probabilities PY|X(y|x) =
∏n

i=1 pY |X(yi|xi),

where (by output symmetry) pY |X(y|1) = pY |X(−y|0). Fix an arbitrary

order for the m = n(1−Rd) parity-check nodes, where Rd is the design

rate of the LDPC code ensemble. Let {Ft}t∈{0,1,...,m} form a filtration of

σ-algebras F0 ⊆ F1 ⊆ . . . ⊆ Fm where Ft (for t = 0, 1, . . . ,m) is the

σ-algebra generated by all the subsets of m × n parity-check matrices

that are characterized by the pair of degree distributions (λ, ρ), and

whose first t parity-check equations are fixed (for t = 0 nothing is

fixed, and therefore F0 = {∅,Ω} where ∅ denotes the empty set, and Ω

is the whole sample space of m×n binary parity-check matrices that are

characterized by the pair of degree distributions (λ, ρ)). Accordingly,

based on Fact 2 in Section 2.1, let us define the following martingale

sequence:

Zt = E[Z|Ft] t ∈ {0, 1, . . . ,m} .
By construction, Z0 = E[HG(X|Y)] is the expected value of the con-

ditional entropy with respect to the LDPC code ensemble, and Zm is

the random variable that is equal a.s. to the conditional entropy of the

particular code from the ensemble. Similarly to [121, Appendix I], we

obtain upper bounds on the differences |Zt+1 − Zt| and then rely on

the Azuma–Hoeffding inequality in Theorem 2.4.2.
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Without loss of generality, we can order the parity-check nodes by

increasing degree, as done in [121, Appendix I]. Let r = (r1, r2, . . .) be

the set of parity-check degrees in ascending order, and Γi be the fraction

of parity-check nodes of degree i. Hence, the first m1 = n(1 − Rd)Γr1

parity-check nodes are of degree r1, the successive m2 = n(1 −Rd)Γr2

parity-check nodes are of degree r2, and so on. The (t + 1)-th parity-

check will therefore have a well-defined degree, which we denote by r.

From the proof in [121, Appendix I],

|Zt+1 − Zt| ≤ (r + 1)HG(X̃|Y) (2.7.19)

where HG(X̃|Y) is a random variable that is equal to the conditional

entropy of a parity-bit X̃ = Xi1 ⊕ . . . ⊕ Xir (i.e., X̃ is equal to the

modulo-2 sum of some r bits in the codeword X) given the received

sequence Y at the channel output. The proof in [121, Appendix I] was

then completed by upper-bounding the parity-check degree r by the

maximal parity-check degree dmax
c , and also by upper-bounding the

conditional entropy of the parity-bit X̃ by 1. This gives

|Zt+1 − Zt| ≤ dmax
c + 1 t = 0, 1, . . . ,m− 1 (2.7.20)

which, together with the Azuma–Hoeffding inequality, completes the

proof of Theorem 2.7.7. Note that the di’s in Theorem 2.4.2 are equal

to dmax
c + 1, and n in Theorem 2.4.2 is replaced with the length m =

n(1−Rd) of the martingale sequence {Zt} (that is equal to the number

of the parity-check nodes in the graph).

Based on [116], a refined analysis is provided; it departs from the

analysis in [121, Appendix I] in two respects:

• The first difference is related to the upper bound on the condi-

tional entropyHG(X̃|Y) in (2.7.19), where X̃ is the modulo-2 sum

of some r bits of the transmitted codeword X given the channel

output Y. Instead of taking the most trivial upper bound that is

equal to 1, as was done in [121, Appendix I], we derive a simple

upper bound that depends on the parity-check degree r and the

channel capacity C (see Proposition 2.2).

• The second difference is minor, but it proves to be helpful for

tightening the concentration inequality for LDPC code ensembles
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that are not right-regular (i.e., the case where the degrees of the

parity-check nodes are not fixed to a certain value). Instead of

upper-bounding the term r+ 1 on the right side of (2.7.19) with

dmax
c + 1, we propose to leave it as is, since the Azuma–Hoeffding

inequality applies to the case when the bounded differences of

the martingale sequence are not fixed (see Theorem 2.4.2), and

since the number of the parity-check nodes of degree r is equal to

n(1 −Rd)Γr. The effect of this simple modification will be shown

in Example 2.10.

The following upper bound is related to the first item above:

Proposition 2.2. Let G be a bipartite graph which corresponds to a

binary linear block code used for transmission over an MBIOS channel.

Let X and Y designate the transmitted codeword and received sequence

at the channel output. Let X̃ = Xi1 ⊕ . . .⊕Xir be a parity-bit of some

r code bits of X. Then, the conditional entropy of X̃ given Y satisfies

HG(X̃|Y) ≤ h2

(
1 − C

r
2

2

)
. (2.7.21)

Furthermore, for a binary symmetric channel (BSC) or a binary erasure

channel (BEC), this bound can be improved to

HG(X̃|Y) ≤ h2

(
1 − [

1 − 2h−1
2 (1 − C)

]r

2

)
(2.7.22)

and

HG(X̃|Y) ≤ 1 − Cr (2.7.23)

respectively, where h−1
2 in (2.7.22) denotes the inverse of the binary

entropy function to base 2.

Note that if the MBIOS channel is perfect (i.e., its capacity is C = 1

bit per channel use), then (2.7.21) holds with equality (where both sides

of (2.7.21) are zero), whereas the trivial upper bound is 1.

Proof. Since conditioning reduces the entropy, we have

H(X̃
∣∣Y) ≤ H(X̃

∣∣Yi1 , . . . , Yir ).
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Note that Yi1 , . . . , Yir are the channel outputs that correspond to the

channel inputs Xi1 , . . . Xir , where these r bits are used to calculate

the parity-bit X̃. Hence, by combining the last inequality with [115,

Eq. (17) and Appendix I], we can show that

H(X̃
∣∣Y) ≤ 1 − 1

2 ln 2

∞∑

k=1

(gk)r

k(2k − 1)
(2.7.24)

where (see [115, Eq. (19)])

gk ,

∫ ∞

0
a(l)(1 + e−l) tanh2k

(
l

2

)
dl, ∀ k ∈ N (2.7.25)

and a(·) denotes the symmetric pdf of the log-likelihood ratio at the

output of the MBIOS channel, given that the channel input is equal to

zero. From [115, Lemmas 4 and 5], it follows that gk ≥ Ck for every

k ∈ N. Substituting this inequality in (2.7.24) gives

H(X̃
∣∣Y) ≤ 1 − 1

2 ln 2

∞∑

k=1

Ckr

k(2k − 1)

= h2

(
1 − C

r
2

2

)
(2.7.26)

where the last equality follows from the power series expansion of the

binary entropy function:

h2(x) = 1 − 1

2 ln 2

∞∑

k=1

(1 − 2x)2k

k(2k − 1)
, 0 ≤ x ≤ 1. (2.7.27)

This proves the result in (2.7.21).

The tightened bound on the conditional entropy for the BSC is

obtained from (2.7.24) and the equality

gk =
(
1 − 2h−1

2 (1 − C)
)2k
, ∀ k ∈ N

that holds for the BSC (see [115, Eq. (97)]). This replaces C on the right

side of (2.7.26) with
(
1 − 2h−1

2 (1 −C)
)2

, thus leading to the tightened

bound in (2.7.22).

The tightened result for the BEC follows from (2.7.24) where, from

(2.7.25),

gk = C, ∀ k ∈ N
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(see [115, Appendix II]). Substituting gk into the right side of (2.7.24)

gives (2.7.22) (note that
∑∞

k=1
1

k(2k−1) = 2 ln 2). This completes the

proof of Proposition 2.2.

From Proposition 2.2 and (2.7.19), we get

|Zt+1 − Zt| ≤ (r + 1)h2

(
1 − C

r
2

2

)
, (2.7.28)

where the two improvements for the BSC and BEC are obtained by

replacing the second term, h2(·), on the right side of (2.7.28) by (2.7.22)

and (2.7.23), respectively. This improves upon the earlier bound of

(dmax
c + 1) in [121, Appendix I]. From (2.7.28) and Theorem 2.4.2, we

obtain the following tightened version of the concentration inequality

in Theorem 2.7.7:

Theorem 2.7.8. Let C be chosen uniformly at random from the ensem-

ble LDPC(n, λ, ρ). Assume that the transmission of the code C takes

place over an MBIOS channel. Let H(X|Y) designate the conditional

entropy of the transmitted codeword X given the received sequence Y

at the channel output. Then, for every ξ > 0,

P
(∣∣H(X|Y) − ELDPC(n,λ,ρ)[H(X|Y)]

∣∣ ≥ ξ
√
n
) ≤ 2 exp(−Bξ2),

(2.7.29)

where

B ,
1

2(1 −Rd)

dmax
c∑

i=1

{
(i+ 1)2 Γi

[
h2

(
1 − C

i
2

2

)]2
} , (2.7.30)

dmax
c is the maximal check-node degree, Rd is the design rate of the

ensemble, and C is the channel capacity (in bits per channel use).

Furthermore, for a binary symmetric channel (BSC) or a binary erasure

channel (BEC), the parameter B on the right side of (2.7.29) can be

improved (i.e., increased), respectively, to

BBSC ,
1

2(1 −Rd)

dmax
c∑

i=1

{
(i+ 1)2 Γi

[
h2

(
1 − [1 − 2h−1

2 (1 − C)]i

2

)]2
}
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and

BBEC ,
1

2(1 −Rd)

dmax
c∑

i=1

{
(i+ 1)2 Γi (1 − Ci)2

}
. (2.7.31)

Remark 2.14. From (2.7.30), Theorem 2.7.8 indeed yields a stronger

concentration inequality than the one in Theorem 2.7.7.

Remark 2.15. In the limit where C → 1 bit per channel use, it follows

from (2.7.30) that, if dmax
c < ∞, then B → ∞. This is in contrast

to the value of B in Theorem 2.7.7, which does not depend on the

channel capacity and is finite. Note that B should indeed be infinity

for a perfect channel, and therefore Theorem 2.7.8 is tight in this case.

This is in contrast to the value of B in Theorem 2.7.7, which vanishes

when dmax
c = ∞, making it useless in this case (see Example 2.10).

Example 2.9 (Comparison of Theorems 2.7.7 and 2.7.8 for right-regular

LDPC code ensembles). Consider the case where the communication

takes place over a binary-input additive white Gaussian noise channel

(BIAWGNC) or a BEC. Let us consider the (2, 20) regular LDPC code

ensemble whose design rate is equal to 0.900 bits per channel use. For a

BEC, the threshold of the channel bit erasure probability under belief-

propagation (BP) decoding is given by

pBP = inf
x∈(0,1]

x

1 − (1 − x)19
= 0.0531,

which corresponds to a channel capacity of C = 0.9469 bits per channel

use (note that the above calculation of pBP for the BEC follows from

the fixed-point characterization of the threshold in [13, Theorem 3.59]

with the pair of degree distributions λ(x) = x and ρ(x) = x19). For

the BIAWGNC, the threshold under BP decoding is equal to σBP =

0.4156590 (this numerical result is based on a computation that follows

from [41, Example 11]). From [13, Example 4.38] that expresses the

capacity of the BIAWGNC in terms of the standard deviation σ of the

Gaussian noise, the minimum capacity of a BIAWGNC over which it is

possible to communicate with vanishing bit error probability under BP
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decoding is C = 0.9685 bits per channel use. Accordingly, let us assume

that, for reliable communications over both channels, the capacity of

the BEC and BIAWGNC is set to 0.98 bits per channel use.

Since the code ensemble is right-regular with dc = 20, the value of B

in Theorem 2.7.8 is improved by a factor of

[
h2

(
1−C

dc
2

2

)]−2

= 5.134.

For the BEC, the result is improved by a factor of
(
1−Cdc

)−2
= 9.051;

this follows from the tightened value of B in (2.7.31), which improves

the concentration inequality in Theorem 2.7.7.

Example 2.10 (Comparison of Theorems 2.7.7 and 2.7.8 for a heavy-tail

Poisson distribution (Tornado codes)). The capacity-achieving sequence

of the so-called Tornado codes for the BEC was introduced in [40,

Section IV], [122] (see also [13, Problem 3.20]).

Suppose that we wish to design Tornado code ensembles that

achieve a fraction 1−ε of the capacity of a BEC under iterative message-

passing decoding (where ε can be set arbitrarily small). Let p denote

the bit erasure probability of the channel. The parity-check degree is

Poisson-distributed, and therefore the maximal degree of the parity-

check nodes is infinity. Hence, B = 0 according to Theorem 2.7.7,

which renders this theorem useless for the considered code ensemble.

On the other hand, from Theorem 2.7.8,

∑

i

(i+ 1)2Γi

[
h2

(
1 − C

i
2

2

)]2
(a)

≤
∑

i

(i+ 1)2Γi

(b)
=

∑
i ρi(i+ 2)

∫ 1

0
ρ(x) dx

+ 1

(c)
= (ρ′(1) + 3)davg

c + 1

(d)
=

(
λ′(0)ρ′(1)

λ2
+ 3

)
davg

c + 1

(e)

≤
(

1

pλ2
+ 3

)
davg

c + 1

(f)
= O

(
log2

(
1

ε

))
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with the following justification:

• inequality (a) holds since the binary entropy function to base 2

is bounded between zero and one;

• equality (b) holds since

Γi =
ρi

i∫ 1

0
ρ(x) dx

,

where Γi and ρi denote the fraction of parity-check nodes and

the fraction of edges that are connected to parity-check nodes of

degree i respectively (and also since
∑

i Γi = 1);

• equality (c) holds since

davg
c =

1
∫ 1

0
ρ(x) dx

,

where davg
c denotes the average parity-check node degree;

• equality (d) holds since λ′(0) = λ2;

• inequality (e) is due to the stability condition for a BEC with an

erasure probability p, which states that satisfying the inequality

pλ′(0)ρ′(1) < 1 is a necessary condition for reliable communica-

tion under BP decoding (see [13, Theorem 3.65]);

• equality (f) follows from the analysis in [115, Appendix VI] (an

upper bound on λ2 is derived in [115, Eq. (120)], and the average

parity-check node degree scales like log 1
ε ).

It therefore follows from the above chain of inequalities and (2.7.30)

that, for a small gap to capacity, the parameter B in Theorem 2.7.8

scales (at least) like

B = O

(
1

log2(1
ε

)
)
.

Theorem 2.7.8 is therefore useful for the analysis of this LDPC code

ensemble. As is shown above, the parameter B in (2.7.30) tends to zero

rather slowly as we let the fractional gap ε tend to zero (which therefore

demonstrates a rather fast concentration in Theorem 2.7.8).
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Example 2.11. Here, we continue with the setting of Example 2.9 on

the (n, dv, dc) regular LDPC code ensemble, where dv = 2 and dc = 20.

With the setting of this example, Theorem 2.7.7 gives

P
(∣∣H(X|Y) − ELDPC(n,λ,ρ)[H(X|Y)]

∣∣ ≥ ξ
√
n
)

≤ 2 exp(−0.0113 ξ2), ∀ ξ > 0. (2.7.32)

As was mentioned already in Example 2.9, the exponential inequalities

in Theorem 2.7.8 achieve an improvement in the exponent of Theo-

rem 2.7.7 by factors of 5.134 and 9.051 for the BIAWGNC and BEC,

respectively. One therefore obtains from the concentration inequalities

in Theorem 2.7.8 that, for every ξ > 0,

P
(∣∣H(X|Y) − ELDPC(n,λ,ρ)[H(X|Y)]

∣∣ ≥ ξ
√
n
)

≤




2 exp(−0.0580 ξ2), (BIAWGNC)

2 exp(−0.1023 ξ2), (BEC)
. (2.7.33)

2.8 Summary

This chapter introduces several classical concentration inequalities for

discrete-time martingales with bounded differences, and some of their

applications in information theory, communications and coding.

The exposition starts with the martingale decomposition of Doob,

the Chernoff bound, and the Hoeffding Lemma (see Section 2.4); these

form basic ingredients for the derivation of concentration inequali-

ties via the martingale approach. This chapter derives the Azuma–

Hoeffding inequality for discrete-time martingales with bounded dif-

ferences ([8], [9]), and some of its refined versions (see Sections 2.4.2

and 2.5). The martingale approach also serves as a useful tool for es-

tablishing concentration of a function f : Rn → R whose value changes

by a bounded amount whenever any of its n input variables is changed

arbitrarily while the other variables are held fixed. A common method

for proving concentration of such a function of n independent random

variables around its expected value E[f ] revolves around McDiarmid’s

inequality or the “independent bounded-differences inequality” [6]. Mc-

Diarmid’s inequality was originally proved via the martingale approach,
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as it is derived in Section 2.4.3. Although the proof of this inequality

has some similarity to the proof of the well-known Azuma–Hoeffding

inequality, the bounded-difference assumption on f yields an improve-

ment by a factor of 4 in the exponent.

The presentation of the concentration inequalities in this chapter

is followed by a short discussion on their relations to some selected

classical results in probability theory (see Section 2.6); these include

the central limit theorem for discrete-time martingales, the moderate

deviations principle, and the suitability of the concentration inequal-

ities derived in this chapter for harmonic and bounded functions of

discrete-time Markov chains.

Section 2.7 is focused on the applications of the concentration in-

equalities in information theory, communication, and coding theory.

These include the establishment of concentration results for the mini-

mum distance of random binary linear codes, expansion properties of

random bipartite graphs, the crest factor (or peak to average power

ratio) of OFDM signals, and concentration results for LDPC code

ensembles. Additional concentration results have been established by

Richardson and Urbanke for LDPC code ensembles under MAP and

iterative message-passing decoding [41]. These martingale inequalities

also prove to be useful for the derivation of achievable rates and random

coding error exponents, under ML decoding, when transmission takes

place over linear or nonlinear additive white Gaussian noise channels

with or without memory ([123]–[124]). Nice and interesting applica-

tions of these concentration inequalities to discrete mathematics and

random graphs were provided, e.g., in [6, Section 3], [10, Chapter 7]

and [18, Chapters 1 and 2].

A recent interesting avenue that follows from the inequalities that

are introduced in this chapter is their generalization to random matri-

ces (see, e.g., [15] and [16]). The interested reader is also referred to

[125] for a derivation of concentration inequalities that refer to martin-

gales whose differences are not necessarily bounded, followed by some

applications to graph theory.
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2.A Proof of Bennett’s inequality

The inequality in (2.5.10) is trivial for λ = 0, so we prove it for λ > 0.

Let Y , λ(X − x) for λ > 0. Then, by assumption, Y ≤ λ(b− x) , bY

a.s. and var(Y ) ≤ λ2σ2 , σ2
Y . It is therefore required to show that, if

E[Y ] = 0, Y ≤ bY , and var(Y ) ≤ σ2
Y , then

E[eY ] ≤
(

b2
Y

b2
Y + σ2

Y

)
e

− σ2
Y

bY +

(
σ2

Y

b2
Y + σ2

Y

)
ebY . (2.A.1)

Let Y0 be a random variable that takes two possible values −σ2
Y

bY
and

bY with probabilities

P

(
Y0 = −σ2

Y

bY

)
=

b2
Y

b2
Y + σ2

Y

, P(Y0 = bY ) =
σ2

Y

b2
Y + σ2

Y

. (2.A.2)

Then inequality (2.A.1) is equivalent to

E[eY ] ≤ E[eY0 ], (2.A.3)

which is what we will prove. To that end, let ϕ be the unique parabola

such that the function

f(y) , ϕ(y) − ey, ∀ y ∈ R

is zero at y = bY , and has f(y) = f ′(y) = 0 at y = −σ2
Y

bY
. Since ϕ′′

is constant, f ′′(y) = 0 at exactly one value of y, say, y0. Furthermore,

since f(−σ2
Y

bY
) = f(bY ) (both are equal to zero), we must have f ′(y) = 0

for some y1 ∈ (−σ2
Y

bY
, bY

)
. By the same argument applied to f ′ on

[−σ2
Y

bY
, y1
]
, it follows that y0 ∈ (−σ2

Y

bY
, y1
)
. The function f is convex

on (−∞, y0] (since, on this interval, f ′′(y) = ϕ′′(y)−ey ≥ ϕ′′(y)−ey0 =

ϕ′′(y0) − ey0 = f ′′(y0) = 0), and its minimal value on this interval

is attained at y = −σ2
Y

bY
(since at this point f ′ is zero); this minimal

value is zero. Furthermore, f is concave on [y0,∞) (since its second

derivative is non-positive on this interval) and it attains its maximal

value on this interval at y = y1. By construction, f(bY ) = 0; this implies

that f ≥ 0 on the interval (−∞, bY ], so E[f(Y )] ≥ 0 for an arbitrary

random variable Y such that Y ≤ bY a.s., which therefore gives

E[eY ] ≤ E[ϕ(Y )],
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with equality if P(Y ∈ {−σ2
Y

bY
, bY }) = 1. Since f ′′(y) ≥ 0 for y < y0, it

must be the case that ϕ′′(y) − ey = f ′′(y) ≥ 0 for y < y0, so ϕ′′(0) =

ϕ′′(y) > 0 (recall that ϕ′′ is constant since ϕ is a parabola). Hence, for

every random variable Y of zero mean, E[ϕ(Y )], which only depends

on E[Y 2], is a non-decreasing function of E[Y 2]. The random variable

Y0 that takes values in {−σ2
Y

bY
, bY }, and whose distribution is given in

(2.A.2), is of zero mean and variance E[Y 2
0 ] = σ2

Y , so

E[ϕ(Y )] ≤ E[ϕ(Y0)].

Note also that

E[ϕ(Y0)] = E[eY0 ]

since f(y) = 0 (i.e., ϕ(y) = ey) if y = −σ2
Y

bY
or bY , and Y0 only takes

these two values. Combining the last two inequalities with the last

equality gives inequality (2.A.3), which therefore completes the proof

of Bennett’s inequality in (2.5.10).

2.B On the moderate deviations principle

Here we show that, in contrast to the Azuma–Hoeffding inequality,

Theorem 2.5.2 provides an upper bound on

P

(∣∣∣
n∑

i=1

Xi

∣∣∣ ≥ αnη

)
, ∀α ≥ 0

which coincides with the exact asymptotic limit in (2.6.5) under an

extra assumption that there exists some constant d > 0 such that

|Xk| ≤ d a.s. for every k ∈ N. Let us define the martingale sequence

{Sk,Fk}n
k=0 where

Sk ,

k∑

i=1

Xi, Fk , σ(X1, . . . , Xk)

for every k ∈ {1, . . . , n} with S0 = 0 and F0 = {∅,F}. This martingale

sequence has uniformly bounded differences: |Sk −Sk−1| = |Xk| ≤ d a.s.

for every k ∈ {1, . . . , n}. Hence, it follows from the Azuma–Hoeffding

inequality that, for every α ≥ 0,

P (|Sn| ≥ αnη) ≤ 2 exp

(
−α2n2η−1

2d2

)
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and therefore

lim
n→∞

n1−2η lnP
(|Sn| ≥ αnη) ≤ − α2

2d2
. (2.B.1)

This differs from the limit in (2.6.5) where σ2 is replaced by d2, so the

Azuma–Hoeffding inequality does not provide the asymptotic limit in

(2.6.5) (unless σ2 = d2, i.e., |Xk| = d a.s. for every k).

An analysis that follows from Theorem 2.5.2: The following analysis

is a slight modification of the analysis in the proof of Proposition 2.1,

with the required adaptation of the calculations for η ∈ (1
2 , 1). It follows

from Theorem 2.5.2 that, for every α ≥ 0,

P(|Sn| ≥ αnη) ≤ 2 exp

(
−nH

(
δn + γ

1 + γ

∥∥∥
γ

1 + γ

))

where γ is introduced in (2.5.8), H(p∥q) is the divergence in (2.5.9)

between the Bernoulli(p) and Bernoulli(q) probability measures, and

δn in (2.5.27) is replaced with

δn ,

α
n1−η

d
= δn−(1−η) (2.B.2)

due to the definition of δ in (2.5.8). Following the same analysis as in

the proof of Proposition 2.1, it follows that for every n ∈ N

P(|Sn| ≥ αnη) ≤ 2 exp

(
−δ2n2η−1

2γ

[
1 +

α(1 − γ)

3γd
· n−(1−η) + . . .

])

and therefore (since, from (2.5.8), δ2

γ = α2

σ2 )

lim
n→∞

n1−2η lnP
(|Sn| ≥ αnη) ≤ − α2

2σ2
.

Hence, this upper bound coincides with the exact asymptotic result in

(2.6.5).

2.C Proof of (2.7.9) for OFDM signals

Consider an OFDM signal from Section 2.7.3. The sequence in (2.7.7)

is a martingale. From (2.7.6), for every i ∈ {0, . . . , n},

Yi = E

[
max

0≤t≤T

∣∣s(t;X0, . . . , Xn−1)
∣∣
∣∣∣X0, . . . , Xi−1

]
.
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The conditional expectation for the random variable Yi−1 refers

to the case where only X0, . . . , Xi−2 are revealed. Let X ′
i−1

and Xi−1 be independent copies, which are also independent of

X0, . . . , Xi−2, Xi, . . . , Xn−1. Then, for every 1 ≤ i ≤ n,

Yi−1 = E

[
max

0≤t≤T

∣∣s(t;X0, . . . , X
′
i−1, Xi, . . . , Xn−1)

∣∣
∣∣∣X0, . . . , Xi−2

]

= E

[
max

0≤t≤T

∣∣s(t;X0, . . . , X
′
i−1, Xi, . . . , Xn−1)

∣∣
∣∣∣X0, . . . , Xi−2, Xi−1

]
.

Since |E(Z)| ≤ E(|Z|), then for i ∈ {1, . . . , n}

|Yi − Yi−1| ≤ EX′
i−1,Xi,...,Xn−1

[
|U − V |

∣∣∣ X0, . . . , Xi−1

]
(2.C.1)

where

U , max
0≤t≤T

∣∣s(t;X0, . . . , Xi−1, Xi, . . . , Xn−1)
∣∣

V , max
0≤t≤T

∣∣s(t;X0, . . . , X
′
i−1, Xi, . . . , Xn−1)

∣∣.

From (2.7.4)

|U − V | ≤ max
0≤t≤T

∣∣s(t;X0, . . . , Xi−1, Xi, . . . , Xn−1)

− s(t;X0, . . . , X
′
i−1, Xi, . . . , Xn−1)

∣∣

= max
0≤t≤T

1√
n

∣∣∣
(
Xi−1 −X ′

i−1

)
exp

(j 2πit

T

)∣∣∣

=
|Xi−1 −X ′

i−1|√
n

. (2.C.2)

By assumption, |Xi−1| = |X ′
i−1| = 1, and therefore a.s.

|Xi−1 −X ′
i−1| ≤ 2 =⇒ |Yi − Yi−1| ≤ 2√

n
.

We now obtain an upper bound on the conditional variance

var(Yi | Fi−1) = E
[
(Yi − Yi−1)2 | Fi−1

]
. Since

(
E(Z)

)2 ≤ E(Z2) for a

real-valued random variable Z, from (2.C.1), (2.C.2) and the tower

property for conditional expectations, it follows that

E
[
(Yi − Yi−1)2 |Fi−1

] ≤ 1

n
· EX′

i−1

[|Xi−1 −X ′
i−1|2 | Fi−1

]
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where Fi−1 is the σ-algebra generated by X0, . . . , Xi−2. Due to

the symmetry in the PSK constellation, and the independence of

Xi−1, X
′
i−1 in X0, . . . , Xi−2, we have

E
[
(Yi − Yi−1)2 | Fi−1

] ≤ 1

n
E
[|Xi−1 −X ′

i−1|2 |X0, . . . , Xi−2
]

=
1

n
E
[|Xi−1 −X ′

i−1|2]

=
1

n
E

[
|Xi−1 −X ′

i−1|2 |Xi−1 = e
jπ
M

]

=
1

nM

M−1∑

l=0

∣∣∣ e
jπ
M − e

j(2l+1)π

M

∣∣∣
2

=
4

nM

M−1∑

l=1

sin2
( πl
M

)
=

2

n
.

The last equality holds since

M−1∑

l=1

sin2
( πl
M

)
=

1

2

M−1∑

l=0

(
1 − cos

(2πl

M

))

=
M

2
− 1

2
Re

{M−1∑

l=0

ej2lπ/M
}

=
M

2
− 1

2
Re

{
1 − e2jπ

1 − ej2π/M

}
=
M

2
.

2.D Proof of Theorem 2.7.5

From the triangle inequality, we have

P

(∣∣∣∣∣
Z(ℓ)(s)

ndv
− p(ℓ)(s)

∣∣∣∣∣ > ε

)
(2.D.1)

≤ P

(∣∣∣∣∣
Z(ℓ)(s)

ndv
− E[Z(ℓ)(s)]

ndv

∣∣∣∣∣ > ε/2

)
+ P

(∣∣∣∣∣
E[Z(ℓ)(s)]

ndv
− p(ℓ)(s)

∣∣∣∣∣ > ε/2

)
.

If inequality (2.7.17) holds a.s., then P

(∣∣∣Z
(ℓ)(s)
ndv

− p(ℓ)(s)
∣∣∣ > ε/2

)
= 0;

therefore, using (2.D.1), we deduce that (2.7.18) follows from (2.7.16)

and (2.7.17) for any ε > 0 and n > 2γ
ε . We start by proving (2.7.16).
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For an arbitrary sequence s, the random variable Z(ℓ)(s) denotes the

number of incorrect variable-to-check node messages among all ndv

variable-to-check node messages passed in the ℓ-th iteration for a par-

ticular graph G, and decoder-input Y . Let us form a martingale by first

exposing the ndv edges of the graph one by one, and then exposing the

n received symbols Yi one by one. Let a denote the sequence of the ndv

variable-to-check node edges of the graph, followed by the sequence of

the n received symbols at the channel output. For i = 0, ...n(dv +1), let

the random variable Z̃i , E[Z(ℓ)(s)|a1, . . . , ai] be defined as the condi-

tional expectation of Z(ℓ)(s) given the first i elements of the sequence

a. Note that it forms a martingale sequence (see Fact 2 in Section 2.1),

where Z̃0 = E[Z(ℓ)(s)] and Z̃n(dv+1) = Z(ℓ)(s). Hence, getting an up-

per bound on the sequence of differences |Z̃i+1 − Z̃i| enables to apply

the Azuma–Hoeffding inequality for proving concentration around the

expected value Z̃0. To this end, let us consider the effect of expos-

ing an edge of the graph. Consider two graphs G and G̃ whose edges

are identical except for an exchange of an endpoint of two edges. A

variable-to-check message is affected by this change if at least one of

these edges is included in its directed neighborhood of depth ℓ.

Consider a neighborhood of depth ℓ of a variable-to-check node

message. Since at each level, the graph expands by a factor of

α , (dv − 1 + 2Wdv)(dc − 1),

there are a total of

N (ℓ)
e = 1 + dc(dv − 1 + 2Wdv)

ℓ−1∑

i=0

αi

edges related to the code structure (variable-to-check node edges or

vice versa) in the neighborhood N (ℓ)
e⃗ . By symmetry, the two edges can

affect at most 2N
(ℓ)
e neighbors (alternatively, we could directly sum the

number of variable-to-check node edges in a neighborhood of a variable-

to-check node edge, and in a neighborhood of a check-to-variable node

edge). The change in the number of incorrect variable-to-check node

messages is bounded by the extreme case, where each change in the

neighborhood of a message introduces an error. In a similar manner,
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when we reveal a received output symbol, the variable-to-check node

messages whose directed neighborhood includes that channel input can

be affected. We consider a neighborhood of depth ℓ of a received output

symbol. By counting, it can be shown that this neighborhood includes

N
(ℓ)
Y = (2W + 1) dv

ℓ−1∑

i=0

αi

variable-to-check node edges. Therefore, a change of a received out-

put symbol can affect up to N
(ℓ)
Y variable-to-check node messages. We

conclude that |Z̃i+1 − Z̃i| ≤ 2N
(ℓ)
e for the first ndv exposures, and

|Z̃i+1 − Z̃i| ≤ N
(ℓ)
Y for the last n exposures. Applying the Azuma–

Hoeffding inequality, we get

P

(∣∣∣∣∣
Z(ℓ)(s)

ndv
− E[Z(ℓ)(s)]

ndv

∣∣∣∣∣ >
ε

2

)

≤ 2 exp


− (ndvε/2)2

2
(
ndv

(
2N

(ℓ)
e
)2

+ n
(
N

(ℓ)
Y

)2)




and a comparison of this concentration inequality with (2.7.16) gives

that

1

β
=

8
(
4dv(N

(ℓ)
e )2 + (N

(ℓ)
Y )2

)

d2
v

. (2.D.2)

Next, proving inequality (2.7.17) relies on concepts from [41] and

[118]. Let E[Z
(ℓ)
i (s)], for i ∈ {1, . . . , ndv}, be the expected number of

incorrect messages passed along edge −→ei after ℓ rounds, where the aver-

age is with respect to all realizations of graphs and all output symbols

from the channel. Then, by symmetry in the graph construction and

by linearity of expectation, it follows that

E[Z(ℓ)(s)] =
ndv∑

i=1

E[Z
(ℓ)
i (s)] = ndvE[Z

(ℓ)
1 (s)], (2.D.3)

and

E[Z
(ℓ)
1 (s)]

= E[Z
(ℓ)
1 (s) | N (ℓ)

e⃗ is a tree]P
(ℓ)
t + E[Z

(ℓ)
1 (s) | N (ℓ)

e⃗ not a tree]P
(ℓ)

t
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where P
(ℓ)
t and P

(ℓ)

t
, 1 − P

(ℓ)
t denote the probabilities that the sub-

graph N (ℓ)
e⃗ is or, respectively, is not a tree. From Theorem 2.7.4, we

have P
(ℓ)

t
≤ γ

n , where γ is a positive constant which is independent of

n. Furthermore, E[Z
(ℓ)
1 (s) | neighborhood is a tree] = p(ℓ)(s), so

E[Z
(ℓ)
1 (s)] ≤ (1 − P

(ℓ)

t
)p(ℓ)(s) + P

(ℓ)

t
≤ p(ℓ)(s) + P

(ℓ)

t

E[Z
(ℓ)
1 (s)] ≥ (1 − P

(ℓ)

t
)p(ℓ)(s) ≥ p(ℓ)(s) − P

(ℓ)

t
. (2.D.4)

Using (2.D.3), (2.D.4) and the inequality P
(ℓ)

t
≤ γ

n gives that

∣∣∣∣∣
E[Z(ℓ)(s)]

ndv
− p(ℓ)(s)

∣∣∣∣∣ ≤ P
(ℓ)

t
≤ γ

n
.

Hence, if n > 2γ
ε , then (2.7.17) holds.





3

The Entropy Method, Logarithmic Sobolev

Inequalities, and Transportation-Cost Inequalities

This chapter introduces the entropy method for deriving concentration

inequalities for functions of a large number of independent random

variables, and it exhibits its fundamental connections to information

theory. The chapter is structured as follows. Sections 3.1–3.3 introduce

the basic ingredients of the entropy method, and the closely related

logarithmic Sobolev inequalities. This underlies the so-called functional

approach for the derivation of concentration inequalities. Section 3.4 is

devoted to a related viewpoint which is based on probability in metric

spaces. This viewpoint centers around the so-called transportation-cost

inequalities, which have been introduced into the study of concentration

by Marton. Section 3.5 briefly summarizes results on concentration

inequalities for functions of dependent random variables, emphasizing

the connections to information-theoretic ideas. Section 3.6 lists several

applications of concentration inequalities and the entropy method to

problems in information theory, including strong converses for several

source and channel coding problems, empirical distributions of good

channel codes with non-vanishing error probability, and an information-

theoretic converse for concentration of measure.

91
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3.1 The main ingredients of the entropy method

As a reminder, we are interested in the following question. Let

X1, . . . , Xn be independent random variables, each taking values in a

set X . Given a function f : X n → R, we wish to find tight upper bounds

on the deviation probabilities for the random variable U = f(Xn), i.e.,

we are interested to bound from above the probability P(|U−EU | ≥ r)

for r > 0. If U has finite variance, then Chebyshev’s inequality gives

P(|U − EU | ≥ r) ≤ var(U)

r2
, ∀ r > 0. (3.1.1)

However, in many instances a bound like (3.1.1) is not nearly as tight

as one would like, so ideally we aim for Gaussian-type bounds

P(|U − EU | ≥ r) ≤ K exp
(
−κr2

)
, ∀ r > 0 (3.1.2)

for some constants K,κ > 0. Whenever such a bound is available, K

is typically a small constant (usually, K = 2), while κ depends on the

sensitivity of the function f to variations in its arguments.

In the preceding chapter, we have demonstrated the martingale

method for deriving Gaussian concentration bounds of the form (3.1.2),

such as the inequalities of Azuma and Hoeffding (Theorem 2.4.2) and

McDiarmid (Theorem 2.4.3). In this chapter, our focus is on the so-

called “entropy method”, an information-theoretic technique that has

become increasingly popular starting with the work of Ledoux [43] (see

also [3]). In the following, we will always assume (unless it is specified

otherwise) that the following conditions are satisfied by the function

f : X n → R and the probability distribution P of Xn:

• U = f(Xn) has zero mean: EU = Ef(Xn) = 0

• U is exponentially integrable:

E[exp(λU)] = E
[
exp

(
λf(Xn)

)]
< ∞, ∀λ ∈ R (3.1.3)

[another way of writing this is exp(λf) ∈ L1(P ) for all λ ∈ R].

In a nutshell, the entropy method has three basic ingredients:
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1. The Chernoff bound — using Markov’s inequality, the problem

of bounding the deviation probability P(|U−EU | ≥ r) is reduced

to the analysis of the logarithmic moment-generating function

Λ: R → R defined by

Λ(λ) = lnE[exp(λU)], λ ∈ R. (3.1.4)

(This is also the starting point of the martingale approach, see

Chapter 2.)

2. The Herbst argument — the function Λ(λ) is related through

a simple first-order differential equation to the relative entropy

(information divergence)

D(P (λf)∥P ) = EP (λf)

[
ln

dP (λf)

dP

]
(3.1.5)

= EP

[
dP (λf)

dP
ln

dP (λf)

dP

]
, (3.1.6)

where P = PXn is the probability distribution of Xn, and P (λf)

is the tilted probability distribution defined by

dP (λf)

dP
=

exp(λf)

E[exp(λf)]
= exp

(
λf − Λ(λ)

)
. (3.1.7)

If the function f and the probability distribution P are such that

D(P (λf)∥P ) ≤ cλ2

2
(3.1.8)

for some c > 0, then the Gaussian-type bound (3.1.2) holds with

K = 2 and κ = 1
2c . The standard way to establish (3.1.8) is

through the so-called logarithmic Sobolev inequalities.

3. Tensorization of the entropy — it is in general difficult to

derive a bound like (3.1.8) directly. Instead, one typically takes

a divide-and-conquer approach: relying on the fact that PXn is a

product distribution (by the assumed independence of the Xi’s),

the divergence D(P (λf)∥P ) is bounded from above by a sum of
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“one-dimensional” (or “local”) conditional divergence1 terms

D
(
P

(λf)

Xi|Xi

∥∥PXi

∣∣P (λf)

Xi

)
, i = 1, . . . , n (3.1.9)

where, for each i, Xi ∈ X n−1 denotes the (n− 1)-tuple obtained

from Xn by removing the i-th coordinate, i.e.,

X i = (X1, . . . , Xi−1, Xi+1, . . . , Xn). (3.1.10)

Despite their formidable appearance, the conditional divergences

in (3.1.9) are easier to handle because, for each given realization

X i = x̄i, the i-th such term involves a single-variable function

fi(·|x̄i) : X → R defined by

fi(x|x̄i) , f(x1, . . . , xi−1, x, xi+1, . . . , xn), x ∈ X , (3.1.11)

and the corresponding tilted distribution P
(λf)

Xi|Xi=x̄i
, where

dP
(λf)

Xi|Xi=x̄i

dPXi

=
exp

(
λfi(·|x̄i)

)

E
[
exp

(
λfi(Xi|x̄i)

)] , ∀ x̄i ∈ X n−1. (3.1.12)

From (3.1.7) and (3.1.12), it is observed that the conditional

distribution P
(λf)

Xi|Xi=x̄i
is nothing but the tilted distribution

P
(λfi(·|x̄i))
Xi

. This simple observation translates into the following:

if the function f and the probability distribution P = PXn are

such that there exist constants c1, . . . , cn > 0 for which

D
(
P

(λfi(·|x̄i))
Xi

∥∥PXi

)
≤ ciλ

2

2
(3.1.13)

holds for every i ∈ {1, . . . , n} and x̄i ∈ X n−1, then (3.1.8) holds

with c =
∑n

i=1 ci (to be shown explicitly later), which in turn

gives the following bound for all r > 0:

P

(
|f(Xn) − Ef(Xn)| ≥ r

)
≤ 2 exp

(
− r2

2
∑n

i=1 ci

)
. (3.1.14)

1Recall the usual definition of the conditional divergence:

D(PV |U ∥QV |U |PU ) ,

∫
D(PV |U=u∥QV |U=u) dPU (u).
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Again, one would typically use logarithmic Sobolev inequalities

to verify (3.1.13). Conceptually, the tensorization step is similar

to “single-letter” techniques which are common in information

theory.

In the following, we elaborate on these three ingredients. Logarithimic

Sobolev inequalities and their various applications to concentration of

measure inequalities are described in detail in Sections 3.2 and 3.3.

3.1.1 The Chernoff bounding technique revisited

The Chernoff bound in Section 2.4.1 reduces the problem of bounding

the deviation probability P(U ≥ r) to the analysis of the logarithmic

moment-generating function:

P(U ≥ r) ≤ exp
(
Λ(λ) − λr

)
, ∀λ > 0. (3.1.15)

The following properties of Λ(·) will be useful later on:

• Λ(0) = 0

• Because of the exponential integrability of U (see (3.1.3)), Λ(·) is

infinitely differentiable, and one can interchange derivative and

expectation. In particular,

Λ′(λ) =
E[U exp(λU)]

E[exp(λU)]
, (3.1.16)

Λ′′(λ) =
E[U2 exp(λU)]

E[exp(λU)]
−
(
E[U exp(λU)]

E[exp(λU)]

)2

. (3.1.17)

Since we have assumed that EU = 0, we have Λ′(0) = 0 and

Λ′′(0) = var(U).

• Since Λ(0) = Λ′(0) = 0, we get

lim
λ→0

Λ(λ)

λ
= 0. (3.1.18)
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3.1.2 The Herbst argument

The second ingredient of the entropy method consists in relating the

logarithmic moment-generating function to a certain relative entropy.

The underlying technique is often referred to as the Herbst argument

because its basic idea had been described in an unpublished 1975 letter

from I. Herbst to L. Gross (the first explicit mention of this letter

appears in a paper by Davies and Simon [126]).

Given a function g : X n → R such that E[exp(g(Xn))] < ∞ with

Xn ∼ P , let us denote by P (g) the g-tilting of P :

dP (g)

dP
=

exp(g)

E[exp(g)]
.

Then

D
(
P (g)

∥∥P
)

=

∫

X n
ln

(
dP (g)

dP

)
dP (g)

=

∫

X n

dP (g)

dP
ln

(
dP (g)

dP

)
dP

=
E[g exp(g)]

E[exp(g)]
− lnE[exp(g)].

In particular, if we let g = tf for t ∈ R, then

D
(
P (tf)

∥∥P
)

=
tE[f exp(tf)]

E[exp(tf)]
− lnE[exp(tf)]

= tΛ′(t) − Λ(t)

= t2
d

dt

(
Λ(t)

t

)
, (3.1.19)

where in the second line we have used (3.1.16). Integrating from t = 0

to t = λ and using (3.1.18), we get

Λ(λ) = λ

∫ λ

0

D
(
P (tf)

∥∥P
)

t2
dt. (3.1.20)

Combining (3.1.15) and (3.1.20), we have proved the following:
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Proposition 3.1. Let U = f(Xn) be a zero-mean random variable that

is exponentially integrable. Then, for every r ≥ 0,

P
(
U ≥ r

) ≤ exp

(
λ

∫ λ

0

D(P (tf)∥P )

t2
dt− λr

)
, ∀λ > 0. (3.1.21)

Consequently, the problem of bounding the deviation probabilities

P(U ≥ r) is reduced to the problem of bounding the relative entropies

D(P (tf)∥P ). In particular, we have

Corollary 3.1.1. If the function f and the probability distribution P

of Xn are such that

D
(
P (tf)

∥∥P
) ≤ ct2

2
, ∀ t > 0 (3.1.22)

for some constant c > 0, then

P
(
U ≥ r

) ≤ exp

(
−r2

2c

)
, ∀ r ≥ 0. (3.1.23)

Proof. Using (3.1.22) to upper-bound the integrand on the right side

of (3.1.21), we get

P
(
U ≥ r

) ≤ exp

(
cλ2

2
− λr

)
, ∀λ > 0. (3.1.24)

Optimizing over λ > 0 to get the tightest bound gives λ = r
c , and its

substitution in (3.1.24) gives the bound in (3.1.23).

3.1.3 Tensorization of the (relative) entropy

The relative entropy D(P (tf)∥P ) involves two probability measures on

the Cartesian product space X n, so bounding this divergence directly

is difficult in general. This is where the third ingredient of the entropy

method, the so-called tensorization step, enters to the picture. The

name “tensorization” reflects the fact that this step involves bounding

D(P (tf)∥P ) by a sum of “one-dimensional” relative entropy terms, each

involving a conditional distribution of one of the variables given the

rest. The tensorization step hinges on the following simple bound:
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Proposition 3.2. Let P and Q be probability measures on the product

space X n where P is a product measure. For every i ∈ {1, . . . , n}, let

Xi denote the (n− 1)-tuple given in (3.1.10). Then

D(Q∥P ) ≤
n∑

i=1

D
(
QXi|Xi

∥∥PXi

∣∣QXi

)
. (3.1.25)

Proof.

D(Q∥P ) =
n∑

i=1

D
(
QXi | Xi−1 ∥PXi|Xi−1 |QXi−1

)
(3.1.26)

=
n∑

i=1

D
(
QXi | Xi−1 ∥PXi

|QXi−1

)
(3.1.27)

where (3.1.26) is due to the chain rule for the relative entropy; (3.1.27)

holds since X1, X2, . . . , Xn are independent random variables under P ,

implying that PXi|Xi−1 = PXi|Xi = PXi
). Moreover, for i ∈ {1, . . . , n},

D
(
QXi|Xi

∥∥PXi

∣∣QXi

)−D
(
QXi|Xi−1

∥∥PXi

∣∣QXi−1

)

= EQ

[
ln

dQXi|Xi

dPXi

]
− EQ

[
ln

dQXi|Xi−1

dPXi

]

= EQ

[
ln

dQXi|Xi

dQXi|Xi−1

]

= D
(
QXi|Xi

∥∥QXi|Xi−1

∣∣QXi

) ≥ 0. (3.1.28)

Hence, by combining (3.1.26)–(3.1.28), we get (3.1.25).

Remark 3.1. The quantity on the right side of (3.1.25) is actually

the so-called erasure divergence D−(Q∥P ) between Q and P (see [127,

Definition 4]), which in the case of arbitrary Q and P is defined by

D−(Q∥P ) ,
n∑

i=1

D(QXi|Xi∥PXi|Xi |QXi). (3.1.29)

Because P is assumed to be a product measure in (3.1.25), we can

replace PXi|Xi by PXi
. For a general (non-product) measure P , the

erasure divergence D−(Q∥P ) may be strictly larger or smaller than
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the ordinary divergence D(Q∥P ). For example, if n = 2, PX1 = QX1 ,

PX2 = QX2 , then

dQX1|X2

dPX1|X2

=
dQX2|X1

dPX2|X1

=
dQX1,X2

dPX1,X2

,

so, from (3.1.29),

D−(QX1,X2∥PX1,X2)

= D(QX1|X2
∥PX1|X2

|QX2) +D(QX2|X1
∥PX2|X1

|QX1)

= 2D(QX1,X2∥PX1,X2).

On the other hand, if X1 = X2 under P and Q, then D−(Q∥P ) = 0,

but D(Q∥P ) > 0 whenever P ̸= Q, so D(Q∥P ) > D−(Q∥P ) in this

case.

Applying Proposition 3.2 withQ = P (tf) to bound the divergence in

the integrand in (3.1.21), we obtain from Proposition 3.1 the following:

Proposition 3.3. For every r, λ ≥ 0, we have

P
(
U ≥ r) ≤ exp


λ

n∑

i=1

∫ λ

0

D
(
P

(tf)

Xi|Xi

∥∥PXi

∣∣P (tf)

Xi

)

t2
dt− λr


 . (3.1.30)

The conditional divergences in the integrand in (3.1.30) may look

formidable, but the remarkable thing is that, for each i and a given

Xi = x̄i, the corresponding term involves a tilting of the marginal

distribution PXi
. Indeed, let us fix some i ∈ {1, . . . , n}, and for each

choice of x̄i ∈ X n−1 let the function fi(·|x̄i) : X → R be given in

(3.1.11). Then,

dP
(f)

Xi|Xi=x̄i

dPXi

=
exp

(
fi(·|x̄i)

)

E
[
exp

(
fi(Xi|x̄i)

)] . (3.1.31)

In other words, P
(f)

Xi|Xi=x̄i
is the fi(·|x̄i)-tilting of PXi

. This is the

essence of tensorization: the n-dimensional problem of bounding

D(P (tf)∥P ) is effectively decomposed into n one-dimensional problems,

where the i-th problem involves the tilting of the marginal distribution

PXi
by functions of the form fi(·|x̄i) : X → R. In particular, we get the

following:
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Corollary 3.1.2. Let the function f and the probability distribution P

of Xn satisfy the condition that there exist constants c1, . . . , cn > 0

such that, for every t > 0,

D
(
P

(tfi(·|x̄i))
Xi

∥∥PXi

)
≤ cit

2

2
, ∀ i ∈ {1, . . . , n}, x̄i ∈ X n−1. (3.1.32)

Then

P

(
f(Xn) − Ef(Xn) ≥ r

)
≤ exp

(
− r2

2
∑n

i=1 ci

)
, ∀ r > 0. (3.1.33)

Remark 3.2. Note the obvious similarity between the bound (3.1.33)

and McDiarmid’s inequality (2.4.33). Indeed, as we will show later on

in Section 3.3.4, it is possible to derive McDiarmid’s inequality using

the entropy method.

Proof. For every t > 0

D(P (tf)∥P )

≤
n∑

i=1

D
(
P

(tf)

Xi|Xi

∥∥PXi
|P (tf)

Xi

)
(3.1.34)

=
n∑

i=1

∫

X n−1
D
(
P

(tf)

Xi|Xi=x̄i

∥∥PXi

)
dP

(tf)

Xi
(x̄i) (3.1.35)

=
n∑

i=1

∫

X n−1
D
(
P

(tfi(·|x̄i))
Xi

∥∥PXi

)
dP

(tf)

Xi
(x̄i) (3.1.36)

≤ 1
2

n∑

i=1

ci t
2 (3.1.37)

where (3.1.34) follows from the tensorization of the relative entropy,

(3.1.35) holds since P is a product measure (so PXi
= PXi|Xi) and by

the definition of the conditional relative entropy, (3.1.36) follows from

(3.1.11) and (3.1.31) which implies that P
(tf)

Xi|Xi=x̄i
= P

(tfi(·|x̄i))
Xi

, and

inequality (3.1.37) holds by the assumption in (3.1.32). Finally, the

inequality in (3.1.33) follows from (3.1.37) and Corollary 3.1.1.
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3.1.4 Preview: logarithmic Sobolev inequalities

Ultimately, the success of the entropy method hinges on demonstrating

that the bounds in (3.1.32) hold for the function f : X n → R and the

probability distribution P = PXn of interest. In the next two sections,

we will show how to derive such bounds using the so-called logarithmic

Sobolev inequalities. Here, we give a quick preview of this technique.

Let µ be a probability measure on X , and let A be a family of real-

valued functions g : X → R, such that for every a ≥ 0 and g ∈ A, we

also have ag ∈ A. Let E : A → R
+ be a non-negative functional that is

homogeneous of degree 2, i.e., for every a ≥ 0 and g ∈ A, we have

E(ag) = a2E(g). (3.1.38)

We are interested in the case when there exists a constant c > 0, such

that the inequality

D(µ(g)∥µ) ≤ 1
2 cE(g) (3.1.39)

holds for every g ∈ A. Now suppose that, for each i ∈ {1, . . . , n},

inequality (3.1.39) holds with µ = PXi
and some constant ci > 0.

Let f : X n → R be a function such that, for every x̄i ∈ X n−1 and

i ∈ {1, . . . , n},

1. fi(·|x̄i) ∈ A

2. E
(
fi(·|x̄i)

) ≤ 1

where fi : X → R is defined in (3.1.11). Then, the bounds in (3.1.32)

hold, since from (3.1.39) and the above properties of the functional E

it follows that for every t > 0 and x̄i ∈ X n−1

D
(
P

(tf)

Xi|Xi=x̄i

∥∥PXi

)
= D

(
P

(tfi(·|x̄i))
Xi

∥∥PXi

)

≤ 1
2 ciE

(
t fi(·|x̄i)

)

= 1
2 ci t

2E
(
fi(·|x̄i)

)

≤ 1
2 ci t

2, ∀ i ∈ {1, . . . , n}.

Consequently, the Gaussian concentration inequality in (3.1.33) follows

from Corollary 3.1.2.
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3.2 The Gaussian logarithmic Sobolev inequality

Before turning to general logarithmic Sobolev inequalities in the next

section, we will illustrate the basic ideas in the particular case when

X1, . . . , Xn are i.i.d. standard Gaussian random variables. The log-

Sobolev inequality (LSI) in this instance comes from a seminal paper

of Gross [44], and it connects two key information-theoretic quantities,

namely the relative entropy and relative Fisher information. There exist

deep links between Gross’s LSI and other fundamental information-

theoretic inequalities, such as Stam’s inequality and the entropy power

inequality. Some of these links are considered in this section.

For every n ∈ N and for every symmetric and positive semidefinite

matrix K ∈ R
n×n, we will denote by Gn

K the Gaussian distribution

with zero mean and covariance matrix K. When K = sIn for some

s ≥ 0 (where In denotes the n × n identity matrix), we will write Gn
s ;

it will be written Gs for n = 1. We will also write Gn for Gn
1 when

n ≥ 2, and G for G1
1. We will denote by γn

K , γn
s , γs, γn, and γ the

corresponding probability densities.

We first state Gross’s inequality in its (more or less) original form:

Theorem 3.2.1 (Log-Sobolev inequality for the Gaussian measure). For

Z ∼ Gn and for every smooth2 function ϕ : Rn → R, we have

E[ϕ2(Z) lnϕ2(Z)] − E[ϕ2(Z)] lnE[ϕ2(Z)] ≤ 2E
[
∥∇ϕ(Z)∥2

]
, (3.2.1)

where ∥ · ∥ denotes the usual Euclidean norm on R
n.

Remark 3.3. As shown by Carlen [128], equality in (3.2.1) holds if and

only if ϕ is of the form ϕ(z) = exp ⟨a, z⟩ for some a ∈ R
n, where ⟨·, ·⟩

denotes the standard Euclidean inner product.

Remark 3.4. There is no loss of generality by assuming in (3.2.1) that

E[ϕ2(Z)] = 1. Then (3.2.1) can be rewritten as

E[ϕ2(Z) lnϕ2(Z)] ≤ 2E
[
∥∇ϕ(Z)∥2

]
ifE[ϕ2(Z)] = 1, Z ∼ Gn. (3.2.2)

2Here and elsewhere, we will use the term “smooth” somewhat loosely to mean
“satisfying enough regularity conditions to make sure that all relevant quantities are
well-defined.” In the present context, smooth means that both ϕ and ∇ϕ should be
square-integrable with respect to the standard Gaussian measure Gn.
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Moreover, a simple rescaling argument shows that, for Z ∼ Gn
s and an

arbitrary smooth function ϕ with E[ϕ2(Z)] = 1,

E[ϕ2(Z) lnϕ2(Z)] ≤ 2sE
[
∥∇ϕ(Z)∥2

]
. (3.2.3)

We provide an information-theoretic proof of the Gaussian LSI

(Theorem 3.2.1) later in this section; the reader is referred to [129]

as one of the typical proofs using techniques from functional analysis.

From an information-theoretic point of view, the Gaussian LSI

(Theorem 3.2.1) relates two fundamental measures of (dis)similarity

between probability measures: the relative entropy (a.k.a. Kullback-

Leibler divergence, KL distance/divergence, information divergence),

and relative Fisher information (a.k.a. Fisher information distance).

The second information measure is defined as follows. Let P1 and P2

be Borel probability measures on R
n with differentiable densities p1

and p2, and suppose that the Radon–Nikodym derivative dP1
dP2

≡ p1

p2
is

differentiable P2-a.s. Then, the relative Fisher information between P1

and P2 is defined as (see [130, Eq. (6.4.12)])

I(P1∥P2) ,

∫

Rn

∥∥∥∥∇ ln
p1(z)

p2(z)

∥∥∥∥
2

p1(z)dz

= EP1

[∥∥∥∥∇ ln
dP1

dP2

∥∥∥∥
2
]
, (3.2.4)

whenever the integral converges. Under suitable regularity conditions,

I(P1∥P2) admits the equivalent form (see [131, Eq. (1.108)])

I(P1∥P2) = 4

∫

Rn
p2(z)

∥∥∥∥∥∇
√
p1(z)

p2(z)

∥∥∥∥∥

2

dz

= 4EP2



∥∥∥∥∥∇
√

dP1

dP2

∥∥∥∥∥

2

 . (3.2.5)

Remark 3.5. A condition under which (3.2.5) holds is as follows. Let

ξ : Rn → R
n be the distributional (or weak) gradient of

√
dP1
dP2

=
√

p1

p2
,

such that the equality

∫ ∞

−∞

√
p1(z)

p2(z)
∂iψ(z)dz = −

∫ ∞

−∞
ξi(z)ψ(z)dz (3.2.6)
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holds for all i ∈ {1, . . . , n} and all test functions ψ ∈ C∞
c (Rn) [132,

Sec. 6.6]. (Here, ∂iψ denotes the i-th coordinate of ∇ψ). Then (3.2.5)

holds, provided ξ ∈ L2(P2).

Fix a smooth function ϕ : Rn → R satisfying the normalization

condition
∫
Rn ϕ2 dGn = 1; we can assume w.l.o.g. that ϕ ≥ 0. Let Z

be a standard n-dimensional Gaussian random variable, i.e., PZ = Gn,

and let Y ∈ R
n be a random vector with distribution PY satisfying

dPY

dPZ
=

dPY

dGn
= ϕ2. (3.2.7)

Then, on one hand, we have

E

[
ϕ2(Z) lnϕ2(Z)

]
= E

[(
dPY

dPZ
(Z)

)
ln

(
dPY

dPZ
(Z)

)]

= D(PY ∥PZ), (3.2.8)

and on the other hand, from (3.2.5),

E

[
∥∇ϕ(Z)∥2

]
= E



∥∥∥∥∥∇
√

dPY

dPZ
(Z)

∥∥∥∥∥

2



= 1
4 I(PY ∥PZ). (3.2.9)

Substituting (3.2.8) and (3.2.9) into (3.2.2), we obtain the inequality

D(PY ∥PZ) ≤ 1
2 I(PY ∥PZ), PZ = Gn, (3.2.10)

holding for every PY such that PY ≪ Gn and ∇
√

dPY

dGn ∈ L2(Gn).

Conversely, for every PY ≪ Gn satisfying (3.2.10), we can derive (3.2.2)

by letting ϕ =
√

dPY

dGn , provided ∇ϕ exists (e.g., in the distributional

sense). Similarly, for every s > 0, (3.2.3) can be written as

D(PY ∥PZ) ≤ 1
2 s I(PY ∥PZ), PZ = Gn

s . (3.2.11)

We next apply the Gaussian LSI (see (3.2.1)) to functions of the form

ϕ = exp(g/2) for all suitably well-behaved g : Rn → R. Then, we obtain

E

[
exp

(
g(Z)

)
ln

exp
(
g(Z)

)

E[exp
(
g(Z)

)
]

]
≤ 1

2 E

[
∥∇g(Z)∥2 exp

(
g(Z)

)]
,

(3.2.12)
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where Z ∼ Gn. If we let P = Gn and denote by P (g) the g-tilting of

P , the left side of (3.2.12) is recognized as E[exp
(
g(Z)

)
] · D(P (g)∥P ).

Similarly, the right side is equal to E[exp
(
g(Z)

)
] · E(g)

P [∥∇g∥2] with

E
(g)
P [·] denoting expectation with respect to P (g). We therefore obtain

the so-called modified LSI for the standard Gaussian measure:

D(P (g)∥P ) ≤ 1
2 E

(g)
P

[
∥∇g∥2

]
, P = Gn (3.2.13)

which holds for all smooth functions g : Rn → R that are exponentially

integrable with respect to Gn. Observe that (3.2.13) implies (3.1.39)

with µ = Gn, c = 1, and E(g) = ∥∇g∥2
∞.

In the remainder of this section, we provide an information-theoretic

proof of Theorem 3.2.1, and discuss several applications of the modified

LSI (3.2.13) for the derivation of Gaussian concentration inequalities

via the Herbst argument.

3.2.1 An information-theoretic proof of Gross’s LSI

In accordance with our general theme, we will prove Theorem 3.2.1 via

tensorization: we first show that the satisfiability of the theorem for

n = 1 implies that it holds for every n ≥ 2 by scaling up to general n

using suitable (sub)additivity properties, and then establish the n = 1

case. Indeed, suppose that (3.2.1) holds in dimension 1. For n ≥ 2,

let Xn = (X1, . . . , Xn) be an n-tuple of i.i.d. N (0, 1) variables and

consider a smooth function ϕ : Rn → R, such that EP [ϕ2(Xn)] = 1,

where P = PXn = Gn is the product of n copies of the standard

Gaussian distribution G. If we define a probability measure Q = QXn

with dQXn/dPXn = ϕ2, then using Proposition 3.2 we can write

EP

[
ϕ2(Xn) lnϕ2(Xn)

]
= EP

[
dQ

dP
ln

dQ

dP

]

= D(Q∥P )

≤
n∑

i=1

D
(
QXi|Xi

∥∥PXi

∣∣QXi

)
. (3.2.14)

Following the same steps as the ones that led to (3.1.12), we can define

for each i = 1, . . . , n and each x̄i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ R
n−1
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the function ϕi(·|x̄i) : R → R via

ϕi(x|x̄i) , ϕ(x1, . . . , xi−1, x, xi+1, . . . , xn), ∀ x̄i ∈ R
n−1, x ∈ R.

Then

dQXi|Xi=x̄i

dPXi

=
ϕ2

i (·|x̄i)

EP [ϕ2
i (Xi|x̄i)]

for all i ∈ {1, . . . , n} and x̄i ∈ R
n−1. With this, we can write

D
(
QXi|Xi

∥∥PXi

∣∣QXi

)

= EQ

[
ln

dQXi|Xi

dPXi

]

= EP

[
dQ

dP
ln

dQXi|Xi

dPXi

]

= EP

[
ϕ2(X) ln

ϕ2
i (Xi|X i)

EP [ϕ2
i (Xi|X i)|X i]

]

= EP

[
ϕ2

i (Xi|Xi) ln
ϕ2

i (Xi|X i)

EP [ϕ2
i (Xi|X i)|X i]

]

=

∫

Rn−1
EP

[
ϕ2

i (Xi|x̄i) ln
ϕ2

i (Xi|x̄i)

EP [ϕ2
i (Xi|x̄i)]

]
dPXi(x̄

i). (3.2.15)

Since each Xi ∼ G, we can apply the Gaussian LSI (3.2.1) to the

univariate functions ϕi(·|x̄i) (note that we currently assume that the

Gaussian LSI holds for n = 1) to get

EP

[
ϕ2

i (Xi|x̄i) ln
ϕ2

i (Xi|x̄i)

EP [ϕ2
i (Xi|x̄i)]

]
≤ 2EP

[(
ϕ′

i(Xi|x̄i)
)2
]

(3.2.16)

for all i = 1, . . . , n and all x̄i ∈ R
n−1, where the prime denotes the

derivative of ϕi(x|x̄i) with respect to x:

ϕ′
i(x|x̄i) =

dϕi(x|x̄i)

dx
=
∂ϕ(x̄)

∂xi

∣∣∣∣
xi=x

.

Since X1, . . . , Xn are i.i.d. under P , we can express (3.2.16) as

EP

[
ϕ2

i (Xi|x̄i) ln
ϕ2

i (Xi|x̄i)

EP [ϕ2
i (Xi|x̄i)]

]
≤ 2EP

[(
∂iϕ(Xn)

)2∣∣∣Xi = x̄i
]
,
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where ∂iϕ denotes the i-th coordinate of the gradient ∇ϕ. Substituting

this bound into (3.2.15), we have

D
(
QXi|Xi

∥∥PXi

∣∣QXi

) ≤ 2EP

[(
∂iϕ(Xn)

)2]
.

Using this to bound each term in the sum on the right side of (3.2.14)

together with the equality
∑n

i=1

(
∂iϕ(xn)

)2
= ∥∇ϕ(xn)∥2, we get

EP

[
ϕ2(Xn) lnϕ2(Xn)

]
≤ 2EP

[
∥∇ϕ(Xn)∥2

]
, (3.2.17)

which is precisely the Gaussian LSI (3.2.2) in R
n. Thus, if the Gaussian

LSI holds for n = 1, then it also holds for all n ≥ 2.

In view of the above argument, the Gaussian LSI is next proved for

n = 1. To that end, it is useful to express it in an equivalent form that

relates the Fisher information and the entropy power of a real-valued

random variable with a sufficiently regular density. The Gaussian LSI in

this form was derived by Stam [45], and the equivalence between Stam’s

inequality and (3.2.1) was only noted much later by Carlen [128]. We

first establish this equivalence following Carlen’s argument, and then

give a new information-theoretic proof of Stam’s inequality that, unlike

existing proofs [48, 133], does not directly rely on de Bruijn’s identity

or on the entropy-power inequality.

We first start with some definitions. Let Y be a real-valued random

variable with density pY . The differential entropy of Y is given by

h(Y ) = h(pY ) , −
∫ ∞

−∞
pY (y) ln pY (y)dy, (3.2.18)

provided the integral exists, and the entropy power of Y is given by

N(Y ) ,
exp(2h(Y ))

2πe
. (3.2.19)

Moreover, if the density pY is differentiable, the Fisher information is

given by

J(Y ) = J(pY ) =

∫ ∞

−∞

(
d

dy
ln pY (y)

)2

pY (y)dy (3.2.20)

= E[ρ2
Y (Y )], (3.2.21)

where ρY (y) , (d/dy) ln pY (y) =
p′

Y
(y)

pY (y) is known as the score function.
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Remark 3.6. An alternative definition of the Fisher information of a

real-valued random variable Y is (see [134, Definition 4.1])

J(Y ) , sup
{(

Eψ′(Y )
)2

: ψ ∈ C1, E[ψ2(Y )] = 1
}

(3.2.22)

where the supremum in the right side of (3.2.22) is taken over the set of

all continuously differentiable functions ψ with compact support such

that E[ψ2(Y )] = 1. Note that this definition does not involve derivatives

of any functions of the density of Y (nor it assumes that such a density

even exists). It can be shown that the quantity defined in (3.2.22) exists

and is finite if and only if Y has an absolutely continuous density pY ,

in which case J(Y ) is equal to (3.2.20) (see [134, Theorem 4.2]).

We will need the following facts:

1. If D(PY ∥Gs) < ∞, then

D(PY ∥Gs) =
1

2
ln

1

N(Y )
+

1

2
ln s− 1

2
+

1

2s
EY 2. (3.2.23)

This is proved by direct calculation: since D(PY ∥Gs) < ∞, we

have PY ≪ Gs and dPY /dGs = pY /γs. Consequently,

D(PY ∥Gs) =

∫ ∞

−∞
pY (y) ln

pY (y)

γs(y)
dy

= −h(Y ) +
1

2
ln(2πs) +

1

2s
EY 2

= −1

2

(
2h(Y ) − ln(2πe)

)
+

1

2
ln s− 1

2
+

1

2s
EY 2

=
1

2
ln 1

N(Y ) +
1

2
ln s− 1

2
+

1

2s
EY 2,

which is (3.2.23).

2. If J(Y ) < ∞ and EY 2 < ∞, then for every s > 0

I(PY ∥Gs) = J(Y ) +
1

s2
EY 2 − 2

s
< ∞, (3.2.24)

where I(·∥·) is the relative Fisher information (see (3.2.4)). This
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equality is verified as follows:

I(PY ∥Gs) =

∫ ∞

−∞
pY (y)

(
d

dy
ln pY (y) − d

dy
ln γs(y)

)2

dy

=

∫ ∞

−∞
pY (y)

(
ρY (y) +

y

s

)2

dy

= E[ρ2
Y (Y )] +

2

s
E[Y ρY (Y )] +

1

s2
EY 2

= J(Y ) +
2

s
E[Y ρY (Y )] +

1

s2
EY 2. (3.2.25)

Since EY 2 < ∞, we have E|Y | < ∞, so limy→±∞ y pY (y) = 0.

Furthermore, integration by parts gives

E[Y ρY (Y )] =

∫ ∞

−∞
y ρY (y) pY (y) dy

=

∫ ∞

−∞
y p′

Y (y) dy

=

(
lim

y→∞
y pY (y) − lim

y→−∞
y pY (y)

)
−
∫ ∞

−∞
pY (y) dy

= −1 (3.2.26)

(see [135, Lemma A1] for another proof). Substituting (3.2.26)

into (3.2.25), we get (3.2.24).

We are now in a position to prove the following result of Carlen [128]:

Proposition 3.4. The following statements are equivalent to hold for

the class of real-valued random variables Y with a smooth density pY ,

such that J(Y ) < ∞ and EY 2 < ∞:

1. Gaussian LSI, D(PY ∥G) ≤ 1
2 I(PY ∥G).

2. Stam’s inequality, N(Y )J(Y ) ≥ 1.

Remark 3.7. Carlen’s original derivation in [128] requires pY to be

in the Schwartz space S(R) of infinitely differentiable functions, all of

whose derivatives vanish sufficiently rapidly at infinity. In comparison,

the regularity conditions of the above proposition are much weaker,

requiring only that PY has a differentiable and absolutely continuous

density, as well as a finite second moment.



110 The Entropy Method, LSI and TC Inequalities

Proof. We first show the implication 1) ⇒ 2). If 1) holds for every

real-valued random variable Y as in Proposition 3.4, it follows that

D(PY ∥Gs) ≤ s

2
I(PY ∥Gs), ∀ s > 0. (3.2.27)

Inequality (3.2.27) can be verified from (3.2.7)–(3.2.9), together with

the equivalence of (3.2.2) and (3.2.3). Since J(Y ) and EY 2 are finite

by assumption, the right side of (3.2.27) is finite and equal to (3.2.24).

Therefore, D(PY ∥Gs) is also finite, and it is equal to (3.2.23). Hence,

we can rewrite (3.2.27) as

1

2
ln

1

N(Y )
+

1

2
ln s− 1

2
+

1

2s
EY 2 ≤ s

2
J(Y ) +

1

2s
EY 2 − 1.

Since EY 2 < ∞, we can cancel the corresponding term from both sides

and, upon rearranging, obtain

ln
1

N(Y )
≤ sJ(Y ) − ln s− 1.

Importantly, this bound holds for every s > 0. Therefore, using the fact

that

1 + ln a = inf
s>0

(as− ln s), ∀ a > 0

we obtain Stam’s inequality N(Y )J(Y ) ≥ 1.

To establish the converse implication 2) ⇒ 1), we simply run the

above proof backwards. Note that it is first required to show that

D(PY ∥Gs) < ∞. Since by assumption J(Y ) is finite and 2) holds,

also 1
N(Y ) is finite; since both E[Y 2] and 1

N(Y ) are finite, it follows from

(3.2.23) that D(PY ∥Gs) is finite.

We now turn to prove Stam’s inequality. Without loss of generality,

we may assume that EY = 0 and EY 2 = 1. Our proof will exploit the

formula, due to Verdú [136], that expresses the divergence between two

probability measures in terms of an integral of the excess mean squared

error (MSE) in a certain estimation problem with additive Gaussian

noise. Specifically, consider the problem of estimating a real-valued

random variable Y on the basis of a noisy observation
√
sY +Z, where

s > 0 is the signal-to-noise ratio (SNR) and the additive standard
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Gaussian noise Z ∼ G is independent of Y . If Y has distribution P ,

the minimum MSE (MMSE) at SNR s is defined as

mmse(Y, s) , inf
φ

E[(Y − φ(
√
sY + Z))2], (3.2.28)

where the infimum is taken over all measurable functions (estimators)

φ : R → R. It is well-known that the infimum in (3.2.28) is achieved by

the conditional expectation u 7→ E[Y |√sY + Z = u], so

mmse(Y, s) = E

[(
Y − E[Y |√sY + Z]

)2]
.

On the other hand, suppose we assume that Y has distribution Q and

therefore use the mismatched estimator u 7→ EQ[Y |√sY + Z = u],

where the conditional expectation is computed assuming that Y ∼ Q.

Then, the resulting mismatched MSE is given by

mseQ(Y, s) = E

[(
Y − EQ[Y |√sY + Z]

)2]
, (3.2.29)

where the outer expectation on the right side is computed using the

correct distribution P of Y . Then, the following relation holds for the

divergence between P and Q (see [136, Theorem 1]):

D(P∥Q) =
1

2

∫ ∞

0
[mseQ(Y, s) − mmse(Y, s)] ds. (3.2.30)

We will apply the formula (3.2.30) to P = PY and Q = G, where PY

satisfies EY = 0 and EY 2 = 1. In that case it can be shown that, for

every s > 0,

mseQ(Y, s) = mseG(Y, s) = lmmse(Y, s), (3.2.31)

where lmmse(Y, s) is the linear MMSE, i.e., the MMSE attainable by

an arbitrary affine estimator u 7→ au+ b (a, b ∈ R):

lmmse(Y, s) = inf
a,b∈R

E

[(
Y − a(

√
sY + Z) − b

)2]
. (3.2.32)

The infimum in (3.2.32) is achieved by a∗ =
√

s
1+s and b = 0, giving

lmmse(Y, s) =
1

1 + s
. (3.2.33)
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Moreover, mmse(Y, s) can be bounded from below using the so-called

van Trees inequality [137] (see also Appendix 3.A):

mmse(Y, s) ≥ 1

J(Y ) + s
. (3.2.34)

Then

D(PY ∥G) = 1
2

∫ ∞

0
(lmmse(Y, s) − mmse(Y, s)) ds (3.2.35)

≤ 1
2

∫ ∞

0

(
1

1 + s
− 1

J(Y ) + s

)
ds (3.2.36)

= 1
2 lim

λ→∞

∫ λ

0

(
1

1 + s
− 1

J(Y )+s

)
ds

= 1
2 lim

λ→∞
ln

(
J(Y ) (1 + λ)

J(Y ) + λ

)

= 1
2 ln J(Y ), (3.2.37)

where (3.2.35) holds by combining (3.2.30) and (3.2.31) with P = PY

and Q = G; (3.2.36) holds by using (3.2.33) and (3.2.34). On the other

hand, using (3.2.23) with s = EY 2 = 1 yields

D(PY ∥G) =
1

2
ln

1

N(Y )
. (3.2.38)

Combining (3.2.37) and (3.2.38), we recover Stam’s inequality

N(Y )J(Y ) ≥ 1. Moreover, the van Trees bound (3.2.34) is achieved

with equality if and only if Y is a standard Gaussian random variable.

3.2.2 From Gaussian LSI to Gaussian concentration inequalities

We are now ready to apply the log-Sobolev machinery to establish

Gaussian concentration for random variables of the form U = f(Xn),

where X1, . . . , Xn are i.i.d. standard normal random variables and

f : Rn → R is an arbitrary Lipschitz function. We start by considering

the special case when f is also differentiable.

Proposition 3.5. Let X1, . . . , Xn be i.i.d. N (0, 1) random variables.

Then, for every differentiable function f : R
n → R such that
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∥∇f(Xn)∥ ≤ 1 almost surely, we have

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
−r2

2

)
, ∀ r ≥ 0 (3.2.39)

Proof. Let P = Gn denote the distribution of Xn, and let Q be a

probability measure such that P ≪≫ Q (i.e., P and Q are mutually

absolutely continuous). Then, every event that has P -probability 1 also

has Q-probability 1 and vice versa. Since f is differentiable, it is finite

everywhere, so P (f) and P are mutually absolutely continuous. Hence,

every event that occurs P -a.s. also occurs P (tf)-a.s. for all t ∈ R. In

particular, ∥∇f(Xn)∥ ≤ 1 P (tf)-a.s. for all t > 0. Therefore, applying

the modified LSI (3.2.13) to g = tf for some t > 0 gives

D(P (tf)∥P ) ≤
(
t2

2

)
E

(tf)
P

[
∥∇f(Xn)∥2

]
≤ t2

2
. (3.2.40)

Finally, in view of the Herbst argument, using Corollary 3.1.1 with

U = f(Xn) − Ef(Xn) yields (3.2.39).

Remark 3.8. Corollary 3.1.1 and inequality (3.2.13) with g = tf imply

that, for every smooth function f with ∥∇f(Xn)∥2 ≤ L a.s.,

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
− r2

2L

)
, ∀ r ≥ 0. (3.2.41)

Thus, the constant κ in the Gaussian concentration bound (3.1.2) is

controlled by the sensitivity of f to modifications of its coordinates.

Having established a concentration result for a smooth f with a

bounded gradient, we proceed to the more general case where f is

Lipschitz.

Theorem 3.2.2. Let Xn be as before, and let f : Rn → R be a 1-

Lipschitz function, i.e.,

|f(xn) − f(yn)| ≤ ∥xn − yn∥, ∀xn, yn ∈ R
n.

Then

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
−r2

2

)
, ∀ r ≥ 0. (3.2.42)
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Proof. By Rademacher’s theorem (see, e.g., [138, Section 3.1.2]), the

assumption that f : Rn → R is 1-Lipschitz yields its differentiability

almost everywhere in R
n with ∥∇f∥ ≤ 1. Hence, ∥∇f(Xn)∥ ≤ 1 almost

surely (sinceX1, . . . , Xn are i.i.d. standard Gaussian random variables).

Consequently, (3.2.42) follows from Proposition 3.5.

3.2.3 Hypercontractivity, Gaussian log-Sobolev inequality, and
Rényi divergence

We close our treatment of the Gaussian LSI with a striking result,

proved by Gross [44], that this inequality is equivalent to a very strong

contraction property (dubbed hypercontractivity) of a certain class of

stochastic transformations. The original motivation behind the work

of Gross [44] came from problems in quantum field theory. However,

we will take an information-theoretic point of view and relate it to

data processing inequalities for a certain class of channels with additive

Gaussian noise, as well as to the rate of convergence in the second law

of thermodynamics for Markov processes [139].

Consider a pair (X,Y ) of real-valued random variables that are

related through the stochastic transformation

Y = e−tX +
√

1 − e−2tZ (3.2.43)

for some t ≥ 0, where the additive noise Z ∼ G is independent of X.

For reasons that will become clear shortly, we will refer to the channel

that implements the transformation (3.2.43) for a given t ≥ 0 as the

Ornstein–Uhlenbeck channel with noise parameter t and denote it by

OU(t). Similarly, we will refer to the collection of channels {OU(t)}∞
t=0

indexed by all t ≥ 0 as the Ornstein–Uhlenbeck channel family. We

immediately note the following properties:

1. OU(0) is the ideal channel, Y = X.

2. If X ∼ G, then Y ∼ G as well, for every t ≥ 0.

3. Using the terminology of [13, Chapter 4], the channel family

{OU(t)}∞
t=0 is ordered by degradation: for every t1, t2 ≥ 0 we have

OU(t1 + t2) = OU(t2) ◦ OU(t1) = OU(t1) ◦ OU(t2), (3.2.44)
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which is shorthand for the following statement: for every input

random variable X, every standard Gaussian random variable

Z independent of X, and every t1, t2 ≥ 0, we can always find

independent standard Gaussian random variables Z1, Z2 that are

also independent of X, such that

e−(t1+t2)X +

√
1 − e−2(t1+t2)Z

d
= e−t2

[
e−t1X +

√
1 − e−2t1Z1

]
+
√

1 − e−2t2Z2

d
= e−t1

[
e−t2X +

√
1 − e−2t2Z1

]
+
√

1 − e−2t1Z2 (3.2.45)

where
d
= denotes equality of distributions. In other words, we

can always define real-valued random variables X,Y1, Y2, Z1, Z2

on a common probability space (Ω,F ,P), such that Z1, Z2 ∼ G,

(X,Z1, Z2) are mutually independent,

Y1
d
= e−t1X +

√
1 − e−2t1Z1

Y2
d
= e−(t1+t2)X +

√
1 − e−2(t1+t2)Z2

and X −→ Y1 −→ Y2 is a Markov chain. Even more generally,

given an arbitrary real-valued random variable X, it is possible to

construct a continuous-time Markov process {Yt}∞
t=0 with Y0

d
= X

and Yt
d
= e−tX +

√
1 − e−2tN (0, 1) for all t ≥ 0. One way to do

this is to let {Yt}∞
t=0 be governed by the Itô stochastic differential

equation (SDE)

dYt = −Yt dt+
√

2 dBt, t ≥ 0 (3.2.46)

with the initial condition Y0
d
= X, where {Bt}t≥0 denotes the

standard one-dimensional Wiener process (Brownian motion).

The solution of the SDE (3.2.46), known as the Langevin equation

[140, p. 75], is given by the so-called Ornstein–Uhlenbeck process

Yt = Xe−t +
√

2

∫ t

0
e−(t−s) dBs, t ≥ 0

where, by the Itô isometry property, the variance of the zero-mean
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additive Gaussian noise is indeed

E

[(√
2

∫ t

0
e−(t−s) dBs

)2
]

= 2

∫ t

0
e−2(t−s)ds

= 1 − e−2t, ∀ t ≥ 0

(see, e.g., [141, p. 358] or [142, p. 127]). This explains our choice

of the name “Ornstein–Uhlenbeck channel" for the random trans-

formation (3.2.43).

In order to state the main result to be proved in this section, we need

the following definition: the Rényi divergence of order α ∈ R
+\{0, 1}

between two probability measures, P and Q, is defined as

Dα(P∥Q) ,
1

α− 1
ln

(∫
dµ

(
dP

dµ

)α (dQ

dµ

)1−α
)
, (3.2.47)

where µ is an arbitrary σ-finite measure that dominates both P and

Q. If P ≪ Q, we have the equivalent form

Dα(P∥Q) =
1

α− 1
ln

(
EQ

[(
dP

dQ

)α])
. (3.2.48)

We recall several key properties of the Rényi divergence (see [143]):

1. The Kullback-Leibler divergenceD(P∥Q) is the limit ofDα(P∥Q)

as α tends to 1 from below:

D(P∥Q) = lim
α↑1

Dα(P∥Q).

In addition,

D(P∥Q) = sup
0<α<1

Dα(P∥Q) ≤ inf
α>1

Dα(P∥Q)

and, if D(P∥Q) = ∞ or there exists some β > 1 such that

Dβ(P∥Q) < ∞, then also

D(P∥Q) = lim
α↓1

Dα(P∥Q). (3.2.49)

2. By defining D1(P∥Q) as D(P∥Q), the function α 7→ Dα(P∥Q) is

nondecreasing.
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3. For all α > 0, Dα(·∥·) satisfies the data processing inequality: if we

have two possible distributions P and Q for a random variable U ,

then for every channel (stochastic transformation) T that takes

U as input we have

Dα(P̃∥Q̃) ≤ Dα(P∥Q), ∀α > 0 (3.2.50)

where P̃ or Q̃ is the distribution of the output of T when the

input has distribution P or Q, respectively.

4. The Rényi divergence is non-negative for every order α > 0.

Now consider the following set-up. Let X be a real-valued random

variable with distribution P , such that P ≪ G. For every t ≥ 0, let Pt

denote the output distribution of the OU(t) channel with input X ∼ P .

Then, using the fact that the standard Gaussian distribution G is left

invariant by the Ornstein–Uhlenbeck channel family together with the

data processing inequality (3.2.50), we have

Dα(Pt∥G) ≤ Dα(P∥G), ∀ t ≥ 0, α > 0. (3.2.51)

This is, of course, nothing but the second law of thermodynamics for

Markov chains (see, e.g., [144, Section 4.4] or [139]) applied to the

continuous-time Markov process governed by the Langevin equation

(3.2.46). We will now show, however, that the Gaussian LSI of Gross

(see Theorem 3.2.1) implies a stronger statement: for every α > 1 and

ε ∈ (0, 1), there exists a positive constant τ = τ(α, ε), such that

Dα(Pt∥G) ≤ εDα(P∥G), ∀ t ≥ τ. (3.2.52)

By increasing the parameter t, the output distribution Pt resembles

the invariant distribution G more and more, where the measure of

similarity is given by a Rényi divergence. Here is the precise result:

Theorem 3.2.3. The Gaussian LSI of Theorem 3.2.1 is equivalent to

the following statement: for every α, β such that 1 < β < α < ∞

Dα(Pt∥G) ≤
(
α(β − 1)

β(α− 1)

)
Dβ(P∥G), ∀ t ≥ 1

2 ln

(
α− 1

β − 1

)
. (3.2.53)
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The proof of Theorem 3.2.3 is provided in Appendix 3.B (with a

certain equality, involved in this proof, that is proved separately in

Appendix 3.C).

Remark 3.9. The original hypercontractivity result of Gross is stated

as an inequality relating suitable norms of gt = dPt

dG and g = dP
dG ; we refer

the reader to the original paper [44] or to the lecture notes of Guionnet

and Zegarlinski [51] for the traditional treatment of hypercontractivity.

Remark 3.10. To see that Theorem 3.2.3 implies (3.2.52), fix α > 1

and ε ∈ (0, 1). Let

β = β(ε, α) ,
α

α− ε(α− 1)
.

It is easy to see that 1 < β < α and α(β−1)
β(α−1) = ε. Hence, Theorem 3.2.3

implies that

Dα(Pt∥P ) ≤ εDβ(P∥G), ∀ t ≥ 1
2 ln

(
1 +

α(1 − ε)

ε

)
, τ(α, ε).

Since the Rényi divergence Dα(·∥·) is non-decreasing in the parameter

α, and 1 < β < α, it follows that Dβ(P∥G) ≤ Dα(P∥G). Therefore,

the last inequality implies that

Dα(Pt∥P ) ≤ εDα(P∥G), ∀ t ≥ τ(α, ε).

As a consequence, we can establish a strong version of the data

processing inequality for the ordinary divergence:

Corollary 3.2.4. In the notation of Theorem 3.2.3, we have for every

t ≥ 0

D(Pt∥G) ≤ e−2tD(P∥G). (3.2.54)

Proof. Let α = 1 + εe2t and β = 1 + ε for some ε > 0. Then using

Theorem 3.2.3, we have

D1+εe2t(Pt∥G) ≤
(
e−2t + ε

1 + ε

)
D1+ε(P∥G), ∀ t ≥ 0. (3.2.55)

Taking the limit of both sides of (3.2.55) as ε ↓ 0 and using (3.2.49)

(note that Dα(P∥G) < ∞ for α > 1), we get (3.2.54).
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3.3 Logarithmic Sobolev inequalities: the general scheme

Now that we have seen the basic idea behind log-Sobolev inequalities

in the concrete case of i.i.d. Gaussian random variables, we are ready

to take a more general viewpoint. To that end, we adopt the framework

of Bobkov and Götze [54] and consider a probability space (Ω,F , µ)

together with a pair (A,Γ) that satisfies the following requirements:

• (LSI-1) A is a family of bounded measurable functions on Ω,

such that if f ∈ A, then af + b ∈ A for every a ≥ 0 and b ∈ R.

• (LSI-2) Γ is an operator that maps functions in A to nonnegative

measurable functions on Ω.

• (LSI-3) For every f ∈ A, a ≥ 0, and b ∈ R,

Γ(af + b) = aΓf. (3.3.1)

We say that µ satisfies a logarithmic Sobolev inequality with constant

c ≥ 0, or LSI(c) for short, if

D(µ(f)∥µ) ≤ c

2
E

(f)
µ

[
(Γf)2

]
, ∀ f ∈ A. (3.3.2)

Here, as before, µ(f) denotes the f -tilting of µ, i.e.,

dµ(f)

dµ
=

exp(f)

Eµ[exp(f)]
, (3.3.3)

and E
(f)
µ [·] in the right side of (3.3.2) denotes expectation with respect

to µ(f).

Remark 3.11. We have expressed the LSI using standard information-

theoretic notation. Most of the mathematical literature dealing with the

subject, however, uses a different notation, which we briefly summarize

for the reader’s benefit. Given a probability measure µ on Ω and a

nonnegative function g : Ω → R, define the entropy functional

Entµ(g) ,

∫
g ln g dµ−

∫
g dµ · ln

(∫
g dµ

)

≡ Eµ[g ln g] − Eµ[g] lnEµ[g] (3.3.4)
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with the convention that 0 ln 0 , 0. Due to the convexity of the function

f(t) = t ln t (t ≥ 0), Jensen’s inequality gives Entµ(g) ≥ 0. The LSI(c)

condition in (3.3.2) can be equivalently written as (see [54, (1.1)])

Entµ
(

exp(f)
) ≤ c

2

∫
(Γf)2 exp(f) dµ. (3.3.5)

To see the equivalence of (3.3.2) and (3.3.5), note that

Entµ
(

exp(f)
)

=

∫
exp(f) ln

(
exp(f)∫
exp(f)dµ

)
dµ

= Eµ[exp(f)]

∫
dµ(f)

dµ
ln

(
dµ(f)

dµ

)
dµ

= Eµ[exp(f)] D(µ(f)∥µ) (3.3.6)

and
∫

(Γf)2 exp(f) dµ = Eµ[exp(f)]

∫
(Γf)2 dµ(f)

= Eµ[exp(f)] E(f)
µ

[
(Γf)2

]
. (3.3.7)

Substituting (3.3.6) and (3.3.7) into (3.3.5), we obtain (3.3.2). We note

that the entropy functional Ent is homogeneous of degree 1: for every

g such that Entµ(g) < ∞ and a > 0, we have

Entµ(ag) = aEµ

[
g ln

g

Eµ[g]

]
= aEntµ(g). (3.3.8)

Remark 3.12. Strictly speaking, (3.3.2) should be called a modified (or

exponential) logarithmic Sobolev inequality. The ordinary LSI takes the

form (see [54, (1.2)])

Entµ(g2) ≤ 2c

∫
(Γg)2 dµ (3.3.9)

for all strictly positive g ∈ A. If the pair (A,Γ) is such that ψ ◦ g ∈ A
for every g ∈ A and for every C∞ function ψ : R → R, and Γ obeys the

chain rule

Γ(ψ ◦ g) = |ψ′ ◦ g| Γg ∀ g ∈ A, ψ ∈ C∞, (3.3.10)
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then (3.3.2) and (3.3.9) are equivalent. In order to show this, recall the

equivalence of (3.3.2) and (3.3.5) (see Remark 3.11); the equivalence

of (3.3.5) and (3.3.9) is proved in the following when the mapping Γ

satisfies the chain rule in (3.3.10). Indeed, if (3.3.9) holds then using it

with g = exp(f/2) gives

Entµ
(

exp(f)
) ≤ 2c

∫ (
Γ
(
exp(f/2)

))2
dµ

=
c

2

∫
(Γf)2 exp(f) dµ

which is (3.3.5). The last equality in the above display follows from

(3.3.10) which implies that

Γ
(
exp(f/2)

)
= 1

2 exp(f/2) · Γf.

Conversely, the combination of (3.3.5) with f = 2 ln g and (3.3.10) with

ψ(t) = t ln t for t > 0 (by continuous extension ψ(0) = 0) gives

Entµ
(
g2) ≤ c

2

∫ (
Γ(2 ln g)

)2
g2 dµ

= 2c

∫
(Γg)2 dµ,

which is (3.3.9). Again, the last equality is a consequence of (3.3.10),

which gives Γ(2 ln g) = 2 Γg
g for all strictly positive g ∈ A. In fact, the

Gaussian LSI we have looked at in Section 3.2 is an instance of the LSI

in (3.3.2), for which Γf = ∥∇f∥ satisfies the chain rule in (3.3.10).

Recalling the discussion of Section 3.1.4, we now show how to pass

from a log-Sobolev inequality to a concentration inequality via the

Herbst argument. Indeed, let Ω = X n and µ = P , and suppose that P

satisfies LSI(c) with an appropriate pair (A,Γ). Suppose, furthermore,

that the function of interest f is an element of A and that ∥Γf∥∞ < ∞
(otherwise, LSI(c) is vacuously true for every c > 0). Then tf ∈ A for

every t ≥ 0, so applying (3.3.2) to g = tf we get

D
(
P (tf)

∥∥P
) ≤ c

2
E

(tf)
P

[
(Γ(tf))2

]

=
ct2

2
E

(tf)
P

[
(Γf)2

]

≤ c∥Γf∥2
∞t

2

2
, (3.3.11)
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where the second step uses the fact that Γ(tf) = tΓf for every f ∈ A
and t ≥ 0. In other words, P satisfies the bound (3.1.39) for every g ∈ A
with E(g) = ∥Γg∥2

∞. Therefore, using the bound (3.3.11) together with

Corollary 3.1.1 gives

P
(
f(Xn) ≥ Ef(Xn) + r

) ≤ exp

(
− r2

2c∥Γf∥2∞

)
, ∀ r ≥ 0. (3.3.12)

3.3.1 Tensorization of the logarithmic Sobolev inequality

In the above demonstration, we have capitalized on an appropriate LSI

in order to derive a concentration inequality. Showing that a LSI holds

can be very difficult for reasons discussed in Section 3.1.3. However,

when the probability measure P is a product measure, i.e., the X -valued

random variables X1, . . . , Xn are independent under P , we can use once

again the “divide-and-conquer” tensorization strategy: we break the

original n-dimensional problem into n one-dimensional subproblems,

demonstrate that each marginal distribution PXi
(i = 1, . . . , n) satisfies

a LSI for a suitable class of real-valued functions on X , and finally

appeal to the tensorization bound for the relative entropy.

Let us provide the abstract scheme first. Suppose that, for each

i ∈ {1, . . . , n}, we have a pair (Ai,Γi) defined on X that satisfies the

requirements (LSI-1)–(LSI-3) listed at the beginning of Section 3.3.

Recall that for an arbitrary function f : X n → R, for i ∈ {1, . . . , n},

and for an arbitrary (n− 1)-tuple x̄i = (x1, . . . , xi−1, xi+1, . . . , xn), we

have defined a function fi(·|x̄i) : X → R via fi(xi|x̄i) , f(xn). Then,

we have the following:

Theorem 3.3.1. Let X1, . . . , Xn be n independent X -valued random

variables, and let P = PX1 ⊗ . . .⊗PXn be their joint distribution. Let A
consist of all functions f : X n → R such that, for every i ∈ {1, . . . , n},

fi(·|x̄i) ∈ Ai, ∀ x̄i ∈ X n−1. (3.3.13)

Define the operator Γ that maps each f ∈ A to

Γf =

√√√√
n∑

i=1

(Γifi)2, (3.3.14)
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which is shorthand for

Γf(xn) =

√√√√
n∑

i=1

(
Γifi(xi|x̄i)

)2
, ∀xn ∈ X n. (3.3.15)

Then, the following statements hold:

1. If there exists a constant c ≥ 0 such that, for every i ∈ {1, . . . , n},

PXi
satisfies LSI(c) with respect to (Ai,Γi), then P satisfies

LSI(c) with respect to (A,Γ).

2. For every f ∈ A with E[f(Xn)] = 0, and every r ≥ 0,

P
(
f(Xn) ≥ r

) ≤ exp

(
− r2

2c∥Γf∥2∞

)
. (3.3.16)

Proof. We first verify that the pair (A,Γ), defined in the statement of

the theorem, satisfies the requirements (LSI-1)–(LSI-3). Thus, consider

some f ∈ A, choose some a ≥ 0 and b ∈ R, and let g = af + b. Then,

gi(·|x̄i) = afi(·|x̄i)+b ∈ Ai for every i ∈ {1, . . . , n} and an arbitrary x̄i,

which relies on (3.3.13) and the property (LSI-1) of the pair (Ai,Γi).

Hence, f ∈ A implies that g = af + b ∈ A for every a ≥ 0 and b ∈ R,

so (LSI-1) holds. From the definition of Γ in (3.3.14) and (3.3.15), it is

readily seen that (LSI-2) and (LSI-3) hold as well.

Next, for every f ∈ A and t ≥ 0, we have

D
(
P (tf)

∥∥P
) ≤

n∑

i=1

D
(
P

(tf)

Xi|Xi

∥∥∥PXi

∣∣∣P (tf)

Xi

)

=
n∑

i=1

∫
D
(
P

(tf)

Xi|Xi=x̄i

∥∥∥PXi

)
dP

(tf)

Xi
(x̄i)

=
n∑

i=1

∫
D
(
P

(tfi(·|x̄i))
Xi

∥∥∥PXi

)
dP

(tf)

Xi
(x̄i)

≤ ct2

2

n∑

i=1

∫
E

(tfi(·|x̄i))
PXi

[(
Γifi(Xi|x̄i)

)2
]

dP
(tf)

Xi
(x̄i)

=
ct2

2

n∑

i=1

E
(tf)
P

Xi

{
E

(tf)
P

Xi|Xi

[ (
Γifi(Xi|X i)

)2 ]}

=
ct2

2
· E(tf)

P

[
(Γf)2

]
, (3.3.17)
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where the first step uses Proposition 3.2 with Q = P (tf), the second

is by the definition of conditional divergence where PXi
= PXi|Xi , the

third is due to (3.1.31), the fourth uses the fact that (a) fi(·|x̄i) ∈ Ai

for all x̄i and (b) PXi
satisfies LSI(c) with respect to (Ai,Γi), and the

last step uses the tower property of the conditional expectation, and

(3.3.14). We have thus proved the first part of the theorem, i.e., that P

satisfies LSI(c) with respect to the pair (A,Γ). The second part follows

from the same argument that was used to prove (3.3.12).

3.3.2 Maurer’s thermodynamic method

Theorem 3.3.1 enables to derive concentration inequalities in product

spaces whenever an appropriate LSI can be shown to hold for each

individual variable. Thus, the bulk of the effort is in showing that this

is, indeed, the case for a given probability measure P and a given class of

functions. Ordinarily, this is done on a case-by-case basis. However, as

shown recently by A. Maurer in an insightful paper [145], it is possible

to derive log-Sobolev inequalities in a wide variety of settings by means

of a single unified method. This method has two basic ingredients:

1. A certain “thermodynamic” representation of the divergence

D(µ(f)∥µ), f ∈ A, as an integral of the variances of f with respect

to the tilted measures µ(tf) for all t ∈ (0, 1).

2. Derivation of upper bounds on these variances in terms of an

appropriately chosen operator Γ acting on A, where A and Γ are

the objects satisfying the conditions (LSI-1)–(LSI-3).

In this section, we state two lemmas that underlie these two ingredients

and then describe the overall method in broad strokes. Several detailed

demonstrations of the method in action will be given in the sections

that follow.

Once again, consider a probability space (Ω,F , µ) and recall the

definition of the g-tilting of µ:

dµ(g)

dµ
=

exp(g)

Eµ[exp(g)]
.
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The variance of an arbitrary h : Ω → R with respect to µ(g) is then

given by

var
(g)
µ [h] , E

(g)
µ [h2] −

(
E

(g)
µ [h]

)2
.

The first ingredient of Maurer’s method is encapsulated in the following

(see [145, Theorem 3]):

Lemma 3.3.2. Let f : Ω → R be a function such that Eµ[exp(λf)] < ∞
for all λ > 0. Then, the following equality holds:

D
(
µ(λf)

∥∥µ
)

=

∫ λ

0

∫ λ

t
var

(sf)
µ [f ] dsdt, ∀λ > 0. (3.3.18)

Proof. We start by noting that (see (3.1.16) and (3.1.17))

Λ′(t) = E
(tf)
µ [f ] and Λ′′(t) = var

(tf)
µ [f ], (3.3.19)

and, in particular, Λ′(0) = Eµ[f ]. Moreover, from (3.1.19), we get

D
(
µ(λf)

∥∥µ
)

= λ2 d

dλ

(
Λ(λ)

λ

)
= λΛ′(λ) − Λ(λ). (3.3.20)

Now, using (3.3.19), we get

λΛ′(λ) =

∫ λ

0
Λ′(λ) dt

=

∫ λ

0

(∫ λ

0
Λ′′(s) ds+ Λ′(0)

)
dt

=

∫ λ

0

(∫ λ

0
var

(sf)
µ [f ] ds+ Eµ[f ]

)
dt (3.3.21)

and

Λ(λ) =

∫ λ

0
Λ′(t) dt

=

∫ λ

0

(∫ t

0
Λ′′(s) ds+ Λ′(0)

)
dt

=

∫ λ

0

(∫ t

0
var

(sf)
µ [f ] ds+ Eµ[f ]

)
dt. (3.3.22)

Substituting (3.3.21) and (3.3.22) into (3.3.20), we get (3.3.18).
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Remark 3.13. The thermodynamic interpretation of (3.3.18) stems

from the fact that the tilted measures µ(tf) can be viewed as the Gibbs

measures, used in statistical mechanics as a probabilistic description

of physical systems in thermal equilibrium. In this interpretation, the

underlying space Ω is the state (or configuration) space of a physical

system Σ, the elements x ∈ Ω are the states (or configurations) of Σ,

µ is a base (or reference) measure, and f is the energy function. We

can view µ as an initial distribution of the system state. According to

the postulates of statistical physics, the thermal equilibrium of Σ at

absolute temperature θ corresponds to that distribution ν on Ω that

globally minimizes the free energy functional

Ψθ(ν) , Eν [f ] + θD(ν∥µ). (3.3.23)

It is claimed that Ψθ(ν) is uniquely minimized by ν∗ = µ(−tf), where

t = 1/θ is the inverse temperature. To see this, consider an arbitrary

ν, where we may assume, without loss of generality, that ν ≪ µ. Let

ψ , dν/dµ. Then

dν

dµ(−tf)
=

dν
dµ

dµ(−tf)

dµ

=
ψ

exp(−tf)
Eµ[exp(−tf)]

= ψ exp(tf)Eµ[exp(−tf)]

and

Ψθ(ν) =
1

t
Eν [tf + lnψ]

=
1

t
Eν
[
ln
(
ψ exp(tf)

)]

=
1

t
Eν

[
ln

dν

dµ(−tf)
− Λ(−t)

]

=
1

t

[
D(ν∥µ(−tf)) − Λ(−t)

]
,

where, as before, Λ(−t) , ln
(
Eµ[exp(−tf)]

)
. Therefore, we have

Ψθ(ν) = Ψ1/t(ν) ≥ −Λ(−t)/t with equality if and only if ν = µ(−tf).

The reader is referred to a recent monograph by Merhav [146],

which highlights interesting relations between information theory and

statistical physics.
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Now the whole affair hinges on the second step, which involves

bounding the variances var
(tf)
µ [f ] from above, for t > 0, in terms of

expectations E
(tf)
µ

[
(Γf)2

]
for an appropriately chosen Γ. The following

is sufficiently general for our needs:

Theorem 3.3.3. Let (A,Γ) and {(Ai,Γi)}n
i=1 be constructed as in the

statement of Theorem 3.3.1. Suppose that for each i ∈ {1, . . . , n}, the

operator Γi maps each g ∈ Ai to a constant (which may depend on g),

and there exists a constant c > 0 such that

var
(sg)
i [g(Xi)|Xi = x̄i] ≤ c (Γig)2 , ∀ x̄i ∈ X n−1 (3.3.24)

for all i ∈ {1, . . . , n}, s > 0, and g ∈ Ai, where var
(g)
i [·|Xi = x̄i] denotes

the (conditional) variance with respect to P
(g)

Xi|Xi=x̄i
. Then, the pair

(A,Γ) satisfies LSI(c) with respect to PXn .

Proof. Consider an arbitrary function f ∈ A. Then, by construction,

fi : Xi → R is in Ai for each i ∈ {1, . . . , n}. We can write

D
(
P

(f)

Xi|Xi=x̄i
∥ PXi

)

= D
(
P

(fi(·|x̄i))
Xi

∥ PXi

)
(3.3.25)

=

∫ 1

0

∫ 1

t
var

(sfi(·|x̄i))
i [fi(Xi|Xi)|Xi = x̄i] dsdt (3.3.26)

≤ c (Γifi)
2
∫ 1

0

∫ 1

t
dsdt (3.3.27)

=
c(Γifi)

2

2
(3.3.28)

where (3.3.25) uses the fact that P
(f)

Xi|Xi=x̄i
is equal to the fi(·|x̄i)-

tilting of PXi
; (3.3.26) uses Lemma 3.3.2; (3.3.27) uses (3.3.24) with

g = fi(·|x̄i) ∈ Ai; (3.3.28) holds since
∫ 1

0

∫ 1
t ds dt =

∫ 1
0 (1 − t)dt = 1

2 .

We have therefore established that, for each i ∈ {1, . . . , n}, the pair

(Ai,Γi) satisfies LSI(c). Therefore, the pair (A,Γ) satisfies LSI(c) by

Theorem 3.3.1.

The following two lemmas will be useful for establishing bounds like

(3.3.24):
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Lemma 3.3.4. Let U be a random variable such that U ∈ [a, b] a.s. for

some −∞ < a ≤ b < +∞. Then

var[U ] ≤ 1
4(b− a)2. (3.3.29)

Proof. var[U ] is maximized when P(U = a) = P(U = b) = 1
2 , which

attains the bound in the right side of (3.3.29).

Lemma 3.3.5. [145] Let f be a real-valued function, for which there

exists d ∈ R such that f −Eµ[f ] ≤ d almost surely. Then, for all t > 0,

var
(tf)
µ [f ] ≤ exp(td) varµ[f ]. (3.3.30)

Proof.

var
(tf)
µ [f ] = var

(tf)
µ

{
f − Eµ [f ]

}
(3.3.31)

≤ E
(tf)
µ

[
(f − Eµ[f ])2

]
(3.3.32)

= Eµ

[
exp(tf) (f − Eµ[f ])2

Eµ[exp(tf)]

]
(3.3.33)

≤ Eµ

{
(f − Eµ[f ])2 exp [t (f − Eµ[f ])]

}
(3.3.34)

≤ exp(td)Eµ

[
(f − Eµ [f ])2

]
, (3.3.35)

where

• (3.3.31) holds since var[f ] = var[f + c] for c ∈ R;

• (3.3.32) uses the bound var[U ] ≤ E[U2];

• (3.3.33) is by definition of the tilted distribution µ(tf);

• (3.3.34) is verified by applying Jensen’s inequality to the denom-

inator;

• (3.3.35) relies on the assumption that f − Eµ[f ] ≤ d, and the

monotonicity of the exponential function (note that t > 0).
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3.3.3 Discrete logarithmic Sobolev inequalities on the Hamming
cube

We now use Maurer’s method to derive log-Sobolev inequalities for

functions of n i.i.d. Bernoulli random variables. Let X be the two-

point set {0, 1}, and let ei ∈ X n denote the binary string that has 1 in

the i-th position and zeros elsewhere. For every f : X n → R, define

Γf(xn) ,

√√√√
n∑

i=1

(
f(xn ⊕ ei) − f(xn)

)2
, ∀xn ∈ X n, (3.3.36)

where the modulo-2 addition ⊕ is defined componentwise. In other

words, Γf measures the sensitivity of f to local bit flips. We consider

the symmetric, i.e., Bernoulli
(

1
2

)
, case first:

Theorem 3.3.6 (Discrete log-Sobolev inequality for the symmetric

Bernoulli measure). Let A be the set of all functions f : X n → R with

X = {0, 1}, and let Γ: A → [0,∞) be as defined in (3.3.36). Moreover,

let X1, . . . , Xn be i.i.d. Bernoulli(1
2) random variables, and let P denote

their joint distribution. Then, P satisfies LSI(1
4) with respect to (A,Γ).

In other words, for every f : X n → R,

D
(
P (f)

∥∥P
) ≤ 1

8 E
(f)
P

[
(Γf)2

]
. (3.3.37)

Proof. It is easy to verify that (A,Γ) satisfies the conditions (LSI-1)–

(LSI-3).

Let A0 be the set of all functions g : {0, 1} → R, and let Γ0 be the

operator that maps every g ∈ A0 to

Γ0 g , |g(0) − g(1)| = |g(x) − g(x⊕ 1)|, ∀x ∈ {0, 1}. (3.3.38)

For each i ∈ {1, . . . , n}, let (Ai,Γi) be a copy of (A0,Γ0). Then, each

Γi maps every function g ∈ Ai to the constant |g(0) − g(1)|. Moreover,

for every g ∈ Ai, the random variable Ui = g(Xi) is bounded between

g(0) and g(1). Hence, by Lemma 3.3.4, we have

var
(sg)
i [g(Xi)|X i = x̄i] ≤ 1

4

(
g(0) − g(1)

)2
= 1

4(Γig)
2 (3.3.39)

for all g ∈ Ai, x̄
i ∈ X n−1. In other words, the condition (3.3.24) of

Theorem 3.3.3 holds with c = 1
4 . In addition, it is easy to see that
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the operator Γ constructed from Γ1, . . . ,Γn according to (3.3.14) is

precisely the one in (3.3.36). Therefore, by Theorem 3.3.3, the pair

(A,Γ) satisfies LSI(1
4) with respect to P , which proves (3.3.37).

Now let us consider the general case where X1, . . . , Xn are i.i.d.

Bernoulli(p) random variables with p ∈ (0, 1). We will use Maurer’s

method to give an alternative, simpler proof of the following result by

Ledoux [52, Corollary 5.9] (it actually suggests a sharpened version of

the latter result, as it is explained in Remark 3.14):

Theorem 3.3.7. Consider an arbitrary function f : {0, 1}n → R with

the property that there exists some c > 0 such that

max
i∈{1,...,n}

|f(xn ⊕ ei) − f(xn)| ≤ c (3.3.40)

for all xn ∈ {0, 1}n. Let {Xi}n
i=1 be i.i.d. Bernoulli(p) random variables

with p ∈ (0, 1), and let P be their joint distribution. Then

D
(
P (f)

∥∥P
) ≤ pq

(
(qc− 1) exp(qc) + 1

(qc)2

)
E

(f)
P

[
(Γf)2

]
, (3.3.41)

where q , 1 − p.

Proof. Following the usual route, we will establish the n = 1 case first,

and then scale up to an arbitrary n by tensorization. In order to capture

the correct dependence on the Bernoulli parameter p, we will use a

more refined, distribution-dependent variance bound of Lemma 3.3.5,

as opposed to the cruder bound of Lemma 3.3.4 that does not depend on

the underlying distribution. Maurer’s paper [145] has other examples.

For n = 1, let

a = |Γf | = |f(0) − f(1)|, (3.3.42)

where Γ is defined as in (3.3.38). Without loss of generality, let f(0) = 0

and f(1) = a. Then

E[f ] = pa, var[f ] = pqa2. (3.3.43)

Using (3.3.43) and Lemma 3.3.5, since f−E[f ] ≤ a−pa = qa, it follows

that for every t > 0

var
(tf)
P [f ] ≤ pqa2 exp(tqa).
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Therefore, by Lemma 3.3.2 we have

D
(
P (f)

∥∥P
) ≤ pqa2

∫ 1

0

∫ 1

t
exp(sqa) dsdt

= pqa2
(

(qa− 1) exp(qa) + 1

(qa)2

)

≤ pqa2
(

(qc− 1) exp(qc) + 1

(qc)2

)
, (3.3.44)

where the last step follows from the fact that the function

u 7→ u−2[(u− 1) exp(u) + 1]

(defined, for continuity, to be 1
2 at u = 0) is monotonically increasing in

[0,∞), and 0 ≤ qa ≤ qc due to (3.3.40) and (3.3.42). Since a2 = (Γf)2,

(3.3.44) gives

D
(
P (f)

∥∥P
) ≤ pq

(
(qc− 1) exp(qc) + 1

(qc)2

)
E

(f)
P

[
(Γf)2

]
,

so we have established (3.3.41) for n = 1.

Now consider an arbitrary n ∈ N. Since the condition in (3.3.40)

can be expressed as
∣∣fi(0|x̄i) − fi(1|x̄i)

∣∣ ≤ c for all i ∈ {1, . . . , n} and

x̄i ∈ {0, 1}n−1, we can use (3.3.44) to write

D
(
P

(fi(·|x̄i))
Xi

∥PXi

)

≤ pq

(
(qc− 1) exp(qc) + 1

(qc)2

)
E

(fi(·|x̄i))
PXi

[ (
Γifi(Xi|x̄i)

)2 ]

for every i = 1, . . . , n and all x̄i ∈ {0, 1}n−1. With this, the same

sequence of steps that led to (3.3.17) in the proof of Theorem 3.3.1 can

be used to complete the proof of (3.3.41) for an arbitrary n.

In Appendix 3.D, we comment on the relations between the log-

Sobolev inequalities for Bernoulli and Gaussian measures.

Remark 3.14. Note that (3.3.41) improves the bound by Ledoux in

[52, Corollary 5.9], which is equivalent to

D
(
P (f)

∥∥P
) ≤ pq

(
(c− 1) exp(c) + 1

c2

)
E

(f)
P

[
(Γf)2

]
. (3.3.45)
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The improvement in (3.3.41) follows from a replacement of c on the

right side of (3.3.45) with qc (recall that q ∈ (0, 1)); this can be verified

due the fact that the function

u 7→ u−2[(u− 1) exp(u) + 1], u ∈ (0,∞)

is monotonically increasing.

3.3.4 The method of bounded differences revisited

As our second illustration of Maurer’s method, we give an information-

theoretic proof of McDiarmid’s inequality in Theorem 2.4.3. Following

the exposition in [145, Section 4.1], we have the following re-statement

of McDiarmid’s inequality:

Theorem 3.3.8. Let X1, . . . , Xn be independent X -valued random

variables. Consider a function f : X n → R with E[f(Xn)] = 0, and

also suppose that there exist some constants 0 ≤ c1, . . . , cn < +∞ such

that, for each i ∈ {1, . . . , n},
∣∣∣fi(x|x̄i) − fi(y|x̄i)

∣∣∣ ≤ ci, ∀x, y ∈ X , x̄i ∈ X n−1. (3.3.46)

Then, for every r ≥ 0,

P

(
f(Xn) ≥ r

)
≤ exp

(
− 2r2

∑n
i=1 c

2
i

)
. (3.3.47)

Proof. Let A0 be the set of bounded measurable functions g : X → R,

and let Γ0 be the operator that maps every g ∈ A0 to

Γ0 g , sup
x∈X

g(x) − inf
x∈X

g(x). (3.3.48)

It is easy to verify that properties (LSI-1)–(LSI-3) hold for the pair

(A0,Γ0) since in particular

Γ0(ag + b) = aΓ0 g, ∀ a ≥ 0, b ∈ R.

For all i ∈ {1, . . . , n}, let (Ai,Γi) be a copy of (A0,Γ0). Then, each

Γi maps every function g ∈ Ai to the non-negative constant (3.3.48).

Moreover, for every g ∈ Ai, the random variable Ui = g(Xi) is bounded
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between infx∈X g(x) and supx∈X g(x) ≡ infx∈X g(x) + Γig. Therefore,

Lemma 3.3.4 yields

var
(sg)
i [g(Xi)|X i = x̄i] ≤ 1

4(Γig)2, ∀ g ∈ Ai, x̄
i ∈ X n−1, (3.3.49)

which implies that the condition (3.3.24) of Theorem 3.3.3 holds with

c = 1
4 .

Let A be the set of all bounded measurable functions f : X n → R.

Then, for every f ∈ A, i ∈ {1, . . . , n} and xn ∈ X n,

sup
xi∈Xi

f(x1, . . . , xi, . . . , xn) − inf
xi∈Xi

f(x1, . . . , xi, . . . , xn)

= sup
xi∈Xi

fi(xi|x̄i) − inf
xi∈Xi

fi(xi|x̄i)

= Γifi(·|x̄i). (3.3.50)

By constructing Γ: A → [0,∞) from Γ1, . . . ,Γn, according to (3.3.14)

and (3.3.50), Theorem 3.3.1 can be applied to (A,Γ). By Theorem 3.3.3

and (3.3.49), it follows that (A,Γ) satisfies LSI(1
4) for every product

probability measure on X n. Hence, (3.3.12) implies that, for every r ≥ 0

and bounded f with E[f(Xn)] = 0,

P

(
f(Xn) ≥ r

)
≤ exp

(
− 2r2

∥Γf∥2
∞

)
. (3.3.51)

If f satisfies (3.3.46), then

∥Γf∥2
∞ = sup

xn∈X n

n∑

i=1

(
Γifi(xi|x̄i)

)2

≤
n∑

i=1

sup
xn∈X n

(
Γifi(xi|x̄i)

)2

=
n∑

i=1

sup
xn∈X n, y∈X

|fi(xi|x̄i) − fi(y|x̄i)|2

≤
n∑

i=1

c2
i . (3.3.52)

Substituting the bound in the right side of (3.3.52) into the right side

of (3.3.51) gives (3.3.47).



134 The Entropy Method, LSI and TC Inequalities

Note that Maurer’s method yields the constant in the exponent of

McDiarmid’s inequality; it is instructive to compare it to an earlier

approach in [147] which, by also using the entropy method, gave an

exponent that is smaller by a factor of 8.

3.3.5 Log-Sobolev inequalities for Poisson and compound Poisson
measures

Let Pλ denote the probability measure of a Poisson random variable

with parameter λ > 0, i.e., Pλ(n) , e−λ λn

n! for n ∈ N0 , {0, 1, 2, . . . , }.

Bobkov and Ledoux [55] derived the following LSI: for every function

f : N0 → R,

D(P
(f)
λ ∥Pλ) ≤ λE

(f)
Pλ

[
(Γf) eΓf − eΓf + 1

]
, (3.3.53)

where Γ is the modulus of the discrete gradient:

Γf(x) , |f(x) − f(x+ 1)|, ∀x ∈ N0. (3.3.54)

(The inequality (3.3.53) can be obtained by combining the LSI in [55,

Corollary 7] with equality (3.3.6).)

Using tensorization of (3.3.53), Kontoyiannis and Madiman [148]

derived an LSI for the compound Poisson distribution. We recall that

a compound Poisson distribution is defined as follows: given λ > 0

and a probability measure µ, let N ∼ Pλ and let X1, X2, . . . be i.i.d.

random variables with distribution µ, which are independent of N ; the

compound Poisson distribution, denoted by CPλ,µ, is the probability

distribution of the random sum

Z =
N∑

i=1

Xi, (3.3.55)

with the convention that Z = 0 whenever N = 0.

For the purpose of proving the log-Sobolev inequality for compound

Poisson measures in [148, Theorem 1], we need the following result:

Lemma 3.3.9. If Z ∼ CPλ,µ, then

Z
d
=

∞∑

k=1

kYk, Yk ∼ Pλµ(k), ∀ k ∈ N (3.3.56)

where {Yk}∞
k=1 are independent, and

d
= means equality in distribution.
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Proof. The characteristic function of Z in (3.3.56) is equal to

φZ(ν) , E[exp(jνZ)] = exp

{
λ

( ∞∑

k=1

µ(k) exp(jνk) − 1

)}
, ∀ ν ∈ R

which is equal to the characteristic function of Z ∼ CPλ,µ as defined in

(3.3.55). The lemma follows from the fact that equality in distribution

holds if and only if the characteristic functions coincide.

Theorem 3.3.10 (Log-Sobolev inequality for compound Poisson measures

[148]). For an arbitrary probability measure µ on N = {1, 2, . . .} and

an arbitrary bounded function f : N0 → R, and for every λ > 0,

D(CP
(f)
λ,µ∥CPλ,µ) ≤ λ

∞∑

k=1

µ(k)E
(f)
CPλ,µ

[
(Γkf) eΓkf − eΓkf + 1

]
(3.3.57)

where, for every k ∈ N and x ∈ N0,

Γkf(x) , |f(x) − f(x+ k)|. (3.3.58)

Proof. For n ∈ N, let Pn be the joint distribution of the independent

random variables Y1, . . . , Yn in (3.3.56). Consider an arbitrary bounded

function f : N0 → R, and define the function g by

g(y1, . . . , yn) , f

(
n∑

k=1

kyk

)
, ∀ y1, . . . , yn ∈ N0.

Denote by P̄n the distribution of the sum Sn ,
∑n

k=1 kYk, then

D(P̄ (f)
n ∥P̄n) = EP̄n

[(
exp

(
f(Sn)

)

EP̄n
[exp

(
f(Sn)

)
]

)
ln

(
exp

(
f(Sn)

)

EP̄n
[exp

(
f(Sn)

)
]

)]

= EPn

[(
exp

(
g(Y n)

)

EPn [exp
(
g(Y n)

)
]

)
ln

(
exp

(
g(Y n)

)

EPn [exp
(
g(Y n)

)
]

)]

= D(P (g)
n ∥Pn)

≤
n∑

k=1

D(P
(g)

Yk|Ȳ k∥PYk
|P (g)

Ȳ k ), (3.3.59)
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where the last line uses Proposition 3.2 and the fact that Pn is a product

measure. Due to the equality

dP
(g)

Yk|Ȳ k=ȳk

dPYk

=
exp

(
gk(·|ȳk)

)

EPλµ(k)
[exp

(
gk(Yk|ȳk)

)
]

(3.3.60)

with PYk
= Pλµ(k), applying the Bobkov–Ledoux inequality (3.3.53) to

PYk
and all functions of the form gk(·|ȳk) gives

D
(
P

(g)

Yk|Ȳ k

∥∥PYk

∣∣P (g)

Ȳ k

)

≤ λµ(k)E
(g)
Pn

[(
Γgk(Yk|Ȳ k)

)
eΓgk(Yk|Ȳ k) − eΓgk(Yk|Ȳ k) + 1

]
(3.3.61)

where Γ in (3.3.54) is the absolute value of the one-dimensional discrete

gradient. For every yn ∈ {0, 1, 2, . . .}n and k ∈ {1, . . . , n}, we have

Γgk(yk|ȳk) =
∣∣∣gk(yk|ȳk) − gk(yk + 1|ȳk)

∣∣∣

=

∣∣∣∣∣f


kyk +

∑

j∈{1,...,n}\{k}
jyj




− f


k(yk + 1) +

∑

j∈{1,...,n}\{k}
jyj



∣∣∣∣∣

=

∣∣∣∣∣∣
f




n∑

j=1

jyj


− f




n∑

j=1

jyj + k



∣∣∣∣∣∣

= Γkf




n∑

j=1

jyj


 = Γkf(Sn).

Using this in (3.3.61) and performing the reverse change of measure

from Pn to P̄n, we can write

D(P
(g)

Yk|Ȳ k∥PYk
|P (g)

Ȳ k

)

≤ λµ(k)E
(f)

P̄n

[(
Γkf(Sn)

)
eΓkf(Sn) − eΓkf(Sn) + 1

]
. (3.3.62)
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Therefore, the combination of (3.3.59) and (3.3.62) gives

D(P̄ (f)
n ∥P̄n) ≤ λ

n∑

k=1

µ(k)E
(f)

P̄n

[
(Γkf) eΓkf − eΓkf + 1

]

≤ λ
∞∑

k=1

µ(k)E
(f)

P̄n

[
(Γkf) eΓkf − eΓkf + 1

]
(3.3.63)

where the second line follows from the inequality xex − ex + 1 ≥ 0 that

holds for all x ≥ 0.

Now we will take the limit as n → ∞ of both sides of (3.3.63).

For the left side, we use the fact that, by (3.3.56), P̄n converges in

distribution to CPλ,µ as n → ∞. Since f is bounded, P̄
(f)
n → CP

(f)
λ,µ in

distribution. Therefore, by the bounded convergence theorem, we have

lim
n→∞

D(P̄ (f)
n ∥P̄n) = D(CP

(f)
λ,µ ∥ CPλ,µ). (3.3.64)

For the right side of (3.3.63), we have

∞∑

k=1

µ(k)E
(f)

P̄n

[
(Γkf) eΓkf − eΓkf + 1

]

= E
(f)

P̄n

{ ∞∑

k=1

µ(k)
[
(Γkf) eΓkf − eΓkf + 1

]}

n→∞−−−→ E
(f)
CPλ,µ

[ ∞∑

k=1

µ(k)
(
(Γkf) eΓkf − eΓkf + 1

)]

=
∞∑

k=1

µ(k)E
(f)
CPλ,µ

[
(Γkf) eΓkf − eΓkf + 1

]
(3.3.65)

where the first and last steps follow from Fubini’s theorem, and the

second step follows from the bounded convergence theorem. Putting

(3.3.63)–(3.3.65) together, we get the inequality in (3.3.57).

3.3.6 Bounds on the variance: Efron–Stein–Steele and Poincaré
inequalities

As we have seen, tight bounds on the variance of a function f(Xn) of

independent random variables X1, . . . , Xn are key in obtaining tight

bounds on the deviation probabilities P
(
f(Xn) ≥ Ef(Xn) + r

)
for
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r ≥ 0. It turns out that the reverse is also true: assuming that f has

Gaussian-like concentration behavior,

P
(
f(Xn) ≥ Ef(Xn) + r

) ≤ K exp
(− κr2), ∀ r ≥ 0

it is possible to derive tight bounds on the variance of f(Xn).

We start by deriving a version of a well-known inequality due to

Efron and Stein [86], with subsequent refinements by Steele [87]:

Theorem 3.3.11 (Efron–Stein–Steele inequality [86], [87]). Let

X1, . . . , Xn be independent X -valued random variables. Consider a

function f : X n → R whose scaled versions tf , for all sufficiently small

t > 0, are exponentially integrable. Then

var[f(Xn)] ≤
n∑

i=1

E

{
var
[
f(Xn)

∣∣X i]} . (3.3.66)

Proof. Let P = PX1 ⊗ . . . ⊗ PXn be the joint probability distribution

of X1, . . . , Xn. By Proposition 3.2, for every t > 0, we have

D
(
P (tf)

∥∥P
) ≤

n∑

i=1

D
(
P

(tf)

Xi|Xi

∥∥PXi

∣∣P (tf)

Xi

)
.

Using Lemma 3.3.2, we can rewrite this inequality as

∫ t

0

∫ t

s
var

(τf)
P [f ] dτ ds

≤
n∑

i=1

E
P

(tf)

Xi

[∫ t

0

∫ t

s
var

(τfi(·|Xi))
P

Xi|Xi
[f ] dτ ds

]
. (3.3.67)

Dividing both sides by t2, and passing to the limit as t → 0, we get

from L’Hôpital’s rule

lim
t→0

1

t2

∫ t

0

∫ t

s
var

(τf)
P [f ] dτ ds = 1

2 varP [f ] = 1
2 var[f(Xn)], (3.3.68)
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and

lim
t→0

1

t2

n∑

i=1

E
P

(tf)

Xi

[∫ t

0

∫ t

s
var

(τfi(·|Xi))
P

Xi|Xi
[f ] dτ ds

]

=
n∑

i=1

EP
Xi

{
lim
t→0

1

t2

∫ t

0

∫ t

s
var

(τfi(·|Xi))
P

Xi|Xi
[f ] dτ ds

}

=
n∑

i=1

EP
Xi

{
1
2 varP

Xi|Xi
[f ]
}

= 1
2

n∑

i=1

E

{
var
[
f(Xn)

∣∣Xi]} (3.3.69)

where the first equality in (3.3.69) is justified by invoking the dominated

convergence theorem (recall the pointwise convergence of P
(tf)

Xi
to PXi ,

as t → 0, which holds under the assumption that the scaled functions

tf are exponentially integrable for all sufficiently small t > 0), and the

second equality holds due to L’Hôpital’s rule. Inequality (3.3.66) finally

follows from (3.3.67)–(3.3.69).

The following result considers the connection between log-Sobolev

inequalities and another class of functional inequalities, the so-called

Poincaré inequalities. Consider, as before, a probability space (Ω,F , µ)

and a pair (A,Γ) satisfying the conditions (LSI-1)–(LSI-3). Then, we

say that µ satisfies a Poincaré inequality with constant c ≥ 0 if

varµ[f ] ≤ cEµ

[
(Γf)2

]
, ∀ f ∈ A. (3.3.70)

Theorem 3.3.12. Suppose that µ satisfies LSI(c) with respect to

(A,Γ). Then µ also satisfies a Poincaré inequality with constant c.

Proof. For every f ∈ A and t > 0, we can use Lemma 3.3.2 to express

the corresponding LSI(c) for the function tf as
∫ t

0

∫ t

s
var

(τf)
µ [f ] dτ ds ≤ ct2

2
E

(tf)
µ

[
(Γf)2

]
. (3.3.71)

By dividing both sides of (3.3.71) by t2 and passing to the limit as

t → 0, we obtain (see (3.3.68))

1
2 varµ[f ] ≤ 1

2 cEµ

[
(Γf)2

]
.

Multiplying both sides by 2, we see that µ indeed satisfies (3.3.70).
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The following analogue of Theorem 3.3.1 shows that the Poincaré

inequalities tensorize.

Theorem 3.3.13. Let X1, . . . , Xn be independent X -valued random

variables, and let P = PX1 ⊗ . . .⊗ PXn be their joint distribution. Let

A consist of all functions f : X n → R, such that for every i

fi(·|x̄i) ∈ Ai, ∀ x̄i ∈ X n−1 (3.3.72)

Define the operator Γ that maps each f ∈ A to Γf in (3.3.14). Suppose

that, for every i ∈ {1, . . . , n}, PXi
satisfies a Poincaré inequality with

constant c ≥ 0 with respect to (Ai,Γi) (see (3.3.70)). Consequently, P

satisfies a Poincaré inequality with constant c with respect to (A,Γ).

Proof. It is conceptually similar to the proof of Theorem 3.3.1, which

refers to the tensorization of the logarithmic Sobolev inequality, except

that now we use the Efron–Stein–Steele inequality of Theorem 3.3.11

to tensorize the variance of f .

3.4 Transportation-cost inequalities

We have been looking so far at concentration of measure through the

lens of functional inequalities, primarily log-Sobolev inequalities. In a

nutshell, if we are interested in the concentration properties of a given

function f(Xn) of a random n-tuple Xn ∈ X n, we seek to control the

divergence D(P (f)∥P ), where P is the distribution of Xn and P (f)

is its f -tilting with dP (f)

dP ∝ exp(f), by some quantity related to the

sensitivity of f to modifications of its arguments (e.g., the squared

norm of the gradient of f , as in the Gaussian LSI of Gross [44]). The

common theme underlying these functional inequalities is that every

such measure of sensitivity is tied to a particular metric structure on the

underlying product space X n. To see this, suppose that X n is equipped

with a metric d(·, ·), and consider the following generalized definition

of the modulus of the gradient of an arbitrary function f : X n → R:

|∇f |(xn) , lim sup
yn: d(xn,yn)→0

|f(xn) − f(yn)|
d(xn, yn)

, ∀xn ∈ X n. (3.4.1)
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Let also define the Lipschitz constant of f by

∥f∥Lip , sup
xn ̸=yn

|f(xn) − f(yn)|
d(xn, yn)

, (3.4.2)

and consider the class A of all functions f with ∥f∥Lip < ∞. It is easy

to verify that the pair (A,Γ) with

Γf(xn) , |∇f |(xn), ∀xn ∈ X n (3.4.3)

satisfies the conditions (LSI-1)–(LSI-3) in Section 3.3. Suppose that

a given probability distribution P for a random n-tuple Xn ∈ X n

satisfies LSI(c) with respect to the pair (A,Γ). The use of (3.3.12)

and the inequality ∥Γf∥∞ ≤ ∥f∥Lip, which follows from (3.4.1)–(3.4.3),

yields the concentration inequality

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
− r2

2c∥f∥2
Lip

)
, ∀ r > 0. (3.4.4)

Some examples of concentration we have discussed so far in this chapter

can be seen to fit this theme. Consider, for instance, the following case:

Example 3.1 (Euclidean metric). For X = R, equip the product space

X n = R
n with the ordinary Euclidean metric:

d(xn, yn) = ∥xn − yn∥

=

√√√√
n∑

i=1

(xi − yi)2, ∀xn, yn ∈ R
n. (3.4.5)

From (3.4.2) and (3.4.5), the Lipschitz constant ∥f∥Lip of a function

f : X n → R is given by

∥f∥Lip = sup
xn ̸=yn

|f(xn) − f(yn)|
∥xn − yn∥ , (3.4.6)

and, for every probability measure P on R
n that satisfies LSI(c), the

concentration inequality (3.4.4) holds. We have already seen in (3.2.13)

an instance of this with P = Gn, which satisfies LSI(1).

The above example suggests that the metric structure plays the

primary role, while the functional concentration inequalities like (3.4.4)
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are simply a consequence. In this section, we describe an alternative

approach to concentration that works directly on the level of probability

measures, rather than functions. The key tool underlying this approach

is the notion of transportation cost, which can be used to define a metric

on probability measures over the space of interest in terms of a given

base metric on this space. This metric on distributions can be related

to the divergence via the so-called transportation-cost inequalities. The

pioneering work by K. Marton in [59] and [75] has shown that one can

use these inequalities to deduce concentration.

3.4.1 Concentration and isoperimetry

We next give rigorous meaning to the notion that the concentration of

measure phenomenon is fundamentally geometric in nature. In order

to talk about concentration, we need the notion of a metric probability

space in the sense of M. Gromov [149]. Specifically, we say that a triple

(X , d, µ) is a metric probability space if (X , d) is a Polish space (i.e., a

complete and separable metric space) and µ is a probability measure

on the Borel sets of (X , d).

For an arbitrary subset C ⊆ X and every r > 0, define the r-blowup

of C by

Cr , {x ∈ X : d(x, C) < r} , (3.4.7)

where

d(x, C) , inf
y∈C

d(x, y) (3.4.8)

is the distance from the point x ∈ X to the subset C. We say that

the probability measure µ has normal (or Gaussian) concentration on

(X , d) if there exist positive constants K and κ such that

µ(C) ≥ 1
2 =⇒ µ(Cr) ≥ 1 −Ke−κr2

, ∀ r > 0. (3.4.9)

Remark 3.15. Of the two constants K and κ in (3.4.9), it is κ that

is more important. For that reason, sometimes we will say that µ has

normal concentration with constant κ > 0 to mean that (3.4.9) holds

with that value of κ and some K > 0.
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Remark 3.16. The concentration condition (3.4.9) is often weakened

to the requirement that there exists r0 > 0 such that

µ(C) ≥ 1
2 =⇒ µ(Cr) ≥ 1 −Ke−κ(r−r0)2

, ∀ r ≥ r0 (3.4.10)

(see, for example, [67, Remark 22.23] or [71, Proposition 3.3]). It is not

hard to pass from (3.4.10) to the stronger statement (3.4.9), possibly

with loosened constants (i.e., larger K and/or smaller κ). However,

since we mainly care about sufficiently large values of r, (3.4.10) with

sharper constants is preferable. In the sequel, whenever we talk about

Gaussian concentration with constant κ > 0, we refer to (3.4.10) unless

stated otherwise.

Here are three standard examples (see [3, Section 1.1]):

1. Standard Gaussian distribution: if X = R
n, d(x, y) = ∥x − y∥

is the Euclidean metric in (3.4.5), and µ = Gn is the standard

n-dimensional Gaussian distribution, then for an arbitrary Borel

set C ⊆ R
n with Gn(C) ≥ 1

2 and for all r > 0

Gn(Cr) ≥ 1√
2π

∫ r

−∞
exp

(
− t2

2

)
dt

≥ 1 − 1
2 exp

(
− r2

2

)
, (3.4.11)

i.e., (3.4.9) holds with K = 1
2 and κ = 1

2 .

2. Uniform distribution on the unit sphere: if

X = S
n ≡

{
x ∈ R

n+1 : ∥x∥ = 1
}
, (3.4.12)

d(·, ·) is the geodesic distance on S
n, and µ = σn is a uniform

distribution on S
n, then for every Borel set C ⊆ S

n with σn(C) ≥ 1
2

and for all r > 0

σn(Cr) ≥ 1 − exp
(
−1

2 (n− 1)r2
)
. (3.4.13)

In this instance, (3.4.9) holds with K = 1 and κ = 1
2 (n− 1).

3. Equiprobable distribution on the Hamming cube: if X = {0, 1}n,

d(·, ·) is the normalized Hamming distance

d(x, y) = 1
n

n∑

i=1

1{xi ̸=yi}, ∀x, y ∈ {0, 1}n, (3.4.14)
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and µ = Bn is the equiprobable distribution on {0, 1}n (i.e.,

B = Bernoulli(1
2)), then for every C ⊆ {0, 1}n with Bn(C) ≥ 1

2

and for all r > 0

Bn(Cr) ≥ 1 − exp(−2nr2), (3.4.15)

yielding (3.4.9) with K = 1 and κ = 2n.

Remark 3.17. The Gaussian concentration in (3.4.9) is often discussed

in the context of the so-called isoperimetric inequalities, which relate

the measure of a set to the measure of its boundary. To be more specific,

consider a metric probability space (X , d, µ), and for an arbitrary Borel

subset C ⊆ X define its surface measure as (see [3, Section 2.1])

µ+(C) , lim inf
r→0

µ(Cr \ C)

r
= lim inf

r→0

µ(Cr) − µ(C)

r
. (3.4.16)

Then, the classical Gaussian isoperimetric inequality can be stated as

follows: If H is a half-space in R
n, i.e., H = {x ∈ R

n : ⟨x, u⟩ < c} for

some u ∈ R
n with ∥u∥ = 1 and some c ∈ R, and if C ⊆ R

n is a Borel

set with Gn(C) = Gn(H), then

(Gn)+(C) ≥ (Gn)+(H), (3.4.17)

with equality in (3.4.17) if and only if C is a half-space. In other words,

the Gaussian isoperimetric inequality (3.4.17) says that, among all

Borel subsets of R
n with a given Gaussian volume, the half-spaces

have the smallest surface measure. An equivalent integrated version of

(3.4.17) says the following (see, e.g., [150]): consider a Borel set C in

R
n and a half-space H = {x ∈ R

n : ⟨x, u⟩ < c} with ∥u∥ = 1, c ≥ 0

and Gn(C) = Gn(H). Then, for every r > 0,

Gn(Cr) ≥ Gn(Hr), (3.4.18)

with equality in (3.4.18) if and only if C is an n-dimensional half-space.

It can be also shown that for all r > 0

Gn(Hr) = 1√
2π

∫ c+r

−∞
exp

(
− ξ2

2

)
dξ

≥ 1 − 1
2 exp

(
−1

2 (r + c)2
)
.

If G(C) ≥ 1
2 , we can choose c = 0 and get (3.4.11).



3.4. Transportation-cost inequalities 145

Intuitively, (3.4.9) says that if µ has Gaussian concentration on

(X , d), then most of the probability mass in X is concentrated around

any set with probability at least 1
2 . At first glance, this seems to have

nothing to do with what we have been looking at so far, namely the

concentration of Lipschitz functions around their mean. However, as we

next show, the geometric and functional pictures of the concentration

of measure phenomenon are, in fact, equivalent. To that end, we define

the median of a function f : X → R; we say that a real number mf is

a median of f with respect to µ (or a µ-median of f) if

Pµ
(
f(X) ≥ mf

) ≥ 1
2 , Pµ

(
f(X) ≤ mf

) ≥ 1
2 (3.4.19)

(note that a median of f may not be unique). The precise result is as

follows:

Theorem 3.4.1. If (X , d, µ) is a metric probability space, then µ has the

normal concentration property (3.4.9) if and only if for every Lipschitz

function f : X → R

Pµ
(
f(X) ≥ mf + r

) ≤ K exp

(
− κr2

∥f∥2
Lip

)
, ∀ r > 0 (3.4.20)

where mf is a µ-median of f .

Proof. Let µ satisfy (3.4.9), and fix an arbitrary Lipschitz function f

which can be assumed without loss of generality to satisfy ∥f∥Lip = 1.

Let mf be a µ-median of f , and define the set

Cf ,
{
x ∈ X : f(x) ≤ mf

}
. (3.4.21)

By definition (see (3.4.19)), µ(Cf ) ≥ 1
2 . Consequently, from (3.4.9), for

all r > 0

µ(Cf
r ) ≡ Pµ

(
d(X, Cf ) < r

)

≥ 1 −K exp(−κr2). (3.4.22)

For every y ∈ Cf

f(X) −mf ≤ f(X) − f(y) (3.4.23)

≤ d(X, y), (3.4.24)



146 The Entropy Method, LSI and TC Inequalities

where (3.4.23) is due to (3.4.21), and (3.4.24) holds by the assumption

that ∥f∥Lip = 1 (see (3.4.6)). Taking an infimum on the right side of

(3.4.24) over all y ∈ Cf gives

f(X) −mf ≤ d(X, Cf ). (3.4.25)

Combining (3.4.22) and (3.4.25) implies that for all r > 0

Pµ

(
f(X) −mf < r

)
≥ Pµ

(
d(X, Cf ) < r

)

≥ 1 −K exp(−κr2),

which is (3.4.20).

Conversely, suppose that (3.4.20) holds for every Lipschitz f .

Choose an arbitrary Borel set C with µ(C) ≥ 1
2 , and define the function

fC(x) , d(x, C) for every x ∈ X . Then fC is 1-Lipschitz, since

|fC(x) − fC(y)| =
∣∣∣ inf
u∈C

d(x, u) − inf
u∈C

d(y, u)
∣∣∣

≤ sup
u∈C

|d(x, u) − d(y, u)|

≤ d(x, y),

where the last step is by the triangle inequality. Moreover, zero is a

median of fC since

Pµ
(
fC(X) ≤ 0

)
= Pµ

(
X ∈ C) ≥ 1

2 , Pµ
(
fC(X) ≥ 0

) ≥ 1
2 ,

where the second bound is vacuously true since fC ≥ 0 everywhere.

Consequently, with mf = 0, we get that for all r > 0

1 − µ(Cr) = Pµ
(
d(X, C) ≥ r

)

= Pµ
(
fC(X) ≥ mf + r

)

≤ K exp(−κr2),

which gives (3.4.9).

In fact, for Lipschitz functions, Gaussian concentration around the

mean also implies Gaussian concentration around every median, though

possibly with worse constants [3, Proposition 1.7]:
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Theorem 3.4.2. Let (X , d, µ) be a metric probability space, such that

for every 1-Lipschitz function f : X → R we have

Pµ

(
f(X) ≥ Eµ[f(X)] + r

)
≤ K0 exp

(− κ0r
2), ∀ r > 0 (3.4.26)

with some constants K0, κ0 > 0. Then, µ has the normal concentration

property (3.4.9) with K = K0 and κ = κ0
4 . Hence, the concentration

inequality in (3.4.20) around every median mf is satisfied with the

same constants of κ and K.

Proof. Let C ⊆ X be an arbitrary Borel set with µ(C) ≥ 1
2 , and fix

some r > 0. Let the function fC,r : X → [0, r] be defined as

fC,r(x) = min {d(x, C), r} , x ∈ X . (3.4.27)

It is easy to verify from (3.4.27) and the triangle inequality that

∥fC,r∥Lip ≤ 1, (3.4.28)

and

Eµ[fC,r(X)]

=

∫

X
min {d(x, C), r} µ(dx) (3.4.29)

=

∫

C
min {d(x, C), r} µ(dx)

︸ ︷︷ ︸
= 0

+

∫

Cc
min {d(x, C), r} µ(dx) (3.4.30)

≤ r µ(Cc) =
(
1 − µ(C)

)
r (3.4.31)

where (3.4.29) is due to (3.4.27); (3.4.30) holds since, by (3.4.8),

d(x, C) = 0 for all x ∈ C. This consequently implies that

1 − µ(Cr) = Pµ

(
d(X, C) ≥ r

)
(3.4.32)

= Pµ

(
fC,r(X) ≥ r

)
(3.4.33)

≤ Pµ

(
fC,r(X) ≥ Eµ[fC,r(X)] + rµ(C)

)
(3.4.34)

≤ K0 exp
(
−κ0

(
rµ(C)

)2)
(3.4.35)

≤ K0 exp
(
−1

4 κ0 r
2
)

(3.4.36)
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where (3.4.32) is due to (3.4.7); (3.4.33) is due to (3.4.27); (3.4.34)

holds due to (3.4.29)–(3.4.30); (3.4.35) relies on (3.4.26) and since fC,r

is 1-Lipschitz (see (3.4.28)); finally, (3.4.36) holds since by assumption

µ(C) ≥ 1
2 . Consequently, we get (3.4.9) with K = K0 and κ = 1

4 κ0.

Theorem 3.4.1 implies that the concentration inequality in (3.4.20)

holds for every µ-median mf with the same constants of κ and K.

Remark 3.18. Let (X , d, µ) be a metric probability space, and let µ

have the Gaussian concentration property (3.4.9). Let f : X → R be an

arbitrary Lipschitz function. The distance between the mean and an

arbitrary µ-median of f can be upper bounded as follows:

∣∣Eµ[f(X)] −mf

∣∣ ≤ Eµ
[|f(X) −mf |] (3.4.37)

=

∫ ∞

0
Pµ(|f(X) −mf | ≥ r) dr (3.4.38)

≤
∫ ∞

0
2K exp

(
− κr2

∥f∥2
Lip

)
dr (3.4.39)

=

√
π

κ
K∥f∥Lip (3.4.40)

where (3.4.38) holds since E[U ] =
∫∞

0 P(U ≥ r) dr for every non-

negative random variable U with E|U | < ∞; (3.4.39) holds by the

assumption (3.4.9), which is equivalent to (3.4.20) for any µ-median

of f ; consequently, applying the (one-sided) concentration inequality

in (3.4.20) to f and −f (having the same Lipschitz constant) yields

(3.4.39).

3.4.2 Marton’s argument: from transportation to concentration

The concentration of measure phenomenon is fundamentally geometric,

as it is captured by the isoperimetric inequality (3.4.9). Once (3.4.9)

is established on a given metric probability space (X , d, µ), Gaussian

concentration is obtained for all Lipschitz functions f : X → R by

Theorem 3.4.1.

There is a powerful information-theoretic technique for deriving

concentration inequalities like (3.4.9). This technique, first introduced

by Marton (see [59] and [75]), hinges on a certain type of inequality that
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relates the divergence between two probability measures to a quantity

called the transportation cost. Let (X , d) be a Polish space. Given p ≥ 1,

let Pp(X ) denote the space of all Borel probability measures µ on X ,

such that the moment bound

Eµ[dp(X,x0)] < ∞ (3.4.41)

holds for some (and hence all) x0 ∈ X .

Definition 3.1. Given p ≥ 1, the Lp Wasserstein distance (a.k.a. the

Wasserstein distance of order p) between µ, ν ∈ Pp(X ) is defined as

Wp(µ, ν) , inf
π∈Π(µ,ν)

(∫

X ×X
dp(x, y)π(dx,dy)

)1/p

, (3.4.42)

where Π(µ, ν) is the set of all probability measures π on the product

space X × X with marginals µ and ν.

Remark 3.19. Another equivalent way of writing down the definition

of Wp(µ, ν) in (3.4.42) is

Wp(µ, ν) = inf
X∼µ, Y ∼ν

E
1/p[dp(X,Y )] (3.4.43)

where the infimum in the right side of (3.4.43) is over all pairs (X,Y )

of jointly distributed random variables taking values in X such that

PX = µ and PY = ν.

The name “transportation cost” is interpreted as follows: let µ and

ν represent, respectively, the initial and desired distributions of some

matter (say, sand) in space, such that the total mass in both cases is

normalized to one. Thus, both µ and ν correspond to sand piles of some

given shapes. The objective is to rearrange the initial sand pile with

shape µ into one with shape ν with minimum cost, where the cost of

transporting a grain of sand from location x to location y is given by

c(x, y) for a measurable function c : X ×X → R. If we allow randomized

transportation policies, i.e., those that associate with each location x

in the initial sand pile a conditional probability distribution π(dy|x) for

its destination in the final sand pile, then the minimum transportation

cost is given by

C∗(µ, ν) , inf
π∈Π(µ,ν)

∫

X ×X
c(x, y)π(dx,dy). (3.4.44)
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If the cost function is given by c = dp for p ≥ 1 and a metric d defined

on X × X , then it follows from (3.4.43) and (3.4.44) that

C∗(µ, ν) = W p
p (µ, ν). (3.4.45)

The optimal transportation problem (3.4.44) dates back to a 1781 essay

by Gaspard Monge who considered a special case of the problem

C∗
0 (µ, ν) , inf

φ : X →X

{∫

X
c(x, φ(x)) dµ(x) : µ ◦ φ−1 = ν

}
. (3.4.46)

The infimum in the right side of (3.4.46) is over all the deterministic

transportation policies, i.e., the measurable mappings φ : X → X such

that if X ∼ µ, then Y = φ(X) ∼ ν. The problem (3.4.46), known as

the Monge optimal transportation problem, does not necessarily admit

a solution (incidentally, an optimal mapping does exist in the special

case considered by Monge, namely X = R
3 and c(x, y) = ∥x − y∥). A

stochastic relaxation of (3.4.46), given by (3.4.44), was considered in

1942 by Leonid Kantorovich (see [151] for a recent reprint). The books

by Villani [66, 67] are recommended for a detailed historical overview

and rigorous treatment of optimal transportation.

Lemma 3.4.3. The following properties are satisfied by the Wasserstein

distances:

1. For each p ≥ 1, Wp(·, ·) is a metric on Pp(X ).

2. If 1 ≤ p ≤ q, then Pp(X ) ⊇ Pq(X ), and Wp(µ, ν) ≤ Wq(µ, ν) for

every µ, ν ∈ Pq(X ).

3. Wp metrizes weak convergence plus convergence of p-th order

moments: a sequence {µn}∞
n=1 in Pp(X ) converges to µ ∈ Pp(X )

in Wp, i.e., Wp(µn, µ)
n→∞−−−→ 0, if and only if:

(a) {µn} converges to µ weakly, i.e., Eµn [φ]
n→∞−−−→ Eµ[φ] for

every continuous and bounded function φ : X → R.

(b) For some (and hence all) x0 ∈ X ,
∫

X
dp(x, x0)µn(dx)

n→∞−−−→
∫

X
dp(x, x0)µ(dx). (3.4.47)
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If the above two statements hold, then we say that {µn} converges

to µ weakly in Pp(X ).

4. The mapping (µ, ν) 7→ Wp(µ, ν) is continuous on Pp(X ), i.e.,

if µn → µ and νn → ν converge weakly in Pp(X ), then

Wp(µn, νn) → Wp(µ, ν). However, it is lower semicontinuous in

the usual weak topology (without the convergence of p-th order

moments): if µn → µ and νn → ν converge weakly, then

lim inf
n→∞

Wp(µn, νn) ≥ Wp(µ, ν). (3.4.48)

5. The infimum in (3.4.42) [and therefore in (3.4.43)] is actually a

minimum; i.e., there exists an optimal coupling π∗ ∈ Π(µ, ν), such

that

W p
p (µ, ν) =

∫

X ×X
dp(x, y)π∗(dx,dy). (3.4.49)

Equivalently, there exists a pair (X∗, Y ∗) of jointly distributed

X -valued random variables with PX∗ = µ and PY ∗ = ν such that

W p
p (µ, ν) = E[dp(X∗, Y ∗)]. (3.4.50)

6. If p = 2, X = R with d(x, y) = |x − y|, and µ is atomless (i.e.,

µ(x) = 0 for all x ∈ R), then the optimal coupling between µ and

every ν is given by the deterministic mapping

Y = F
−1
ν ◦ Fµ(X) (3.4.51)

for X ∼ µ, where Fµ denotes the cumulative distribution function

(cdf) of µ, i.e., Fµ(x) = Pµ(X ≤ x), and F
−1
ν is the quantile

function of ν, i.e., F
−1
ν (α) , inf {x ∈ R : Fν(x) ≥ α}.

Proof. See [67, Chapter 6].

Definition 3.2. We say that a probability measure µ on (X , d) satisfies

an Lp transportation-cost inequality with constant c > 0, or a Tp(c)

inequality for short, if for every probability measure ν ≪ µ we have

Wp(µ, ν) ≤
√

2cD(ν∥µ). (3.4.52)
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Example 3.2 (Total variation distance and Pinsker’s inequality). Here is

a specific example illustrating this abstract machinery, which should

be a familiar territory to information theorists. Let X be a discrete

set, equipped with the Hamming metric d(x, y) = 1{x ̸=y}. In this case,

the corresponding L1 Wasserstein distance between discrete probability

measures µ and ν on X admits the simple form

W1(µ, ν) = inf
X∼µ,Y ∼ν

P[X ̸= Y ]. (3.4.53)

As we next show, (3.4.53) turns out to be the total variation distance

∥µ− ν∥TV , sup
C⊆X

|µ(C) − ν(C)|. (3.4.54)

Proposition 3.6.

W1(µ, ν) = ∥µ− ν∥TV (3.4.55)

= 1
2

∑

x∈X
|µ(x) − ν(x)| (3.4.56)

(we are slightly abusing notation, writing µ(x) for the µ-probability of

the singleton {x}).

Proof. Consider a probability measure π ∈ Π(µ, ν). For every x ∈ X ,

µ(x) =
∑

y∈X π(x, y) ≥ π(x, x), and the same holds by replacing µ with

ν. Consequently,

π(x, x) ≤ min {µ(x), ν(x)} , (3.4.57)

and

Eπ[d(X,Y )] = Eπ[1{X ̸=Y }] (3.4.58)

= P[X ̸= Y ] (3.4.59)

= 1 −
∑

x∈X
π(x, x) (3.4.60)

≥ 1 −
∑

x∈X
min {µ(x), ν(x)} (3.4.61)

= 1
2

∑

x∈X

(
µ(x) + ν(x)

)−
∑

x∈X
min {µ(x), ν(x)} (3.4.62)

= 1
2

∑

x∈X
|µ(x) − ν(x)| (3.4.63)
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where (3.4.63) holds due to the equality min{a, b} = 1
2(a+ b− |a− b|)

for all a, b ∈ R. From (3.4.43) and (3.4.58)–(3.4.63), we get

W1(µ, ν) ≥ 1
2

∑

x∈X
|µ(x) − ν(x)|. (3.4.64)

Furthermore, (3.4.61) holds with equality for the probability measure

π∗ : X × X → R which is defined as follows:

π∗(x, y) = min {µ(x), ν(x)} 1{x=y}

+

(
µ(x) − ν(x)

)
1{x∈C}

(
ν(y) − µ(y)

)
1{y∈Cc}

µ(C) − ν(C)
(3.4.65)

with C ⊆ X defined as

C , {x ∈ X : µ(x) ≥ ν(x)}. (3.4.66)

This can be verified by noticing that

π∗(x, x) = min
{
µ(x), ν(x)

}
, ∀x ∈ X

which, due to (3.4.57), is the necessary and sufficient condition for

(3.4.61) to hold with equality; it is also easy to verify that π∗ is indeed

a probability measure with marginals µ and ν. Since π = π∗ ∈ Π(µ, ν)

achieves (3.4.58)–(3.4.63) with equality then (3.4.64) is satisfied with

equality.

We next prove (3.4.56). For an arbitrary C ⊆ X ,

µ(C) − ν(C) =
(
1 − µ(Cc)

)− (
1 − ν(Cc)

)

= ν(Cc) − µ(Cc) (3.4.67)

and, from the triangle inequality,
∣∣µ(C) − ν(C)

∣∣+
∣∣µ(Cc) − ν(Cc)

∣∣

≤
∑

x∈C

∣∣µ(x) − ν(x)
∣∣+

∑

x∈Cc

∣∣µ(x) − ν(x)
∣∣

=
∑

x∈X

∣∣µ(x) − ν(x)
∣∣. (3.4.68)

Combining (3.4.67) and (3.4.68) gives that, for every A ⊆ X ,
∣∣µ(C) − ν(C)

∣∣ ≤ 1
2

∑

x∈X

∣∣µ(x) − ν(x)
∣∣. (3.4.69)
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By taking a supremum on the left side of (3.4.69) over all C ⊆ X , we

get from (3.4.54)

∥µ− ν∥TV ≤ 1
2

∑

x∈X

∣∣µ(x) − ν(x)
∣∣. (3.4.70)

Conversely, for the subset C given in (3.4.66), we get from (3.4.67)

µ(C) − ν(C) = 1
2

[(
µ(C) − ν(C)

)
+
(
ν(Cc) − µ(Cc)

)]

= 1
2

[
∑

x∈C

(
µ(x) − ν(x)

)
+
∑

x∈Cc

(
ν(x) − µ(x)

)
]

= 1
2

∑

x∈X

∣∣µ(x) − ν(x)
∣∣. (3.4.71)

Hence, from (3.4.54) and (3.4.71),

∥µ− ν∥TV ≥ 1
2

∑

x∈X

∣∣µ(x) − ν(x)
∣∣, (3.4.72)

yielding (3.4.56) by combining (3.4.70) and (3.4.72).

Now that we have expressed the total variation distance ∥µ− ν∥TV

as the L1 Wasserstein distance induced by the Hamming metric on X ,

the well-known Pinsker’s inequality

∥µ− ν∥TV ≤
√

1
2 D(ν∥µ) (3.4.73)

can be identified as a T1(1
4) inequality that holds for every probability

measure µ on X .

Remark 3.20. It should be pointed out that the constant c = 1
4 in

Pinsker’s inequality (3.4.73) is not necessarily the best possible for a

given distribution µ. Ordentlich and Weinberger [152] have obtained

the following distribution-dependent refinement of Pinsker’s inequality.

Let the function φ : [0, 1
2 ] → R

+ be defined by

φ(p) ,





(
1

1 − 2p

)
ln

(
1 − p

p

)
, if p ∈ [0, 1

2

)

2, if p = 1
2

(3.4.74)
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(note that φ(p) → 2 as p ↑ 1
2 ; φ(p) → ∞ as p ↓ 0, and the function φ

is monotonically decreasing and convex). Let X be a discrete set, and

let P(X ) be the set of all probability distributions defined on the set

X . For every P ∈ P(X ), let the balance coefficient be defined as

πP , max
A⊆X

min {P (A), 1 − P (A)} , (3.4.75)

which yields πP ∈ [0, 1
2

]
. Then, for every Q ∈ P(X ),

∥P −Q∥TV ≤
√

1

φ(πP )
·D(Q∥P ) (3.4.76)

(see [152, Theorem 2.1]; related results have been considered in [153]).

The smaller is the value of the balance coefficient in (3.4.75), the more

significant is the refinement of Pinsker’s inequality in (3.4.76). The

bound in (3.4.76) is also optimal for a given P in the sense that

φ(πP ) = inf
Q∈P(X )

D(Q∥P )

∥P −Q∥2
TV

. (3.4.77)

For instance, if X = {0, 1} and P is the distribution of a Bernoulli(p)

random variable, then πP = min{p, 1 − p} ∈ [0, 1
2

]
,

φ(πP ) =





(
1

1 − 2p

)
ln

(
1 − p

p

)
, if p ̸= 1

2

2, if p = 1
2

and, from (3.4.76), for every Q ∈ P({0, 1})

∥P −Q∥TV ≤





√√√√
1 − 2p

ln
(

1−p
p

) ·D(Q∥P ), if p ̸= 1
2

√
1
2 D(Q∥P ), if p = 1

2 .

(3.4.78)

Inequality (3.4.78) provides an upper bound on the total variation

distance in terms of the divergence. A bound in the reverse direction

cannot hold in general since it is easy to come up with examples where

the total variation distance is arbitrarily close to zero, whereas the

divergence is equal to infinity.
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Marton’s procedure for deriving Gaussian concentration from a

transportation-cost inequality [59, 75] can be distilled as follows:

Proposition 3.7. Suppose µ satisfies a T1(c) inequality. Then, the

Gaussian concentration inequality in (3.4.10) holds with κ = 1
2c , K = 1,

and r0 =
√

2c ln 2.

Proof. Fix two Borel sets C,D ⊆ X with µ(C), µ(D) > 0. Define the

conditional probability measures

µC(E) ,
µ(C ∩ E)

µ(C)
and µD(E) ,

µ(D ∩ E)

µ(D)
,

where E is an arbitrary Borel subset of X . Then µC , µD ≪ µ, and

W1(µC , µD) ≤ W1(µ, µC) +W1(µ, µD) (3.4.79)

≤
√

2cD(µC∥µ) +
√

2cD(µD∥µ), (3.4.80)

where (3.4.79) is by the triangle inequality, while (3.4.80) is because µ

satisfies T1(c). Now, for an arbitrary Borel subset E ⊆ X , we have

µC(E) =

∫

E

1C(x)

µ(C)
dµ(x),

so it follows that dµC
dµ = 1C

µ(C) , and the same holds for µD. Therefore,

D(µC∥µ) = Eµ

[
dµC
dµ

ln
dµC
dµ

]
= ln

1

µ(C)
, (3.4.81)

and an analogous formula holds for µD in place of µC . Substituting this

into (3.4.80) gives

W1(µC , µD) ≤
√

2c ln
1

µ(C)
+

√
2c ln

1

µ(D)
. (3.4.82)

We now obtain a lower bound on W1(µC , µD). Since the probability

measures µC and µD are, respectively, supported on C and D then

every π ∈ Π(µC , µD) is supported on C × D. Consequently, for every
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such π,
∫

X ×X
d(x, y) dπ(x, y) =

∫

C×D
d(x, y) dπ(x, y)

≥
∫

C×D
inf
y∈D

d(x, y) dπ(x, y)

=

∫

C
d(x,D) dµC(x)

≥ inf
x∈C

d(x,D) µC(C)

= d(C,D), (3.4.83)

where (3.4.83) holds since µC(C) = 1, and d(C,D) , infx∈C, y∈D d(x, y).

Since (3.4.83) holds for all π ∈ Π(µC , µD), we can take the infimum

over all such π to get

W1(µC , µD) ≥ d(C,D). (3.4.84)

Combining (3.4.82) with (3.4.84) gives the inequality

d(C,D) ≤
√

2c ln
1

µ(C)
+

√
2c ln

1

µ(D)
, (3.4.85)

which holds for all Borel sets C and D having positive µ-probabilities.

Let D = (Cr)c, then

µ(D) = 1 − µ(Cr), (3.4.86)

d(C,D) ≥ r. (3.4.87)

Consequently, combining (3.4.85)–(3.4.87) gives

r ≤
√

2c ln
1

µ(C)
+

√
2c ln

1

1 − µ(Cr)
. (3.4.88)

If µ(A) ≥ 1/2 and r ≥
√

2c ln 2, then (3.4.88) gives

µ(Cr) ≥ 1 − exp

(
− 1

2c

(
r −

√
2c ln 2

)2
)
. (3.4.89)

Hence, the Gaussian concentration inequality in (3.4.10) indeed holds

with κ = 1
2c and K = 1 for all r ≥ r0 =

√
2c ln 2.
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Remark 3.21. The exponential inequality (3.4.89) has appeared earlier

in the work of McDiarmid [93] and Talagrand [7]. The major innovation

that came from Marton’s work was her use of optimal transportation

ideas to derive a more general symmetric form (3.4.85).

Remark 3.22. The formula (3.4.81), apparently first used explicitly by

Csiszár [154, Eq. (4.13)], is actually quite remarkable: it states that the

probability of an arbitrary event can be expressed as an exponential of

a divergence.

While the method described in the proof of Proposition 3.7 does

not produce optimal concentration estimates (which typically have to

be derived on a case-by-case basis), it hints at the potential power of

the transportation-cost inequalities. To make full use of this power, we

first establish an important result that, for p ∈ [1, 2], the Tp inequalities

tensorize (see, for example, [67, Proposition 22.5]):

Proposition 3.8 (Tensorization of transportation-cost inequalities). If µ

satisfies Tp(c) on (X , d) for an arbitrary p ∈ [1, 2], then, for every n ∈ N,

the product measure µ⊗n satisfies Tp(cn2/p−1) on (X n, dp,n) with the

metric

dp,n(xn, yn) ,

(
n∑

i=1

dp(xi, yi)

)1/p

, ∀xn, yn ∈ X n. (3.4.90)

Proof. Suppose µ satisfies Tp(c). For n ∈ N, fix an arbitrary probability

measure ν on (X n, dp,n). Let Xn, Y n ∈ X n be two independent random

n-tuples, such that

PXn = PX1 ⊗ PX2|X1
⊗ . . .⊗ PXn|Xn−1 = ν (3.4.91)

PY n = PY1 ⊗ PY2 ⊗ . . .⊗ PYn = µ⊗n. (3.4.92)

For each i ∈ {1, . . . , n}, let the conditional Wp distance be defined as

follows:

Wp(PXi|Xi−1 , PYi
|PXi−1)

,

(∫

X i−1
W p

p (PXi|Xi−1=xi−1 , PYi
) dPXi−1(xi−1)

)1/p

. (3.4.93)
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We next prove that

W p
p (ν, µ⊗n) = W p

p (PXn , PY n)

≤
n∑

i=1

W p
p (PXi|Xi−1 , PYi

|PXi−1), (3.4.94)

where the Lp Wasserstein distance on the left side is computed with

respect to the dp,n metric. By Lemma 3.4.3, there exists an optimal

coupling of PX1 and PY1 , i.e., a pair (X∗
1 , Y

∗
1 ) of jointly distributed

X -valued random variables such that PX∗
1

= PX1 , PY ∗
1

= PY1 , and

W p
p (PX1 , PY1) = E[dp(X∗

1 , Y
∗

1 )]. (3.4.95)

For i ∈ {2, . . . , n} and for every choice of xi−1 ∈ X i−1, again by

Lemma 3.4.3, there exists an optimal coupling of PXi|Xi−1=xi−1 and

PYi
, i.e., a pair (X∗

i (xi−1), Y ∗
i (xi−1)) of jointly distributed X -valued

random variables such that

PX∗
i

(xi−1) = PXi|Xi−1=xi−1 , PY ∗
i

(xi−1) = PYi
, (3.4.96)

and

W p
p (PXi|Xi−1=xi−1 , PYi

) = E[dp(X∗
i (xi−1), Y ∗

i (xi−1))]. (3.4.97)

Moreover, since by assumption (X , d) is a Polish space, all couplings

can be constructed in such a way that the mapping

xi−1 7→ P
(
(X∗

i (xi−1), Y ∗
i (xi−1)) ∈ C)

is measurable for each Borel set C ⊆ X × X [67]. In other words, for

each i, we can define the regular conditional distributions

PX∗
i

Y ∗
i

|X∗(i−1)=xi−1 , PX∗
i

(xi−1)Y ∗
i

(xi−1), ∀xi−1 ∈ X i−1

such that

PX∗nY ∗n = PX∗
1 Y ∗

1
⊗ PX∗

2 Y ∗
2 |X∗

1
⊗ . . .⊗ PX∗

nY ∗
n |X∗(n−1)

is a coupling of PXn = ν and PY n = µ⊗n, and for all xi−1 ∈ X i−1 and

i ∈ {1, . . . , n}

W p
p (PXi|Xi−1=xi−1 , PYi

) = E[dp(X∗
i , Y

∗
i )|X∗(i−1) = xi−1]. (3.4.98)
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We have

W p
p (ν, µ⊗n) ≤ E[dp

p,n(X∗n, Y ∗n)] (3.4.99)

=
n∑

i=1

E[dp(X∗
i , Y

∗
i )] (3.4.100)

=
n∑

i=1

E

[
E
[
dp(X∗

i , Y
∗

i )|X∗(i−1)]] (3.4.101)

=
n∑

i=1

W p
p (PXi|Xi−1 , PYi

|PXi−1), (3.4.102)

where

• (3.4.99) is due to the facts that Wp(ν, µ⊗n) is the Lp Wasserstein

distance with respect to the dp,n metric, and (X∗n, Y ∗n) is a (not

necessarily optimal) coupling of PXn = ν and PY n = µ⊗n;

• (3.4.100) is by the definition (3.4.90) of dp,n;

• (3.4.101) is by the law of iterated expectations; and

• (3.4.102) is by (3.4.93) and (3.4.98).

We have thus proved (3.4.94). By hypothesis, µ satisfies Tp(c) on (X , d).

Therefore, since PYi
= µ for every i, we can write

W p
p (PXi|Xi−1 , PYi

|PXi−1)

=

∫

X i−1
W p

p (PXi|Xi−1=xi−1 , PYi
) dPXi−1(xi−1)

≤
∫

X i−1

(
2cD(PXi|Xi−1=xi−1∥PYi

)
)p/2

dPXi−1(xi−1)

≤ (2c)p/2
(∫

X i−1
D(PXi|Xi−1=xi−1∥PYi

) dPXi−1(xi−1)

)p/2

(3.4.103)

= (2c)p/2
(
D(PXi|Xi−1∥PYi

|PXi−1)
)p/2

, (3.4.104)

where (3.4.103) follows from Jensen’s inequality and the concavity of
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the function t 7→ tp/2 for p ∈ [1, 2]. Consequently, it follows that

W p
p (ν, µ⊗n) ≤ (2c)p/2

n∑

i=1

(
D(PXi|Xi−1∥PYi

|PXi−1)
)p/2

(3.4.105)

≤ (2c)p/2n1−p/2

(
n∑

i=1

D(PXi|Xi−1∥PYi
|PXi−1)

)p/2

(3.4.106)

= (2c)p/2n1−p/2 (D(PXn∥PY n))p/2 (3.4.107)

= (2c)p/2n1−p/2 (D(ν∥µ⊗n)
)p/2

, (3.4.108)

where (3.4.105) is due to (3.4.99)–(3.4.104); (3.4.106) follows from

Hölder’s inequality; (3.4.107) is by the chain rule for the divergence

and since PY n is a product probability measure; (3.4.108) is by (3.4.91)

and (3.4.92). This finally gives

Wp(ν, µ⊗n) ≤
√

2cn2/p−1D(ν∥µ⊗n),

i.e., µ⊗n satisfies the Tp(cn2/p−1) inequality.

Since the metric W2 dominates W1 (see Item 2 of Lemma 3.4.3), a

T2(c) inequality is stronger than a T1(c) inequality (for an arbitrary

c > 0). Moreover, as Proposition 3.8 shows, T2 inequalities tensorize

exactly: if µ satisfies T2 with a constant c > 0, then µ⊗n also satisfies

T2 for every n with the same constant c. By contrast, if µ only satisfies

T1(c), then the product measure µ⊗n satisfies T1 with the much worse

constant cn. As we shall shortly see, this sharp difference between the

T1 and T2 inequalities actually has deep consequences. In a nutshell, in

the next two sections, we show that, for p ∈ {1, 2}, a given probability

measure µ satisfies a Tp(c) inequality on (X , d) if and only if it has

Gaussian concentration with constant κ = 1
2c . Suppose now that we

wish to show Gaussian concentration for the product measure µ⊗n on

the product space (X n, d1,n). Following our tensorization programme,

we could first show that µ satisfies a transportation-cost inequality for

some p ∈ [1, 2], then apply Proposition 3.8 and consequently also apply

Proposition 3.7. If we go through with this approach, we show that:
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• If µ satisfies T1(c) on (X , d), then µ⊗n satisfies T1(cn) on

(X n, d1,n), which is equivalent to Gaussian concentration with

constant κn = 1
2cn . Consequently, in this case, the concentration

phenomenon is weakened by increasing the dimension n.

• If, on the other hand, µ satisfies T2(c) on (X , d), then µ⊗n satisfies

T2(c) on (X n, d2,n), which is equivalent to Gaussian concentration

with the same constant κ = 1
2c independently of the dimension n.

These two results give the same constants in concentration inequalities

for sums of independent random variables: to this end, note that by

(3.4.90) and the Cauchy-Schwarz inequality

d1,n(xn, yn) =
n∑

i=1

d(xi, yi)

≤ √
n

(
n∑

i=1

d2(xi, yi)

) 1
2

=
√
nd2,n(xn, yn). (3.4.109)

Let f : X → R be a Lipschitz function on (X , d), and let fn : X n → R

be defined as

fn(xn) ,
1

n

n∑

i=1

f(xi), xn ∈ X n. (3.4.110)

Then, we can conclude that

∥fn∥Lip,1 , sup
xn ̸=yn

|fn(xn) − fn(yn)|
d1,n(xn, yn)

≤ 1

n
sup

xn ̸=yn

∑n
i=1 |f(xi) − f(yi)|∑n

i=1 d(xi, yi)

≤ 1

n
sup
u̸=v

|f(u) − f(v)|
d(u, v)

=
∥f∥Lip

n
, (3.4.111)
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and, from (3.4.109) and (3.4.111),

∥fn∥Lip,2 , sup
xn ̸=yn

|fn(xn) − fn(yn)|
d2,n(xn, yn)

≤ √
n sup

xn ̸=yn

|fn(xn) − fn(yn)|
d1,n(xn, yn)

=
√
n ∥fn∥Lip,1 ≤ ∥f∥Lip√

n
. (3.4.112)

Let X1, . . . , Xn be i.i.d. X -valued random variables whose common

marginal is a probability measure µ, satisfying either T1(c) or T2(c).

In view of (3.4.111), (3.4.112), and Corollary 3.4.5 in the next section,

both T1(c) and T2(c) yield

P

(
1

n

n∑

i=1

f(Xi) ≥ E[f(X1)] + r

)
≤ exp

(
− nr2

2c∥f∥2
Lip

)
, ∀ r > 0.

(3.4.113)

However, in general, the difference between concentration inequalities

that are derived from T1 and T2 inequalities becomes quite pronounced.

Note that, in practice, it is often easier to work with T1 inequalities.

The same strategy as above can be used to prove the following

generalization of Proposition 3.8:

Proposition 3.9. Let µ1, . . . , µn be n Borel probability measures on a

Polish space (X , d), such that µi satisfies Tp(ci) for some ci > 0, for each

i ∈ {1, . . . , n}. Let c , max1≤i≤n ci. Then, for an arbitrary p ∈ [1, 2],

the probability measure µ = µ1 ⊗ . . . ⊗ µn satisfies Tp(cn2/p−1) on

(X n, dp,n) (with the metric dp,n in (3.4.90)).

3.4.3 Gaussian concentration and T1 inequalities

As we saw in Proposition 3.7, Marton’s argument can be used to deduce

Gaussian concentration from a transportation-cost inequality. As we

demonstrate here and in the following section, in certain cases these

properties are equivalent. We first consider the case where µ satisfies

a T1 inequality. The first proof of the equivalence between T1 and

Gaussian concentration was obtained by Bobkov and Götze [54], and it
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relies on the following variational representations of the L1 Wasserstein

distance and the divergence:

1. Kantorovich–Rubinstein theorem [67, Theorem 5.10]: For

every µ, ν ∈ P1(X ) on a Polish probability space (X , d),

W1(µ, ν) = sup
f : ∥f∥Lip≤1

∣∣∣Eµ[f ] − Eν [f ]
∣∣∣. (3.4.114)

2. Donsker–Varadhan lemma [85, Lemma 6.2.13]: For every two

Borel probability measures µ, ν on a Polish probability space

(X , d) such that ν ≪ µ, the following variational representation

of the divergence holds:

D(ν∥µ) = sup
g∈Cb(X )

{
Eν [g] − lnEµ[exp(g)]

}
(3.4.115)

where the supremization in (3.4.115) is over the set Cb(X ) of all

continuous and bounded real-valued functions on X . Moreover,

for every measurable function g such that Eµ[exp(g)] < ∞,

Eν [g] ≤ D(ν∥µ) + lnEµ[exp(g)]. (3.4.116)

(In fact, the supremum in (3.4.115) can be extended to bounded

Borel-measurable functions g [155, Lemma 1.4.3].)

The following theorem was introduced by Bobkov and Götze [54,

Theorem 3.1]:

Theorem 3.4.4. Let µ ∈ P1(X ) be a Borel probability measure, and

suppose that there exists x0 ∈ X such that Eµ[d(X,x0)] < ∞. Then, µ

satisfies T1(c) if and only if the inequality

Eµ {exp[tf(X)]} ≤ exp

(
ct2

2

)
(3.4.117)

holds for all 1-Lipschitz functions f : X → R with Eµ[f(X)] = 0, and

all t ∈ R.

Proof. The condition Eµ[d(X,x0)] < ∞, for some x0 ∈ X , ensures that

every Lipschitz function f : X → R is µ-integrable:

Eµ
[|f(X)|] ≤ |f(x0)| + Eµ

[|f(X) − f(x0)|]

≤ |f(x0)| + ∥f∥Lip Eµ
[
d(X,x0)

]
< ∞. (3.4.118)
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Without loss of generality, we may consider (3.4.117) only for t ≥ 0

(otherwise, replace f with −f for t < 0).

Suppose first that µ satisfies T1(c), and let ν ≪ µ. Using the

T1(c) property of µ together with the Kantorovich–Rubinstein formula

(3.4.114), we can write

∫

X
f dν ≤ W1(µ, ν) ≤

√
2cD(ν∥µ)

for every 1-Lipschitz f : X → R with Eµ[f ] = 0. Next, since

inf
t>0

(
a

t
+
bt

2

)
=

√
2ab (3.4.119)

for every a, b ≥ 0, we see that every such f satisfies

∫

X
f dν ≤ D(ν∥µ)

t
+
ct

2
, ∀ t > 0.

Rearranging, we obtain

∫

X
tf dν − ct2

2
≤ D(ν∥µ), ∀ t ≥ 0. (3.4.120)

Applying this inequality to ν = µ(g) (the g-tilting of µ) where g , tf ,

and using the fact that

D(µ(g)∥µ) =

∫

X
g dµ(g) − ln

∫

X
exp(g) dµ

=

∫

X
tf dν − ln

∫

X
exp(tf) dµ (3.4.121)

we deduce from (3.4.120) and (3.4.121) that

ln

(∫

X
exp(tf) dµ

)
≤ ct2

2

for all t ≥ 0, and f with ∥f∥Lip ≤ 1 and Eµ[f ] = 0, which is (3.4.117).

Conversely, suppose that µ satisfies (3.4.117) for all 1-Lipschitz

functions f : X → R with Eµ[f(X)] = 0 and all t ∈ R, and let ν

be an arbitrary Borel probability measure such that ν ≪ µ. Consider

an arbitrary function of the form g , tf with t > 0. By the assumption
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in (3.4.117), Eµ[exp(g)] < ∞; furthermore, g is a Lipschitz function, so

it is also measurable. Hence, (3.4.116) gives

D(ν∥µ) ≥
∫

X
tf dν − ln

∫

X
exp(tf) dµ

≥
∫

X
tf dν −

∫

X
tf dµ− ct2

2
(3.4.122)

where (3.4.122) relies on (3.4.117) and the assumption that
∫

X f dµ = 0.

Rearranging gives
∣∣∣∣
∫

X
f dν −

∫

X
f dµ

∣∣∣∣ ≤ D(ν∥µ)

t
+
ct

2
, ∀ t > 0 (3.4.123)

(the absolute value in the left side of (3.4.123) is a consequence of

the fact that the same argument goes through with −f replaced by f).

Minimizing the right side of (3.4.123) over t > 0 and applying (3.4.119),

we get that the inequality
∣∣∣∣
∫

X
f dν −

∫

X
f dµ

∣∣∣∣ ≤
√

2cD(ν∥µ) (3.4.124)

holds for all 1-Lipschitz f with Eµ[f ] = 0. In fact, we may now drop

the condition that Eµ[f ] = 0 by replacing f with f − Eµ[f ]. Thus,

taking the supremum over all 1-Lipschitz functions f on the left side of

(3.4.124) and using the Kantorovich–Rubinstein formula (3.4.114), we

conclude that W1(µ, ν) ≤
√

2cD(ν∥µ) for every ν ≪ µ, i.e., µ satisfies

T1(c). This completes the proof of Theorem 3.4.4.

Theorem 3.4.4 gives us an alternative way of deriving Gaussian

concentration inequalities for Lipschitz functions:

Corollary 3.4.5. Let A be the space of all Lipschitz functions on X ,

and let µ ∈ P1(X ) be a Borel probability measure that satisfies T1(c).

Then, the following inequality holds for every f ∈ A:

P

(
f(X) ≥ Eµ[f(X)] + r

)
≤ exp

(
− r2

2c∥f∥2
Lip

)
, ∀ r > 0.

(3.4.125)

Proof. The result follows from the Chernoff bound and (3.4.117).
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As another illustration of the use of T1 inequalities, the following

concentration inequality is proved (cf. Kearns–Saul inequality [97], see

Corollary 2.4.8):

Theorem 3.4.6. Let X be the Hamming space {0, 1}n, equipped with

the metric

dn(xn, yn) =
n∑

i=1

1{xi ̸=yi}. (3.4.126)

Let X1, . . . , Xn be i.i.d. Bernoulli(p) random variables. Then, for every

Lipschitz function f : {0, 1}n → R and r > 0,

P

(
f(Xn) − E[f(Xn)] ≥ r

)
≤ exp


−

ln
(

1−p
p

)
r2

n∥f∥2
Lip(1 − 2p)


 . (3.4.127)

Remark 3.23. By letting p → 1
2 , the right side of (3.4.127) tends to

exp

(
− 2r2

n∥f∥2
Lip

)
for all r > 0.

Proof. Taking into account Remark 3.23, we may assume without loss

of generality that p ̸= 1
2 . From the distribution-dependent refinement of

Pinsker’s inequality (3.4.78), it follows that the Bernoulli(p) measure

satisfies T1

(
1

2φ(p)

)
with respect to the Hamming metric, where φ(·)

is defined in (3.4.74). By Proposition 3.8, the probability measure of a

sum of n independent Bernoulli(p) random variables satisfies T1

(
n

2φ(p)

)

with respect to the metric (3.4.126). The bound (3.4.127) then follows

from Corollary 3.4.5.

Remark 3.24. If ∥f∥Lip ≤ c
n for an arbitrary c > 0, then (3.4.127)

implies that for every r > 0

P

(
f(Xn) − E[f(Xn)] ≥ r

)
≤ exp


−

ln
(

1−p
p

)

c2(1 − 2p)
· nr2


 . (3.4.128)

This will be the case, for instance, if f(xn) = (1/n)
∑n

i=1 fi(xi) for

some functions f1, . . . , fn : {0, 1} → R satisfying |fi(0) − fi(1)| ≤ c

for all i ∈ {1, . . . , n}. More generally, every f satisfying (3.3.46) with

ci = c′
i/n, i ∈ {1, . . . , n}, for some constants c′

1, . . . , c
′
n ≥ 0, satisfies

(3.4.128) for all r > 0 with c = max1≤i≤n c
′
i.
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In the following, we provide Marton’s coupling inequality, which

forms a slightly stronger form of the original result of Marton [75] (see

[2, Theorem 8.2] for the following stronger statement):

Theorem 3.4.7 (Marton’s coupling inequality). Let µ = µ1 ⊗ . . . µn be

a product probability measure of Xn ∈ X n, and let ν (where ν ≪ µ)

be a probability measure of Y n ∈ X n. Then,

min
π∈Π(µ,ν)

n∑

i=1

P
2(Xi ̸= Yi) ≤ 1

2 D(ν∥µ) (3.4.129)

where the relative entropy is expressed in nats.

Proof. See [2, p. 241].

We provide in the following an alternative proof of McDiarmid’s

inequality (3.3.47), based on the earlier material in this chapter about

transportation-cost inequalities (recall the two previous proofs of this

inequality in Sections 2.4.3 and 3.3.4).

An alternative proof of McDiarmid’s inequality: For every

n ∈ N, constants c1, . . . , cn > 0, and a measurable space X , let us equip

the product space X n with the weighted Hamming metric

dn(xn, yn) ,
n∑

i=1

ci1{xi ̸=yi}. (3.4.130)

Let f : X n → R be a Lipschitz function (with respect to the metric d),

and suppose that it satisfies the condition of the bounded differences

in (3.3.46). The corresponding Lipschitz constant ∥f∥Lip is given by

∥f∥Lip = sup
xn ̸=yn

|f(xn) − f(yn)|
dn(xn, yn)

. (3.4.131)

It is easy to verify that the condition ∥f∥Lip ≤ 1 is equivalent to the

condition in (3.3.46).

Let µ1, . . . , µn be arbitrary n probability measures on X , and let

µ = µ1 ⊗ . . . µn be a product probability measure of Xn ∈ X n. Let ν
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be an arbitrary (not necessarily a product) probability measure on X n,

where ν ≪ µ, and let Y n be a random vector that is drawn from ν.
∣∣∣Eµ[f ] − Eν [f ]

∣∣∣

=
∣∣∣E
[
f(Xn) − f(Y n)

]∣∣∣ (3.4.132)

≤ E

∣∣∣f(Xn) − f(Y n)
∣∣∣ (3.4.133)

≤
n∑

i=1

E
[
ci 1{Xi ̸=Yi}

]
(3.4.134)

≤
(

n∑

i=1

c2
i

) 1
2
(

n∑

i=1

E
2[1{Xi ̸=Yi}

]
) 1

2

(3.4.135)

=

(
n∑

i=1

c2
i

) 1
2
(

n∑

i=1

P
2(Xi ̸= Yi)

) 1
2

, (3.4.136)

where (3.4.132) holds since, by construction, Xn ∼ µ and Y n ∼ ν;

(3.4.133) holds since
∣∣E[Z]

∣∣ ≤ E|Z|; (3.4.134) follows from the bounded

differences condition in (3.3.46), combined the triangle inequality;

(3.4.135) holds by using the Cauchy-Schwarz inequality; (3.4.136) holds

because the expectation of the indicator function of an event is equal to

the probability of the event. By minimizing the right side of (3.4.136)

over all the couplings π ∈ Π(µ, ν), it follows from (3.4.129) that

∣∣∣Eµ[f ] − Eν [f ]
∣∣ ≤

√√√√1
2

n∑

i=1

c2
i D(ν∥µ). (3.4.137)

By supremizing the left side of (3.4.137) over all the Lipschitz functions

f : X n → R such that ∥f∥Lip ≤ 1, it follows from the Kantorovich–

Rubinstein theorem (see (3.4.114)) that

W1(µ, ν) ≤
√√√√1

2

n∑

i=1

c2
i D(ν∥µ) . (3.4.138)

Hence, from (3.4.138), µ satisfies T1(c) (with the weighted Hamming

metric dn in (3.4.130)) where c = 1
4

∑n
i=1 c

2
i . From Corollary 3.4.5, this

provides an alternative proof of McDiarmid’s inequality (3.3.47) which

is different from the martingale approach (see Section 2.4.3).
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3.4.4 Dimension-free Gaussian concentration and T2 inequalities

Our discussion so far has been mostly confined to a probability measure

µ on a Polish space (X , d). Recall, however, that in most applications

our interest is in functions of n independent random variables taking

values in X . Proposition 3.8 demonstrates that the transportation-cost

inequalities tensorize, so in principle this property can be used to derive

concentration inequalities for such functions. However, as suggested by

Proposition 3.8 and the discussion following it, T1 inequalities are not

very useful in this regard, since the resulting concentration inequalities

deteriorate as n increases. Indeed, if µ satisfies T1(c) on (X , d), then the

product measure µ⊗n satisfies T1(cn) on the product space (X n, d1,n),

which is equivalent to the Gaussian concentration property

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ K exp

(
− r2

2cn

)
, r > 0 (3.4.139)

for every f : X n → R with Lipschitz constant 1 with respect to d1,n.

Since the exponent is inversely proportional to the dimension n, we need

to have r grow at least as
√
n in order to guarantee a given value for the

deviation probability. In particular, the higher the dimension n is, the

more we will need to “inflate” a given set C ⊂ X n to capture most of the

probability mass. For these reasons, we seek a direct characterization

of a much stronger concentration property, the so-called dimension-free

Gaussian concentration.

Once again, let (X , d, µ) be a metric probability space. We say that

µ has dimension-free Gaussian concentration if there exist constants

K,κ > 0, such that for every k ∈ N and r > 0,

C ⊆ X k, µ⊗k(C) ≥ 1
2 =⇒ µ⊗k(Cr) ≥ 1 −Ke−κr2

(3.4.140)

where the isoperimetric enlargement Cr of a Borel set C ⊆ X k is defined

in (3.4.7) with respect to the metric d2,k defined according to (3.4.90),

i.e.,

Cr ,

{
yk ∈ X k : ∃xk ∈ C such that

k∑

i=1

d2(xi, yi) < r2

}
. (3.4.141)

Remark 3.25. As before, we are mainly interested in the constant κ

in the exponent. Thus, it is said that µ has dimension-free Gaussian
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concentration with constant κ > 0 if (3.4.140) holds with that κ and

some K > 0.

Remark 3.26. In the same spirit as Remark 3.16, it may be desirable

to relax (3.4.140) to the following: there exists some r0 > 0 such that,

for every k ∈ N and r ≥ r0,

C ⊆ X k, µ⊗k(C) ≥ 1
2 =⇒ µ⊗k(Ar) ≥ 1 −Ke−κ(r−r0)2

(3.4.142)

(see, for example, [67, Remark 22.23] or [71, Proposition 3.3]). The same

considerations about (possibly) sharper constants that were stated in

Remark 3.16 also apply here.

In this section, we show that dimension-free Gaussian concentration

and T2 inequalities are equivalent. Before we get to that, here is an

example of a T2 inequality:

Theorem 3.4.8 (Talagrand [156]). Let X = R
n and d(x, y) = ∥x− y∥.

Then, µ = Gn satisfies a T2(1) inequality.

Proof. The proof starts with the one-dimensional case where n = 1: let

µ = G, let ν ∈ P(R) have density f with respect to µ: f = dν
dµ , and let

Φ denote the standard Gaussian cdf, i.e.,

Φ(x) =

∫ x

−∞
γ(y)dy

= 1√
2π

∫ x

−∞
exp

(
−y2

2

)
dy, ∀x ∈ R. (3.4.143)

If X ∼ G, then (by Item 6 of Lemma 3.4.3) the optimal coupling of

µ = G and ν, i.e., the one that achieves the infimum in

W2(ν, µ) = W2(ν,G) = inf
X∼G, Y ∼ν

(
E[(X − Y )2]

)1/2
(3.4.144)

is given by Y = h(X) with h = F
−1
ν ◦ Φ. Consequently,

W 2
2 (ν,G) = E[(X − h(X))2]

=

∫ ∞

−∞

(
x− h(x)

)2
γ(x) dx. (3.4.145)
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Since dν = f dµ with µ = G, and Fν(h(x)) = Φ(x) for every x ∈ R, we

have ∫ x

−∞
γ(y) dy = Φ(x)

= Fν(h(x))

=

∫ h(x)

−∞
f dµ

=

∫ h(x)

−∞
f(y)γ(y) dy. (3.4.146)

Differentiating both sides of (3.4.146) with respect to x gives

γ(x) = h′(x) f(h(x)) γ(h(x)), ∀x ∈ R. (3.4.147)

Since h = F
−1
ν ◦ Φ, h is a monotonically increasing function, and

lim
x→−∞

h(x) = −∞, lim
x→∞

h(x) = ∞.

Consequently, we get

D(ν∥G) = D(ν∥µ)

=

∫

R

dν ln
dν

dµ

=

∫ ∞

−∞
ln
(
f(x)

)
dν(x)

=

∫ ∞

−∞
f(x) ln

(
f(x)

)
dµ(x)

=

∫ ∞

−∞
f(x) ln

(
f(x)

)
γ(x) dx

=

∫ ∞

−∞
f
(
h(x)

)
ln
(
f
(
h(x)

))
γ
(
h(x)

)
h′(x) dx

=

∫ ∞

−∞
ln
(
f(h(x))

)
γ(x) dx, (3.4.148)

where we have used (3.4.147) to get the last equality. From (3.4.147)

ln
(
f
(
h(x)

))
= ln

(
γ(x)

h′(x) γ
(
h(x)

)
)

=
h2(x) − x2

2
− lnh′(x), (3.4.149)
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which yields

D(ν∥µ)

= 1
2

∫ ∞

−∞

[
h2(x) − x2

]
γ(x) dx−

∫ ∞

−∞
lnh′(x) γ(x) dx (3.4.150)

= 1
2

∫ ∞

−∞

(
x− h(x)

)2
γ(x) dx+

∫ ∞

−∞
x
(
h(x) − x

)
γ(x) dx (3.4.151)

−
∫ ∞

−∞
lnh′(x) γ(x) dx

= 1
2

∫ ∞

−∞

(
x− h(x)

)2
γ(x) dx+

∫ ∞

−∞
(h′(x) − 1) γ(x) dx

−
∫ ∞

−∞
lnh′(x) γ(x) dx (3.4.152)

≥ 1
2

∫ ∞

−∞

(
x− h(x)

)2
γ(x) dx (3.4.153)

= 1
2 W

2
2 (ν, µ) (3.4.154)

where (3.4.150) follows from the substitution of (3.4.149) into (3.4.148);

(3.4.151) is due to the identity 1
2(a2 − b2) = 1

2(a − b)2 + b(b − a) for

all a, b ∈ R; (3.4.152) relies on integration by parts; (3.4.153) holds

due to the inequality ln t ≤ t − 1 for t > 0, and because h : R → R

is monotonically increasing and differentiable; (3.4.154) holds due to

(3.4.145). This shows that µ = G satisfies T2(1), which completes the

proof for the special case where n = 1.

This theorem is generalized for an arbitrary n ∈ N by tensorization

via Proposition 3.8 (with p = 2).

We get in the following to the main result of this section, namely

that dimension-free Gaussian concentration and T2 inequalities are

equivalent:

Theorem 3.4.9. Let (X , d, µ) be a metric probability space. Then, the

following statements are equivalent:

1. µ satisfies T2(c).

2. µ has dimension-free Gaussian concentration with κ = 1
2c .
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Remark 3.27. As we next show, the implication 1) ⇒ 2) follows easily

from Propositions 3.7 and 3.8). The reverse implication 2) ⇒ 1) is a

nontrivial result, which was proved by Gozlan [71], using an elegant

probabilistic approach relying on the theory of large deviations.

Proof. We first prove that 1) ⇒ 2). Assume that µ satisfies T2(c)

on (X , d). Let k ∈ N be fixed, and consider the metric probability

space (X k, d2,k, µ
⊗k) where the metric d2,k is defined in (3.4.90) with

p = 2. By the tensorization property of transportation-cost inequalities

(Proposition 3.8), the product measure µ⊗k satisfies T2(c) on (X k, d2,k).

Since the Wasserstein distance of order 2 dominates its order–1 distance

(by item 2 of Lemma 3.4.3), µ⊗k also satisfies T1(c) on (X k, d2,k).

Hence, by Proposition 3.7, µ⊗k satisfies the Gaussian concentration

property (3.4.10) with the constants κ = 1
2c ,K = 1, r0 =

√
2c ln 2.

Since this holds for every k ∈ N, by definition µ has dimension-free

Gaussian concentration with constant κ = 1
2c .

We next prove the converse implication 2) ⇒ 1). Suppose that µ

has dimension-free Gaussian concentration with constant κ > 0, where

for simplicity we assume that r0 = 0 (the argument for the general case

of r0 > 0 is slightly more involved, and does not contribute much in the

way of insight). Let k ∈ N be fixed, and consider the metric probability

space (X k, d2,k, µ
⊗k). Given xk ∈ X k, let Pxk be the empirical measure

Pxk =
1

k

k∑

i=1

δxi
, (3.4.155)

where δx denotes a unit mass concentrated at x ∈ X . Now consider

a probability measure ν on X with ν ≪ Pxk , and define a function

fν,k : X k → R by

fν,k(xk) ,W2(Pxk , ν), ∀xk ∈ X k. (3.4.156)

We claim that fν is Lipschitz with respect to the metric d2,k. To verify
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this property, note that

∣∣fν,k(xk) − fν,k(yk)
∣∣

=
∣∣∣W2(Pxk , ν) −W2(Pyk , ν)

∣∣∣ (3.4.157)

≤ W2(Pxk ,Pyk) (3.4.158)

= inf
π∈Π(P

xk ,P
yk )

(∫

X
d2(x, y) dπ(x, y)

)1/2

(3.4.159)

≤
(

1

k

k∑

i=1

d2(xi, yi)

)1/2

(3.4.160)

=
1√
k
d2,k(xk, yk), (3.4.161)

where

• (3.4.157) is by the definition in (3.4.156);

• (3.4.158) is by the triangle inequality for the Wasserstein distance;

• (3.4.159) is by definition of W2 (note that the empirical measure

Pxk is defined on X );

• (3.4.160) uses the fact that the measure that places mass 1
k on

each (xi, yi) for i ∈ {1, . . . , k}, is an element of Π(Pxk ,Pyk) (since

due to the definition of an empirical distribution in (3.4.155), the

marginals of the above measure are indeed Pxk and Pyk); and

• (3.4.161) uses the definition (3.4.90) of d2,k.

Hence, from (3.4.157)–(3.4.161), fν,k is Lipschitz with respect to the

metric d2,k, and its Lipschitz constant satisfies

∥fν,k∥Lip,2 ≤ 1√
k
. (3.4.162)

Let X1, . . . , Xk be i.i.d. random variables with X1 ∼ µ, and let mk be

an arbitrary µ⊗k-median of fν,k. Then, by the assumed dimension-free

Gaussian concentration property of µ, Theorem 3.4.1 implies that for
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every r > 0 and k ∈ N

P
(
fν,k(Xk) ≥ mk + r

) ≤ exp

(
− κr2

∥fν,k∥2
Lip,2

)
(3.4.163)

≤ exp
(−κkr2), (3.4.164)

where (3.4.164) follows from (3.4.162).

We prove that every sequence {mk}∞
k=1 of µ⊗k-medians of the fν,k’s

converges to zero. Since by construction X1, X2, . . . are i.i.d. draws from

µ, the sequence of empirical distributions {PXk}∞
k=1 converges almost

surely to µ (it is Varadarajan’s theorem [157, Theorem 11.4.1]). Hence,

since W2 metrizes the topology of weak convergence together with the

convergence of second order moments (by Item 3 of Lemma 3.4.3),

limk→∞W2(PXk , µ) = 0 almost surely. Convergence almost surely

yields convergence in probability, which implies that

lim
k→∞

P
(
W2(PXk , µ) ≥ t

)
= 0, ∀ t > 0. (3.4.165)

In view of (3.4.165), it follows that every sequence {mk} of medians

of the fν,k’s converges to zero, as claimed. By combining (3.4.156),

(3.4.163) and (3.4.164), it follows that for all r > 0

lim sup
k→∞

1

k
lnP

(
W2(PXk , µ) ≥ r

)
≤ −κr2. (3.4.166)

On the other hand, the mapping ν 7→ W2(ν, µ) is lower semicontinuous

in the topology of weak convergence of probability measures (see Item 4

of Lemma 3.4.3). Consequently, the set {µ : W2(PXk , µ) > r} is open

in the weak topology, which implies by Sanov’s theorem (see,e.g., [85,

Theorem 6.2.10]) that for all r > 0

lim inf
k→∞

1

k
lnP

(
W2(PXk , µ) ≥ r

)
≥ − inf

{
D(ν∥µ) : W2(µ, ν) > r

}
.

(3.4.167)

Combining (3.4.166) and (3.4.167), we get that

inf
{
D(ν∥µ) : W2(µ, ν) > r

}
≥ κr2, (3.4.168)

which implies that D(ν∥µ) ≥ κW 2
2 (µ, ν). Upon rearranging terms, we

get W2(µ, ν) ≤
√

1
κ D(ν∥µ), which is a T2(c) inequality with c = 1

2κ .
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3.4.5 A grand unification: the HWI inequality

At this point, we have seen two perspectives on the concentration

of measure phenomenon: functional (through log-Sobolev inequalities)

and probabilistic (through transportation-cost inequalities). We next

show that these two perspectives are, in a very deep sense, equivalent,

at least in the Euclidean setting of R
n. This equivalence is captured

by a striking inequality, due to Otto and Villani [158], relating three

measures of similarity between probability measures: the divergence,

quadratic Wasserstein distance, and Fisher information distance. In

the literature on optimal transport, the divergence (relative entropy)

between probability measures P and Q is often denoted by H(P∥Q)

or H(P,Q), due to its close links to the Boltzmann H-functional of

statistical physics. For this reason, the inequality we alluded to above

is dubbed the HWI inequality, with H standing for the divergence, W

for the Wasserstein distance, and I for the Fisher information distance

(see (3.2.4) and (3.2.5)).

We first state the strong version of the HWI inequality which

is specialized to the Gaussian distribution, and give a self-contained

information-theoretic proof following [159]:

Theorem 3.4.10 (Gaussian HWI inequality). Let G denote the standard

Gaussian probability distribution on R. Then, the inequality

D(P∥G) ≤ W2(P,G)
√
I(P∥G) − 1

2 W
2
2 (P,G), (3.4.169)

where W2 is the quadratic Wasserstein distance with respect to the

absolute-value metric d(x, y) = |x−y|, holds for every Borel probability

distribution P on R, for which the right side of (3.4.169) is finite.

Proof. We first show the following:

Lemma 3.4.11. Let X and Y be a pair of real-valued random variables,

and let N ∼ G be independent of (X,Y ). Then, for every t > 0,

D(PX+
√

tN ∥PY +
√

tN ) ≤ 1

2t
W 2

2 (PX , PY ). (3.4.170)

Proof. From the chain rule for divergence (see [144, Theorem 2.5.3]),

we have

D(PX,Y,X+
√

tN ∥PX,Y,Y +
√

tN ) ≥ D(PX+
√

tN ∥PY +
√

tN ) (3.4.171)
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and

D(PX,Y,X+
√

tN ∥PX,Y,Y +
√

tN )

= D(PX+
√

tN |X,Y ∥PY +
√

tN |X,Y |PX,Y )

= E[D(N (X, t) ∥ N (Y, t)) |X,Y ] (3.4.172)

=
1

2t
E[(X − Y )2]. (3.4.173)

Note that (3.4.172) holds since N ∼ G is independent of (X,Y ), and

(3.4.173) is a special case of the identity

D
(N (m1, σ

2
1) ∥ N (m2, σ

2
2)
)

=
1

2

[
ln

(
σ2

2

σ2
1

)
+

(m1 −m2)2

σ2
2

+
σ2

1

σ2
2

− 1

]
. (3.4.174)

It therefore follows from (3.4.171) and (3.4.173) that

D(PX+
√

tN ∥PY +
√

tN ) ≤ 1

2t
E[(X − Y )2]. (3.4.175)

The left side of (3.4.175) only depends on the marginal distributions

of X and Y (due to the independence of (X,Y ) and N ∼ G). Hence,

by taking the infimum of the right side of (3.4.175) with respect to all

µ ∈ Π(PX , PY ), we get (3.4.170) (see (3.4.43)).

We now proceed with the proof of Theorem 3.4.10. Let X and Y

have distributions P and Q = G, respectively. For simplicity, we focus

on the case where X has zero mean and unit variance; the general case

can be handled similarly. Let

F (t) , D(PX+
√

tN ∥PY +
√

tN ), ∀ t > 0, (3.4.176)

where N ∼ G is independent of the pair (X,Y ). Then, we have

F (0) = D(P∥G), (3.4.177)

and from (3.4.170)

F (t) ≤ 1

2t
W 2

2 (PX , PY ) =
1

2t
W 2

2 (P,G), ∀ t > 0. (3.4.178)
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Moreover, the function F (t) is differentiable, and it follows from a result

by Verdú [136, Eq. (32)] that

F ′(t) =
1

2t2

[
mmse(X, t−1) − mseQ(X, t−1)

]

=
1

2t2

[
mmse(X, t−1) − lmmse(X, t−1)

]
, ∀ t > 0 (3.4.179)

where mmse(X, ·), mseQ(X, ·) and lmmse(X, ·) have been defined in

(3.2.28), (3.2.29) and (3.2.32), respectively. The second equality in

(3.4.179) holds due to (3.2.31) with Q = G (recall that in the Gaussian

setting, the optimal estimator for minimizing the mean square error is

linear). For every t > 0,

D(P∥G)

= F (0) (3.4.180)

= −
∫ t

0
F ′(s)ds+ F (t) (3.4.181)

= 1
2

∫ t

0

1

s2

(
lmmse(X, s−1) − mmse(X, s−1)

)
ds+ F (t) (3.4.182)

≤ 1
2

∫ t

0

(
1

s(s+ 1)
− 1

s(sJ(X) + 1)

)
ds+ 1

2t W
2
2 (P,G) (3.4.183)

= 1
2

(
ln
tJ(X) + 1

t+ 1
+
W 2

2 (P,G)

t

)
(3.4.184)

= 1
2

(
ln
t
(
I(P∥G) + 1

)
+ 1

t+ 1
+
W 2

2 (P,G)

t

)
(3.4.185)

≤ 1
2

(
t I(P∥G)

t+ 1
+
W 2

2 (P,G)

t

)
(3.4.186)

where

• (3.4.180) is (3.4.177);

• (3.4.181) uses the identity
∫ t

0 F
′(s)ds = F (t) − F (0);

• (3.4.182) uses (3.4.179);

• (3.4.183) uses (3.2.33), the Van Trees inequality (3.2.34), and

(3.4.178);
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• (3.4.184) is an exercise in calculus;

• (3.4.185) uses the formula (3.2.24) (so I(P∥G) = J(X) − 1 since

X ∼ P has zero mean and unit variance; one needs to substitute

s = 1 in (3.2.24) to get Gs = G), and the fact that t ≥ 0;

• (3.4.186) uses the inequality ln x ≤ x− 1 for x > 0; and

Optimizing t to minimize the bound in (3.4.186) yields

topt =
W2(P,G)√

I(P∥G) −W2(P,G)
. (3.4.187)

Note that, due to the celebrated Talagrand quadratic transportation-

cost inequality [156]

I(P∥G) ≥ W 2
2 (P,G), (3.4.188)

which is obtained by combining the Gaussian-LSI in Proposition 3.4

with (3.4.150)–(3.4.154), it follows that the optimized value of t in

(3.4.187) is indeed positive whenever I(P∥G) > 0 (i.e., if P is not the

standard Gaussian measure). Consequently, the substitution of t = topt

in (3.4.187) into (3.4.186) gives (3.4.169).

A stronger version of the Gaussian HWI in Theorem 3.4.10 can

be obtained by optimizing the parameter t > 0 in the right side of

(3.4.185), yielding

D(P∥G) ≤ 1
2 inf

t>0

(
ln
t
(
I(P∥G) + 1

)
+ 1

t+ 1
+
W 2

2 (P,G)

t

)
. (3.4.189)

Note that, in the proof of Theorem 3.4.10, the Gaussian HWI (3.4.169)

is derived by optimizing t > 0 in the right side of (3.4.186) which is

looser than (3.4.185). The minimization in the right side of (3.4.189)

yields the following closed-form result:

• If

I(P∥G)

1 + I(P∥G)
≤ W 2

2 (P,G) ≤ I(P∥G) (3.4.190)

(note that the right side of (3.4.190) is due to (3.4.188)), then

t → ∞ is optimal, yielding (cf. Proposition 3.4)

D(P∥G) ≤ 1
2 log(1 + I(P∥G)). (3.4.191)
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• Otherwise, if

W 2
2 (P,G) <

I(P∥G)

1 + I(P∥G)
, (3.4.192)

then the optimized t ∈ (0,∞) in the right side of (3.4.185) is

given by

topt =

√
b2 − 4ac− b

2a
(3.4.193)

with

a = I(P∥G) −W 2
2 (P,G)

(
I(P∥G) + 1

)
> 0, (3.4.194)

b = −(I(P∥G) + 2
)
W 2

2 (P,G), (3.4.195)

c = −W 2
2 (P,G). (3.4.196)

Consequently, if the condition (3.4.192) holds, then a tightened

version of the Gaussian HWI (3.4.169) is obtained by substituting

(3.4.193) into the right side of (3.4.185).

Remark 3.28. Note that the HWI inequality (3.4.169) together with

the T2 inequality for the Gaussian distribution imply a weaker version

of the LSI (3.2.10) (i.e., with a larger constant). Indeed, using the T2

inequality of Theorem 3.4.8 on the right side of (3.4.169), we get

D(P∥G) ≤ W2(P,G)
√
I(P∥G) (3.4.197)

≤
√

2D(P∥G)
√
I(P∥G), (3.4.198)

which gives D(P∥G) ≤ 2I(P∥G). It is not surprising that we end up

with a suboptimal constant here as compared to (3.2.10): the series of

bounds leading up to (3.4.186) contributes a lot more slack than the

single use of the van Trees inequality (3.2.34) in our proof of Stam’s

inequality (which, due to Proposition 3.4, is equivalent to the Gaussian

LSI of Gross).

We are now ready to state the HWI inequality in its general form:

Theorem 3.4.12 (Otto–Villani, Theorem 3 in [158]). Let P be a Borel

probability measure on R
n that is absolutely continuous with respect
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to the Lebesgue measure, and let the corresponding pdf p be such that

∇2 ln

(
1

p

)
≽ KIn (3.4.199)

for some K ∈ R (where ∇2 denotes the Hessian matrix, and the matrix

inequality A ≽ B means that A−B is non-negative semidefinite). Then,

every probability measure Q ≪ P satisfies

D(Q∥P ) ≤ W2(Q,P )
√
I(Q∥P ) − K

2 W
2
2 (Q,P ). (3.4.200)

We omit the proof of Theorem 3.4.12, which relies on some deep

structural properties of optimal transportation mappings achieving the

infimum in the definition of the quadratic Wasserstein distance with

respect to the Euclidean norm in R
n. (An alternative simpler proof was

given later by Cordero–Erausquin [160].) We can, however, highlight a

couple of key consequences (see [158]):

1. Let P , in addition to satisfying the conditions of Theorem 3.4.12,

satisfy a T2(c) inequality. Using this T2 inequality and (3.4.200)

yields

D(Q∥P ) ≤
√

2cD(Q∥P )
√
I(Q∥P ) − K

2 W
2
2 (Q,P ). (3.4.201)

If the pdf p of P is log-concave, so that (3.4.199) holds with

K = 0, then (3.4.201) implies the inequality

D(Q∥P ) ≤ 2c I(Q∥P ) (3.4.202)

where Q ≪ P . This is an Euclidean LSI that is similar to the one

satisfied by P = Gn (see Remark 3.28). Note, however, that the

coefficient in the right side of (3.4.202) (i.e., the constant in front

of the Fisher information distance) is suboptimal; this can be

verified by letting P = Gn, which satisfies T2(1). Going through

the above steps, as we know from (3.2.10), the optimal constant

should be 1
2 , so the one in (3.4.202) is off by a factor of 4. On

the other hand, it is quite remarkable that, up to constants, the

Euclidean log-Sobolev and T2 inequalities are equivalent.
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2. If the pdf p of P is strongly log-concave, i.e., if (3.4.199) holds with

some K > 0, then P satisfies the Euclidean LSI with constant 1
K .

Indeed, we have from (3.4.200)

D(Q∥P ) ≤
√
KW2(Q,P )

√
1
K I(Q∥P ) − K

2 W
2
2 (Q,P ) (3.4.203)

≤ 1
2K I(Q∥P ), (3.4.204)

where (3.4.203) is (3.4.201), and (3.4.204) relies on the simple

inequality ab ≤ a2+b2

2 for all a, b ∈ R. This shows that P satisfies

the Euclidean LSI
(

1
K

)
inequality. In particular, the standard n-

dimensional Gaussian distribution P = Gn satisfies (3.4.199) with

K = 1, so we even get the right constant in (3.4.204). In fact,

the statement that (3.4.199) with K > 0 yields the Euclidean

LSI
(

1
K

)
was first proved in 1985 by Bakry and Emery [161] using

very different means.

Introduced independently by Ali-Silvey [162] and Csiszár [163, 164],

a useful generalization of the relative entropy, which retains some of its

major properties (and, in particular, the data processing inequality

[165]), is the class of f -divergences. In [166], Sason and Verdú study

several approaches to derive f -divergence inequalities. By combining f -

divergence inequalities and the WHI inequality in Theorem 3.4.12, this

enables to derive upper bounds on various f -divergences as a function of

the relative Fisher information and the quadratic Wasserstein distance.

3.5 Extension to non-product distributions

Our focus in this chapter is mostly on functions of independent random

variables. However, there is extensive literature on the concentration

of measure inequalities for weakly dependent random variables. In this

section, we describe (without proof) some results along this direction

that explicitly use information-theoretic methods. The examples we

give are by no means exhaustive, and are only intended to show that,

even in the case of dependent random variables, the underlying ideas

are essentially the same as in the independent case.

The basic scenario is as before: X1, . . . , Xn are random variables

with a given joint distribution P (which is now not necessarily of a
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product form, i.e., P = PXn may not be equal to PX1 ⊗ . . .⊗PXn), and

we are interested in the concentration properties of a function f(Xn).

3.5.1 Samson’s approach for dependent random variables

In [167], Samson developed an approach for deriving transportation-

cost inequalities for dependent random variables that revolves around

a certain L2 measure of dependence. Given the distribution P = PXn

of (X1, . . . , Xn), consider an upper triangular matrix ∆ ∈ R
n×n, such

that ∆i,j = 0 for i > j, ∆i,i = 1 for all i, and for i < j

∆i,j = sup
xi,x′

i

sup
xi−1

√∥∥∥PXn
j

|Xi=xi,Xi−1=xi−1 − PXn
j

|Xi=x′
i
,Xi−1=xi−1

∥∥∥
TV
.

(3.5.1)

Note that in the special case where P is a product measure, the matrix

∆ is equal to the n × n identity matrix. Let ∥∆∥ denote the operator

norm of ∆, i.e.,

∥∆∥ , sup
v∈Rn\{0}

∥∆v∥
∥v∥ (3.5.2)

= sup
v∈Rn : ∥v∥=1

∥∆v∥. (3.5.3)

Following Marton [168], Samson [167] considered a Wasserstein-type

distance on the space of probability measures on X n. For every pair

of probability measures Q and R on X n, let Π(Q,R) denote the set

of all probability measures on X n × X n with marginals Q and R; the

following non-negative quantity is defined in [167]:

d2(Q,R) , inf
π∈Π(Q,R)

sup
α

∫ n∑

i=1

αi(y
n)1{xi ̸=yi} dπ(xn, yn), (3.5.4)

where supα refers to the supremum over all vector-valued functions

α : X n → R
n where α = (α1, . . . , αn) is a vector of positive functions,

and

ER

[
∥α(Y n)∥2

]
=

∫

X n

n∑

i=1

α2
i (yn) dR(yn) ≤ 1. (3.5.5)
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Remark 3.29. Note that d2(Q,Q) = 0; however, in general, we have

d2(Q,R) ̸= d2(R,Q) due to the difference in the two conditions

ER

[∥α(Y n)∥2
] ≤ 1 and EQ

[∥α(Y n)∥2
] ≤ 1 involved in the definition

of d2(Q,R) and d2(R,Q), respectively. Therefore, d2 is not a distance.

The main result of [167] is the following Pinsker-type inequalities

(see [167, Theorem 1]).

Theorem 3.5.1. Let P and Q be probability measures on R
n such that

Q ≪ P . Then, the following inequalities hold:

d2(Q,P ) ≤ ∥∆∥
√

2D(Q∥P ), (3.5.6)

and

d2(P,Q) ≤ ∥∆∥
√

2D(Q∥P ). (3.5.7)

In the following, we examine some implications of Theorem 3.5.1.

1. Let X = [0, 1], and let P be a probability measure defined on the

unit cube X n = [0, 1]n. Theorem 3.5.1 implies that P satisfies the

following Euclidean LSI (see [167, Corollary 1]): for an arbitrary

smooth convex function f : [0, 1]n → R,

D
(
P (f)

∥∥P
) ≤ 2∥∆∥2

E
(f)
P

[
∥∇f(Xn)∥2

]
(3.5.8)

(note that the equivalence of (3.5.8) and [167, Eq. (2.13)] follows

from (3.3.6) and (3.3.7)). The same method as the one we used

to prove Proposition 3.5 and Theorem 3.2.2 can be applied to

obtain, from (3.5.8), the following concentration inequality for

every convex function f : [0, 1]n → R with ∥f∥Lip ≤ 1:

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
− r2

8∥∆∥2

)
, (3.5.9)

which holds for all r ≥ 0. An adaptation of the approach by

Bobkov and Götze [54] (recall that this approach is used to prove

Theorem 3.4.4 and Corollary 3.4.5) gives, however, the following

improved concentration inequality which holds for every smooth
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convex function f : [0, 1]n → R with ∥∇f∥ ≤ 1 P -a.s. and for all

r ≥ 0 (see [167, Corollary 3]):

P

(
f(Xn) ≥ Ef(Xn) + r

)
≤ exp

(
− r2

2∥∆∥2

)
. (3.5.10)

The same inequality in (3.5.10) also holds for an arbitrary smooth

concave function f : [0, 1]n → R such that EP

[∥∇f∥2
] ≤ 1.

2. The operator norm ∥∆∥ in (3.5.6)–(3.5.10) is weakly dependent

on n whenever the dependence between the Xi’s is sufficiently

weak. For instance, if X1, . . . , Xn are independent then ∆ = In×n,

and ∥∆∥ = 1 for all n. In this case, (3.5.6) becomes

d2(Q,P ) ≤
√

2D(Q∥P ), (3.5.11)

enabling to recover the concentration inequalities for Lipschitz

functions. For examples with dependent random variables, let

X1, . . . , Xn be a Markov chain; by definition, for each i, Xn
i+1 is

conditionally independent of Xi−1 given Xi. In that case, from

(3.5.1), the upper triangular part of ∆ gets the simplified form

∆i,j = sup
xi,x′

i

√∥∥∥PXj |Xi=xi
− PXj |Xi=x′

i

∥∥∥
TV

, ∀ i < j. (3.5.12)

The norm ∥∆∥ is bounded in n under suitable assumptions on the

Markov chain {Xk}n
k=1. For instance, suppose that the Markov

chain is homogeneous (i.e., PXi|Xi−1
is independent of i), and

sup
xi,x′

i

∥PXi+1|Xi=xi
− PXi+1|Xi=x′

i
∥TV ≤ 2ρ (3.5.13)

with ρ < 1. Then, it can be shown that (see [167, Eq. (2.5)])

∥∆∥ ≤
√

2

(
1 +

n−1∑

k=1

ρk/2

)
≤

√
2

1 − √
ρ
. (3.5.14)

More generally, a non-necessarily homogeneous Markov chain

{Xk} is said to be contracting if for every i (see [167, (2.7)])

δi , sup
xi,x′

i

∥PXi+1|Xi=xi
− PXi+1|Xi=x′

i
∥TV < 1. (3.5.15)

In this case, ∥∆∥ ≤ 1
1−

√
δ

with δ , max δi [167, pp. 422–424].
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3.5.2 Marton’s transportation-cost inequalities for L
2 Wasserstein

distance

Another approach to obtain concentration of measure inequalities for

dependent random variables, due to Marton ([169], [170]), relies on

another measure of dependence that pertains to the sensitivity of the

conditional distributions of Xi given Xi to the particular realization

x̄i of X i. These results are set in the Euclidean space R
n, and center

around a transportation-cost inequality for the L2 Wasserstein distance

W2(P,Q) , inf
Xn∼P, Y n∼Q

√
E∥Xn − Y n∥2, (3.5.16)

where ∥ · ∥ denotes the Euclidean norm.

We next state a special case of Marton’s results (a more general

development considers conditional distributions of (Xi : i ∈ S) given

(Xj : j ∈ Sc) for a suitable system of sets S ⊂ {1, . . . , n}). Let P be a

probability measure on R
n which is absolutely continuous with respect

to the Lebesgue measure. For all xn ∈ R
n and i ∈ {1, . . . , n}, denote by

x̄i the vector in R
n−1 obtained by deleting the i-th coordinate of xn:

x̄i = (x1, . . . , xi−1, xi+1, . . . , xn). (3.5.17)

Following Marton [169], the probability measure P is (1−δ)-contractive,

with δ ∈ (0, 1), if for every yn, zn ∈ R
n

n∑

i=1

W 2
2 (PXi|Xi=ȳi , PXi|Xi=z̄i) ≤ (1 − δ)∥yn − zn∥2. (3.5.18)

Remark 3.30. The contractivity condition (3.5.18) is closely related to

the so-called Dobrushin–Shlosman’s strong mixing condition [171] from

statistical physics.

Theorem 3.5.2 (Marton [169, 170]). Let P be a probability measure

which is absolutely continuous with respect to the Lebesgue measure

on R
n, and let it be (1 − δ)-contractive with δ ∈ (0, 1). Suppose also

that, for all i ∈ {1, . . . , n}, the following properties hold:

1. The function xn 7→ pXi|Xi(xi|x̄i) is continuous, where pXi|Xi(·|x̄i)

denotes the univariate probability density function of PXi|Xi=x̄i .
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2. For every x̄i ∈ R
n−1, PXi|Xi=x̄i−1 satisfies T2(c) with respect to

the L2 Wasserstein distance (3.5.16).

Then, for every probability measure Q on R
n, we have

W2(Q,P ) ≤
(
K√
δ

+ 1

)√
2cD(Q∥P ), (3.5.19)

where K > 0 is an absolute constant. In other words, every P satisfying

the conditions of the theorem admits a T2(c′) inequality with

c′ =

(
K√
δ

+ 1

)2

c. (3.5.20)

The contractivity criterion (3.5.18) is not easy to verify in general.

Let us mention a sufficient condition [169]. Let p denote the probability

density of P , and suppose that it takes the form

p(xn) =
1

Z
exp

(−Ψ(xn)
)

(3.5.21)

for some C2 function Ψ: Rn → R, where Z is the normalization factor.

For every xn, yn ∈ R
n, let the matrix B(xn, yn) ∈ R

n×n be defined as

Bi,j(xn, yn) ,





∇2
i,jΨ(xi ⊙ ȳi), i ̸= j

0, i = j
(3.5.22)

where ∇2
i,jF denotes the (i, j) entry of the Hessian matrix of a function

F ∈ C2(Rn), and xi ⊙ ȳi denotes the n-tuple obtained by replacing the

deleted i-th coordinate in ȳi with xi:

xi ⊙ ȳi = (y1, . . . , yi−1, xi, yi+1, . . . , yn). (3.5.23)

For example, if Ψ is a sum of one-variable and two-variable terms

Ψ(xn) =
n∑

i=1

Vi(xi) +
∑

i<j

bi,jxixj (3.5.24)

for smooth functions Vi : R → R and constants bi,j ∈ R, which is often

the case in statistical physics, then the matrix B is independent of xn

and yn, and it has off-diagonal entries bi,j if i < j or bj,i if i > j. In

view of [169, Theorem 2], the conditions of Theorem 3.5.2 are satisfied

provided the following holds:
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1. For each i ∈ {1, . . . , n} and x̄i ∈ R
n−1, the conditional probability

distributions PXi|Xi=x̄i satisfy the Euclidean LSI

D(Q∥PXi|Xi=x̄i) ≤ c

2
I(Q∥PXi|Xi=x̄i), (3.5.25)

where I(·∥·) is the Fisher information distance (3.2.4).

2. The operator norms of B(xn, yn) are uniformly bounded as

sup
xn,yn

∥B(xn, yn)∥2 ≤ 1 − δ

c2
. (3.5.26)

We refer the reader to a follow-up work by Marton [172], which further

elaborates on the theme of studying the concentration properties of

dependent random variables by focusing on the conditional probability

distributions PXi|Xi for i ∈ {1, . . . , n}. This paper describes sufficient

conditions on the joint distribution P of X1, . . . , Xn such that, for every

other distribution Q,

D(Q∥P ) ≤ K(P )D−(Q∥P ), (3.5.27)

where D−(·∥·) is the erasure divergence (defined in (3.1.29)), and the

P -dependent constant K(P ) > 0 is controlled by suitable contractivity

properties of P . At this point, the utility of a tensorization inequality

like (3.5.27) should be clear: each term in the erasure divergence

D−(Q∥P ) =
n∑

i=1

D(QXi|Xi∥PXi|Xi |QXi) (3.5.28)

can be handled by appealing to appropriate log-Sobolev or

transportation-cost inequalities for probability measures on X (indeed,

one can treat PXi|Xi=x̄i for each fixed x̄i as a probability measure on

X , in just the same way as with PXi
before), and then these one-

dimensional bounds can be assembled to derive a concentration result

for the original n-dimensional distribution.
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3.6 Applications in information theory and related topics

3.6.1 The blowing-up lemma

An explicit invocation of the concentration of measure phenomenon in

an information-theoretic context appeared for the first time in the work

by Ahlswede et al. [73, 74]. These papers show that the following result,

known to-date as the blowing-up lemma (see, e.g., [173, Lemma 5.4]),

provides a versatile tool for proving strong converses in a variety of

scenarios, including some multiterminal problems. Informally, it says

that if we enlarge any set of not too small probability with a thin layer

then the enlarged set shall have probability almost one.

In the sequel, let Y be a finite set, n ∈ N, and r > 0. Given a set

B ⊂ Yn and r > 0, the set Br denotes the r-blowup of B, i.e.,

Br , {yn ∈ Yn : dn(yn,B) < r} (3.6.1)

where

dn(yn,B) , min
ŷn∈B

dn(yn, ŷn) (3.6.2)

with the Hamming metric

dn(yn, ŷn) ,
n∑

i=1

1{yi ̸=ŷi}, ∀ yn, ŷn ∈ Yn. (3.6.3)

Lemma 3.6.1 (the blowing-up lemma). For every positive sequence

ξn → 0, there exist positive sequences δn → 0 and ηn → 0 such that the

following property holds: for every discrete memoryless channel (DMC)

with finite input alphabet X , finite output alphabet Y, and transition

probabilities T (y|x) with (x, y) ∈ X × Y, and for every xn ∈ X n, and

B ⊂ Yn,

Tn(B|xn) ≥ exp(−nξn) =⇒ Tn(Bnδn |xn) ≥ 1 − ηn. (3.6.4)

The proof in [73] of the blowing-up lemma is rather technical and it

makes use of a delicate isoperimetric inequality for discrete probability

measures on a Hamming space, due to Margulis [174]. Later, the same

result was obtained by Marton [75] using purely information-theoretic
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methods. We use here a sharper non-asymptotic version of the blowing-

up lemma (see also Marton’s follow-up paper in [59], extending the

result for some non-product measures):

Lemma 3.6.2. Let X1, . . . , Xn be independent random variables taking

values in a finite set X . Then, for every B ⊆ X n with PXn(B) > 0,

PXn(Br) ≥ 1 − exp


− 2

n

(
r −

√
n

2
ln

1

PXn(B)

)2

 , (3.6.5)

for all r >
√

n
2 ln 1

PXn (B) .

Proof. Let Pn denote the product measure PXn = PX1 ⊗ . . .⊗PXn . By

Pinsker’s inequality, every µ ∈ P(X ) satisfies T1
(

1
4

)
on (X , d) where

d = d1 is the Hamming metric (see Example 3.2). By Proposition 3.9,

Pn satisfies T1
(

n
4

)
on (X n, dn) with the Hamming metric dn in (3.6.3),

i.e., for all µn ∈ P(X n),

W1(µn, Pn) ≤
√
n

2
D(µn∥Pn). (3.6.6)

The statement of the lemma follows from the proof of Proposition 3.7.

More precisely, applying (3.4.88) to the probability measure PXn with

c = n
4 gives

r ≤
√
n

2
ln

1

PXn(B)
+

√
n

2
ln

1

1 − PXn(Br)
, ∀ r > 0, (3.6.7)

and (3.6.5) follows by rearranging terms.

We next prove Lemma 3.6.1.

Proof. Given a positive sequence {ξn}∞
n=1 which converges to zero, let

{δn}∞
n=1 converge to zero such that

δn >

√
ξn

2
, (3.6.8)

ηn , exp


−2n


δn −

√
ξn

2




2

 n→∞−−−→ 0. (3.6.9)
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These requirements can be satisfied, e.g., by setting

δn ,

√
ξn

2
+

√
α lnn

n
, ∀n ∈ N, (3.6.10)

where α > 0 is a fixed constant which can be made arbitrarily small,

and from (3.6.9) and (3.6.10)

ηn =
1

n2α
, ∀n ∈ N. (3.6.11)

Let Tn(·|xn) = PXn , then (3.6.5) and (3.6.10) yield (3.6.4).

Remark 3.31. The sequences {δn} and {ηn} in the blowing-up property

(3.6.4), as specified in (3.6.10) and (3.6.11), only depend on {ξn} in the

left side of (3.6.4).

3.6.2 Strong converse for the degraded broadcast channel

We are now ready to demonstrate how the blowing-up lemma can be

used to obtain strong converses. Following [173], we use the notation

T : U → V for a DMC with finite input alphabet U , finite output al-

phabet V, and transition probabilities T (v|u) for (u, v) ∈ U × V.

Consider the problem of characterizing the capacity region of a 2-

user discrete memoryless degraded broadcast channel (DM-DBC) with

independent messages, defined as follows:

Definition 3.3 (DM-DBC). Let X , Y and Z be finite sets. A DM-DBC

is specified by a pair of DMCs T1 : X → Y and T2 : X → Z where there

exists a DMC T3 : Y → Z such that

T2(z|x) =
∑

y∈Y
T1(y|x)T3(z|y), ∀ (x, z) ∈ X × Z. (3.6.12)

(More precisely, this is a stochastically degraded broadcast channel –

see, e.g., [144, Section 15.6] and [175, Section 5.4]; a physically degraded

broadcast channel has the probability law

P(y, z|x) = T1(y|x)T3(z|y), ∀ (x, y, z) ∈ X × Y × Z (3.6.13)

so, to every DM-DBC, there is a corresponding physically degraded

broadcast channel with the same conditional marginal distributions.
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Definition 3.4 (Codes). Given n,M1,M2 ∈ N, an (n,M1,M2)-code C
for the broadcast channel consists of the following objects:

1. An encoding map fn : {1, . . . ,M1} × {1, . . . ,M2} → X n;

2. A collection D1 of M1 disjoint decoding sets for receiver 1

D1,i ⊂ Yn, i ∈ {1, . . . ,M1}
and a collection D2 of M2 disjoint decoding sets for receiver 2

D2,j ⊂ Zn, j ∈ {1, . . . ,M2}.
Given ε1, ε2 ∈ (0, 1), we say that the code C = (fn,D1,D2) is an

(n,M1,M2, ε1, ε2)-code if

max
1≤i≤M1

max
1≤j≤M2

Tn
1

(
Dc

1,i

∣∣∣fn(i, j)
)

≤ ε1, (3.6.14a)

max
1≤i≤M1

max
1≤j≤M2

Tn
2

(
Dc

2,j

∣∣∣fn(i, j)
)

≤ ε2. (3.6.14b)

In other words, the maximal probability of error criterion is used in

Definition 3.4. Note that, for general multiuser channels, the capacity

region with respect to the maximal probability of error may be strictly

smaller than the capacity region with respect to the average probability

of error [176]; nevertheless, these two capacity regions are identical for

discrete memoryless broadcast channels [177].

Definition 3.5 (Achievable rates). A pair of rates (R1, R2) (in nats per

channel use) is said to be (ε1, ε2)-achievable if for every δ > 0, there

exists an (n,M1,M2, ε1, ε2)-code (for a sufficiently large block length

n) such that

1
n lnMk ≥ Rk − δ, k ∈ {1, 2}. (3.6.15)

Likewise, (R1, R2) is said to be achievable if it is (ε1, ε2)-achievable for

all 0 < ε1, ε2 ≤ 1 (according to the criterion of the maximal probability

of error in Definition 3.4, this is equivalent to the requirement that

(R1, R2) is (ε1, ε2)-achievable for arbitrarily small values of ε1, ε2 > 0).

Let R(ε1, ε2) denote the set of all (ε1, ε2)-achievable rates, and let R
denote the set of all achievable rates. Clearly,

R =
∩

(ε1,ε2)∈(0,1)2

R(ε1, ε2) (3.6.16)

is the capacity region.
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The capacity region of a discrete memoryless broadcast channel

only depends on its conditional marginal distributions (see, e.g., [175,

Lemma 5.1]). This observation implies that the capacity region of a

DM-DBC is identical to the capacity region of a discrete memoryless

physically degraded broadcast channel when both channels have the

same conditional marginal distributions. Consequently, for a DM-DBC,

it can be assumed w.l.o.g. that X → Y1 → Y2 is a Markov chain (see,

e.g., [175, Section 5.4]).

The capacity region of the DM-DBC is fully characterized, and its

achievability was demonstrated by Cover [178] and Bergmans [179] via

the use of superposition coding. Weak converses were proved by Wyner

[180], Gallager [181], and Ahlswede and Körner [182], and a strong

converse was proved by Ahlswede, Gács and Körner [73].

In the absence of a common message, the capacity region of the

DM-DBC is provided as follows (see, e.g., [175, Theorem 5.2]).

Theorem 3.6.3. A rate pair (R1, R2) is achievable for the DM-DBC

(T1, T2), characterized by (3.6.12) with PY |X = T1 and PZ|X = T2, if

and only if

R1 ≤ I(X;Y |U), R2 ≤ I(U ;Z) (3.6.17)

for an auxiliary random variable U taking its values in U such that

U → X → Y → Z is a Markov chain, and |U| ≤ min {|X |, |Y|, |Z|} + 1.

The strong converse for the DM-DBC, due to Ahlswede, Gács and

Körner [73], states that allowing for nonvanishing probabilities of error

does not enlarge the achievable region:

Theorem 3.6.4 (Strong converse for the DM-DBC).

R(ε1, ε2) = R, ∀ (ε1, ε2) ∈ (0, 1)2. (3.6.18)

Before proceeding with the formal proof of this theorem, we briefly

describe the way in which the blowing-up lemma enters the picture.

The main idea is that, given an arbitrary code, one can “blow up” the

decoding sets in such a way that the probability of decoding error can

be as small as desired (for large enough n). Of course, the blown-up

decoding sets are no longer disjoint, so the resulting object is no longer
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a code according to Definition 3.4. Note, however, that these blown-up

sets transform the original code into a list code with a subexponential

list size, and one can use a generalization of Fano’s inequality for list

decoding (see Appendix 3.E) to get nontrivial converse bounds.

Proof (Theorem 3.6.4). Given ε̃1, ε̃2 ∈ (0, 1), let C̃ = (fn, D̃1, D̃2) be

an arbitrary (n,M1,M2, ε̃1, ε̃2)-code for the DM-DBC (T1, T2) with

D̃1 =
{
D̃1,i

}M1

i=1
, D̃2 =

{
D̃2,j

}M2

j=1
.

By hypothesis, the decoding sets in D̃1 and D̃2 satisfy

min
1≤i≤M1

min
1≤j≤M2

Tn
1

(
D̃1,i

∣∣ fn(i, j)
)

≥ 1 − ε̃1, (3.6.19a)

min
1≤i≤M1

min
1≤j≤M2

Tn
2

(
D̃2,j

∣∣ fn(i, j)
)

≥ 1 − ε̃2. (3.6.19b)

For an arbitrary α > 0, let {δn} be the following positive sequence:

δn =

√
1

2n
ln

(
1

1 − max{ε̃1, ε̃2}

)
+

√
α lnn

n
, ∀n ∈ N. (3.6.20)

Note that, as n → ∞,

nβ δn → 0, ∀β < 1
2 , (3.6.21)

√
n δn → ∞. (3.6.22)

For each i ∈ {1, . . . ,M1} and j ∈ {1, . . . ,M2}, define the “blown-up”

decoding sets

D1,i ,
[
D̃1,i

]
nδn

, D2,j ,
[
D̃2,j

]
nδn

. (3.6.23)

We rely in the following on Lemma 3.6.1 with (3.6.10) and (3.6.11).

Note that the correspondence between (3.6.10) and (3.6.20) is

ξn =
1

n
ln

(
1

1 − max{ε̃1, ε̃2}

)
, ∀n ∈ N (3.6.24)

which follows by comparing the condition in the left side of (3.6.4)

and (3.6.19), yielding the equation exp(−nξn) = 1−max{ε̃1, ε̃2}. From
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(3.6.19), the blown-up decoding sets in (3.6.23) with the sequence {δn}
defined in (3.6.20) imply that, for every n ∈ N,

min
1≤i≤M1

min
1≤j≤M2

Tn
1

(
D1,i

∣∣∣fn(i, j)
)

≥ 1 − n−2α, (3.6.25a)

min
1≤i≤M1

min
1≤j≤M2

Tn
2

(
D2,j

∣∣∣fn(i, j)
)

≥ 1 − n−2α. (3.6.25b)

Let D1 = {D1,i}M1

i=1, and D2 = {D2,j}M2

j=1. We have thus constructed

a triple (fn,D1,D2) satisfying (3.6.25). Note, however, that this new

object is not a code because the blown-up sets D1 are not disjoint, and

the same holds for the blown-up sets D2. On the other hand, each given

n-tuple yn ∈ Yn belongs to a subexponential number of the D1,i’s, and

the same applies to D2,j ’s. More precisely, let us define the sets

N1(yn) , {i : yn ∈ D1,i} , ∀ yn ∈ Yn, (3.6.26a)

N2(zn) , {j : zn ∈ D2,j} , ∀ zn ∈ Zn. (3.6.26b)

A simple combinatorial argument (to be explained) shows that there

exists a positive sequence {ηn}∞
n=1 such that ηn → 0 as n → ∞, and

|N1(yn)| ≤ exp(nηn), ∀ yn ∈ Yn, (3.6.27a)

|N2(zn)| ≤ exp(nηn), ∀ zn ∈ Zn. (3.6.27b)

In order to get an explicit expression for {ηn}, for every yn ∈ Yn and

r ≥ 0, let Br(yn) ⊆ Yn denote the ball of dn-radius r centered at yn:

Br(yn) , {ŷn ∈ Yn : dn(ŷn, yn) ≤ r} ≡ {yn}r (3.6.28)

where dn is the Hamming metric (3.6.3), and {yn}r denotes the r-

blowup of the singleton set {yn}. Since δn → 0 as n → ∞, there exists

n0 ∈ N such that δn + 1
n ≤ 1

2 for every n ≥ n0. Consequently, it follows

that for every n ≥ n0 and yn ∈ Yn,

|N1(yn)| ≤ |Bnδn(yn)| (3.6.29)

=

⌈nδn⌉∑

i=0

(
n

i

)
|Y|i (3.6.30)

≤ (⌈nδn⌉ + 1
)
(

n

⌈nδn⌉

)
|Y|⌈nδn⌉ (3.6.31)

≤ (nδn + 2) exp

(
nh
(
δn +

1

n

))
|Y|nδn+1, (3.6.32)
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where (3.6.29) and (3.6.30) hold, respectively, due to (3.6.26) and

(3.6.28); (3.6.31) holds since, for n ≥ n0, we have ⌈nδn⌉ ≤ ⌊n
2 ⌋, and the

binomial coefficients {(nk
)} are monotonically increasing in k if k ≤ ⌊n

2 ⌋;

(3.6.32) holds since
(n

k

) ≤ exp
(
nh

(
k
n

))
if k ≤ ⌊

n
2

⌋
where h denotes

the binary entropy function; similarly,

|N2(zn)| ≤ (nδn + 2) exp

(
nh

(
δn +

1

n

))
|Z|nδn+1 (3.6.33)

for all n ≥ n0 and zn ∈ Zn. From (3.6.27), (3.6.32) and (3.6.33), the

sequence {ηn} can be defined such that for all n ≥ n0

ηn =
ln(nδn + 2)

n
+ h

(
δn +

1

n

)
+

(
δn +

1

n

)
a, (3.6.34)

with a , log
(
max

{|Y|, |Z|}); hence, by letting n → ∞, ηn → 0.

We are now ready to apply a generalization of Fano’s inequality for

list decoding [182]. To this end, for every j ∈ {1, . . . ,M2}, let

T (j) , {fn(i, j) : 1 ≤ i ≤ M1} , (3.6.35)

let U be an equiprobable random variable on {1, . . . ,M2}, and let

Xn ∈ X n be an equiprobable random variable on T (U). Finally, let

Y n ∈ Yn and Zn ∈ Zn be generated from Xn via the DMCs Tn
1 and

Tn
2 , respectively. Now, consider the error event of the second receiver

(which corresponds to the degraded channel Tn
2 ); the error event of a

list decoder for the second receiver refers to the case where U ̸∈ N2(Zn).

Let ζn be the error probability of the list decoder for the blown-up sets

D2. Consequently, we get

1
n lnM2 = 1

n H(U) (3.6.36)

= 1
n [I(U ;Zn) +H(U |Zn)] (3.6.37)

≤ 1
n

[
I(U ;Zn) + h(ζn) + ζn lnM2

]
+ (1 − ζn)ηn (3.6.38)

= 1
n I(U ;Zn) + o(1), (3.6.39)

where (3.6.38) follows from a modification of Fano’s inequality for list

decoding (see Appendix 3.E) together with (3.6.27); (3.6.39) uses the

fact that ηn → 0 and, by (3.6.25), ζn ≤ n−2α for some α > 0, so also
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ζn → 0 as n → ∞. Using a similar argument, we can also prove that

1
n lnM1 ≤ 1

n I(Xn;Y n|U) + o(1). (3.6.40)

By the weak converse for the DM-DBC [182], the rate pair (R1, R2)

with R1 = 1
n I(Xn;Y n|U) and R2 = 1

n I(U ;Zn) is included in the

achievable region R. Since every element of R(ε1, ε2) can be expressed

as a limit of rates
(

1
n lnM1,

1
n lnM2

)
in the region R, and since the

achievable region R is closed, we conclude that R(ε1, ε2) ⊆ R for all

ε1, ε2 ∈ (0, 1), and the reverse inclusion is trivial by (3.6.16).

3.6.3 Lossless source coding with side information

Our second example of the use of the blowing-up lemma to prove a

strong converse is a bit more sophisticated, and concerns the problem

of lossless source coding with side information. Let X and Y be finite

sets, and {(Xi, Yi)}∞
i=1 be a sequence of i.i.d. samples drawn from a

given joint distribution PXY ∈ P(X × Y). The X -valued and the Y-

valued parts of this sequence are observed by two independent encoders.

An (n,M1,M2)-code is a triple C =
(
f

(1)
n , f

(2)
n , gn

)
, where

f (1)
n : X n → {1, . . . ,M1} (3.6.41)

and

f (2)
n : Yn → {1, . . . ,M2} (3.6.42)

are the encoding maps and

gn : {1, . . . ,M1} × {1, . . . ,M2} → Yn (3.6.43)

is the decoding map. The decoder observes

J (1)
n = f (1)

n (Xn), J (2)
n = f (2)

n (Y n), (3.6.44)

and it wishes to reconstruct Y n with a small probability of error. The

reconstruction is given by

Ŷ n = gn
(
J (1)

n , J (2)
n

)

= gn
(
f (1)

n (Xn), f (2)
n (Y n)

)
. (3.6.45)
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We say that C =
(
f

(1)
n , f

(2)
n , gn

)
is an (n,M1,M2, ε)-code if

P

(
Ŷ n ̸= Y n

)
= P

(
gn
(
f (1)

n (Xn), f (2)
n (Y n)

) ̸= Y n
)

≤ ε. (3.6.46)

We say that a rate pair (R1, R2) is ε-achievable if, for any δ > 0 and

sufficiently large n ∈ N, there exists an (n,M1,M2, ε)-code C with

1

n
lnMk ≤ Rk + δ, k = 1, 2. (3.6.47)

A rate pair (R1, R2) is achievable if it is ε-achievable for all ε ∈ (0, 1].

Again, let R(ε) (resp., R) denote the set of all ε-achievable (resp.,

achievable) rate pairs. Clearly,

R =
∩

ε∈(0,1]

R(ε). (3.6.48)

The following characterization of the achievable region was obtained

by Ahlswede and Körner [182]:

Theorem 3.6.5. A rate pair (R1, R2) is achievable if and only if there

exist random variables U ∈ U , X ∈ X , Y ∈ Y such that U → X → Y

is a Markov chain, (X,Y ) has the given joint distribution PXY , and

R1 ≥ I(X;U), (3.6.49)

R2 ≥ H(Y |U). (3.6.50)

Moreover, the domain U of U can be chosen so that |U| ≤ |X | + 2.

Our goal is to prove the corresponding strong converse, originally

established by Ahlswede, Gács and J. Körner [73], which states that

allowing for a nonvanishing error probability, as in (3.6.46), does not

asymptotically enlarge the achievable region:

Theorem 3.6.6 (Strong converse theorem for lossless source coding with

side information).

R(ε) = R, ∀ ε ∈ (0, 1). (3.6.51)

In preparation for the proof of Theorem 3.6.6, we need to introduce

some additional terminology and definitions.
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Definition 3.6. [173, Chapter 6] Given two finite sets U and V, a DMC

S : U → V, and a parameter η ∈ (0, 1], we say that a set B ⊆ V is a

η-image of u ∈ U under S if S(B|u) ≥ η.

For any B ⊆ V, let Dη(B;S) ⊆ U denote the set of all u ∈ U such

that B is a η-image of u under S:

Dη(B;S) ,
{
u ∈ U : S(B|u) ≥ η

}
. (3.6.52)

Definition 3.7. Let P be a probability measure on X , and n ∈ N. A

sequence xn ∈ X n is a (P, δ)-typical sequence if, for every a ∈ X ,
∣∣∣∣
1

n
N(a|xn) − P (a)

∣∣∣∣ < δ (3.6.53)

where N(a|xn) denotes the number of appearances of a in xn. The

(P, δ)-typical set is the set of all these typical sequences.

Let PXY ∈ P(X × Y), and let T : X → Y be a DMC with the

conditional probability distribution PY |X . For QY ∈ P(Y) which is

strictly positive, and parameters c ≥ 0 and ε ∈ (0, 1], let

Γ̂n(c, ε;QY ) (3.6.54)

, min
B⊆Yn

{
1

n
lnQn

Y (B) :
1

n
lnPn

X

(
D1−ε(B;Tn) ∩ T n

[X,δn]

)
≥ −c

}

where PX is the marginal distribution of X, and T n
[X,δn] ⊂ X n denotes

the (PX , δn)-typical set with an arbitrary sequence {δn} that satisfies

δn → 0,
√
nδn → ∞. (3.6.55)

Theorem 3.6.7. For any c ≥ 0 and any ε ∈ (0, 1],

lim
n→∞ Γ̂n(c, ε;QY ) = Γ(c;QY ), (3.6.56)

where

Γ(c;QY ) , − max
U∈U ,

|U|≤|X |+2

{
D(PY |U ∥QY |PU ) : U → X → Y, I(X;U) ≤ c

}
.

(3.6.57)

Moreover, the function c 7→ Γ(c;QY ) is continuous.
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Proof. The proof consists of two major steps. The first is to show

that (3.6.56) holds for a suitable sequence εn → 0, and that the limit

Γ(c;QY ) is equal to (3.6.57). We omit the details of this step and refer

the reader to the original paper by Ahlswede, Gács and Körner [73].

The second step, which relies on the blowing-up lemma, is to show that

for all ε ∈ (0, 1]

lim
n→∞

[
Γ̂n(c, ε;QY ) − Γ̂n(c, εn;QY )

]
= 0. (3.6.58)

To that end, let ε be fixed and let {δn} be chosen to satisfy (3.6.55).

For a fixed n, let B ⊆ Yn be a set such that Tn(B|xn) ≥ 1 − ε for some

xn ∈ X n. Then, we get

Tn(Bnδn |xn) ≥ 1 − exp

[
−2

(√
n δn −

√
1
2 ln 1

1−ε

)2
]

(3.6.59)

, 1 − εn (3.6.60)

where (3.6.59) holds by Lemma 3.6.2 with r = nδn; the sequence {εn}
in (3.6.60) converges to zero in view of (3.6.55) where

√
nδn → ∞.

Consequently, it follows from (3.6.52) that for all sufficiently large n

D1−εn(Bnδn ;Tn) ∩ T n
[X,δn] ⊇ D1−ε(B;Tn) ∩ T n

[X,δn]. (3.6.61)

On the other hand, since QY is strictly positive,

Qn
Y (Bnδn) =

∑

yn∈Bnδn

Qn
Y (yn) (3.6.62)

≤
∑

yn∈B
Qn

Y (Bnδn(yn)) (3.6.63)

≤ sup
yn∈Yn

Qn
Y (Bnδn(yn))

Qn
Y (yn)

∑

yn∈B
Qn

Y (yn) (3.6.64)

= sup
yn∈Yn

Qn
Y (Bnδn(yn))

Qn
Y (yn)

·Qn
Y (B). (3.6.65)

Using (3.6.65) together with the fact that (see [73, Lemma 5])

lim
n→∞

1

n
ln sup

yn∈Yn

Qn
Y (Bnδn(yn))

Qn
Y (yn)

= 0 (3.6.66)
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yields

lim
n→∞

sup
B⊆Yn

1

n
ln
Qn

Y (Bnδn)

Qn
Y (B)

= 0. (3.6.67)

From (3.6.61) and (3.6.67), we get (3.6.58). The bound on |U| in (3.6.57)

follows from Carathéodory’s theorem [73].

We are now ready to prove Theorem 3.6.6.

Proof. Let C =
(
f

(1)
n , f

(2)
n , gn

)
be an arbitrary (n,M1,M2, ε)-code. For

a given index j ∈ {1, . . . ,M1}, we define the set

Yn(j) ,
{
yn ∈ Yn : yn = gn

(
j, f (2)

n (yn)
)}

, (3.6.68)

which consists of all the sequences yn ∈ Yn that are correctly decoded

for any xn ∈ X n such that f
(1)
n (xn) = j. Using this notation, we can

write

E

[
Tn(Yn(f (1)

n (Xn))
∣∣Xn)] ≥ 1 − ε. (3.6.69)

If we define the set

An ,
{
xn ∈ X n : Tn(Yn(f (1)

n (xn))
∣∣xn) ≥ 1 − √

ε
}
, (3.6.70)

then, using the so-called “reverse Markov inequality”3 and (3.6.69), we

see that

Pn
X(An) = 1 − Pn

X(Ac
n) (3.6.71)

= 1 − Pn
X

(
Tn
(
Yn(f (1)

n (Xn)
) |Xn

)

︸ ︷︷ ︸
≤1

< 1 − √
ε

)
(3.6.72)

≥ 1 −
1 − E

[
Tn
(Yn(f

(1)
n (Xn))

∣∣Xn
)]

1 − (1 − √
ε)

(3.6.73)

≥ 1 − 1 − (1 − ε)√
ε

= 1 − √
ε. (3.6.74)

3The reverse Markov inequality states that if Y is a random variable such that
Y ≤ b a.s. for some constant b, then for all a < b

P(Y ≤ a) ≤
b − E[Y ]

b − a
.
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Consequently, for all sufficiently large n, we have

Pn
X

(
An ∩ T n

[X,δn]

)
≥ 1 − 2

√
ε. (3.6.75)

This implies, in turn, that there exists some j∗ ∈ f
(1)
n (X n), such that

Pn
X

(
D1−√

ε(Yn(j∗)) ∩ T n
[X,δn]

)
≥ 1 − 2

√
ε

M1
. (3.6.76)

On the other hand,

M2 =
∣∣∣f (2)

n (Yn)
∣∣∣ ≥ |Yn(j∗)|. (3.6.77)

We are now in a position to apply Theorem 3.6.7. If we choose QY

to be the equiprobable distribution on Y, then it follows from (3.6.76)

and (3.6.77) that

1
n lnM2 ≥ 1

n ln |Yn(j∗)| (3.6.78)

= 1
n lnQn

Y (Yn(j∗)) + ln |Y| (3.6.79)

≥ Γ̂n

(
− 1

n ln(1 − 2
√
ε) + 1

n lnM1,
√
ε; QY

)
+ ln |Y|. (3.6.80)

Using Theorem 3.6.7, we conclude that the bound

1
n lnM2 ≥ Γ

(
− 1

n ln(1 − 2
√
ε) + 1

n lnM1; QY

)
+ ln |Y| + o(1)

(3.6.81)

holds for any (n,M1,M2, ε)-code. If (R1, R2) ∈ R(ε), then there

exists a sequence {Cn}∞
n=1, where each Cn =

(
f

(1)
n , f

(2)
n , gn

)
is an

(n,M1,n,M2,n, ε)-code, and

lim
n→∞

1
n lnMk,n = Rk, k = 1, 2. (3.6.82)

Using this in (3.6.81), together with the continuity of the mapping

c 7→ Γ(c;QY ), we get

R2 ≥ Γ(R1;QY ) + ln |Y|, ∀(R1, R2) ∈ R(ε). (3.6.83)

By the definition of Γ in (3.6.57), there exists a triple U → X → Y

such that I(X;U) ≤ R1 and

Γ(R1;QY ) = −D(PY |U ∥QY |PU ) = − ln |Y| +H(Y |U), (3.6.84)
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where the last equality is due to the fact that U → X → Y is a Markov

chain, and QY is an equiprobable distribution on Y. Therefore, (3.6.83)

and (3.6.84) imply that

R2 ≥ H(Y |U). (3.6.85)

Consequently, the triple (U,X, Y ) ∈ R by Theorem 3.6.5, and hence

R(ε) ⊆ R for all ε > 0. Since R ⊆ R(ε) by definition, the proof of

Theorem 3.6.6 is completed.

3.6.4 The empirical distribution of good channel codes with non-
vanishing error probability

A more recent application of concentration of measure inequalities to

information theory has to do with the characterization of the stochastic

behavior of output sequences of good channel codes. Conceptually, the

random coding argument, originally used by Shannon and many times

since, to show the existence of good channel codes suggests that the

input (respectively, output) sequence of such a code should resemble

a typical realization of a sequence of i.i.d. random variables sampled

from a capacity-achieving input (respectively, output) distribution. For

capacity-achieving sequences of codes with asymptotically vanishing

probability of error, this intuition has been rigorously analyzed by

Shamai and Verdú who proved the following remarkable statement

[183, Theorem 2]: given a DMC T : X → Y, every capacity-achieving

sequence of channel codes with asymptotically vanishing (maximal or

average) probability of error has the property that

lim
n→∞

1

n
D(PY n∥P ∗

Y n) = 0, (3.6.86)

where, for each n, PY n denotes the output distribution on Yn induced

by the code (assuming that the messages are equiprobable), while P ∗
Y n

denotes the product of n copies of the single-letter capacity-achieving

output distribution. In fact, the convergence in (3.6.86) holds not just

for DMCs, but for arbitrary channels satisfying the condition

C = lim
n→∞

1

n
sup

PXn ∈P(X n)
I(Xn;Y n). (3.6.87)
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(These ideas go back to the work of Han and Verdú on approximation

theory of output statistics, see [184, Theorem 15]). In a recent paper

[63], Polyanskiy and Verdú extended the results of [183] for codes with

nonvanishing probability of error, provided one uses the maximal prob-

ability of error criterion and deterministic encoders.

In this section, we present some of the results from [63, 185] in the

context of the material covered earlier in this chapter. To keep things

simple, we focus on channels with finite input and output alphabets.

Thus, let X and Y be finite sets, and consider a DMC T : X → Y. The

capacity C is calculated by solving the optimization problem

C = max
PX∈P(X )

I(X;Y ), (3.6.88)

where X and Y are related via T . Let P ∗
X ∈ P(X ) be a capacity-

achieving input distribution (there may be several). It can be shown

[186, 187] that the corresponding output distribution P ∗
Y ∈ P(Y) is

unique, and for every n ∈ N, the product distribution P ∗
Y n ≡ (P ∗

Y )⊗n

has the key property

D(PY n|Xn=xn∥P ∗
Y n) ≤ nC, ∀xn ∈ X n (3.6.89)

where PY n|Xn=xn is shorthand for the product distribution Tn(·|xn).

From (3.6.89), we see that the capacity-achieving output distribution

P ∗
Y n dominates every output distribution PY n induced by an arbitrary

input distribution PXn ∈ P(X n):

PY n|Xn=xn ≪ P ∗
Y n , ∀xn ∈ X n =⇒ PY n ≪ P ∗

Y n , ∀PXn ∈ P(X n).

This has two important consequences:

1. The information density is well-defined for every xn ∈ X n and

yn ∈ Yn:

i∗Xn;Y n(xn; yn) , ln
dPY n|Xn=xn

dP ∗
Y n

(yn). (3.6.90)

2. For an input distribution PXn , the respective output distribution

PY n satisfies

D(PY n∥P ∗
Y n) ≤ nC − I(Xn;Y n). (3.6.91)
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Indeed, by the chain rule for divergence, it follows that for every

input distribution PXn ∈ P(X n)

I(Xn;Y n) = D(PY n|Xn∥PY n |PXn)

= D(PY n|Xn∥P ∗
Y n |PXn) −D(PY n∥P ∗

Y n)

≤ nC −D(PY n∥P ∗
Y n). (3.6.92)

Inequality (3.6.91) follows upon rearranging terms in (3.6.92).

Now let us bring codes into the picture. Given n,M ∈ N, an (n,M)-

code for T is a pair C = (fn, gn) consisting of an encoding map

fn : {1, . . . ,M} → X n and a decoding map gn : Yn → {1, . . . ,M}. Given

0 < ε ≤ 1, we say that C is an (n,M, ε)-code if

max
1≤i≤M

P
(
gn(Y n) ̸= i

∣∣Xn = fn(i)
) ≤ ε. (3.6.93)

Remark 3.32. Polyanskiy and Verdú use a more precise nomenclature

in [63] and say that every such C = (fn, gn) satisfying (3.6.93) is an

(n,M, ε)max,det-code to indicate explicitly that the encoding map fn

is deterministic, and that the maximal probability of error criterion is

used. Here, we only consider codes of this type, so we adhere to our

simplified terminology.

Consider an arbitrary (n,M)-code C = (fn, gn) for T , and let J be

a random variable having an equiprobable distribution on {1, . . . ,M}.

Hence, we can think of every i ∈ {1 . . . ,M} as one of M equiprobable

messages to be transmitted over T . Let P
(C)
Xn denote the distribution of

Xn = fn(J), and let P
(C)
Y n denote the corresponding output distribution.

The central result of [63] is that the output distribution P
(C)
Y n of every

(n,M, ε)-code satisfies

D
(
P

(C)
Y n

∥∥P ∗
Y n

) ≤ nC − lnM + o(n); (3.6.94)

moreover, the o(n) term was refined in [63, Theorem 5] to O(
√
n) for

every DMC, except those that have zeroes in their transition matrix.

In the following, we present a sharpened bound with a modified proof,

in which we determine an explicit form of the term that scales like

O(
√
n).
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Just as in [63], the proof of (3.6.94) with the O(
√
n) term uses the

following strong converse for channel codes due to Augustin [188] (see

also [63, Theorem 1] and [189, Section 2]):

Theorem 3.6.8 (Augustin). Let S : U → V be a DMC with finite in-

put and output alphabets, and let PV |U be the transition probability

induced by S. For every M ∈ N and 0 < ε ≤ 1, let f : {1, . . . ,M} → U
and g : V → {1, . . . ,M} be mappings, such that

max
1≤i≤M

P
(
g(V ) ̸= i

∣∣U = f(i)
) ≤ ε. (3.6.95)

Let QV ∈ P(V) be an auxiliary output distribution, and fix an arbitrary

mapping γ : U → R. Then, the following result holds:

M ≤ exp
(
E[γ(U)]

)

inf
u∈U

PV |U=u

(
ln

dPV |U=u

dQV
(V ) < γ(u)

)
− ε

, (3.6.96)

provided that the denominator in the right side of (3.6.96) is strictly

positive. The expectation in the numerator is taken with respect to the

distribution of U = f(J) where J is equiprobable on {1, . . . ,M}.

We first establish the bound (3.6.94) for the case when the DMC T

is such that

C1 , max
x,x′∈X

D(PY |X=x∥PY |X=x′) < ∞. (3.6.97)

Note that C1 < ∞ if and only if the transition matrix of T does not

have any zeroes. Consequently,

c(T ) , 2 max
x∈X

max
y,y′∈Y

∣∣∣∣∣ln
PY |X(y|x)

PY |X(y′|x)

∣∣∣∣∣ < ∞. (3.6.98)

We can now establish the following sharpened version of the bound in

[63, Theorem 5]:

Theorem 3.6.9. Let T : X → Y be a DMC with C > 0 satisfying

(3.6.97). Then, every (n,M, ε)-code C for T with 0 < ε < 1/2 satisfies

D
(
P

(C)
Y n

∥∥P ∗
Y n

) ≤ nC − lnM + ln
1

ε
+ c(T )

√
n

2
ln

1

1 − 2ε
. (3.6.99)
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Remark 3.33. As it is shown in [63], the restriction to codes with

deterministic encoders and to the maximal probability of error criterion

is necessary both for Theorems 3.6.9 and 3.6.10.

Proof. Fix an input sequence xn ∈ X n, and consider the function

hxn : Yn → R defined for the DMC as follows:

hxn(yn) , ln
dPY n|Xn=xn

dP
(C)
Y n

(yn) = ln
PY n|Xn=xn(yn)

P
(C)
Y n (yn)

(3.6.100)

for every yn ∈ Yn, which yields

E[hxn(Y n)|Xn = xn] = D(PY n|Xn=xn∥P (C)
Y n ). (3.6.101)

Moreover, for every i ∈ {1, . . . , n}, y, y′ ∈ Y, and yi ∈ Yn−1, we have

(see the notation used in (3.1.11))
∣∣∣hi,xn(y|yi) − hi,xn(y′|yi)

∣∣∣

≤
∣∣∣lnPY n|Xn=xn(yi−1, y, yn

i+1) − lnPY n|Xn=xn(yi−1, y′, yn
i+1)

∣∣∣

+
∣∣∣lnP (C)

Y n (yi−1, y, yn
i+1) − lnP

(C)
Y n (yi−1, y′, yn

i+1)
∣∣∣

≤
∣∣∣∣∣ln

PYi|Xi=xi
(y)

PYi|Xi=xi
(y′)

∣∣∣∣∣+

∣∣∣∣∣∣∣
ln
P

(C)

Yi|Y
i(y|yi)

P
(C)

Yi|Y
i(y′|yi)

∣∣∣∣∣∣∣

≤ 2 max
x∈X

max
y,y′∈Y

∣∣∣∣∣ln
PY |X(y|x)

PY |X(y′|x′)

∣∣∣∣∣ (3.6.102)

= c(T ) < ∞ (3.6.103)

where (3.6.102) is justified in Appendix 3.F, and (3.6.103) is due to

(3.6.98). Hence, for every xn ∈ X n, the function hxn : Yn → R satisfies

the bounded differences condition (3.3.46) with c1 = . . . = cn = c(T ).

In view of (3.6.101) and (3.6.103), Theorem 3.3.8 (a restatement of

McDiarmid’s inequality) implies that for all r ≥ 0 and xn ∈ X n

PY n|Xn=xn

(
ln

dPY n|Xn=xn

dP
(C)
Y n

(Y n) ≥ D(PY n|Xn=xn∥P (C)
Y n ) + r

)

≤ exp

(
− 2r2

nc2(T )

)
. (3.6.104)
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(In fact, the above derivation goes through for every possible output

distribution PY n , not necessarily one induced by a code). This is where

we depart from the original proof by Polyanskiy and Verdú [63]: we

use McDiarmid’s inequality to control the deviation probability for

the “conditional” information density hxn(Y n) directly, whereas they

bounded the variance of hxn(Y n) using a Poincaré inequality, and then

bounded the deviation probability using Chebyshev’s inequality. As it

is shown in the sequel, the concentration inequality (3.6.104) allows us

to explicitly identify the dependence of the constant multiplying
√
n in

(3.6.99) on the channel T and on the maximal error probability ε.

We are now in a position to apply Augustin’s strong converse. To

that end, let U = X n, V = Yn, and consider the DMC Tn : U → V
together with an (n,M, ε)-code C = (fn, gn). Furthermore, let

ζn = ζn(ε) , c(T )

√
n

2
ln

1

1 − 2ε
, (3.6.105)

γ(xn) , D(PY n|Xn=xn∥P (C)
Y n ) + ζn. (3.6.106)

Using (3.6.96) with the auxiliary distribution QV = P
(C)
Y n , we get

M ≤ exp
(
E[γ(Xn)]

)

inf
xn∈X n

PY n|Xn=xn

(
ln

dPY n|Xn=xn

dP
(C)
Y n

(Y n) < γ(xn)

)
− ε

(3.6.107)

where, from (3.6.106),

E[γ(Xn)] = D
(
PY n|Xn∥P (C)

Y n |P (C)
Xn

)
+ ζn. (3.6.108)

The concentration inequality in (3.6.104) with (3.6.105) and (3.6.106)

give that, for every xn ∈ X n,

PY n|Xn=xn

(
ln

dPY n|Xn=xn

dP
(C)
Y n

(Y n) ≥ γ(xn)

)
≤ exp

(
− 2ζ2

n

nc2(T )

)

= 1 − 2ε, (3.6.109)

which implies that

inf
xn∈X n

PY n|Xn=xn

(
ln

dPY n|Xn=xn

dP
(C)
Y n

(Y n) < γ(xn)

)
≥ 2ε. (3.6.110)
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Hence, from (3.6.107), (3.6.108) and (3.6.110), it follows that

M ≤ 1

ε
exp

(
D
(
PY n|Xn∥P (C)

Y n |P (C)
Xn

)
+ ζn

)
(3.6.111)

so, taking logarithms on both sides of (3.6.111) and rearranging terms

gives

D(PY n|Xn∥P (C)
Y n |P (C)

Xn ) ≥ lnM + ln ε− ζn

= lnM + ln ε− c(T )

√
n

2
ln

1

1 − 2ε
(3.6.112)

where (3.6.112) is due to (3.6.105). We are now ready to derive (3.6.99):

D
(
P

(C)
Y n

∥∥P ∗
Y n

)

= D
(
PY n|Xn

∥∥P ∗
Y n

∣∣P (C)
Xn

)−D
(
PY n|Xn

∥∥P (C)
Y n

∣∣P (C)
Xn

)
(3.6.113)

≤ nC − lnM + ln
1

ε
+ c(T )

√
n

2
ln

1

1 − 2ε
(3.6.114)

where (3.6.113) uses the chain rule for divergence, while (3.6.114) relies

on (3.6.89) and (3.6.112).

For an arbitrary DMC T with nonzero capacity and zeroes in its

transition matrix, we have the following result which forms a sharpened

version of the bound in [63, Theorem 6]:

Theorem 3.6.10. Let T : X → Y be a DMC with capacity C > 0, and

let ε ∈ (0, 1). Every (n,M, ε)-code C for T satisfies

D
(
P

(C)
Y n

∥∥P ∗
Y n

) ≤ nC − lnM +O
(√

n (lnn)3/2
)

(3.6.115)

and, more precisely, for every such code

D
(
P

(C)
Y n

∥∥P ∗
Y n

) ≤ nC − lnM

+
√

2n (lnn)3/2

(
1 +

√
1

lnn
ln

1

1 − ε

) (
1 +

ln |Y|
lnn

)

+ 3 lnn+ ln
(
2|X ||Y|2). (3.6.116)
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Proof. Given an (n,M, ε)-code C = (fn, gn), let c1, . . . , cM ∈ X n be its

codewords, and let D̃1, . . . , D̃M ⊆ Yn be the respective decoding sets:

D̃i = g−1
n (i) ≡ {yn ∈ Yn : gn(yn) = i} , i ∈ {1, . . . ,M}. (3.6.117)

Define

δn = δn(ε) =
1

n




√
n lnn

2
+

√
n

2
ln

1

1 − ε




(3.6.118)

(note that nδn is an integer) then, by Lemma 3.6.2, the “blown-up”

decoding sets Di ,
[
D̃i

]
nδn

satisfy

PY n|Xn=ci
(Dc

i ) ≤ exp


−2n

(
δn −

√
1

2n
ln

1

1 − ε

)2



≤ 1

n
, ∀ i ∈ {1, . . . ,M} (3.6.119)

where the last inequality holds since, from (3.6.118),

δn ≥
√

lnn

2n
+

√
1

2n
ln

1

1 − ε
. (3.6.120)

We now complete the proof by a random coding argument. For

N ,

⌈
M

n
( n

nδn

)|Y|nδn

⌉
, (3.6.121)

let U1, . . . , UN be i.i.d. random variables which are equiprobable on

{1, . . . ,M}. For each realization V = UN , let PXn(V ) ∈ P(X n) denote

the induced distribution of Xn(V ) = fn(cJ) where J is equiprobable

on the set {U1, . . . , UN }, and let PY n(V ) denote the output distribution

PY n(V ) =
1

N

N∑

i=1

PY n|Xn=cUi
. (3.6.122)

It can be easily verified that

E

[
PY n(V )

]
= P

(C)
Y n , (3.6.123)
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which is the output distribution of the code C, where the expectation in

the left side of (3.6.123) is with respect to the distribution of V = UN .

Now, for V = UN and for every yn ∈ Yn, let NV (yn) denote the list

of all those indices in {U1, . . . , UN } such that yn is included in the

blown-up decoding sets DU1 , . . . ,DUN
:

NV (yn) ,
{
j ∈ {1, . . . , N} : yn ∈ DUj

}
. (3.6.124)

Consider the list decoder Y n 7→ NV (Y n), and let

ε(V ) , P (J ̸∈ NV (Y n)|V ) (3.6.125)

denote the conditional decoding error probability. Eq. (3.6.121) yields

lnN ≥ lnM − lnn− ln

(
n

nδn

)
− nδn ln |Y|

≥ lnM − lnn− nδn (lnn+ ln |Y|) (3.6.126)

where the last inequality uses the simple inequality
(n

k

) ≤ nk for k ≤ n

with k , nδn (we note that the gain in using instead the inequality( n
nδn

) ≤ exp
(
nh(δn)

)
is asymptotically marginal for large n). Moreover,

since each yn ∈ Yn belongs to at most
( n

nδn

)|Y|nδn blown-up decoding

sets then

ln |NV (yn)| ≤ ln

(
n

nδn

)
+ nδn ln |Y|

≤ nδn (lnn+ ln |Y|) , ∀ yn ∈ Yn. (3.6.127)

Now, for each realization of V , we have

D
(
PY n(V )

∥∥P ∗
Y n

)

= D
(
PY n(V )|Xn(V )

∥∥P ∗
Y n

∣∣PXn(V )

)− I(Xn(V );Y n(V )) (3.6.128)

≤ nC − I(Xn(V );Y n(V )) (3.6.129)

≤ nC − I(J ;Y n(V )) (3.6.130)

= nC −H(J) +H(J |Y n(V )) (3.6.131)

≤ nC − lnN + (1 − ε(V )) max
yn∈Yn

ln |NV (yn)|

+ n ε(V ) ln |X | + ln 2 (3.6.132)

with the following reasoning:
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• (3.6.128) is by the chain rule for divergence;

• (3.6.129) is by (3.6.89);

• (3.6.130) is by the data processing inequality, and the fact that

J → Xn(V ) → Y n(V ) is a Markov chain;

• (3.6.131) holds since I(J ;Y n(V )) = H(J) −H(J |Y n(V ));

• (3.6.132) holds due to the generalization of Fano’s inequality for

list decoding (see Appendix 3.E), and since (i) N ≤ |X |n, (ii) J

is equiprobable on {U1, . . . , UN }, so H(J |U1, . . . , UN ) = lnN and

H(J) ≥ lnN .

Note that the quantities which are indexed by V in (3.6.128)–(3.6.132)

are random variables since they depend on the realization V = UN .

Assembling (3.6.126), (3.6.127) and (3.6.132) yields

D
(
PY n(V )

∥∥P ∗
Y n

) ≤ nC − lnM + lnn+ 2nδn (lnn+ ln |Y|)
+ nε(V ) ln |X | + ln 2. (3.6.133)

In view of (3.6.122) and the equiprobable distribution of the messages,

we get

E

[
PY n(V )

]
= P

(C)
Y n , (3.6.134)

and, from Jensen’s inequality and the convexity of the relative entropy,

E

[
D
(
PY n(V )

∥∥P ∗
Y n

)] ≥ D
(
P

(C)
Y n

∥∥P ∗
Y n

)
. (3.6.135)

By taking expectations on both sides of (3.6.133), we get from (3.6.135)

D
(
P

(C)
Y n

∥∥P ∗
Y n

) ≤ nC − lnM + lnn+ 2nδn (lnn+ ln |Y|)
+ nE [ε(V )] ln |X | + ln 2, (3.6.136)

and, in view of (3.6.119) and (3.6.125), we get

E [ε(V )] ≤ max
1≤i≤M

PY n|Xn=ci
(Dc

i ) ≤ 1

n
. (3.6.137)

Eq. (3.6.116) is finally derived by assembling (3.6.136), (3.6.137), and

the following simple bound on δn (obtained from (3.6.118)):

δn <

√
lnn

2n
+

√
1

2n
ln

1

1 − ε
+

1

n
. (3.6.138)
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We are now ready to examine some consequences of Theorems 3.6.9

and 3.6.10. To start with, consider a sequence {Cn}∞
n=1 where each code

Cn = (fn, gn) is an (n,Mn, ε)-code for a DMC T : X → Y with C > 0

and ε ∈ (0, 1). We say that {Cn}∞
n=1 is capacity-achieving if

lim
n→∞

1
n lnMn = C. (3.6.139)

From Theorem 3.6.10, it follows that every such sequence satisfies

lim
n→∞

1
n D

(
P

(Cn)
Y n

∥∥P ∗
Y n

)
= 0. (3.6.140)

Moreover, as it is shown in [63], if the restriction to either deterministic

encoding maps or to the maximal probability of error criterion is lifted,

then the convergence in (3.6.140) may no longer hold. This is in sharp

contrast to [183, Theorem 2], which states that (3.6.140) holds for every

capacity-achieving sequence of codes with vanishing probability of error

(maximal or average).

Another remarkable fact that follows from Theorems 3.6.9

and 3.6.10 is that a broad class of functions evaluated at the output

of a good channel code concentrate sharply around their expectations

with respect to the capacity-achieving output distribution. Specifically,

we have the following version of [63, Proposition 11] (again, we have

streamlined the statement and the proof a bit to relate them to earlier

material in this chapter):

Theorem 3.6.11. Let T : X → Y be a DMC with C > 0 and C1 < ∞
(see (3.6.97)). Let d : Yn × Yn → R+ be a metric, and suppose that

there exists a constant c > 0, such that the conditional probability

distributions PY n|Xn=xn , xn ∈ X n, as well as P ∗
Y n satisfy T1(c) on the

metric space (Yn, d). For ε ∈ (0, 1
2

)
, let

a , c(T )

√
1

2
ln

1

1 − 2ε
(3.6.141)

with c(T ) defined in (3.6.98). Then, for every (n,M, ε)-code C for T

and every Lipschitz function f : Yn → R with respect to the metric d

P
(C)
Y n

(
|f(Y n) − E[f(Y ∗n)]| ≥ r

)

≤ 4

ε
· exp

(
nC − lnM + a

√
n− r2

8c∥f∥2
Lip

)
, ∀ r > 0 (3.6.142)
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where E[f(Y ∗n)] designates the expected value of f(Y n) with respect

to the capacity-achieving output distribution P ∗
Y n , and ∥f∥Lip is the

Lipschitz constant of f as defined in (3.4.2).

Remark 3.34. Our sharpening of the corresponding result from [63,

Proposition 11] consists mainly in identifying an explicit form for the

constant in front of
√
n in the bound (3.6.142); this provides a closed-

form expression for the concentration of measure inequality.

Proof. For an arbitrary Lipschitz function f : Yn → R, define

µ∗
f , E[f(Y ∗n)], (3.6.143)

ϕ(xn) , E[f(Y n)|Xn = xn] (3.6.144)

for xn ∈ X n. Since (by assumption) each PY n|Xn=xn satisfies T1(c), by

Corollary 3.4.5,

P

(∣∣f(Y n) − ϕ(xn)
∣∣ ≥ r

∣∣Xn = xn
)

≤ 2 exp

(
− r2

2c ∥f∥2
Lip

)
(3.6.145)

for every xn ∈ X n and r ≥ 0. Now, given C, consider a subcode C′ with

the codewords xn ∈ X n satisfying ϕ(xn) ≥ µ∗
f + r (r ≥ 0). The number

of codewords M ′ of C′ satisfies

M ′ = MP
(C)
Xn

(
ϕ(Xn) ≥ µ∗

f + r
)
. (3.6.146)

Let Q = P
(C′)
Y n be the output distribution induced by C′. Then

µ∗
f + r ≤ 1

M ′
∑

xn∈C′

ϕ(xn) (3.6.147)

= EQ[f(Y n)] (3.6.148)

≤ E[f(Y ∗n)] + ∥f∥Lip

√
2cD(QY n∥P ∗

Y n) (3.6.149)

≤ µ∗
f + ∥f∥Lip

√
2c

(
nC − lnM ′ + a

√
n+ ln

1

ε

)
, (3.6.150)

where

• (3.6.147) is by definition of C′;

• (3.6.148) is by definition of ϕ in (3.6.144);
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• (3.6.149) follows from the assumption that P ∗
Y n satisfies T1(c)

and from the Kantorovich–Rubinstein formula (3.4.114); and

• (3.6.150) holds for the constant a = a(T, ε) > 0 in (3.6.141) due

to Theorem 3.6.9 (see (3.6.99)) and since C′ is an (n,M ′, ε)-code

for T . The constant µ∗
f in (3.6.150) is defined in (3.6.143).

From (3.6.146)–(3.6.150), we get

r ≤ ∥f∥Lip

√
2c

(
nC − lnM − lnP

(C)
Xn

(
ϕ(Xn) ≥ µ∗

f + r
)

+ a
√
n+ ln

1

ε

)

so, it follows that

P
(C)
Xn

(
ϕ(Xn) ≥ µ∗

f + r
)

≤ exp

(
nC − lnM + a

√
n+ ln

1

ε
− r2

2c ∥f∥2
Lip

)
.

Following the same line of reasoning with −f instead of f , we conclude

that

P
(C)
Xn

(∣∣ϕ(Xn) − µ∗
f

∣∣ ≥ r
)

≤ 2 exp

(
nC − lnM + a

√
n+ ln

1

ε
− r2

2c∥f∥2
Lip

)
. (3.6.151)

Finally, for every r ≥ 0,

P
(C)
Y n

(∣∣f(Y n) − µ∗
f

∣∣ ≥ r
)

≤ P
(C)
Xn,Y n

(
|f(Y n) − ϕ(Xn)| ≥ r/2

)

+ P
(C)
Xn

( ∣∣∣ϕ(Xn) − µ∗
f

∣∣∣ ≥ r/2
)

(3.6.152)

≤ 2 exp

(
− r2

8c∥f∥2
Lip

)

+ 2 exp

(
nC − lnM + a

√
n+ ln

1

ε
− r2

8c∥f∥2
Lip

)
(3.6.153)

≤ 4 exp

(
nC − lnM + a

√
n+ ln

1

ε
− r2

8c∥f∥2
Lip

)
, (3.6.154)
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where (3.6.152) is due to the triangle inequality; (3.6.153) is by

(3.6.145) and (3.6.151); (3.6.154) follows from the inequality

nC − lnM + a
√
n+ ln

1

ε
≥ D(P

(C)
Y n ∥P ∗

Y n) ≥ 0 (3.6.155)

which holds by Theorem 3.6.9 with the constant a in (3.6.141). This

proves the concentration inequality (3.6.142).

As an illustration, let us consider Yn with the Hamming metric

dn(yn, vn) =
n∑

i=1

1{yi ̸=vi}. (3.6.156)

Then, every function f : Yn → R of the form

f(yn) =
1

n

n∑

i=1

fi(yi), ∀ yn ∈ Yn (3.6.157)

where f1, . . . , fn : Y → R are Lipschitz functions on Y, satisfies

∥f∥Lip ≤ L

n
, L , max

1≤i≤n
∥fi∥Lip.

Every probability distribution P defined on Y and equipped with the

Hamming metric satisfies T1
(

1
4

)
(this is simply Pinsker’s inequality); by

Proposition 3.9, every product probability distribution on Yn satisfies

T1
(

n
4

)
with respect to the metric (3.6.156). Consequently, for every

(n,M, ε)-code for T and every Lipschitz function f : Yn → R of the

form (3.6.157), Theorem 3.6.11 yields the concentration inequality

P
(C)
Y n

(∣∣f(Y n) − E[f(Y ∗n)]
∣∣ ≥ r

)

≤ 4

ε
exp

(
nC − lnM + a

√
n− nr2

2L2

)
(3.6.158)

for every r > 0. Concentration inequalities like (3.6.142), or its more

specialized version (3.6.158), can be very useful for assessing various

performance characteristics of good channel codes without having to

explicitly construct such codes: all one needs to do is to find the

capacity-achieving output distribution P ∗
Y and evaluate E[f(Y ∗n)] for a

Lipschitz function f of interest. Then, Theorem 3.6.11 guarantees that



218 The Entropy Method, LSI and TC Inequalities

f(Y n) concentrates tightly around E[f(Y ∗n)], which is relatively easy

to compute since P ∗
Y n is a product distribution.

The bounds presented in Theorems 3.6.9 and 3.6.10 quantify the

trade-offs between the minimal blocklength required for achieving a

certain gap (in rate) to capacity with a fixed block error probability,

and normalized divergence between the output distribution induced by

the code and the (unique) capacity-achieving output distribution of the

channel. Moreover, these bounds sharpen the asymptotic O(·) terms in

the results of [63] for all finite blocklengths n.

3.6.5 Information-theoretic converse for concentration of measure

If we were to summarize the main concept behind the concentration

of measure phenomenon, it would be as follows: if a subset of a metric

probability space does not have a too small probability mass, then its

isoperimetric enlargements (or blowups) will eventually take up most of

the probability mass. On the other hand, it makes sense to ask whether

a converse of this statement is true, i.e.,

Given a set whose blowups eventually take up most of the

probability mass, how small can this set be?

This question was answered precisely by Kontoyiannis [190] using

information-theoretic techniques.

The following setting is considered in [190]: let X be a finite set,

together with a nonnegative distortion function d : X × X → R
+

(which is not necessarily a metric) and a strictly positive mass function

M : X → (0,∞) (which is not necessarily normalized to one). Let us

extend the single-letter distortion d to dn : X n ×X n → R
+ with n ∈ N,

and

dn(xn, yn) ,
n∑

i=1

d(xi, yi), ∀xn, yn ∈ X n. (3.6.159)

For every set C ⊆ X n, let

Mn(C) ,
∑

xn∈C
Mn(xn) (3.6.160)
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where

Mn(xn) ,
n∏

i=1

M(xi), ∀xn ∈ X n. (3.6.161)

We also define the (closed) r-blowup of an arbitrary set A ⊆ X n:

Ar , {xn ∈ X n : dn(xn,A) ≤ r} , (3.6.162)

where

dn(xn,A) = min
yn∈A

dn(xn, yn). (3.6.163)

Fix a probability distribution P ∈ P(X ) where we assume without loss

of generality that P is strictly positive on X . We are interested in the

following question:

Given a sequence of sets
{A(n)

}
n∈N

such that A(n) ⊆ X n

for every n, and

P⊗n
(
A(n)

nδ

)
n→∞−−−→ 1, (3.6.164)

for some δ ≥ 0, how small can their masses Mn
(A(n)

)
be?

In order to state and prove the main result of [190] that answers

this question, we need a few preliminary definitions. For every n ∈ N,

every pair (Pn, Qn) of probability measures on X n, and every δ ≥ 0,

we define the set

Πn(Pn, Qn, δ) , {πn : PXnY n = πn, PXn = Pn, PY n = Qn,

Eπn [dn(Xn, Y n)] ≤ nδ} , (3.6.165)

which is the set of all couplings πn ∈ P(X n × X n) of Pn and Qn

such that the per-letter expected distortion between Xn and Y n with

(Xn, Y n) ∼ πn is at most δ. With this, we define

In(Pn, Qn, δ) , inf
πn∈Πn(Pn,Qn,δ)

D(πn∥Pn ⊗Qn), (3.6.166)
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and consider the sequence of functions {Rn(·)}n∈N defined as follows:

Rn(δ) ≡ Rn(δ;Pn,M
n) (3.6.167)

, inf
Qn∈P(X n)

{
In(Pn, Qn, δ) + EQn [lnMn(Y n)]

}
(3.6.168)

= inf
PXnY n

{
I(Xn;Y n) + E[lnMn(Y n)] :

PXn = Pn,
1
n E[dn(Xn, Y n)] ≤ δ

}
(3.6.169)

for δ ≥ 0. In the special case where each Pn is the product measure

P⊗n, the rate function R(·) is defined by (see [190, Eq. (10)])

R(δ) ≡ R(δ;P,M) (3.6.170)

, inf
PXY

{
I(X;Y ) + E[lnM(Y )] :

PX = P, E[d(X,Y )] ≤ δ
}
. (3.6.171)

The rate function is monotonically non-increasing and convex in δ ≥ 0,

and it satisfies (see [190, Lemmas 1 and 2])

R(δ) = lim
n→∞

1
nRn(δ) (3.6.172)

= inf
n≥1

1
n Rn(δ). (3.6.173)

We next state the main result of [190]:

Theorem 3.6.12 (Kontoyiannis). Consider an arbitrary set A(n) ⊆ X n,

and denote δ , 1
n E[dn(Xn,A(n))]. Then

1
n lnMn(A(n)) ≥ R(δ;P,M). (3.6.174)

Furthermore, the following achievability result holds: for every δ ≥ 0

and ε > 0, there is a sequence of sets
{

A(n)
}

n∈N
such that A(n) ⊆ X n

for every n, and

1
n lnMn(A(n)) ≤ R(δ) + ε, 1

n dn(Xn,A(n)) ≤ δ a.s. (3.6.175)

Proof. We prove in the sequel the converse result in (3.6.174). Given

A(n) ⊆ X n, let φn : X n → A(n) be the function that maps each xn ∈ X n

to the closest element yn ∈ A(n), i.e.,

dn(xn, φn(xn)) = dn(xn,A(n)), ∀xn ∈ X n (3.6.176)
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(we assume some fixed rule for resolving ties). If Xn ∼ P⊗n, then

let Qn ∈ P(X n) denote the distribution of Y n = φn(Xn), and let

πn ∈ P(X n × X n) be the following joint distribution of Xn and Y n:

πn(xn, yn) = P⊗n(xn) 1{yn=φn(xn)}, ∀xn, yn ∈ X n. (3.6.177)

Since Πn(P⊗n and Qn are the marginal distributions of πn, and

Eπn [dn(Xn, Y n)] = Eπn [dn(Xn, φn(Xn))] (3.6.178)

= Eπn

[
dn(Xn,A(n))

]
(3.6.179)

= nδ (3.6.180)

then πn ∈ Πn(P⊗n, Qn, δ). Furthermore, we have

lnMn(A(n)) = ln
∑

yn∈A(n)

Mn(yn) (3.6.181)

= ln
∑

yn∈A(n)

Qn(yn) · M
n(yn)

Qn(yn)
(3.6.182)

≥
∑

yn∈A(n)

Qn(yn) ln
Mn(yn)

Qn(yn)
(3.6.183)

=
∑

xn∈X n,yn∈A(n)

πn(xn, yn) ln
πn(xn, yn)

P⊗n(xn)Qn(yn)

+
∑

yn∈A(n)

Qn(yn) lnMn(yn) (3.6.184)

= I(Xn;Y n) + EQn [lnMn(Y n)] (3.6.185)

≥ Rn(δ), (3.6.186)

where (3.6.181) is by (3.6.160); (3.6.182) is trivial; (3.6.183) is by

Jensen’s inequality; (3.6.184) relies on (3.6.177); (3.6.185) uses the fact

that the marginal distributions of πn are P⊗n and Qn, and (3.6.186)

relies on (3.6.167)–(3.6.169) and (3.6.180). Finally, using (3.6.167),

(3.6.172) and (3.6.181)–(3.6.186), we get (3.6.174).

The reader is referred to [190, Theorem 2] for a proof of the direct

part (achievability result) in (3.6.175).

We are now ready to use Theorem 3.6.12 to answer the question

posed at the beginning of this section. Specifically, we consider the case
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when M = P . Defining the concentration exponent

Rc(r;P ) , R(r;P, P ), (3.6.187)

we get the following result:

Corollary 3.6.13 (Converse concentration of measure). If A(n) ⊆ X n is

an arbitrary set, then

P⊗n
(
A(n)

)
≥ exp

(
nRc(δ;P )

)
, (3.6.188)

where

δ =
1

n
E

[
dn

(
Xn,A(n)

)]
. (3.6.189)

Moreover, if the sequence of sets {A(n)}∞
n=1 is such that, for some δ ≥ 0,

P⊗n
(
A(n)

nδ

)
→ 1 as n → ∞, then

lim inf
n→∞

1

n
lnP⊗n

(
A(n)

)
≥ Rc(δ;P ). (3.6.190)

Remark 3.35. A moment of reflection shows that the concentration

exponent Rc(δ;P ) is nonpositive. Indeed, from definitions,

Rc(δ;P )

= R(δ;P, P )

= inf
PXY

{
I(X;Y ) + E[lnP (Y )] : PX = P, E[d(X,Y )] ≤ δ

}

= inf
PXY

{
H(Y ) −H(Y |X) + E[lnP (Y )] : PX = P, E[d(X,Y )] ≤ δ

}

= inf
PXY

{
−D(PY ∥P ) −H(Y |X) : PX = P, E[d(X,Y )] ≤ δ

}

= − sup
PXY

{
D(PY ∥P ) +H(Y |X) : PX = P, E[d(X,Y )] ≤ δ

}
,

(3.6.191)

which proves the claim, since both the divergence and the (conditional)

entropy are nonnegative.

Remark 3.36. Using the achievability result (3.6.175), which appears

in [190, Theorem 2], one can also prove that there exists a sequence of

sets {A(n)}∞
n=1, such that

lim
n→∞

P⊗n
(
A(n)

nδ

)
= 1, lim

n→∞
1

n
lnP⊗n

(
A(n)

)
≤ Rc(δ;P ). (3.6.192)
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As an illustration, consider the case where X = {0, 1} and d is

the Hamming distortion d(x, y) = 1{x̸=y}. Let P (0) = 1 − p and

P (1) = p with p ∈ [
0, 1

2

]
, so P satisfies T1

(
1

2φ(p)

)
with respect to

the Hamming metric d, and with φ(p) defined in (3.4.74). By Proposi-

tion 3.8, the product measure P⊗n satisfies T1

(
n

2φ(p)

)
on the product

space (X n, dn). Consequently, it follows from (3.4.89) that for every

A(n) ⊆ X n,

P⊗n
(
A(n)

nδ

)
≥ 1 − exp


−nφ(p)

(
δ −

√
1

nφ(p)
ln

1

P⊗n
(A(n)

)
)2



(3.6.193)

provided that

δ ≥
√

1

nφ(p)
ln

1

P⊗n
(A(n)

) . (3.6.194)

Thus, if a sequence of sets A(n) ⊆ X n, n ∈ N, satisfies

lim inf
n→∞

1

n
lnP⊗n

(
A(n)

)
> −φ(p)δ2, (3.6.195)

then

P⊗n
(
A(n)

nδ

)
n→∞−−−→ 1. (3.6.196)

The converse result, Corollary 3.6.13, says that if a sequence of sets

A(n) ⊆ X n satisfies (3.6.196), then (3.6.190) holds. Let us compare the

concentration exponent Rc(δ;P ), where P is the Bernoulli(p) measure,

with the exponent −φ(p)δ2 on the right side of (3.6.195):

Theorem 3.6.14. If P is the Bernoulli(p) measure with p ∈ [0, 1
2

]
, then

the concentration exponent Rc(δ;P ) satisfies

Rc(δ;P ) ≤ −φ(p)δ2 − (1 − p)h

(
δ

1 − p

)
, ∀ δ ∈ [0, 1 − p]

(3.6.197)

and

Rc(δ;P ) = ln p, ∀ δ ∈ [1 − p, 1] (3.6.198)
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where

h(x) , −x ln x− (1 − x) ln(1 − x), ∀x ∈ [0, 1]

is the binary entropy function to base e (with the convention that

0 log 0 = 0).

Proof. From (3.6.191) with the Hamming metric d(x, y) = 1{x ̸=y} for

x, y ∈ {0, 1}, we have

Rc(δ;P ) = − sup
PXY

{
D(PY ∥P ) +H(Y |X) : PX = P, P(X ̸= Y ) ≤ δ

}
.

(3.6.199)

For a given δ ∈ [0, 1 − p], let us choose PY so that ∥PY − P∥TV = δ.

Then, from (3.4.77),

D(PY ∥P )

δ2
=

D(PY ∥P )

∥PY − P∥2
TV

(3.6.200)

≥ inf
Q

D(Q∥P )

∥Q− P∥2
TV

(3.6.201)

= φ(p). (3.6.202)

By the coupling representation of the total variation distance, we can

choose a joint distribution P
X̃Ỹ

with marginals P
X̃

= P and P
Ỹ

= PY ,

such that P(X̃ ̸= Ỹ ) = ∥PY − P∥TV = δ. Moreover, using (3.4.65), it

can be verified that

PỸ |X̃=0 = Bernoulli

(
δ

1 − p

)
, (3.6.203)

PỸ |X̃=1(ỹ) = δ1(ỹ) , 1{ỹ=1}, (3.6.204)

which yields

H(Ỹ |X̃) = (1 − p)H(Ỹ |X̃ = 0) = (1 − p)h

(
δ

1 − p

)
. (3.6.205)

From (3.6.199), (3.6.202) and (3.6.205), we obtain

Rc(δ;P ) ≤ −D(P
Ỹ

∥P ) −H(Ỹ |X̃) (3.6.206)

≤ −φ(p)δ2 − (1 − p)h

(
δ

1 − p

)
. (3.6.207)
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To prove (3.6.198), it suffices to consider the case where δ = 1 − p. If

we let Y be independent of X ∼ P , then I(X;Y ) = 0, so we have to

minimize EQ[lnP (Y )] over all distributions Q of Y . But then

min
Q

EQ[lnP (Y )] = min
y∈{0,1}

lnP (y) = min {ln p, ln(1 − p)} = ln p,

where the last equality holds since p ≤ 1
2 .

3.7 Summary

This chapter covers the essentials of the entropy method, an

information-theoretic technique to derive concentration inequalities for

functions of independent random variables. As its name suggests, the

entropy method revolves around the relative entropy (or information

divergence), which in turn can be related to the logarithmic moment-

generating function and its derivatives.

A key ingredient of the entropy method is tensorization, or the

use of a certain subadditivity property of the relative entropy in order

to break the original multi-dimensional problem up into more simple

one-dimensional problems. Tensorization is used in conjunction with

various inequalities relating the relative entropy to suitable energy-type

functionals defined on the space of functions for which one wishes to

establish concentration. These inequalities fall into two broad classes:

functional inequalities (typified by the logarithmic Sobolev inequalities)

and transportation-cost inequalities (such as Pinsker’s inequality). We

examined the several deep and remarkable information-theoretic ideas

that bridge these two classes of inequalities, and also exemplified their

applications to problems in coding and information theory.

At this stage, the relationship between information theory and the

study of measure concentration is heavily skewed towards the use of the

former as a tool for the latter. Moreover, applications of concentration

of measure inequalities to problems in information theory, coding and

communications are exemplified in Chapters 2 and 3. We hope that

the monograph may offer some inspiration for information and coding

theorists to deepen the ties between their discipline and the fascinating

realm of high-dimensional probability and concentration of measure.
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3.A Van Trees inequality

Consider the problem of estimating a random variable Y ∼ PY based on

a noisy observation U =
√
sY +Z, where s > 0 is the SNR parameter,

while the additive noise Z ∼ G is independent of Y . We assume that PY

has a differentiable, absolutely continuous density pY with J(Y ) < ∞.

Our goal is to prove the van Trees inequality (3.2.34) and to show that

equality in (3.2.34) holds if and only if Y is Gaussian. To this end, we

prove the following statement. Let φ(U) be an arbitrary estimator of

Y where φ(·) is a Borel-measurable real-valued function. Then,

E

[
(Y − φ(U))2

]
≥ 1

s+ J(Y )
, (3.A.1)

with equality if and only if Y has a standard normal distribution and

φ(U) is the MMSE estimator of Y given U .

The strategy of the proof is simple. Define two random variables

∆(U, Y ) , φ(U) − Y, (3.A.2)

Υ(U, Y ) ,
d

dy
ln
[
pU |Y (U |y)pY (y)

] ∣∣∣∣∣
y=Y

=
d

dy
ln
[
γ(U − √

sy)pY (y)
]
∣∣∣∣∣
y=Y

=
√
s(U − √

sY ) + ρY (Y )

=
√
sZ + ρY (Y ) (3.A.3)

where ρY (y) , d
dy ln pY (y) for y ∈ R is the score function. We show

below that

E[∆(U, Y )Υ(U, Y )] = 1. (3.A.4)

Then, in view of (3.A.4), by applying the Cauchy–Schwarz inequality,

1 = E
2[∆(U, Y )Υ(U, Y )]

≤ E[∆2(U, Y )] · E[Υ2(U, Y )]

= E[(φ(U) − Y )2] · E[(
√
sZ + ρY (Y ))2]

= E[(φ(U) − Y )2] · (s+ J(Y )). (3.A.5)



3.A. Van Trees inequality 227

Upon rearranging, we obtain (3.A.1). We next prove (3.A.4). The fact

that J(Y ) < ∞ implies that the density pY is bounded (see [135,

Lemma A.1]). Using this and the rapid decay of the Gaussian density

γ at infinity, we have
∫ ∞

−∞

d

dy

[
pU |Y (u|y)pY (y)

]
dy

= γ(u− √
sy)pY (y)

∣∣∣∣∣

∞

−∞
= 0, (3.A.6)

and integration by parts gives
∫ ∞

−∞
y

d

dy

[
pU |Y (u|y)pY (y)

]
dy

= yγ(u− √
sy)pY (y)

∣∣∣∣∣

∞

−∞
−
∫ ∞

−∞
pU |Y (u|y)pY (y)dy

= −
∫ ∞

−∞
pU |Y (u|y)pY (y)dy

= −pU (u). (3.A.7)

Using (3.A.6) and (3.A.7), we get

E[∆(U, Y )Υ(U, Y )]

=

∫ ∞

−∞

∫ ∞

−∞
(φ(u) − y)

d

dy
ln
[
pU |Y (u|y)pY (y)

]
pU |Y (u|y)pY (y)du dy

=

∫ ∞

−∞

∫ ∞

−∞
(φ(u) − y)

d

dy

[
pU |Y (u|y)pY (y)

]
du dy

=

∫ ∞

−∞
φ(u)

(∫ ∞

−∞

d

dy

[
pU |Y (u|y)pY (y)

]
dy

)

︸ ︷︷ ︸
=0

du

−
∫ ∞

−∞

(∫ ∞

−∞
y

d

dy

[
pU |Y (u|y)pY (y)

]
dy

)

︸ ︷︷ ︸
=−pU (u)

du

=

∫ ∞

−∞
pU (u)du = 1,
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which establishes the equality in (3.A.4). It remains to establish the

necessary and sufficient condition for equality in (3.A.1). The Cauchy–

Schwarz inequality for the product of ∆(U, Y ) and Υ(U, Y ) holds if

and only if ∆(U, Y ) = cΥ(U, Y ) holds almost surely for some constant

c ∈ R. In view of (3.A.2) and (3.A.3), the latter equality is equivalent

to

φ(U) = Y + c
√
s(U − √

sY ) + cρY (Y )

= c
√
sU + (1 − cs)Y + cρY (Y )

for some c ∈ R. In fact, c must be nonzero, as otherwise we will have

φ(U) = Y , which is not a valid estimator. But then it must be the case

that (1 − cs)Y + cρY (Y ) is independent of Y , i.e., there exists some

other constant c′ ∈ R, such that

ρY (y) ,
p′

Y (y)

pY (y)
=
c′

c
+
(
s− 1

c

)
y.

In other words, the score ρY (y) must be an affine function of y, which

is the case if and only if Y is a Gaussian random variable.

3.B The proof of Theorem 3.2.3

As a reminder, the Lp norm of a real-valued random variable U is

defined by ∥U∥p , (E[|U |p])1/p for p ≥ 1. It will be convenient to work

with the following equivalent form of the Rényi divergence in (3.2.48):

For every two random variables U and V such that PU ≪ PV , we have

Dα(PU ∥PV ) =
α

α− 1
ln

∥∥∥∥
dPU

dPV
(V )

∥∥∥∥
α
, α > 1. (3.B.1)

Let g denote the Radon–Nikodym derivative dP/dG. It is easy to show

that Pt ≪ G for all t, so the Radon–Nikodym derivative gt , dPt/dG

exists. Moreover, g0 = g (recall that P0 = P since, by the definition

of the random transformation in (3.2.43), OU(0) is a perfect channel

with Y = X at t = 0). Also, let the function α : [0,∞) → [β,∞) be

defined as α(t) = 1 + (β − 1)e2t for some β > 1. Let Z ∼ G. Using

(3.B.1), it can be shown that the desired bound (3.2.53) is equivalent
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to the statement that the function F : [0,∞) → R, given by

F (t) , ln

∥∥∥∥
dPt

dG
(Z)

∥∥∥∥
α(t)

≡ ln ∥gt(Z)∥α(t) , (3.B.2)

is monotonically decreasing. From now on, we adhere to the following

notational convention: we use either dot or d/dt to denote derivatives

with respect to the “time” t, and the prime to denote derivatives with

respect to the “space” variable z. We start by computing the derivative

of F with respect to t, which gives

Ḟ (t) =
d

dt

{
1

α(t)
lnE

[(
gt(Z)

)α(t)
]}

= − α̇(t)

α2(t)
lnE

[(
gt(Z)

)α(t)
]

+
1

α(t)

d

dt
E

[(
gt(Z)

)α(t)
]

E

[(
gt(Z)

)α(t)
] . (3.B.3)

To handle the derivative with respect to t in the second term in the right

side of (3.B.3), we need to delve a bit into the theory of the so-called

Ornstein–Uhlenbeck semigroup, which is an alternative representation

of the Ornstein–Uhlenbeck channel (3.2.43).

For every t ≥ 0, define a linear operator Kt acting on an arbitrary

sufficiently regular (e.g., L1(G)) function h as

Kth(x) , E

[
h
(
e−tx+

√
1 − e−2tZ

)]
(3.B.4)

with Z ∼ G. The family of linear operators {Kt}∞
t=0 has the following

properties:

1. K0 is the identity operator, K0h = h for every h.

2. Consider the OU(t) channel, for every t ≥ 0, given by the random

transformation (3.2.43). For every measurable function F such

that E
∣∣F (Y )

∣∣ < ∞ with Y in (3.2.43), we can write

KtF (x) = E[F (Y )|X = x], ∀x ∈ R (3.B.5)

and

E[F (Y )] = E[KtF (X)]. (3.B.6)
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Note that (3.B.5) holds since by assumption X and Z in (3.2.43)

are independent random variables, and (3.B.6) holds by taking

expectation on both sides of (3.B.5).

3. A particularly useful special case of the above is as follows. Let

X have distribution P with P ≪ G, and let Pt denote the output

distribution of the OU(t) channel. Then, as we have noted before,

Pt ≪ G; the corresponding density gt = dPt/dG satisfies for all

t ≥ 0

gt(x) = Ktg(x). (3.B.7)

To prove (3.B.7), we can either use (3.B.5) and the fact that

gt(x) = E[g(Y )|X = x], or proceed directly from (3.2.43) to get

gt(x) =
1√
2π

∫

R

g
(
e−tx+

√
1 − e−2tz

)
exp

(
− z2

2

)
dz

= E

[
g
(
e−tx+

√
1 − e−2tZ

)]
(3.B.8)

with Z ∼ G.

4. The family of operators {Kt}∞
t=0 forms a semigroup, i.e., for every

t1, t2 ≥ 0 we have

Kt1+t2 = Kt1 ◦Kt2 = Kt2 ◦Kt1 , (3.B.9)

which is shorthand for saying that, for every sufficiently regular

function h,

Kt1+t2h = Kt2(Kt1h) = Kt1(Kt2h). (3.B.10)

Eq. (3.B.9) follows from (3.B.5) and (3.B.6), and due to the fact

that the channel family {OU(t)}∞
t=0 is ordered by degradation as

in (3.2.45). For this reason, the family of linear operators {Kt}∞
t=0

is referred to as the Ornstein–Uhlenbeck semigroup. Note that if

{Yt}∞
t=0 is the Ornstein–Uhlenbeck process, then every function

F ∈ L1(G) satisfies

KtF (x) = E[F (Yt)|Y0 = x], ∀x ∈ R.
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Two deeper results concerning the Ornstein–Uhlenbeck semigroup,

which will be needed, are as follows: let the second-order differential

operator L be defined as

Lh(x) , h′′(x) − xh′(x) (3.B.11)

for all C2 functions h : R → R. Then,

1. The Ornstein–Uhlenbeck flow {ht}∞
t=0, where ht = Kth with a C2

initial condition h0 = h, satisfies the partial differential equation

(PDE)

ḣt = Lht. (3.B.12)

2. For Z ∼ G and all C2 functions g, h : R → R, we have the

integration-by-parts formula

E[g(Z)Lh(Z)] = E[h(Z)Lg(Z)] = −E[g′(Z)h′(Z)]. (3.B.13)

We provide the proofs of (3.B.12) and (3.B.13) in Appendix 3.C.

We are now ready to tackle the second term in (3.B.3). Noting that

the family of densities {gt}∞
t=0 forms an Ornstein–Uhlenbeck flow with

initial condition g0 = g, we have

d

dt
E

[(
gt(Z)

)α(t)
]

= E

[
d

dt

{(
gt(Z)

)α(t)
}]

= α̇(t) E
[(
gt(Z)

)α(t)
ln gt(Z)

]
+ α(t)E

[(
gt(Z)

)α(t)−1 d

dt
gt(Z)

]

= α̇(t) E
[(
gt(Z)

)α(t)
ln gt(Z)

]

+ α(t)E
[(
gt(Z)

)α(t)−1Lgt(Z)
]

(3.B.14)

= α̇(t) E
[(
gt(Z)

)α(t)
ln gt(Z)

]

− α(t)E

[((
gt(Z)

)α(t)−1
)′
g′

t(Z)

]
(3.B.15)

= α̇(t) E
[(
gt(Z)

)α(t)
ln gt(Z)

]

− α(t)
(
α(t) − 1

)
E

[(
gt(Z)

)α(t)−2 (
g′

t(Z)
)2]

(3.B.16)
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where we use (3.B.12) to get (3.B.14), and (3.B.13) to get (3.B.15).

(Referring back to (3.B.8), we see that the functions gt, for all t > 0,

are C∞ due to the smoothing property of the Gaussian kernel, so all

interchanges of expectations and derivatives in the above display are

justified.) If we define the function ϕt(z) ,
(
gt(z)

)α(t)/2
, then we can

rewrite (3.B.16) as

d

dt
E

[(
gt(Z)

)α(t)
]

=
α̇(t)

α(t)
E

[
ϕ2

t (Z) lnϕ2
t (Z)

]

− 4
(
α(t) − 1

)

α(t)
E

[(
ϕ′

t(Z)
)2]

. (3.B.17)

Using the definition of ϕt and substituting (3.B.17) into the right side

of (3.B.3), we get

α2(t)E[ϕ2
t (Z)] Ḟ (t) = α̇(t)

(
E[ϕ2

t (Z) lnϕ2
t (Z)] − E[ϕ2

t (Z)] lnE[ϕ2
t (Z)]

)

− 4(α(t) − 1)E
[(
ϕ′

t(Z)
)2]

. (3.B.18)

If we now apply the Gaussian LSI (3.2.1) to ϕt, then (3.B.18) yields

α2(t)E[ϕ2
t (Z)] Ḟ (t) ≤ 2

(
α̇(t) − 2(α(t) − 1)

)
E

[(
ϕ′

t(Z)
)2]

. (3.B.19)

Since α(t) = 1 + (β − 1)e2t then α̇(t) − 2
(
α(t) − 1

)
= 0 for all t,

which implies that the right side of (3.B.19) is equal to zero. Moreover,

because α(t) > 0 and ϕ2
t (Z) > 0 a.s. (note that ϕ2

t > 0 if and only

if gt > 0, but the latter follows from (3.B.8) where g is a probability

density function), we conclude that Ḟ (t) ≤ 0. Hence, F is monotonically

decreasing on [0,∞), and from (3.B.2)

F (t) =
α(t) − 1

α(t)
Dα(t)(Pt∥G), t ≥ 0, (3.B.20)

F (0) =
β − 1

β
Dβ(P∥G). (3.B.21)

Consequently, for every β > 1 and t ≥ 0,

Dα(t)(Pt∥G) ≤
(
α(t)(β − 1)

β(α(t) − 1)

)
Dβ(P∥G) (3.B.22)
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where α(t) = 1 + (β − 1)e2t for all t ≥ 0. Since the Rényi divergence is

monotonically increasing in its order (see, e.g., [143, Theorem 3]), the

left side of (3.B.22) is greater than or equal to Dα(Pt∥G) as soon as

α ≤ α(t). By the same token, because the function u ∈ (1,∞) 7→ u
u−1

is strictly decreasing, the right side of (3.B.22) can be upper-bounded

by
(

α(β−1)
β(α−1)

)
Dβ(P∥G) for all α ≤ α(t). Putting all these facts together,

we conclude that the Gaussian LSI (3.2.1) implies (3.2.53).

We now show that (3.2.53) yields the LSI of Theorem 3.2.1. To that

end, we recall that (3.2.53) is equivalent to the right side of (3.B.18)

being less than or equal to zero for all t ≥ 0 and all β > 1. Let us

choose t = 0 and β = 2, for which

α(0) = α̇(0) = 2, ϕ0 = g.

Using this in (3.B.18) for t = 0, we get

2
(
E

[
g2(Z) ln g2(Z)

]
− E[g2(Z)] lnE[g2(Z)]

)
− 4E

[(
g′(Z)

)2] ≤ 0

which is precisely the LSI (3.2.1) with E[g(Z)] = EG

[
dP
dG

]
= 1; recall,

however, that the LSI (3.2.1) is invariant to a scaling of the real-valued

function. This completes the proof of Theorem 3.2.3 (up to the proofs

of (3.B.12) and (3.B.13), which are relegated to Appendix 3.C).

3.C Details on the Ornstein–Uhlenbeck semigroup

This appendix proves the formulas (3.B.12) and (3.B.13), pertaining to

the Ornstein–Uhlenbeck semigroup. We start with (3.B.12). Recalling

that

ht(x) = Kth(x) = E

[
h
(
e−tx+

√
1 − e−2tZ

)]
, (3.C.1)

we have

ḣt(x) =
d

dt
E

[
h
(
e−tx+

√
1 − e−2tZ

)]

= −e−txE
[
h′
(
e−tx+

√
1 − e−2tZ

)]

+
e−2t

√
1 − e−2t

· E
[
Zh′

(
e−tx+

√
1 − e−2tZ

)]
. (3.C.2)
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For an arbitrary sufficiently smooth function h and every m,σ ∈ R,

E[Zh′(m+ σZ)] = σE[h′′(m+ σZ)], (3.C.3)

which is proved straightforwardly using integration by parts, provided

that limx→±∞ e− x2

2 h′(m+ σx) = 0. Using (3.C.3) yields

E

[
Zh′

(
e−tx+

√
1 − e−2tZ

)]

=
√

1 − e−2tE

[
h′′
(
e−tx+

√
1 − e−2tZ

)]
. (3.C.4)

Consequently, combining (3.C.2) and (3.C.4) yields

ḣt(x) = −e−tx Kth
′(x) + e−2tKth

′′(x). (3.C.5)

On the other hand, from (3.B.11) and (3.C.1),

Lht(x) = h′′
t (x) − xh′

t(x)

= e−2t
E

[
h′′
(
e−tx+

√
1 − e−2tZ

)]

− xe−t
E

[
h′
(
e−tx+

√
1 − e−2tZ

)]

= e−2tKth
′′(x) − e−tx Kth

′(x). (3.C.6)

Comparing (3.C.5) and (3.C.6), we get (3.B.12).

Proving the integration-by-parts formula (3.B.13) is more subtle,

and it relies on the fact that the Ornstein–Uhlenbeck process {Yt}∞
t=0

with Y0 ∼ G is stationary and reversible in the sense that, for every

t, t′ ≥ 0,

(Yt, Yt′)
d
= (Yt′ , Yt). (3.C.7)

To see this, let

p(t)(y|x) ,
1√

2π(1 − e−2t)
exp

(
−(y − e−tx)2

2(1 − e−2t)

)
(3.C.8)

be the transition density of the OU(t) channel. It is easy to show that

p(t)(y|x)γ(x) = p(t)(x|y)γ(y), ∀x, y ∈ R (3.C.9)
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(recall that γ denotes the standard Gaussian pdf). For Z ∼ G and

every two smooth functions g, h, this implies that

E[g(Z)Kth(Z)] = E[g(Y0)Kth(Y0)] (3.C.10)

= E[g(Y0)E[h(Yt)|Y0]] (3.C.11)

= E[g(Y0)h(Yt)] (3.C.12)

= E[g(Yt)h(Y0)] (3.C.13)

= E[Ktg(Y0)h(Y0)] (3.C.14)

= E[Ktg(Z)h(Z)], (3.C.15)

where (3.C.10) and (3.C.15) are due to the assumption that Y0 ∼ G

and Z ∼ G; (3.C.11) and (3.C.14) rely on (3.B.5); (3.C.12) relies on

the tower principle for the conditional expectation; (3.C.13) holds due

to the reversibility property of the Ornstein–Uhlenbeck process with

Y0 ∼ G (see (3.C.7)). Taking the derivative with respect to t of the

left side in (3.C.10) and the right side in (3.C.15), we conclude from

(3.B.12) that

E[g(Z)Lh(Z)] = E[Lg(Z)h(Z)]. (3.C.16)

In particular, since L1 = 0 (where on the left side 1 denotes the constant

function x 7→ 1), we have

E[Lg(Z)] = E[1Lg(Z)] = E[g(Z)L1] = 0 (3.C.17)

for all smooth g.

We are now ready to prove (3.B.13). To that end, let us first define

the operator Γ on pairs of functions g, h by

Γ(g, h) , 1
2

[L(gh) − gLh− hLg]. (3.C.18)
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Now, for the specific definition of L in (3.B.11), we have

Γ(g, h)(x) = 1
2

[
(gh)′′(x) − x(gh)′(x) − g(x)

(
h′′(x) − xh′(x)

)

− h(x)
(
g′′(x) − xg′(x)

)]

= 1
2

[
g′′(x)h(x) + 2g′(x)h′(x) + g(x)h′′(x)

− xg′(x)h(x) − xg(x)h′(x) − g(x)h′′(x)

+ xg(x)h′(x) − g′′(x)h(x) + xg′(x)h(x)
]

= g′(x)h′(x), (3.C.19)

or, more succinctly, Γ(g, h) = g′h′. Therefore,

E[g(Z)Lh(Z)] = 1
2

{
E[g(Z)Lh(Z)] + E[h(Z)Lg(Z)]

}
(3.C.20)

= 1
2E[L(gh)(Z)] − E[Γ(g, h)(Z)] (3.C.21)

= −E[g′(Z)h′(Z)], (3.C.22)

where (3.C.20) uses (3.C.16); (3.C.21) uses the definition (3.C.18) of Γ,

and (3.C.22) uses (3.C.19) together with (3.C.17). This proves (3.B.13).

Remark 3.37. If we consider the Hilbert space L2(G) of all functions

g : R → R such that E[g2(Z)] < ∞ with Z ∼ G, then (3.C.16) expresses

the fact that L is a self-adjoint linear operator on this space. Moreover,

(3.C.17) shows that the constant functions are in the kernel of L (the

closed linear subspace of L2(G) consisting of all g with Lg = 0).

Remark 3.38. The operator in the left side of (3.C.18) was introduced

into the study of Markov processes by Paul Meyer under the name

“carré du champ” (French for “square of the field”). In general, L in

the right side of (3.C.18) can be an arbitrary linear operator that serves

as an infinitesimal generator of a Markov semigroup. Intuitively, Γ in

the left side of (3.C.18) measures how far a given L is from being a

derivation, where we say that an operator L acting on a function space

is a derivation (or that it satisfies the Leibniz rule) if, for every g, h in

its domain,

L(gh) = gLh+ hLg. (3.C.23)
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An example of a derivation is the first-order linear differential opera-

tor Lg = g′, for which the Leibniz rule is simply the product rule of

differential calculus.

3.D LSI for Bernoulli and Gaussian measures

The following LSI was derived by Gross [44]:

EntP [g2] ≤ (g(0) − g(1))2

2
. (3.D.1)

We will now show that (3.3.37) can be derived from (3.D.1). Let us

define f by ef = g2, where we may assume without loss of generality

that 0 < g(0) ≤ g(1). Note that

(g(0) − g(1))2 = (exp (f(0)/2) − exp (f(1)/2))2

≤ 1
8 [exp (f(0)) + exp (f(1))] (f(0) − f(1))2

= 1
4 EP

[
exp(f)(Γf)2

]
(3.D.2)

with Γf = |f(0) − f(1)|, where (3.D.2) follows from the inequality

(1 − x)2 ≤ 1
2(1 + x2)(ln x)2 for all x ≥ 0, which is applied to x ,

g(1)
g(0) .

Consequently, we have

D(P (f)∥P ) =
EntP [exp(f)]

EP [exp(f)]
(3.D.3)

=
EntP [g2]

EP [exp(f)]
(3.D.4)

≤
(
g(0) − g(1)

)2

2EP [exp(f)]
(3.D.5)

≤ EP [exp(f) (Γf)2]

8EP [exp(f)]
(3.D.6)

= 1
8 E

(f)
P

[
(Γf)2] (3.D.7)

where (3.D.3) follows from (3.3.6); (3.D.4) holds due to the equality

ef = g2; (3.D.5) holds due to (3.D.1); (3.D.6) follows from (3.D.2), and

(3.D.7) holds by the definition of the expectation with respect to the
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tilted probability measure P (f). Therefore, we conclude that (3.D.1)

implies (3.3.37).

Gross used (3.D.1) and the central limit theorem (CLT) to establish

his Gaussian LSI (see Theorem 3.2.1). We can follow the same steps

and arrive at (3.2.13) from (3.3.37). To that end, let g : R → R be a

sufficiently smooth function (to guarantee, at least, that both g exp(g)

and the derivative of g are continuous and bounded), and define the

function f : {0, 1}n → R by

f(x1, . . . , xn) , g

(
x1 + x2 + . . .+ xn − n/2√

n/4

)
. (3.D.8)

If X1, . . . , Xn are i.i.d. Bernoulli(1/2) random variables, then, by the

CLT, the sequence of probability measures {PZn}∞
n=1 with

Zn ,
X1 + . . .+Xn − n/2√

n/4
(3.D.9)

converges weakly to the standard Gaussian distribution G as n → ∞:

PZn ⇒ G. By the assumed smoothness properties of g we therefore

have (see (3.3.4) and (3.3.6))

E
[
exp

(
f(Xn)

)] ·D(P (f)
Xn

∥∥PXn

)

= E
[
f(Xn) exp

(
f(Xn)

)]− E[exp
(
f(Xn)

)
] lnE[exp

(
f(Xn)

)
]

= E
[
g(Zn) exp

(
g(Zn)

)]− E[exp
(
g(Zn)

)
] lnE[exp

(
g(Zn)

)
]

n→∞−−−→ E
[
g(Z) exp

(
g(Z)

)]− E[exp
(
g(Z)

)
] lnE[exp

(
g(Z)

)
]

= E [exp (g(Z))]D
(
P

(g)
Z

∥∥PZ

)
(3.D.10)

where Z ∼ G is a standard Gaussian random variable. Moreover, using

the definition (3.3.36) of Γ and the smoothness of g, it follows that for

every i ∈ {1, . . . , n} and xn ∈ {0, 1}n

|f(xn ⊕ ei) − f(xn)|2

=

∣∣∣∣∣g
(
x1 + . . .+ xn − n/2√

n/4
+

(−1)xi

√
n/4

)
− g

(
x1 + . . .+ xn − n/2√

n/4

)∣∣∣∣∣

2

=
4

n

(
g′
(
x1 + . . .+ xn − n/2√

n/4

))2

+ o

(
1

n

)
, (3.D.11)
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which implies that

|Γf(xn)|2 =
n∑

i=1

(f(xn ⊕ ei) − f(xn))2

= 4

(
g′
(
x1 + . . .+ xn − n/2√

n/4

))2

+ o (1) . (3.D.12)

Consequently,

E [exp (f(Xn))] · E(f)
[
(Γf(Xn))2

]

= E

[
exp (f(Xn)) (Γf(Xn))2

]

= 4E
[
exp (g(Zn))

((
g′(Zn)

)2
+ o(1)

)]

n→∞−−−→ 4E
[
exp (g(Z))

(
g′(Z)

)2]

= 4E [exp (g(Z))] · E(g)
PZ

[(
g′(Z)

)2]
. (3.D.13)

Taking the limit of both sides of (3.3.37) as n → ∞ and then using

(3.D.10) and (3.D.13), we obtain

D
(
P

(g)
Z

∥∥PZ

) ≤ 1
2 E

(g)
PZ

[(
g′(Z)

)2]
, (3.D.14)

which is (3.2.13). The same technique applies to an asymmetric

Bernoulli measure: given a sufficiently smooth function g : R → R,

define f : {0, 1}n → R by

f(xn) , g

(
x1 + . . .+ xn − np√

npq

)
, (3.D.15)

and then apply (3.3.41) to it.

3.E Generalization of Fano’s inequality for list decoding

The following generalization of Fano’s inequality for list decoding has

been used in the proof of Theorem 3.6.4: Let X and Y be finite sets, and

let (X,Y ) ∈ X × Y be a pair of jointly distributed random variables.

Consider an arbitrary mapping L : Y → 2X which maps every y ∈ Y
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to a set L(y) ⊆ X , such that |L(Y )| ≤ N a.s.. Let Pe = P (X ̸∈ L(Y ))

designate the list decoding error. Then

H(X|Y ) ≤ h(Pe) + (1 − Pe) lnN + Pe ln |X | (3.E.1)

(see, e.g., [182] or [191, Lemma 1]). For proving (3.E.1), define the

indicator random variable E , 1{X ̸∈L(Y )}. Then we can expand the

conditional entropy H(E,X|Y ) in two ways as

H(E,X|Y ) = H(E|Y ) +H(X|E, Y ) (3.E.2a)

= H(X|Y ) +H(E|X,Y ). (3.E.2b)

Since X and Y uniquely determine E (for a given mapping L), the

quantity on the right side of (3.E.2b) is equal to H(X|Y ). On the

other hand, we can upper-bound the right side of (3.E.2a) as

H(E|Y ) +H(X|E, Y ) ≤ H(E) +H(X|E, Y ) (3.E.3)

≤ h(Pe) + (1 − Pe) lnN + Pe ln |X |, (3.E.4)

where we have bounded the conditional entropy H(X|E, Y ) in (3.E.3)

as follows:

H(X|E, Y )

=
∑

y∈Y
P(E = 0, Y = y)H(X|E = 0, Y = y)

+
∑

y∈Y
P(E = 1, Y = y)H(X|E = 1, Y = y) (3.E.5)

≤
∑

y∈Y

{
P(E = 0, Y = y)H(X|E = 0, Y = y)

}
+ Pe ln |X | (3.E.6)

= (1 − Pe)
∑

y∈Y

{
P(Y = y|E = 0)H(X|E = 0, Y = y)

}

+ Pe ln |X | (3.E.7)

≤ (1 − Pe)E
[
ln |L(Y )|

∣∣E = 0
]

+ Pe ln |X | (3.E.8)

≤ (1 − Pe) lnN + Pe ln |X |, (3.E.9)

where (3.E.6) and (3.E.8) rely on the standard log-cardinality bound

on the entropy; (3.E.8) uses the fact that, given E = 0 and Y = y, X
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is supported on the set L(y). Since

H(X|Y ) = H(E|Y ) +H(X|E, Y ) ≤ H(E) +H(X|E, Y ), (3.E.10)

we get (3.E.1).

Remark 3.39. If instead of assuming that L(Y ) is bounded a.s. we

assume that it is bounded in expectation, i.e., if E[ln |L(Y )|] < ∞,

then we can obtain a weaker inequality

H(X|Y ) ≤ E [ln |L(Y )] + h(Pe) + Pe ln |X |. (3.E.11)

To get this, we follow the same steps as before, except (3.E.9) in the

above series of bounds on H(X|E, Y ) is replaced by

(1 − Pe)E
[
ln |L(Y )|

∣∣E = 0
]

≤ (1 − Pe)E
[
ln |L(Y )|

∣∣E = 0
]

+ Pe E
[
ln |L(Y )|

∣∣E = 1
]

(3.E.12)

= E [ln |L(Y )|] (3.E.13)

(we assume, of course, that L(y) is a nonempty set for all y ∈ Y).

3.F Details for the derivation of (3.6.102)

Let Xn ∼ PXn and Y n ∈ Yn be the input and output sequences of

a DMC with transition matrix T : X → Y , where the DMC is used

without feedback. In other words, (Xn, Y n) ∈ X n ×Yn with Xn ∼ PXn

and

PY n|Xn(yn|xn) =
n∏

i=1

PY |X(yi|xi),

∀ yn ∈ Yn, ∀xn ∈ X n s.t. PXn(xn) > 0.

Since the channel is memoryless and there is no feedback, the i-th

output symbol Yi ∈ Y depends only on the i-th input symbol Xi ∈ X
and not on the rest of the input symbols X

i
. Hence, Y

i → Xi → Yi is

a Markov chain for every i ∈ {1, . . . , n}, so we can write

P
Yi|Y

i(y|yi) =
∑

x∈X
PYi|Xi

(y|x)P
Xi|Y

i(x|yi) (3.F.1)

=
∑

x∈X
PY |X(y|x)P

Xi|Y
i(x|yi) (3.F.2)
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for all y ∈ Y and yi ∈ Yn−1 such that P
Y

i(yi) > 0. Therefore, for every

y, y′ ∈ Y, we have

ln
P

Yi|Y
i(y|yi)

P
Yi|Y

i(y′|yi)
= ln

∑
x∈X PY |X(y|x)P

Xi|Y
i(x|yi)

∑
x∈X PY |X(y′|x)P

Xi|Y
i(x|yi)

(3.F.3)

= ln

∑
x∈X PY |X(y′|x)P

Xi|Y
i(x|yi)

PY |X(y|x)

PY |X(y′|x)∑
x∈X PY |X(y′|x)P

Xi|Y
i(x|yi)

, (3.F.4)

where in the last line we have used the fact that PY |X(·|·) > 0. This

shows that we can express the left side of (3.F.3) as the logarithm of

expectation of
PY |X(y|X)

PY |X(y′|X) with respect to the (conditional) probability

measure

Q(x|yi, y′) =
PY |X(y′|x)P

Xi|Y
i(x|yi)

∑
x∈X PY |X(y′|x)P

Xi|Y
i(x|yi)

, ∀x ∈ X . (3.F.5)

Therefore,

ln
P

Yi|Y
i(y|yi)

P
Yi|Y

i(y′|yi)
≤ max

x∈X
ln
PY |X(y|x)

PY |X(y′|x)
. (3.F.6)

Interchanging the roles of y and y′, we get

ln
P

Yi|Y
i(y′|yi)

P
Yi|Y

i(y|yi)
≤ max

x∈X
ln
PY |X(y′|x)

PY |X(y|x)
. (3.F.7)

Combining (3.F.6) and (3.F.7) with the definition in (3.6.98), it follows

that for all y, y′ ∈ Y
∣∣∣∣∣∣
ln
P

Yi|Y
i(y|yi)

P
Yi|Y

i(y′|yi)

∣∣∣∣∣∣
≤ max

x∈X
max

y,y′∈Y

∣∣∣∣∣ln
PY |X(y|x)

PY |X(y′|x)

∣∣∣∣∣ = 1
2 c(T ). (3.F.8)

Similarly, we have
∣∣∣∣∣∣∣
ln
P

(C)

Yi|Y
i(y|yi)

P
(C)

Yi|Y
i(y′|yi)

∣∣∣∣∣∣∣
≤ max

x∈X
max

y,y′∈Y

∣∣∣∣∣ln
PY |X(y|x)

PY |X(y′|x)

∣∣∣∣∣ = 1
2 c(T ), (3.F.9)

since both left sides of (3.F.8) and (3.F.9) refer to the same conditional

probability distribution PY |X . Combining (3.F.8) and (3.F.9) yields

(3.6.102).
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