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Abstract. Suppose t1, ..., tn are independent random variables which take value either 0 or

1, and Y is a multi-variable polynomial in ti’s with positive coefficients. We give a condition

which guarantees that Y concentrates strongly around its mean even when several variables

could have a large effect on Y . Some applications will be discussed.

§1 INTRODUCTION

§1.1 The problem

In this paper, we consider independent random variables t1, t2, . . . , tn which can have two
values 0 and 1, and a polynomial Y =

∑

e∈E we

∏

i∈e ti, where we are positive coefficients,
and E is a collection of subsets of {1, 2, . . . , n}. If the size of a largest subset in E is k,
Y is called a positive polynomial of degree k. Positive polynomials naturally arise in many
probabilistic combinatorics problems (see §4) and, in most cases, they are expected to
be concentrated near their means. This paper is intended to give easy-to-check conditions
which yield strong concentration. Several examples are presented to demonstrate the power
of the result and the comfort of using these conditions.

If Y has degree 1, i.e., Y =
∑n

i=1 witi, then the well-known Chernoff’s bound gives that

Pr(|Y − E(Y )| > λ) < 2 exp
(

− λ2/(2

n
∑

i=1

w2
i )

)

.

This bound is generalized by Azuma [Az].

Theorem 1.1. Let Ej(Y ) = E(Y |t
1
, . . . , tj ) and dj = dj(t

1
, . . . , tj ) := Ej(Y ) − Ej−1(Y ).

Then

Pr(|Y − E(Y )| > λ) < 2 exp
(

− λ2/2

n
∑

i=1

‖di‖
2
∞

)

,

1
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where ‖di‖∞ is the maximum of di over all possible t
1
, . . . , tj .

The quantity di is usually referred to as the effect of the ith variable. Azuma’s theorem
roughly says that if the sum of squares of the maximum effects is small, then the objective
function is strongly concentrated. Although a powerful tool and frequently used (see, for
instance [AS, McD]) Azuma’s theorem has its shortcoming, namely, that one needs to
consider the maximum effects. If the effects are too large with very small probability and
small enough otherwise, we still expect a similar concentration result. However, in this case
Azuma’s theorem cannot be applied. Here is an example.

Example. A random graph G(n, p) on the vertex set {1, 2, . . . , n} is obtained by choosing
every possible edge ij independently with probability p, where p is a function of n (see e.g.
[Bol]). In this case, our {0, 1} random variables are tij , for all pairs 1 ≤ i < j ≤ n. Let Y
be the number of triangle in G(n, p). Obviously,

Y =
∑

1≤i<j<k≤n

tijtiktjk.

The mean of Y is of order n3p3, and the maximum effect dlast of the last variable (regardless
ordering) is (1 − p)(n − 2). So if p is much less than n−2/3, the maximum effect would be
larger than the mean, so Azuma’s inequality is not useful.

Notice that in the above example, dlast is typically very small since the number triangles
containing a fixed edge has mean Θ(np2) and is concentrated near its mean. A couple of
Azuma type inequalities ([Kim, Gra]) are invented to overcome these situations and used
to solve graph coloring and hypergraph matching problems. The primary goal of this paper
is to give a new concentration result which could be applied even when the maximal effect
is large.

§1.2 Main result

In this subsection, we describe our main result. By technical reasons, we will allow some
variables ti to be constants. The case of interest, when all ti are {0, 1} variables, can be
seen as the special case of the statement. To state the theorem, we first need to introduce
some technical terms.

Let H be a (weighted) hypergraph with V (H) = {1, 2, ..., n}. We allow H to have empty
edges. Each edge e has some weight w(e). We assume that each edge has at most k vertices.
Suppose ti, i = 1, , 2..., n are independent random variables, and ti could be one of the two
following types

• ti is a {0, 1} random variable with expected value pi.
• ti = pi with probability 1.

Consider a polynomial

YH =
∑

e∈E(H)

w(e)
∏

s∈e

ts.

We call H the supporting hypergraph of Y . If e is the empty set, then by convention
∏

s∈e ts = 1. In the whole paper, logarithms have natural base.

Example 1. If V (H) = {1, 2, 3} and E(H) = {{1, 2}, {3}, ∅} with weights 2, 0.2, 1, respec-
tively then:

YH = 2t1t2 + 0.2t3 + 1.
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Example 2. In the example of the previous subsection, Y = YH , where H is the 3-uniform
hypergraph constructed by the triangles. The edge set of H contains all triples {ij, jk, ki}
for all 1 ≤ i < j < k ≤ n and all edges have weight 1.

Truncated subhypergraphs. For each subset A of V (H), HA (the A-truncated subhy-
pergraph of H) is defined as follows:

V (HA) = V (H)\A.
E(HA) = {B ⊂ V (HA), B ∪ A ∈ E(H)}.
If B ∈ E(HA) then w(B) = w(B ∪ A).

Formally, we can write

YHA
=

∑

e,A⊂e

we

∏

i∈e\A

ti.

For instance, if we consider the hypergraph in Example 2, and let A = {12} (the set consists
the edge 12). Then, YHA

=
∑

n≥k≥3 t1kt2k.

Our intuition behind the formalization of Main Theorem is that if the expectations of
all partial derivatives (of any order) of a positive polynomial Y are significantly smaller
than the expectation of Y , then Y is strongly concentrated. This gives an explanation to
the introduction of truncated subhypergraphs. Under the given circumstances, the partial
derivative of YH with respected to {ti : i ∈ A} is exactly YHA

.

Now let Ei(H) = maxA⊂V (H),|A|=iE(YHA
), this quantity could be interpreted as the max-

imal average effect of a group of i random variables. Note that E0(H) is simply the
expected value of YH . Finally let E(H) = maxi≥0 Ei(H) and E′(H) = maxi≥1 Ei(H).

Main Theorem. In this setting

Pr(|YH − E0(H)| > ak(E(H)E′(H))1/2λk) = O(exp(−λ + (k − 1) log n)),

for any positive number λ > 1 and ak = 8kk!1/2.

The moral of this theorem is that if the average effect of any group of at most k
random variables is considerable smaller than the expectation of Y , then Y is strongly
concentrated. The power of this theorem resides in the magic word “average”. In many
cases, when the maximal effect is too large for us to apply Azuma’s theorem, the average
effects are still sufficiently small to allow us to use Main Theorem. To illustrate this idea,
let us consider a quick and instructive application, which also shows that the concept of
positive polynomials arises very naturally in probabilistic combinatorics.

§1.3 A sample application

Let us reconsider the problem of triangle counting. Let G(n, p) be a random graph on
n vertices with edge probabilities p = nε−1, for some positive ε < 1/3. We are interested
in Y , the number of triangles in G(n, p). As discussed in §1.1, in this range of p, Azuma’s
theorem does not give any information about the concentration of Y . We will now show
that our theorem yields a considerably strong concentration result. Recall that

Y =
∑

1≤i<j<k≤n

tijtiktjk.
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It is straightforward to check that E0(Y ) =
(

n
3

)

p3, E2(Y ) = p, E3(Y ) = 1 and crucially

E1(Y ) = (n− 2)p2. The real difference is made here, because instead of the maximal effect
of a variable, which is (n − 2)(1 − p) (and is larger than the expectation of Y ), we only
need to take into account the average effect E1(Y ). This quantity is much smaller than the
expected value of Y and this makes it possible to derive a concentration result.
Observe that except E0(Y ) = Ω(n3ε), all other Ei(Y ) are at most 1. Applying Main
Theorem we obtain

(1.4.1) Pr(|Y − E0| > a3E0(Y )1/2λ3) = O(exp(−λ + 2 log n))

Choosing λ = ω(log n) one can see that (1.4.1) provides a fairly strong concentration result,
where the tail is slightly larger than the square root of the expected value, and the bound
is superpolynomially small.

The rest of the paper is organized as follows. In the next section, we introduce a
computational model and few important lemmas. Main Theorem will be proved in Section
3. Section 4 is devoted to applications, found in various areas of probabilistic combinatorics
and random graphs. In particular, we will give a short proof of a strengthened version of
a theorem of Spencer from [Spe].

§2 THE COMPUTATIONAL MODEL

§2.1 The model

Let us introduce our computational model, which provides the underlying idea for the
proof of Main Theorem. We consider the probability space generated by n independent
{0, 1} random variables t1, ..., tn, where E(ti) = pi. This space has 2n vectors and the
weight (or probability) of a vector v = (v1, .., vn) is

∏n
i=1 pi(vi) (where pi(1) = pi and

pi(0) = 1 − pi = qi). For instance, the weight of the vector (1, 1, ..., 1) is
∏n

i=1 pi.
In this section, we consider a general function Y , which is not necessarily a polynomial.

Given a function Y = Y (t1, . . . , tn), one can evaluate Y using a decision tree. We consider
a decision tree of depth n, and at a node at level i, we ask the question “what is the value
of vi”. If the answer is 1, then we go to the right hand side child of the recent node, if the
answer is 0 then we go to the left and continue until we reach a leaf. There are 2n leaves
representing the vectors in the space. In general a node at level i will be labeled by a 0, 1
vector of length i, which is the sequence of answer leading to this node. We label the root
by the empty set and at each leaf v we write the corresponding value of Y (v).

For any leaf v, let vi be its ith coordinate, and vi be the vector formed by the first i
coordinates of v. If a is a vector of length i and b is a vector of length j, then < a, b >
denotes the vector of length i + j obtained by writing b behind a. For a node vi at level i,
we let E(vi) denote the expected value of the leaves below vi, namely:

E(vi) =
∑

u,ui=vi

Y (u)

n
∏

j=i+1

pj(uj).

By definition, the value at the root is E(∅) = E(Y ).

§2.2 Lemmas

First we introduce some new notations. For z = 0 or 1, let
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µi,z(v) = E(< vi−1, z >) − E(vi−1)

It is easy to compute that

µi,1(v) = qi(E(< vi−1, 1) − E(< vi−1, 0 >))

and

µi,0(v) = pi(E(< vi−1, 0 > −E(< vi−1, 1 >))

Denote by c(v) the maximum value of µi,z(v) over all possible choice of i and z. Let
cY = maxv c(v). Set

Vi(v) = piµi,1(v)2 + qiµi,0(v)2.

The previous computation yields

Vi(v) = piqi(E(< vi−1, 1) − E(< vi−1, 0 >))2 ≤ piC
2
i ,

where Ci = |E(< vi−1, 1 >) − E(< vi−1, 0 >)|.
It is apparent that c(v) ≤ maxi Ci(v), and cY ≤ maxv maxi Ci(v). Furthermore, define

V (v) =

n
∑

i=1

Vi(v) and VY = max
v

V (v).

Theorem 2.2.1. If c′ ≥ cY , V ′ ≥ VY and 0 < λ < V ′/(c′)2, then

Pr(|Y − E(Y )| > (λV ′)1/2) < 2e−λ/4.

Proof. The proof relies essentially on the following lemma, which is a special case of a
lemma proved in [Gra].

Lemma. If x < 1/cY and E(Y ) = 0 then E(exY ) < ex2VY .

Proof of Lemma. We use induction on n. The case n = 0 is trivial. Suppose n ≥ 1.
Notice that, by definition, µ1,0(v) are the same for all v. So for all v, we have µ1,0(v) = µ1,0,
where µ1,0 is some constant does not depend on v. Similarly, we can set µ1,1(v) = µ1,1 and
V1(v) = V1 for all v.

Consider the function Y − µ1,0 assigned to the left subtree of depth n − 1 of the original
tree. This function has expected value 0, so the induction hypothesis gives

E(ex(Y −µ1,0)) < ex2(VY −V1).

A similar argument on the right subtree gives

E(ex(Y −µ1,1)) < ex2(VY −V1).

On the other hand,

E(exY ) = p1e
xµ1,1E(ex(Y −µ1,1)) + q1e

xµ1,0E(ex(Y −µ1,0));

therefore,



6 JEONG HAN KIM AND VAN H. VU

E(exY ) < p1e
xµ1,1ex2(VY −V1) + q1e

xµ1,0ex2(VY −V1).

It remains to show

(2.2.1) p1e
xµ1,1 + q1e

xµ1,0 ≤ ex2V1 .

Consider the Taylor expansion of the left hand side of (2.2.1)

p1(1 + xµ1,1 + x2µ2
1,1/2 + ...) + q1(1 + xµ1,0 + x2µ2

1,0/2 + ...)

= 1 + 0 + x2(p1µ
2
1,1 + q1µ

2
1,0)/2 + ...

= 1 + V1x
2

∞
∑

i=2

1

i!
(q1(xµ1,1)i−2 + p1(xµ1,0)i−2).

Since x < 1/cY , both xµ0,1 and xµ1,1 have absolute values less than 1. Thus

∞
∑

i=2

1

i!
(q1(xµ1,1)i−2 + p1(xµ1,0)i−2) <

∑

i=2

1

i!
(p1 + q1) =

∑

i=2

1

i!
< 1.

The last inequality implies that the left hand side of (2.2.1) is at most 1 + V1x
2. Since

1 + V1x
2 ≤ ex2V1 , the proof of the lemma is complete. �

To prove the theorem, note that when we replace Y by Y −E(Y ) the parameters involved
in the bound (such as µ, c and V ) do not change. Therefore, without loss of generality, we
can assume that Y has mean 0. Having done this, we can finish using the standard Markov
inequality argument. Setting x = 1

2 (λ/V ′)1/2; it is trivial that x < 1/c′ ≤ 1/c. Thus by
the previous lemma and Markov’s inequality we have

Pr(Y > (λV ′)1/2) = Pr(exY > ex(λV ′)1/2

) < E(exY )e−x(λV ′)1/2

< ex2VY −x(λV ′)1/2

< ex2V ′−x(λV ′)1/2

= e−λ/4.

By symmetry, we obtain Pr(|Y | > (λV ′)1/2) < 2e−λ/4 and the proof is finished. �

The following theorem is the key tool in the proof of Main Theorem.

Theorem 2.2.2. Let V and c be two arbitrary positive numbers and B = {v|c(v) >
c or V (v) > V }. If 0 < λ < V/c2 then

Pr(|Y − E(Y )| > (λV )1/2) < 2e−λ/4 + Pr(B).

Proof. Call a leaf v bad if it is in B. Consider the path from the root to a bad leaf v and

let i be the first index so that either
∑i

j=1 Vj(v) ≥ V or ci(v) > c. If i is such index, we call

the node vi−1 exceptional. The key observation here is that all leaves below an exceptional
node are bad. For every leaf u below an exceptional node vi−1 change the value of Y (u)
to Ei−1(u). Let Y ′ be the new function. Since exceptional nodes are incomparable, Y ′
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is well-defined. Notice that in the new tree V (v) < V and c(v) < c for every leaf v. So
Theorem 2.2.1 implies

Pr(|Y ′ − E(Y ′)| > (λV )1/2) < 2e−λ/4.

To complete the proof, observe that E(Y ′) = E(Y ); moreover, Y (v) = Y ′(v) for all v /∈ B.
This yields

Pr(|Y − E(Y )| > (λV )1/2) < 2e−λ/4 + Pr(B),

completing the proof. �

Notice that Theorem 2.2.2. still holds if we allow some random variables be constants.

§3 PROOF OF THE MAIN THEOREM

The leading idea of the proof is to use induction on k and apply Theorem 2.2.2. Actually,
the hardest part of the proof is to state a proper induction hypothesis, i.e., to come to the
right inequality in the theorem. Once this has been found, it is not too hard to prove !

Let us start with a definition.
Shadow hypergraphs. The shadow H∗ of a (weighted) hypergraph H on the vertex set
{1, 2, . . . , n} is a (weighted) hypergraph on the same set of vertices, where the edge set of
H∗ contains of the “shadows” of edges in H. The formal description now follows.

For each edge e = {a1, .., al} ∈ E(H), where a1 < a2 < .. < al, create l new edges
ej = {a1, ..., aj}, j = 0, 1, 2..., l − 1 where e0 = ∅; the set of new edges ej will form the edge

set of H∗. In H∗ set the weight of ej equal to w(e)
∏l

s=j+1 pas , where pi is the expectation

of the random variable ti. If an edge f appears in H∗ many times (it could be a shadow of
different edges in H), then we keep one copy of f and add up the weights.

Example. If H has three edges {1, 2, 3}, {1, 2}, {3} with weights a, b and c, respectively,
then H∗) has three edges {1}, {1, 2}, {∅} with weights ap2p3+bp2, ap3, ap1p2p3+bp1p2+cp3,
respectively.

It is essential to note that if every edge of H has at most k vertices, and A is a nonempty
sets of variables, then every edge of HA and H∗ has at most k−1 vertices. This observation
will enable us to apply induction.
Proof of Main Theorem

Given a positive polynomial Y and its support hypergraph H, we will show by induction
on k the following. For any λ > 1

Pr(|Y (H) − E(Y (H))| > ck(E(H)E′(H))1/2λk) < dkexp(−λ/4 + (k − 1) log n),

where dk is recursively defined as follows: d1 = 2, dk = (1 + 1
n )dk−1 + 2

nk−1 and ck =

2k−1(k!)1/2. A straightforward calculation shows that dk < 2e2. Replacing λ/4 by λ we
obtain Main Theorem. The constants (ck and dk) are not best possible, but we make no
attempt to optimize them.

If k = 1 then all edges have at most one vertices, therefore

YH =

n
∑

i=1

witi + w0,



8 JEONG HAN KIM AND VAN H. VU

where wi is the weight of ti and w0 is the weight of the (possible) empty edge. We can
assume w0 = 0. In this case E1(H) = maxiwi. For arbitrary λ > 1, set

V = max{E0(H), E1(H)}E1(H)λ,

and

c = E1(H).

To apply Theorem 2.2.2, notice that Ci = wi. It is clear that our parameters satisfy the
conditions of Theorem 2.2.2, namely

∑

Vi =
∑

piw
2
i ≤ (maxwi)

∑

wipi = E1(H)E0(H) < V,

and

V

c2
=

V

E2
1(H)

≥ λ.

Hence by Theorem 2.2.2

Pr(|YH − E0(H)| > V 1/2λ) ≤ Pr(|YH − E0(H)| > (λV )1/2) < 2exp(−λ/4).

Now suppose the induction hypothesis holds for k − 1, we prove it for k. Recall from
Section 2.2 that c(v) ≤ maxiCi(v) and V (v) ≤

∑n
i=1 piC

2
i (v). So for arbitrary positive

numbers c and V

(3.1) Pr(c(v) > c or V (v) > V ) ≤
n

∑

i=1

Pr(Ci(v) > c) + Pr(

n
∑

i=1

piCi(v) > V/c).

We will bound each term in the right hand side of (3.1) by the induction hypothesis. Once
these bounds are achieved, we use Theorem 2.2.2 to complete the proof. First we need the
following elementary claims, whose proofs are omitted. The reader may verify these claims
by a routine computation.

Claim 1. For any point i ∈ V (H)

Ej(H{i}) ≤ Ej+1(H).

Claim 2.

Ej(H∗) ≤ kEj(H).

The key idea in the proof is to notice that the effect Ci(v) of the point i is again a
positive polynomial, whose support hypergraph is the {i}-truncated hypergraph of H. By
the definition of truncated hypergraphs, Ci(v) has degree at most k − 1. Since the variable
v now plays no role, in the following we will write Ci instead of Ci(v) and C instead of
C(v). We have that

Ci =
∑

U3i

w(U)
∏

s∈U\{i}

tis,
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where tis = ts if s < i and tis = ps if s > i. This corresponds to the fact that in the definition
of µi (see the last section) we take the expectation after exposing the first i variables, so
all variables with index larger than i become constants.

Now Ci is a polynomial defined on H{i} with a set of new atom variables tis. Since the
degree of Ci is at most k − 1, we can apply the induction hypothesis and obtain that

(3.2) Pr(|Ci−E(Ci)| > ck−1(E(H{i})E′(H{i}))1/2λk−1) < dk−1exp(−λ/4+(k−2) log n).

Because E(Ci), E(H{i}) and E′(H{i}) are at most E′(H) by Claim 1, it follows that

(3.3) Pr(Ci > 2ck−1E
′(H)λk−1) < dk−1exp(−λ/4 + (k − 2) log n).

Now consider C =
∑k

i=1 piCi. We can write C as a polynomial in the following way

C =
∑

i∈V (H)

∑

E(H)3U3i

w(U)pi

∏

s∈U\i

tis = YH∗(t1, . . . , tn).

One can verify that the support hypergraph of C is exactly the shadow hypergraph H∗ of
H. Since the degree of C is at most k − 1, by the induction hypothesis we have

(3.4) Pr(|C − E(C)| > ck−1(E(H∗)E′(H∗))1/2λk−1) < dk−1exp(−λ/4 + (k − 2) log n).

By Claim 2, it follows that

(3.5) Pr(C > 2ck−1kE(H)λk−1) < dk−1exp(−λ/4 + (k − 2) log n).

Now set c = 2ck−1E
′(H)λk−1 and V = 4kc2

k−1E(H)E′(H)λ2k−1. Since E(H) ≥ E′(H),

it is trivial that V/c2 ≥ λ. Moreover,

n
∑

i=1

Pr(Ci(v) > c) < ndk−1exp(−λ/4 + (k − 2) log n) = dk−1exp(−λ/4 + (k − 1) log n),

by (3.3). Furthermore, by (3.5) and the fact that V/c = 2ck−1kE(H)λk (λ > 1), we have

Pr(C > V/c) < dk−1exp(−λ/4 + (k − 2) log n).

Now we are ready to apply Theorem 2.2.2, which implies

Pr(|YH − E(YH)| > V 1/2λ1/2) < 2exp(−λ/4) + (1 +
1

n
)dk−1exp(−λ/4 + (k − 1) log n))

= ((1 +
1

n
)dk−1 +

2

nk−1
)(exp(−λ/4 + (k − 1) log n))

= dkexp(−λ/4 + (k − 1) log n),
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by the definition of dk. Since (V λ)1/2 = 2ck−1k
1/2(E(H)E′(H))1/2λk, we can complete

the proof by setting ck = 2k1/2ck−1. �

Remark. For the case k = 1, we need only λ1/2 in the tail (instead of λ). Exploiting
this, one can improve, for arbitrary k, the term λk to λk−1/2. However, in applications,
this fact rarely matters.

§4 APPLICATIONS

§4.1 Main Theorem and the Semi-random method.

Main Theorem and Theorem 2.2.2 was originally found and proved in order to analyze
an application of the semi-random method to solve Segre’s long standing open problem in
finite geometry (see [Seg], also [KV] and [Szo]). Consider a projective plane P of order q.
A set A of vertices is an arc if no three points of A is on a line. An arc is complete if it
cannot be extended by another point. Let n(P ) denote the minimum size of a complete arc
in P . To determine the order of magnitude of n(P ) is among the central open questions in
finite geometry. It was proven by Lunelli and Sce in the 50’s that n(P ) = Ω(q1/2), but no
close upper bound has been known. For a Galois plane, which is a special projective plane,
the best upper bound was O(q3/4) proven by Szőnyi ([Szo]) by algebraic arguments.

Using the semi-random method combined with Main Theorem and Theorem 2.2.2, we
succeeded to prove that the lower bound Ω(q1/2) is actually sharp up to a polylogarithmic
term.

Theorem 4.1.1. [KV] There is a constant c such that for any q and any plane P of order
q

n(P ) < q1/2 logc q.

Later on, it has turned out that in many applications of the semi-random method, Main
Theorem can be used in a very effective way to analyze the behavior of certain random
processes. Since it may take a whole survey to discuss these techniques, we limit ourself to
introducing one more result (Theorem 4.1.2), which was obtained by essentially combining
the semi-random method (following [Joh]) with Main Theorem. This theorem involves the
list chromatic number of a graph which is a natural generalization of the chromatic number.
Given a graph G, the list chromatic number of G, χl(G), is the smallest number m such
that if one assigns an arbitrary list of m colors to each vertex of G (the lists can be different
on different vertices), then there is a proper coloring (in the classical sense) of the vertices
so that each vertex receives a color from its list. The notion of list chromatic number was
introduced by Erdős, Rubin and Taylor [ERT], and independently by Vizing [Viz] and is
extensively studied in the last decade (see [Alo] for a survey). Theorem 4.1.2 below gives
the best possible upper bound for the list chromatic number of locally sparse graphs, and
improves several earlier results on the same topic (see [Kim, Joh, AKS, Vu1]).

Theorem 4.1.2. ( [Vu2]) Let G be a graph with maximal degree d. Suppose that for every
vertex v of G, the neighborhood of v contains at most d2/f edges, for some number f > 2.
Then χl(G) = O(d/ log f).

In the rest of this section, we focus on the applications of Main Theorem in the theory
of random graphs. First, let us notice that Main Theorem implies the following
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Corollary 4.1.3. If there is a positive constant γ such that Ei/E0 = O(n−γ) for all i > 0,

then there are positive constants ε and ε′ such that Pr(|Y − E(Y )| > n−εE(Y )) < e−nε′

.

§4.2 Number of rooted strictly balanced subgraphs in a random graph

Let H be a (small) graph with vertices labeled by x1, ...xr, y1, ..., yv, where R = (x1, .., xr)
is a specified subset, called the roots. The pair (R, H) will be dubbed as rooted graph. Let
G be a (big) graph on n vertices disjoint from H. Fix r points x1, .., xr in G. We call an
order v-tuple y1, ..., yv an extension if the yj are distinct from each other and from the xi,
moreover

xi ∼ yj in G whenever xi ∼ yj in H
yi ∼ yj in G whenever yi ∼ yj in H.

We denote by N(x1, ..., xr) the number of extensions relative to a given pair (R, H) and
a fixed set of vertices x1, .., xr.

Let e be the number of edges of H, excluding edges between the roots. The ratio e/v is
the density of H. If H ′ is an induced subgraph of H and contains R, then we call the pair
(R, H ′) a proper subextension of R. We denote by max(R, H) the maximum density of a
proper subextension of R.

Consider G = G(n, p). As usual, our atom {0, 1} random variables are tij , 1 ≤ i < j ≤ n.
We say that a property Q holds almost surely in G(n, p) if the probability that Q does not
hold tends to 0 as n tends to infinity. We are interested in the concentration of the random
variable N(x1, .., xr) in certain range of p.

We say p is safe if p = n−α, where α is a positive constant smaller than 1/max(R, H).
Our goal is to prove that if p is safe then N(x1, . . . , xr), for any choice of x1, . . . , xr,
concentrates strongly around its expected value.

The investigation of the function N(x1, . . . , xr) was motivated by a theorem of Shelah
and Spencer on zero-one laws. In [SS] Shelah and Spencer proved the following:

Theorem 4.2.1. If p = n−γ for γ irrational, then p satisfies a zero-one law.

We omit the (rather involved) description of the zero-one law in concern and refer the
reader to [SS]. Here we will focus on a concentration theorem, which is the key tool in the
proof of Theorem 4.2.1. Let N be expectation of N(x1, . . . , xr); the value of N does not
depend on the choice of x1, . . . , xr.

Theorem 4.2.2. Let p be safe, then there are positive constants c and c′ such that almost
surely

N log−c n < N(x1, . . . , xr) < c′N,

hold for all r-tuples (x1, . . . , xr).

It was conjectured in [SS] that one could replace the left hand side by cN . This was
confirmed by Spencer in a later paper [Spe] (see also [AS]), in which he proved

Theorem 4.2.3. If p is safe, then for any positive constant ε

(1 − ε)N < N(x1, . . . , xr) < (1 + ε)N,

almost surely.

The proof of the last theorem in Spencer’s paper [Spe] is rather complicated and splits
into two cases: N large and N small. A subtle and somewhat counter-intuitive point in
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this proof (pointed out to us by Spencer), is that it was harder to prove the statement in
the case N large. In order to handle this case, one first needs to prove the statement in the
other case, then finish by some additional tricks.

In the following, we will give a short proof for a stronger version of Spencer’s theorem,
in which we allow ε be a negative power of n. The amazing thing about this proof is that it
follows almost immediately from Corollary 4.3.1, and there is no need to distinguish cases
based on the magnitude of N .

Theorem 4.2.4. If p is safe, then there are positive constants ε and ε′ such that for any
x1, . . . , xr

Pr(|N(x1, . . . , xr) − N | > Nn−ε) < e−nε′

.

Consequently, almost surely N(1 − n−ε) < N(x1, . . . , xr) < N(1 + n−ε) hold for all
r-tuples (x1, . . . , xr).

Proof. Let us write N(x1, .., xr) as a polynomial in the atom variables tij ’s. It is clear
that

Y = N(x1, .., xr) =
∑

y1,..,yv

∏

xiyj∈H

txiyj

∏

yiyj∈H

tyiyj

where the sum is taken over all ordered v-tuples, and Y has degree e. The expected value
of Y is N = E0 = Θ(nvpe). All we need is to show that Y has strong concentration. To
apply Corollary 4.1.3, we only need to compute Ei(Y ). From here the proof becomes a
routine calculation.

For any number i ≤ e, let j(i) be the minimum number j such that there is a set W of j
elements so that the subextension (R, R ∪ W ) has at least i edges. It is not hard to verify
that

Ei = O(nv−j(i)pe−i).

It follows that

E0/Ei = Ω(nj(i)pi) = Ω((npi/j(i))j(i)).

Notice that p is safe, thus by definition

npi/j(i) > n1−αi/j(i) > n1−αmax(R,H) > nγ

for some positive constant γ. Therefore, the expectations Ei(H) satisfy the condition of
Corollary 4.1.3. So we may conclude that if p is safe, then there are positive constants ε
and ε′ such that

Pr(|Y − E(Y )| > E(Y )n−ε) < e−nε′

.

Since the right hand side is superpolynomially small, we can conclude that the same
result holds simultaneously for every r-tuples x1, .., xr.

§4.3 Number of small subgraphs in a random graph

Fix a small graph H with v vertices and e edges, we are interested in XH , the number
of subgraphs of G(n, p) isomorphic to H. This problem can be seen as a special case of the
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previous application, because every graph is an extension of the empty set. Therefore, if δ
is the largest density of a subgraph of H, and p is safe, namely, p = n−α, for some α < 1/δ,
then a statement similar to the statement of Theorem 4.2.4 holds. Let us notice that we
count the number of copies of H up to automorphism, therefore E(X(H)) = nvpe/K,
where K is the size of the automorphism group of H. Since K is a constant, its presence
does not change the content of the theorem.

Theorem 4.3.1. If p is safe then there are positive constants ε and ε′ such that

Pr(|XH − E(XH)| > E(XH)n−ε) < e−nε′

In particular, when H is strictly balanced (i.e, the density of H is larger than the density
of any of its induced subgraphs), we have

Theorem 4.3.2. If αe < v and p = n−α then there are positive constants ε and ε′ such
that

Pr(|XH − E(XH)| > E(XH)n−ε) < e−nε′

Theorem 4.3.2 implies an exponential bound on the probability that a random graph
does not contain a copy of a small fixed graph. This bound is weaker than a well known
result of Janson,  Luczak and Rucinski [JLR], but is in the same spirit.

Corollary 4.3.3. Under the condition of the previous theorem, the probability that G(n, p)
does not contain a copy of H is exponentially small (to be precise e−nε

), for some positive
constant ε).

Theorem 4.3.2 still holds if we only require H to be balanced, that is, the density of
H is not smaller than any of its subgraph. All theorems proved in this and the previous
subsection can be generalized for random graphs with non-uniform edge probability (Main
Theorem does not require the atom variables to be i.i.d.). Another direction to strengthen
these applications is to allow the size of H be a function of n tending slowly to infinity. One
can show that the results derived in the last two subsections still hold if V (H) = (log n)1−ε

for any positive ε. We omit the details.

Added in proof. Main Theorem is not too effective when applied for functions with small
expectations (of order O(log n), say). Recently, this case was investigated (motivated by
applications in number theory [Vu5]) , and a concentration result on polynomials with small
expectations (order O(polylog n)) was proven in [Vu3]. A generalized and strengthened
version of Main Theorem along with several other applications will appear in a new paper
[Vu4].
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[ERT] P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, Proc. West Coast
Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI
(1979) 125-157.

[Gra] D. Grable, A large deviation inequality for functions of independent, multi-way
choices, Combinatorics, probability and Computing (1998) 7, 57-63.

[Joh] A. Johansson, Asymptotic choice number for triangle free graphs, DIMACS Technical
Report (1996).

[JLR] S. Janson, T.  Luczak and A. Rucinski, An exponential bound for the probability
of nonexistence of a specified subgraph in a random graph, in: M. Karonski et al. eds.,
Random graphs 87 (Wiley , New York, 1990) 73-87.

[Kim] J. H. Kim, On Brooks’ theorem for sparse graphs, Combinatorics, Probability and
Computing 4 (1995), 97–132.

[KV] J.H. Kim and V.H. Vu, Small complete arcs on finite projective planes, submitted.

[Segr] B. Segre, Le geometrie di Galois, Ann. Mat. Pura Appl. (1959) 48, 1-97.

[Segr2] B. Segre, Introduction to Galos geometries (ed. J.W.P Hirschfeld) Mem. Accad.
Naz. Lincei (1967) 8, 133-263.

[SS] S. Shelah and J. Spencer, Zero-one laws for sparse random graphs, J. Amer. Math.
Soc. (1988) 1, 97-115.

[Spe] J. Spencer, Counting extensions, Journal of Combinatorial Theory, Series A (1990)
55, 247-255.
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