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Concentration of Posterior Model Probabilities
and Normalized L0 Criteria∗

David Rossell†

Abstract. We study frequentist properties of Bayesian and L0 model selection,
with a focus on (potentially non-linear) high-dimensional regression. We propose a
construction to study how posterior probabilities and normalized L0 criteria con-
centrate on the (Kullback-Leibler) optimal model and other subsets of the model
space. When such concentration occurs, one also bounds the frequentist probabil-
ities of selecting the correct model, type I and type II errors. These results hold
generally, and help validate the use of posterior probabilities and L0 criteria to
control frequentist error probabilities associated to model selection and hypothesis
tests. Regarding regression, we help understand the effect of the sparsity imposed
by the prior or the L0 penalty, and of problem characteristics such as the sample
size, signal-to-noise, dimension and true sparsity. A particular finding is that one
may use less sparse formulations than would be asymptotically optimal, but still
attain consistency and often also significantly better finite-sample performance.
We also prove new results related to misspecifying the mean or covariance struc-
tures, and give tighter rates for certain non-local priors than currently available.

Keywords: model selection, Bayes factors, high-dimensional inference,
consistency, uncertainty quantification, L0 penalty, model misspecification.

Selecting a probability model and quantifying the associated uncertainty are two funda-
mental tasks in Statistics. In Bayesian model selection (BMS), given models and priors
one obtains posterior model probabilities that guide model choice and measure the
(Bayesian) certainty on that choice. It is interesting to understand how such posterior
probabilities relate to the frequentist probability of selecting the optimal model (defined
below). L0 penalties are also powerful selection criteria, but it is less clear how to por-
tray uncertainty. Suppose one selects the model optimizing the Bayesian information
criterion (BIC, Schwarz, 1978), how is one to measure the certainty about that choice?
Given the connection between the BIC and Bayes factors, it is tempting to define a
pseudo-posterior probability via a normalized L0 criterion (defined below). Again the
question is how do pseudo-probabilities relate to frequentist selection probabilities.

Our goals are two-fold. First, we present a general framework to study the L1 con-
vergence of posterior model probabilities and normalized L0 criteria, and show that the
rates bound the frequentist probabilities of choosing the wrong model and making type
I–II errors. There is previous work studying L1 convergence (see below), our specific
construction however is novel (to our knowledge) and reduces the problem to integrating
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certain Bayes factor tail probabilities. The result on bounding frequentist error probabil-
ities is also new (although elementary), and validates using posterior probabilities and
normalized L0 criteria to quantify model choice uncertainty from a frequentist stand-
point. Our second goal is to apply our framework to Gaussian regression to synthesize
and extend current theoretical results. We show that posterior model probabilities in
high dimensions depend on the same three elements that drive their behavior in finite
dimensions. These are the sparsity of the prior on the models, the dispersion of the prior
on the parameters, and whether the latter is a local or a non-local prior (Johnson and
Rossell, 2010). We impose mild conditions on these prior elements so that, relative to
current consistency results for a specific prior sparsity regime, we portray the impact of
enforcing sparsity. As novel aspects, we consider model misspecification within (possi-
bly non-linear) regression and we obtain tighter rates for the non-local product MOM
prior (pMOM, Johnson and Rossell, 2012) than currently available. A practical impli-
cation of our results is that, by using less sparse priors than those leading to optimal
asymptotic rates, one can still get consistency and sometimes significantly better finite
n performance. Some of our examples may be striking in that regard.

The introduction is organized as follows. First, we lay out notation needed to define
the problem. We then review results for fixed and high dimensions, and finally outline
the paper. Let y = (y1, . . . ,yn) be an observed outcome and n the sample size. One
wishes to consider a set of K candidate models M1, . . . ,MK for y. Each model is defined
by a density p(y | θk, φ,Mk) for k = 1, . . . ,K, where θk ∈ Θk is a parameter of
interest and φ ∈ Φ a (potential) nuisance parameter. The model dimension is given by
pk = dim(Θk) and d = dim(Φ). Densities are in the Radon-Nikodym sense, in particular
allowing discrete and continuous y. Without loss of generality let Θk ⊆ Θ ⊆ R

p for
k = 1, . . . ,K, i.e. models are nested within a larger model of dimension p+d. Although
not denoted explicitly in high-dimensional problems both the number of parameters p
and modelsK may grow with n, and this is precisely our main focus. In BMS each model
is equipped with a prior density p(θk, φ | Mk), and one obtains posterior probabilities

p(Mk | y) =

⎛
⎝1 +

∑
l �=k

p(y | Ml)

p(y | Mk)

p(Ml)

p(Mk)

⎞
⎠

−1

=

⎛
⎝1 +

∑
l �=k

Blk
p(Ml)

p(Mk)

⎞
⎠

−1

, (1)

where p(y | Mk) =
∫
p(y | θk, φ,Mk)dP (θk, φ | Mk) is the integrated likelihood under

model Mk, p(Mk) its prior probability and Blk = p(y | Ml)/p(y | Mk) the Bayes factor
between (Ml,Mk). We focus our discussion on BMS, but one can obtain analogous
expressions for normalized L0 criteria, see Section 4.

To fix ideas, consider a Gaussian regression where y ∈ R
n and the data analyst

assumes the model p(y | θ, φ) = N(y;Xθ, φI) where X is an n × p matrix, θ ∈ R
p

the regression coefficients, and φ > 0 the error variance. Models Mk are defined by
selecting subsets of columns in X, i.e. p(y | θk, φ) = N(y;Xkθk, φI) where Xk is the
n × pk matrix containing the columns selected by Mk, and θk ∈ R

pk . Note that X
may contain non-linear effects and interactions such as wavelets, splines, or tensor-
products. Here one might set a conjugate Normal-inverse Gamma prior p(θk, φ | Mk) =
N(θk;0, τφI)IG(φ; aφ/2, bφ/2), for example, where (τ, aφ, bφ) are prior parameters.
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We consider the following question. Suppose that y arises from some data-generating
density f∗, which may be outside the considered models (model misspecification). Let
Mt be the optimal model in that it is the smallest model minimizing Kullback-Leibler
(KL) divergence to f∗ (see Section 1). For example, in Gaussian regression Mt is the
smallest model minimizing mean squared prediction error under f∗. If the models are
well-specified, then Mt is simply the smallest model containing f∗, and is often referred
to as true model. Ideally one wants to assign large p(Mt | y), so that one not only selects
the optimal model but is also confident about that choice.

Our goal is to study if p(Mt | y) converges to 1 as n grows, and at what rate. This
problem has been well-studied in finite dimensions where (p,K) do not grow with n.
Consider a model Mk that includes the optimal Mt (Θt ⊂ Θk), i.e. Mk contains spurious
parameters. We refer to such Mk as a spurious model. For fairly general models and
priors, the Bayes factor Bkt converges in probability to 0 at a polynomial rate in n and
in the prior dispersion (τ in our regression example). See Theorem 1 in Dawid (1999)
and the proof of our Theorem 1 for models with concave log-likelihood. This polynomial
rate holds when p(θk | φ,Mk) is a local prior, for non-local priors the rates are faster
(Johnson and Rossell, 2010). In contrast, if Mk is a non-spurious model (Θt �∈ Θk, i.e.
missing parameters from Mt), then Bkt vanishes exponentially in n (more precisely, in
a non-centrality parameter that is proportional to n, under suitable assumptions). In
summary, to help discard spurious models one may either set large τ (i.e. a diffuse prior
on parameters), set sparse model priors p(Mk) that penalize model size, and/or set a
non-local prior. A caveat with diffuse and sparse priors is that they penalize complexity
purely a priori, which can lead to a drop in statistical power.

Extensions of such precise rates to high dimensions are of fundamental interest
yet hard to come by. Most results focus on a prior satisfying relatively rigid sparsity
conditions and either only study consistency (with no rates) or focus on asymptotic
optimality. We show that in high-dimensional regression the finite-dimensional rates
above still hold, up to lower-order terms, for the stronger L1 convergence. The prior
features driving consistency are still the use of diffuse, sparse and non-local priors.

We review selected high-dimensional literature. Johnson and Rossell (2012) proved
that p(Mt | y) converges to 1 in linear regression with p � n under NLPs and uni-
form p(Mk). Narisetty and He (2014) showed that if p � en then certain diffuse priors
p(θk | Mk) also attain consistency. In fact, the RIC of Foster and George (1994) is a
related early advocate for diffuse priors, and can also be shown to attain consistency for
p � en (Section 4). Shin et al. (2018) extended Johnson and Rossell (2012) to p � en

under certain diffuse NLPs. Yang and Pati (2017) also used diffuse priors (defined implic-
itly via a prior anti-concentration condition), in a more general framework that allows
for non-parametric models. These results proved consistency but no specific rates were
given. Castillo et al. (2015) showed that, by using so-called Complexity priors p(Mk)
and Laplace priors on parameters, one can consistently select the data-generating model
in regression. Chae et al. (2016) proved that the same prior structure attains consistency
in regression with non-parametric symmetric errors. Gao et al. (2015) extended these
results to general structured linear models under misspecified sub-Gaussian errors, and
Rockova and van der Pas (2017) to regression trees. Yang et al. (2016) studied a regres-
sion setting where one uses diffuse priors on parameters and a type of Complexity prior
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on models. These are significant insights, the focus however is showing that complex
models are discarded a posteriori under a given, sufficiently sparse, prior.

In summary, the diffuse priors as in Narisetty and He (2014) and Complexity priors
as in Castillo et al. (2015) underlie much of the state-of-the-art literature. These priors
excel at discarding spurious models, and do not require one to restrict the maximum
model complexity. Our results suggest that they should be used with care, however, and
that there can be advantages to setting less sparse priors by placing mild restrictions
on the model complexity. As an illustration, we preview Figures 1–2 where three prior
formulations were used. Although the Complexity prior attains better asymptotic rates,
the combined pMOM and Beta-Binomial priors attained better finite n power/sparsity
tradeoffs. Although in this exampleMt has small dimension pt = 5, 10, 20 (sparse truth),
the losses in power due to setting sparse priors are substantial. It is therefore of interest
to study consistency allowing for less sparse priors.

We focus on a fully Bayesian framework where no priors are data-dependent. Ex-
tending our framework to empirical Bayes approaches where prior features are learned
from data is interesting but requires a delicate treatment beyond our scope to avoid
certain posterior degeneracy issues, we refer the reader to Petrone et al. (2014).

The paper is organized as follows. Section 1 sets notation, presents our general
framework, and shows that the expectation of posterior probabilities such as Ef∗(p(Mt |
y)) bound relevant frequentist error probabilities. Section 2 discusses the priors that we
focus attention on, and important technical conditions related to the model complexity
and sparsity embedded in the prior. It also outlines necessary conditions that fairly
general priors need to satisfy, if one wishes to attain consistency. Section 3 characterizes
the posterior probability of individual models in Gaussian regression, under essentially
any prior on the models and the priors on parameters from Section 2. Specifically,
we consider Zellner priors (with known and unknown error variance) and more general
Normal priors, for which Bayes factors have tractable expressions and hence simplify our
exposition. We also include the pMOM prior where such an expression is unavailable,
and misspecified (possibly non-linear) models where tail probabilities are harder to
bound. We show that failing to include true non-linearities or omitting relevant variables
causes an exponential drop in power, whereas misspecifying the error covariance (truly
correlated and/or heteroskedastic errors) need not do so but may inflate false positives.
Section 4 extends Section 3 to normalized L0 penalties, including the BIC, EBIC and
RIC. Section 5 obtains global rates for p(Mt | y) and other interesting model subsets.
The results show that it is often possible to discard spurious parameters, even when not
using particularly sparse priors in problems of fairly large dimension, e.g. by combining
a Beta-Binomial prior on models with non-local priors on parameters. Section 6 offers
examples, and Section 7 concludes. A significant number of auxiliary lemmas, technical
results and all proofs are in the supplementary material (Rossell, 2021).

1 Approach

We first formalize the notion of optimal model Mt and introduce notation used through-
out the paper in Section 1.1. Then Section 1.2 presents a framework to study L1 con-
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vergence of p(Mt | y) in fully general settings, discusses its tightness, and shows that
the associated rates bound relevant frequentist error probabilities.

1.1 Definitions and notation

We define the optimal model Mt as having smallest dimension pt among models min-
imizing Kullback-Leibler (KL) divergence to f∗. For simplicity we assume Mt to be
unique, but otherwise one may define Mt to be the union of smallest optimal models.

Definition 1. Let (θ∗, φ∗) = argminθ∈Θ,φ∈Φ KL(f∗, p(y | θ, φ)). Define t =
argmink∈M∗ pk, where

M∗ = {k : ∃(θ∗
k, φ

∗
k) ∈ Θk × Φ : KL(f∗, p(y | θ∗

k, φ
∗
k)) = KL(f∗, p(y | θ∗, φ∗))}

is the set of all models minimizing KL-divergence to f∗.

We denote by (θ∗, φ∗) the global optimal parameter value minimizing KL-divergence
to f∗, and by (θ∗

k, φ
∗
k) that under a model Mk. If f

∗ lies in the assumed model family
(well-specified case), then (θ∗, φ∗) is the true parameter value.

We shall study the posterior probability assigned to models other than Mt. To that
end, denote the set of l-dimensional models that contain Mt plus some spurious pa-
rameters by Sl = {k : Θt ⊂ Θk, pk = l}. We refer to Sl as spurious models of dimension
l. Similarly, let Sc

l = {k : Θt �⊂ Θk, pk = l} be the size l non-spurious models, and let
S =

⋃p̄
l=pt+1 Sl and Sc =

⋃p̄
l=0 S

c
l the complete set of spurious and non-spurious models.

Denote by |S| the cardinality of S.

In our study it is often convenient to express certain conditions and results in terms of
their asymptotic order as n grows. To this end, an � bn denotes limn→∞ an/bn = 0 for
two deterministic sequences an, bn > 0, and similarly an 	 bn denotes limn→∞ an/bn ≤ c
for some constant c > 0. Finally, an � bn denotes that both an 	 bn and an � bn.

As we discuss later, although p could potentially grow exponentially with n, for
certain prior/L0 penalty settings to achieve consistency it may be necessary to impose
restrictions on the model complexity. We assume that the analyst specifies a maximum
model size that we denote by p̄ = maxk pk, and describe rates as a function of p̄ For
instance, in regression one may have p  n but restrict attention to models selecting at
most p̄ = min{n, p} out of the p variables, as choosing a model with pk > n parameters
may not be desirable. The number of models is then K =

∑p̄
j=0

(
p
j

)
, which is still  n.

1.2 L1 convergence

From (1), posterior consistency requires
∑

k �=t Bktp(Mk)/p(Mt)
P−→ 0. The difficulty in

high dimensions is that the number of modelsK−1 grows with n, hence the sum can only
vanish if each term Bktp(Mk)/p(Mt) converges to 0 quickly enough. This intuition is
clear, but obtaining probabilistic bounds for this stochastic sum is non-trivial, since the
Bkt’s may exhibit complex dependencies. To avoid dealing with such high-dimensional
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stochastic sums, it is simpler to study deterministic expectations. Specifically, we study

when p(Mt | y) L1−→ 1, which by definition of L1 convergence is equivalent to

lim
n→∞

∑
k �=t

Ef∗ (p(Mk | y)) = 0, (2)

where Ef∗(·) is the expectation under f∗. Some remarks are in order. First, L1 con-
vergence in (2) implies convergence in probability. Let bn > 0 be a sequence such that
lim
n→∞

bn = 0, if Ef∗(1− p(Mt | y)) 	 bn then 1− p(Mt | y) = Op(bn). Naturally (2) may

require more stringent conditions than convergence in probability, but in regression we
obtain essentially tight rates and the gains in clarity are substantial. Second, one can
evaluate the sum on the left-hand side of (2) for fixed n, p and K, i.e. the expression
can be used in non-asymptotic regimes.

L1 convergence guarantees bounding relevant frequentist probabilities, supporting
the use of posterior probabilities (or normalized L0 criteria) to quantify model uncer-
tainty. By Proposition 1, Ef∗(p(Mt | y)) bounds the frequentist selection probability

Pf∗(k̂ �= t), where k̂ is the highest posterior probability model. Proposition 1 also holds

when k̂ is the median probability model (Barbieri and Berger, 2004) selecting parame-
ters with marginal posterior inclusion probability P (θj �= 0 | y) > 0.5 (see the proof).

Proposition 1. Let k̂ = argmaxk p(Mk | y) be the posterior mode, then

Pf∗(k̂ �= t) ≤ 2Ef∗(1− p(Mt | y)) = 2
∑
k �=t

Ef∗(p(Mk | y)).

Corollaries 1–2 relate type I–II error probabilities to expected posterior model prob-
abilities. Corollary 1 uses the trivial observation that family-wise type I–II error rates
are both ≤ Pf∗(k̂ �= t), and hence bounded by Proposition 1. Suppose instead that k̂
is obtained by selecting parameters with P (θj �= 0 | y) > t, for some threshold t. For
instance, to control the Bayesian False Discovery rate below a level α one sets a certain
t ≤ 1− α (Müller et al., 2004). Then, by Corollary 2 the type I–II errors for individual
coefficients are bounded by Ef∗(P (θj �= 0 | y)), times a factor depending on t.

Corollary 1. Let S(k̂) the set of non-zero parameters in model k̂ = argmaxk p(Mk | y).

• The family-wise type I error is Pf∗

(⋃
j:θ∗

j=0{j ∈ S(k̂)}
)
≤ Pf∗(k̂ �= t).

• The family-wise type II error is Pf∗

(⋃
j:θ∗

j=1{j �∈ S(k̂)}
)
≤ Pf∗(k̂ �= t).

Corollary 2. Let S(k̂) = {j : P (θj �= 0 | y) > t} for a given threshold t.

• False positives. Assume that θ∗j = 0. Then Pf∗(j ∈ S(k̂)) ≤ 1
tEf∗(P (θj �= 0 | y)).

• Power. Assume that θ∗j �= 0. Then Pf∗(j �∈ S(k̂)) ≤ 1
1−tEf∗(P (θj = 0 | y)).



D. Rossell 571

To summarize, if one can bound sums of expectations Ef∗(p(Mk | y)) across models
one can then prove that the posterior probability of Mt converges to 1 via (2), as
well as bound the frequentist probability of selecting Mt, and of the selected model
including type I–II errors. The question is therefore how to bound the right-hand side
in Proposition 1, which we discuss next. Our strategy is to use that

1− p(Mt | y) =
∑
k �=t

p(Mk | y) ≤
∑
k �=t

(
1 +Btk

p(Mt)

p(Mk)

)−1

.

Per Lemma 1 below, the L1 convergence of the right-hand side can be proven by in-
tegrating tail probabilities that, conveniently, only involve pairwise Bayes factors Bkt.
A natural question is whether said right-hand side provides a sufficiently tight bound.
Lemma 2 shows that, indeed, whenever p(Mt | y) converges to 1 the right-hand side is
asymptotically equivalent to 1− p(Mt | y).
Lemma 1.

Ef∗(p(Mk | y)) ≤ Ef∗

((
1 +Bkt

p(Mk)

p(Mt)

)−1
)

=

∫ 1

0

Pf∗

(
Bkt >

p(Mk)

p(Mt)(1/u− 1)

)
du.

Lemma 2. Suppose that p(Mt | y) L1−→ 1. Then

1− p(Mt | y)∑
k �=t(1 +Btkp(Mt)/p(Mk))−1

L1−→ 1.

Our strategy is based on two steps. First, we use Lemma 1 to bound the poste-
rior probability assigned to an individual model Ef∗(p(Mk | y)). This is achieved by
bounding tail probabilities for Bkt, for all n ≥ nk0 and some fixed nk0. Sections 3–4 use
such bounds for (possibly non-linear) Gaussian regression for Bayesian and normalized
L0 methods, respectively. The key is that Bayes factors can be bounded by quadratic
forms involving least-squares estimators (or Bayesian analogues), for which we derived
tail inequalities (Section S2). To facilitate applying our framework to other models,
Section S2 also gives finite-n bounds for Ef∗(p(Mk | y)) in more general cases where
suitably re-scaled log(Btk) have exponential or polynomial tails.

The second step is to bound the right-hand side in Proposition 1 for all n ≥ n0 and
fixed n0 = maxk nk0 by adding the model-specific bounds. Note that one can similarly
bound the posterior probability of other interesting model subsets, e.g. adding spurious
parameters to Mt. Section 5 performs this task for Gaussian regression (and implicitly
for other settings where rates for Ef∗(p(Mk | y)) take a similar form). As a technical
remark, one must ensure that such fixed n0 exists. This need not hold in general, since
the number of models k �= t grows with n, but in our regression examples such n0 indeed
exists. We refer the reader to Section S1 (A4) for further discussion.

2 Conditions for consistency

We outline priors and conditions related to the extent to which they encourage sparsity.
The conditions feature non-centrality parameters measuring the signal strength when
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comparingMt versus another modelMm. We generically denote these by λtm, and define
them precisely in each setting below. Section 2.1 lists the priors used in our Gaussian
regression examples. Section 2.2 sets conditions on these priors (see Section 4 for L0

criteria), and discusses connections to necessary conditions for p(Mt | y) to converge to
1 in a wide class of models and priors (Section S3.1) and to related literature. The main
difference to earlier work is that we do not restrict attention to situations where p(Mk)
is a sparse prior or one sets diffuse parameter priors. By restricting the maximum model
complexity, our study includes the use of less sparse priors, to provide a wider depiction
of when one can hope p(Mt | y) to converge to 1.

2.1 Prior distributions for regression

The framework from Section 1 applies to any prior but the required algebra varies, for
illustration we focus on several popular priors. First we consider Zellner’s prior

p(θk | Mk, φ) = N(θ;0, τnφ(X ′
kXk)

−1), (3)

where τ > 0 is a known prior dispersion. For simplicity X ′
kXk is assumed invertible for

pk ≤ p̄. We then extend results to Normal priors

p(θk | Mk, φ) = N(θk;0, τnφVk) (4)

with general covariance Vk and to the pMOM prior (Johnson and Rossell, 2012)

p(θk | φ,Mk) =
∏

j∈Mk

θ2jx
′
jxj/(τnφ)N(θj ;0, τnφ/x

′
jxj), (5)

where xj is the jth column in Xk.

The idea is that constant τ leads to roughly constant prior variance, e.g. for the
pMOM prior if Xk has zero column means and unit column variances then n/x′

jxj = 1.
Such constant τ may be desirable from a foundational Bayesian point of view, where
the prior does not to depend on n. In fact, the default choice τ = 1 leads to the
unit information prior, which in turn leads to the BIC (Schwarz, 1978). An alternative
is to set τ growing with n, which leads to diffuse priors. For example, one may set
τ = p2/n (Foster and George, 1994), τ = max{1, p2/n} (Fernández et al., 2001) and
τ  p2 (Narisetty and He, 2014). As discussed, diffuse priors are used by many high-
dimensional methods to induce sparsity. Regarding the error variance φ, whenever we
treat it as unknown, we set p(φ | Mk) = IG(φ; aφ/2, lφ/2) for fixed aφ, lφ > 0.

For the prior on the models, in Section 3 we allow for a general prior. For concrete-
ness, when discussing prior sparsity conditions below and when providing global rates
in Section 5, we focus on three popular choices. These assume that all models with the
same dimension pk receive equal prior probability, that is

p(Mk) = P (pk = l)/

(
p

l

)
, (6)
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where P (pk = l) is the prior on the model size, and
(
p
l

)
the number of models selecting

l parameters out of p. First, we consider the uniform prior where P (pk = l) =
(
p
l

)
, so

that p(Mk) = 1/K for all k = 1, . . . ,K. Second, we consider the Beta-Binomial(1,1)
prior where P (pk = l) = 1/p̄ (Scott and Berger, 2010), and finally and a so-called
Complexity prior where P (pk = l) ∝ 1/pcl for c > 0 (Castillo et al., 2015). Note that
the Beta-Binomial corresponds to c = 0.

2.2 Conditions on model complexity and prior sparsity

We state two sets of conditions. First, B1–B2 constrain the sizes of the optimal and
largest allowed models.

(B1) The maximum model size satisfies p̄ � min{n, p, nτ}.

(B2) The optimal model size satisfies pt � min{p̄, n}.

If one assigns non-vanishing τ , as in all default choices above, B1 simplifies to p̄ �
min{n, p}. One can allow for larger p̄ = p, e.g. under Zellner’s prior Bmt = 1 for pm ≥ n
and one can immediately bound Ef∗(p(Mm | y)), but then one must impose stricter
prior sparsity conditions that our C1–C2 below. Setting p̄ � n seems natural, however,
as pm ≥ n results in data interpolation. See Martin et al. (2017) (Section 2.1) and
references therein for further arguments for setting p̄ ≤ n.

The second set of Conditions C1–C2 restrict the sparsity induced by the model prior
and the prior dispersion τ in (3)–(5), and are related to the non-centrality parameter
measuring the signal strength. Specifically, let Hm = Xm(X ′

mXm)−1X ′
m be the projec-

tion matrix onto the column space of Xm. For any non-spurious model m ∈ Sc, denote
by

λtm = (Xtθ
∗
t )

′(I −Hm)Xtθ
∗
t /φ

∗ (7)

the non-centrality parameter measuring the difference in mean squared prediction error
between Mt and Mm under the KL-optimal (θ∗

t , φ
∗). Equivalently, λtm is the difference

between the L2 norm of the optimal predictor Xtθ
∗
t relative to its projection onto Xm.

This non-centrality parameter can be lower-bounded by

λtm ≥ nvtm(θ∗
t )

′θ∗
t /φ

∗,

where vtm is the smallest non-zero eigenvalue of X ′
t(I −Hm)Xt/n.

Conditions C1–C2 suffice for p(Mm | y) L1−→ 0 in high-dimensional regression. As we

shall see in Section 5, uniform versions of C1–C2 also guarantee that p(Mt | y) L1−→ 1.
C1–C2 are stated for a generic p(Mk), see Section S3 for concrete expressions for the
uniform, Beta-Binomial and Complexity priors in (6).

(C1) Let m ∈ S be a spurious model. As n → ∞, (τn)(pm−pt)/2p(Mt)/p(Mm)  1.
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(C2) Let m ∈ Sc be a non-spurious model. As n → ∞,

λtm

2 log(λtm)
+

pm − pt
2

log(τn) + log

(
p(Mt)

p(Mm)

)
− log(pm)  1.

C1–C2 ensure that p(Mk) and τ do not favor Mm over Mt too strongly a priori and,
per Theorem 1, are near-necessary. See Section S11 for an extension of Theorem 1 to
high-dimensional models for Zellner’s prior. For the pMOM prior one can relax slightly
C1 to (τn)3(pm−pt)/2p(Mt)/p(Mm)  1 under certain conditions, see Section 3.4.

We compare our conditions to those in Narisetty and He (2014), Castillo et al. (2015),
Yang et al. (2016) and Yang and Pati (2017). We offer a summary, see Section S3 for
further details. A main difference is on the prior setup. These authors restricted attention
to diffuse priors (large τ) and/or Complexity priors akin to that in (6). Specifically
Narisetty and He (2014) and Yang et al. (2016) required τn  p2, whereas Yang and
Pati (2017) set a prior anti-concentration condition that also leads to τ growing with n.
Castillo et al. (2015) and Yang et al. (2016) required p(Mk) to be a Complexity prior,
and Narisetty and He (2014) also used p(Mk) that converges to a Complexity prior as
p grows. Our C1–C2 in principle allow more general τ and p(Mk), such as fixed τ and
p(Mk) that do not penalize model size exponentially, e.g. the Beta-Binomial. For such
choices the asymptotic rates for p(Mt | y) are then usually slower, further one may need
to restrict the maximum model complexity p̄ (see Section 5). Nevertheless, there can be
significant improvements for finite n, as illustrated in Section 6.

Regarding conditions on the data-generating truth, Narisetty and He (2014) require
that pt is fixed, Castillo et al. (2015) that pt ≤

√
n/ log p, Yang et al. (2016) that

pt ≤ n/ log p and Yang and Pati (2017) that pt log(p/pt) ≤ n. These are related to
our B1–B2, which require pt � n and p̄ � n, though these authors did not restrict p̄.
Rather, they set p̄ = p and priors that strongly penalize complexity.

Finally, these authors also set assumptions which, under restricted eigenvalue con-
ditions, are related to beta-min conditions. Specifically, Castillo et al. (2015) essen-
tially required that minj |θ∗j |2/φ∗ > pt(log p)/n, Yang et al. (2016) that minj |θ∗j |2/φ∗ >
(c + pt)(log p)/n, where c is the Complexity prior’s parameter, and Narisetty and He
(2014) and Yang and Pati (2017) that minj |θ∗j |2/φ∗ > (log p)/n. Under such eigenvalue
conditions, if p(Mk) is the Complexity prior then for our C2 to hold it suffices that

min
j

|θ∗j |2/φ∗  [log(τn) + (1 + c) log p]/n, (8)

which is similar to these conditions above. Recall that c = 0 corresponds to the Beta-
Binomial prior, illustrating that using less sparse p(Mk) lowers the required signal
strength. These conditions are mild, e.g. Wainwright (2009) showed that minj |θ∗j |2/φ∗ >
[log(p/pt)]/n is a necessary condition for any method to consistently select Mt.

3 Model-specific rates for regression

In this section we bound Ef∗(p(Mm | y)) for a single model Mm for Gaussian regression
and the priors in Section 2.1. Per Lemma 1 the proof strategy is to bound tail prob-
abilities for pairwise Bayes factors Bmt. Sections 3.1–3.4 consider the case where the
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model is well-specified, that is they assume a data-generating f∗(y) = N(y;Xtθ
∗
t , φ

∗I).
Then Btm is bounded by chi-square and F distribution tails for Normal priors, and by a
slightly more involved term for pMOM priors. Section 3.5 considers the situation where
the mean structure has been misspecified, e.g. Ef∗(y) features variables or non-linear
terms that were omitted from X. Finally, Section 3.6 considers a misspecified covariance
case, i.e. f∗ has heteroskedastic and/or correlated errors.

The rates in Sections 3.1–3.3 are similar to standard finite-dimensional rates (The-
orem 1 in Dawid (1999), proof of our Theorem 1). Roughly speaking, non-spurious
models are discarded at an exponential rate in n (more precisely, in the non-centrality
parameter λtm in (7), proportional to n under restricted eigenvalue conditions). More
critically, spurious models are discarded at a rate that is essentially

Ef∗(p(Mm | y)) 	 p(Mm)

p(Mt)(τn)(pm−pt)/2
,

up to lower-order terms. This result portrays the effect of the prior dispersion τ and
model prior probabilities to encourage sparsity in more general regimes that in current
high-dimensional literature (see Section 2). As shown in Section 5, the implication is
that one can often allow for fixed τ and/or p(Mk) that are not particularly sparse (e.g.
the Beta-Binomial prior in (6)), and still attain consistency. The pMOM rates to discard
spurious models are faster, as is standard for non-local priors, but we provide tighter
rates than currently available (see Section 3.4).

3.1 Zellner’s prior with known variance

Under Zellner’s prior and known error variance φ∗, simple algebra gives

Btm = exp

{
− τn

2φ∗(1 + τn)
Wmt

}
(1 + τn)

pm−pt
2 (9)

and hence in Lemma 1

Pf∗

(
Bmt >

p(Mt)

p(Mm)(1/u− 1)

)
= Pf∗

(
Wmt

φ∗ >
1 + τn

τn
2 log

[
(1 + τn)

pm−pt
2 p(Mt)

p(Mm)(1/u− 1)

])
,

(10)

where Wmt = θ̂′
mX ′

mXmθ̂m − θ̂′
tX

′
tXtθ̂t is the difference between residual sums of

squares under Mt and Mm and θ̂m = (X ′
mXm)−1X ′

my the least-squares estimate.

Proposition 2 gives a simple asymptotic expression for the L1 rate at which p(Mm |
y) vanishes. Spurious models are discarded at a rate that depends on p(Mm) and τn.
Non-spurious models are discarded near-exponentially in the non-centrality parameter,
times a factor driven by p(Mm) and τn. The result portrays the effect of favoring sparse
models either via p(Mk) or by setting large τ , namely a faster rate in Part (i) at the
cost of a slower rate in Part (ii) for any model of size pm < pt.

Proposition 2. Assume that f∗(y) = N(y;Xtθ
∗
t ;φ

∗I) and consider m �= t.
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(i) Let m ∈ S be a spurious model, and g = (τn)(pm−pt)/2p(Mt)/p(Mm). Assume
Conditions B1 and C1. Then, for all fixed α < 1,

Ef∗(p(Mm | y)) 	 [log(g)](pm−pt)/2

g
�
[

p(Mm)

p(Mt)(τn)(pm−pt)/2

]α
.

(ii) Let m ∈ Sc be a non-spurious model. Assume Conditions B2 and C2. Then

Ef∗(p(Mm | y)) � e−λγ
tm/2

[
p(Mm)

p(Mt)(τn)(pm−pt)/2

]γ
,

for all fixed γ < 1, where λtm is as in (7).

We remark that α, γ are taken arbitrarily close to 1, and are introduced to pro-
vide simpler expressions, see the proof for slightly tighter bounds where α = γ = 1,
after adding lower-order terms. Proposition 2 gives upper-bounds. To see that they
are reasonably tight, Section S11 shows that for spurious models Ef∗(p(Mm | y)) �
[p(Mm)/p(Mt)](τn)

−(pm−pt)/2, which equals the rate in Part (i), up to a log term. A
similar argument is made for Part (ii).

3.2 Zellner’s prior with unknown variance

Proposition 3 extends Proposition 2 to the case where φ∗ is unknown, and one sets a
prior φ ∼ IG(aφ/2, lφ/2). The rates are essentially equivalent, up to lower-order terms.

Let sk = y′y − y′Xk(X
′
kXk)

−1X ′
ky be the residual sum of squares under Mk, then

Btm =

(
s̃m
s̃t

) aφ+n

2

(1 + τn)
pm−pt

2 =

(
1 +

pm − pt
n− pm

F̃mt

)− aφ+n

2

(1 + τn)
pm−pt

2 , (11)

where s̃m = lφ + y′y − τn
τn+1y

′Xm(X ′
mXm)−1X ′

my is a Bayesian analogue of sm and

F̃mt =
(s̃t − s̃m)/(pm − pt)

s̃m/(n− pm)
≤ (st − sm)/(pm − pt)

sm/(n− pm)
= Fmt. (12)

Fmt is the F-statistic to test Mt versus Mm, F̃mt is its Bayesian analogue, and the
inequality in (12) follows from trivial algebra.

Proposition 3. Assume f∗(y) = N(y;Xtθ
∗
t ;φ

∗I) and Conditions B1–B2, C1–C2.

(i) Let m ∈ S be a spurious model and g = (τn)(pm−pt)/2p(Mt)/p(Mm). If log(g) �
n− pm, then

Ef∗(p(Mm | y)) 	
(
1

g

)1−4
√

log(g)
n−pm

� [p(Mm)/p(Mt)]
α

(τn)α
pm−pt

2

,
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for any fixed α < 1. If log(g)  n− pm then

Ef∗(p(Mm | y)) � exp

{
− (n− pt − 5)

2
log

(
logγ(g)

n− pt − 6

)}
� e−κn,

for any fixed γ < 1, κ > 1.

(ii) Let m ∈ Sc be a non-spurious model and λtm as in (7). Then

Ef∗(p(Mm | y)) � max

{
e−λγ

tm/2

[
p(Mm)

p(Mt)(τn)(pm−pt)/2

]γ
, e−κn

}
,

for any fixed γ < 1, κ > 0.

3.3 Normal prior with general covariance

We extend Proposition 3 to more general Normal priors p(θk | φ,Mk)=N(θk;0, τnφVk).
The rates are essentially equivalent, subject to mild eigenvalue conditions. Let ρk1 ≥
. . . ≥ ρkpk

> 0 be the pk non-zero eigenvalues of VkX
′
kXk, Fmt the F-test statistic in (12),

and F̃mt be as in (12) after replacing s̃k = lφ+y′y−y′Xk(X
′
kXk +(τn)−1V −1

k )−1X ′
ky.

Then simple algebra gives the following expression for Bayes factors

Btm =

(
1 +

pm − pt
n− pm

F̃mt

)− aφ+n

2
∏pm

j=1(τnρmj + 1)
1
2∏pt

j=1(τnρtj + 1)
1
2

. (13)

Proposition 4 assumes two further technical conditions D1–D2, beyond those in
Proposition 3. Both can be relaxed, but they simplify exposition. D1 allows interpreting
τ as driving the prior variance in a similar fashion than for Zellner’s prior. D2 ensures
that the Bayesian-flavoured F-statistic F̃mt is close to the classical Fmt, and is a mild
requirement since typically τn � n � λt0.

(D1) For some constant cmt > 0,
∏pm

j=1(τnρmj + 1)
1
2 /
∏pt

j=1(τnρtj + 1)
1
2 �

(cmtτn)
(pm−pt)/2.

(D2) As n → ∞, λt0 � τnρtpt , where λt0 is as in (7).

Proposition 4. Assume that f∗(y) = N(y;Xtθ
∗
t ;φ

∗I). Consider m �= t and that
Conditions B1, B2, C1, C2, D1 and D2 hold.

(i) Let m ∈ S be a spurious model. Then, for any fixed α ∈ (0, 1) and κ > 0,

Ef∗(p(Mm | y)) � max
{
[p(Mm)/p(Mt)]

α(τn)α(pt−pm)/2, e−κn, e−τnρtpt/2
}
.

(ii) Let m ∈ Sc be a non-spurious model and λtm as in (7). Then, for any fixed γ < 1
and κ > 0,

Ef∗(p(Mm | y)) � max

{
e−λγ

tm/2

[
p(Mm)

p(Mt)(τn)(pm−pt)/2

]γ
, e−κn, e−τnρtpt/2

}
.
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3.4 pMOM prior

Proposition 5 below states that, under suitable conditions, the pMOM prior attains a
rate to discard spurious models featuring a term that is essentially (τn)3(pm−pt)/2, and
hence faster than the (τn)(pm−pt)/2 shown for Normal priors. To ease the algebra we
assume that Xk has zero column means and unit variances. By Proposition 1 in Rossell
and Telesca (2017) the Bayes factor under the pMOM prior in (5) is

Btm = Dtm

(
1 +

pm − pt
n− pm

F̃mt

)− aφ+n

2
∏pm

j=1(τnρmj + 1)
1
2∏pt

j=1(τnρtj + 1)
1
2

, (14)

where

Dtm =

∫ ∫
N(θt; θ̃t, φṼt)IG

(
φ;

aφ+n
2 , s̃t

2

)∏
j∈Mt

d(θtj/
√
φ)dθtdφ∫ ∫

N(θm; θ̃m, φṼm)IG
(
φ;

aφ+n
2 , s̃m

2

)∏
j∈Mm

d(θmj/
√
φ)dθmdφ

,

d(z) = z2/τ , Ṽ −1
k = X ′

kXk+V −1
k /(τn), θ̃k = ṼkX

′
ky and F̃mt, s̃k and ρkj are as in (13)

for the particular case Vk = diag(X ′
kXk)

−1.

The Bayes factor in (14) is hence equal to that in (13) times a penalty term Dtm

that helps penalize spurious models m ∈ S. Intuitively, this is because the posterior
distribution of d(θmj/

√
φ) = θ2mj/(φτ) concentrates at 0 for truly spurious θ∗mj = 0, at

a rate that is at most σ/τ , where σ is the largest (posterior) variance in Ṽm. To state a
simple rate, Proposition 5 assumes technical conditions E1–E5 discussed in Section S14.
These can be relaxed, at the cost of a more involved rate for Ef∗(p(Mm | y)).
Proposition 5. Assume that f∗(y) = N(y;Xtθ

∗
t ;φ

∗I). Let m ∈ S be a spurious model
and assume that Conditions B1, C1, D1 and E1–E5 hold. Then

Ef∗(p(Mm | y)) � max

⎧⎨
⎩
(
p(Mm)

p(Mt)

)α(
τ3n

σ2

ρmpm

ρm1

)−α
pm−pt

2

, e−κn, e−τnρtpt/2

⎫⎬
⎭ ,

for any fixed κ > 0 and α < 1, where σ is the largest diagonal element in Ṽm.

Relative to Sections 3.1–3.3, Proposition 5 features an acceleration factor τ/σ for

each truly spurious variable in Mm and a term ρ
1/2
mpm/ρ

1/2
m1 involving eigenvalues. If

the latter is bounded and σ � 1/n (e.g. under restricted eigenvalue conditions), the
acceleration is of order (τn)pm−pt . Proposition 5 is tighter than results in Johnson and
Rossell (2012), e.g. under uniform p(Mk) we prove consistency when p � (τn)α/2 for
any α < 3 (Section 5) whereas Johnson and Rossell (2012) required p � n.

3.5 Misspecified mean structure

So far we assumed that the data analyst poses a model p(y | θ, φ) = N(y;Xθ, φ)
and that the data-generating f∗(y) = N(y;Xθ∗, φ∗I) lies in the considered family.
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Although X may contain non-linear basis expansions, e.g. splines or tensor products,
there are practically-relevant situations where either the mean or the error structure
are misspecified. Proposition 6 considers the mean misspecification case. Specifically,
it considers that f∗(y) = N(y;Wβ∗, ξ∗I) for some n × q matrix W , β∗ ∈ R

q and
ξ∗ ≥ 0. This includes situations where one did not record truly relevant variables (X
misses columns from W ) or the mean of y depends on non-linearly in ways that are not
captured by X (e.g. X assumes an additive structure, whereas W contains non-linear
interactions). For simplicity we state Proposition 6 for Zellner’s prior but extensions to
other priors follow similar lines. Proposition 7 considers f∗(y) = N(y;Xtθ

∗
t , φ

∗Σ∗) for
general Σ∗, allowing for heteroskedastic and correlated errors.

The proof strategy is as follows. The framework in Section 1 applies to any f∗, if one
can bound Bayes factor tail probabilities in Lemma 1. In Propositions 6–7 it is possible
to bound said tails, using that f∗ has Gaussian errors and eigenvalues of Σ∗. Further
extensions are possible, e.g. Propositions S1–S2 in Rossell et al. (2020) deploy Lemma 1
to the case where f∗ has sub-Gaussian errors, e.g. when y is a binary outcome.

Proposition 6 says that the rate to discard spurious models is similar to the well-
specified case (slightly sped-up by a factor eφ

∗
t /ξ

∗ ≥ 1). The rate for non-spurious
models m ∈ Sc vanishes exponentially in a non-centrality parameter λtm, but is ex-
ponentially slower than a certain λ∗

m obtained when using the correct mean structure.
Specifically, denote by M∗ the true model class N(y;Wβ, ξI) indexed by (β, ξ). Let
Hm = Xm(X ′

mXm)−1X ′
m be the projection matrix associated to a model Mm, and

define the non-centrality parameter

λtm = (Wβ∗)′Ht(I −Hm)HtWβ∗/ξ∗. (15)

Note that λtm extends the non-centrality parameter in (7) to the misspecified case,
by projecting the true mean Wβ∗ onto the column space of Xt. Similarly, let λ∗

m =
(Wβ∗)′(I − Hm)Wβ∗/ξ∗. Denote the KL-optimal parameters under Mm by θ∗

m =
(X ′

mXm)−1X ′
mWβ∗ (assuming full-rank Xm) and the optimal error variance by

φ∗
m = ξ∗ +

1

n
(Wβ∗)′(I −Hm)Wβ∗.

If one compared M∗ and Mm, by Proposition 3 one would select M∗ at an exponen-
tial rate in λ∗

m. However, under misspecification the best one can hope for is to selectMt.
When comparing Mt and Mm, the Bayes factor for Mm vanishes at an exponential rate
in λtm ≤ λ∗

m, with equality if and only if Wβ∗ = Xθ∗
t (the mean is well-specified).

Proposition 6. Let p(θk | φk,Mk) = N(θk; 0, φkτn(X
′
kXk)

−1 be Zellner’s prior and α,
κ be any constants satisfying α ∈ (0, 1), κ > 0. Assume that f∗(y) = N(y;Wβ∗, ξ∗I).
Further assume B1, B2, C1, C2 for λtm be as in (15), and φ∗

t /ξ
∗ � log(λtm).

(i) Let m ∈ S. If log((τn)
pm−pt

2 eφ
∗
t /ξ

∗
p(Mt)/p(Mm)) � n− pm then

Ef∗(p(Mm | y)) �
[
(p(Mt)/p(Mm))(τn)

pm−pt
2 eφ

∗
t /ξ

∗
]−α

.

If log([p(Mm)/p(Mt)](τn)
pt−pm

2 eφ
∗
t /ξ

∗
)  n− pm then Ef∗(p(Mm | y)) � e−κn.
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(ii) Let m ∈ Sc. If λtm + log((τn)
pm−pt

2 p(Mt)/p(Mm)) � n− pq then

Ef∗(p(Mm | y)) � max

{
e−λγ

tm/2

[
p(Mm)

p(Mt)(1 + τn)(pm−pt)/2

]γ
, e−κn

}
,

for any fixed γ < 1, κ > 0.

Further, λtm ≤ λ∗
m, with equality if and only if Wβ∗ = Xθ∗

t .

As a technical remark, Proposition 6 uses the minimal assumption that φ∗
t /ξ

∗ �
log(λtm). Since the latter grows with n, this assumption holds in standard cases where
ξ∗ and φ∗

t are constant and when φ∗
t decreases with n (e.g. Xt is a non-parametric basis

with growing dimension and hence lower error variance as φ∗
t as n grows), but also

allows for pathological cases where φ∗
t /ξ

∗ grows slowly with n.

3.6 Misspecified covariance structure

Consider a misspecified covariance case, i.e. f∗(y) = N(y;Xtθ
∗
t , φ

∗Σ∗) for positive-
definite Σ∗. Without loss of generality constrain tr(Σ∗) = n, so φ∗ =

∑n
i=1 Varf∗(yi)/n

is the average variance. For simplicity we assume that φ∗ is known, in analogy to Sec-
tion 3.1. Extensions to unknown φ∗ are possible, akin to the proof of Proposition 3.

We obtain rates that resemble the well-specified case, but there are potentially im-
portant differences related to certain eigenvalues and an adjusted non-centrality pa-
rameter λ̃tm. Specifically, for any model Mk with design matrix Xk denote by X̃t =
(I −Hk)Xt and by (ωtk, ω̄tk) the smallest and largest eigenvalues of X̃ ′

tΣ
∗X̃t(X̃

′
tX̃t)

−1.
Consider the non-centrality parameter

λ̃tm = (θ∗
t )

′X̃ ′
tX̃t(X̃

′
tΣ

∗X̃t)
−1X̃ ′

tX̃tθ
∗
t /φ

∗, (16)

where X̃t = (I −Hm)Xt. To gain intuition, in the well-specified case Σ∗ = I, then λ̃tm

simplifies to λtm in (7), and ωtm = ω̄tm = 1. More generally, ωtmλ̃tm ≤ λtm ≤ ω̄tmλ̃tm.

Proposition 7 says that spurious models are discarded at the same rate as in the well-
specified case, raised to a power 1/ω̄tm. Hence, when ω̄tm is large, misspecifying Σ∗ can
lead to a significantly slower rate. The intuition is that ω̄tm measures the discrepancy
between the model-based least-squares covariance (X̃ ′

tX̃t)
−1 and its actual sampling

covariance (X̃ ′
tX̃t)

−1X̃ ′
tΣ

∗X̃t(X̃
′
tX̃t)

−1. In contrast, non-spurious models are discarded
exponentially in λ̃tm so, provided ωtm is bounded, the rate remains exponential in λtm.
Relative to Proposition 6 where misspecifying the mean was guaranteed to decrease
power, this need not happen when misspecifying Σ∗.

Proposition 7 requires adjusting Condition C2 into C2’ below.

(C2’) Let m ∈ Sc, λ̃tm as in (16) and Mq = Mt ∪Mm be the model with design matrix

Xq combining Xt and Xm. As n → ∞, [ωmq/ω̄tq] log(λ̃tm)  1 and

λ̃tm

2 log(λ̃tm)
+

1

ω̄tq

[
pm − pt

2
log(τn) + log

(
p(Mt)

p(Mm)

)]
− log pm  1.
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The interpretation of C2’ is similar to C2, albeit incorporating eigenvalues. The
presence of eigenvalues can be relaxed somewhat, at the expense of obtaining slower rates
in Proposition 7 (see the proof). We avoid a detailed study, but note that n−1X̃ ′

tΣ
∗X̃t

and n−1X̃ ′
tX̃t are sample covariance matrices. Under suitable assumptions (e.g. the rows

of X are independent draws from a Normal distribution) one can show that ωtm/ω̄tm

are bounded by constants with high probability, see Wainwright (2019) (Chapter 6).

Proposition 7. Assume that f∗(y) = N(y;Xtθ
∗
t , φ

∗Σ∗) for positive-definite Σ∗,
tr(Σ∗) = n and known φ∗. Let p(θk | φk,Mk) = N(θk; 0, φ

∗τn(X ′
kXk)

−1) be Zellner’s
prior.

(i) Let m ∈ S be a spurious model. If B1 and C1 hold then, for any fixed α < 1,

Ef∗(p(Mm | y)) �
[

[p(Mm)/p(Mt)]

(1 + τn)(pm−pt)/2

]αmin{1,1/ω̄tm}
.

(ii) Let m ∈ Sc be a non-spurious model. Assume Conditions B2 and C2’. Then

Ef∗(p(Mk | y))�max

{
e−γλ̃tm/2,

[
[p(Mm)/p(Mt)]

(τn)(pm−pt)/2

]γ min{1,1/ω̄tq}
e−

γ min{1,ω̄tq}λ̃tm
2

}
,

for any fixed γ < 1, where ω̄tq is the largest eigenvalue of X̃ ′
qΣ

∗X̃q(X̃
′
qX̃q)

−1.

4 Normalized L0 penalties

An L0 criterion proceeds by selecting the model

k̂ = argmax
k

log p(y | θ̂k, φ̂k)− ηk,

where (θ̂k, φ̂k) = argmaxθk∈Θk,φ∈Φ p(y | θ, φ) is the maximum likelihood estimator
under model Mk, and ηk is a penalty that may depend on the model size pk, n and p.
For example the BIC corresponds to ηk = 0.5pk log(n), the RIC to ηk = pk log(p) and
the EBIC to ηk = 0.5pk log(n) + ξ log

(
p
pk

)
for some ξ ∈ (0, 1).

We give results akin to Section 3 for normalized L0 methods. We equivalently define

k̂ = argmax
k

h(y, k)∑K
l=1 h(y, l)

,

where h(y, k) = p(y | θ̂k, φ̂k)e
−ηk , and refer to h̃(y, k) = h(y, k)/

∑K
l=1 h(y, l) as a

normalized L0 criterion. The idea is that, given the connection between BMS and L0

penalties (see below), one could view h̃(y, k) as a pseudo-posterior probability for Mk

that quantifies the certainty in k̂. Let Mt be the optimal model defined in Section 1.
Akin to (2), our goal is to show that h̃(y, t) converges to 1 in the L1 sense by studying

∑
k �=t

Ef∗

(
h̃(y, k)

)
≤
∑
k �=t

Ef∗

(
[1 + h(y, t)/h(y, k)]

−1
)
. (17)
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Note that h(y, t)/h(y, k) is analogous to Btkp(Mt)/p(Mk), a product of Bayes factors
and prior model probabilities. From Proposition 1 and Corollaries 1–2, (17) bounds the
frequentist probability of selecting Mt, type I error and power.

This section is organized as follows. First, we discuss the connection between Zellner’s
prior and normalized L0 criteria. We then show Proposition 8, our main result bounding
Ef∗(h̃(y, k)) for an individual model, akin to Section 3 where we bounded Ef∗(p(Mk |
y)). Section 5 combines these bounds across models to obtain global rates. To see the
connection between Zellner’s prior and normalized L0 criteria, in Gaussian regression
simple algebra shows that

h(y, t)

h(y, k)
=

(
1 +

pk − pt
n− pk

Fkt

)−n
2

eηk−ηt , (18)

where Fkt is the F-test statistic in (12). The resemblance of (18) to Zellner’s prior
expression in (11) allows extending Proposition 3 to L0 penalties.

We state two technical conditions C1”–C2” required by Proposition 8, which are
trivial modifications of Conditions C1–C2 from Section 2.2.

(C1”) Let m ∈ S. As n → ∞, ηm − ηt  1.

(C2”) Let m ∈ Sc. As n → ∞, 1
2λtm/ log(λtm) + ηm − ηt − log(pm)  1.

Condition C1” holds for the BIC, RIC and EBIC, and any penalty ηk that increases
with model size pk and diverges to infinity as n → ∞. Condition C2” is also mild.
For example, for the BIC it suffices that λtm/[log(λtm)pt log(n)]  1, for the RIC that
λtm/[2 log(λtm)pt log(p)]  1 and for the EBIC that λtm/[log(λtm)pt log(n

1/2pξ)]  1.
See Section 2.2 for discussion why these conditions are near-minimal.

Proposition 8. Assume that f∗(y) = N(y;Xtθ
∗
t ;φ

∗I). Consider m �= t and that
Conditions B1, B2, C1” and C2” hold.

(i) Let m ∈ S. If ηm − ηt � n− pm then

Ef∗

(
h̃(y,m)

)
≤ e

−(ηm−ηt)

(
1−4

√
ηm−ηt
n−pm

)
,

for all n ≥ n0, where n0 is fixed and does not depend on m. If ηm − ηt  n− pm

then Ef∗

(
h̃(y,m)

)
< e−κn for any fixed κ > 0 and n ≥ n0.

(ii) Let m ∈ Sc. Then, for any fixed γ < 1, κ > 0,

Ef∗

(
h̃(y,m)

)
< max

{
e−λγ

tm/2e−γ(ηm−ηt), e−κn
}
,

for all n ≥ n0 where n0 is fixed and does not depend on m.
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For example, for the BIC ηm = 0.5pm log(n), then Ef∗(h̃(y,m)) vanishes essentially
at a rate n−(pm−pt)/2 for spurious models, and a faster e−λtm/2n−(pm−pt)/2 for non-
spurious models. This is no surprise, the BIC is essentially identical to setting a uniform
model prior and Zellner’s prior dispersion to τ = 1, hence one obtains the same rates.
Similarly, the RIC is essentially identical to τn = p2 and uniform p(Mm), and the EBIC
(for the choice ξ = 1) to τ = 1 and Beta-Binomial p(Mm). The misspecification results
for Zellner’s prior in Sections 3.5–3.6 also extend directly to normalized L0 penalties.

5 Global rates for regression

We now use the model-specific bounds from Sections 3–4 to obtain global bounds. We
saw that, under suitable conditions, Ef∗(1− p(Mt | y)) = Ef∗(P (S | y)) + Ef∗(P (Sc |
y))

≤
p̄∑

l=pt+1

∑
k∈Sl

[
p(Mk)

p(Mt)(τn)
(pk−pt)

2

]α
+

p̄∑
l=0

∑
k∈Sc

l

e−
λα
kt
2

[
p(Mk)

p(Mt)(τn)
(pk−pt)

2

]α
, (19)

for sufficiently large n and some fixed α, where τ is the prior dispersion. In well-specified
Gaussian regression, as well as with a misspecified mean, we saw that one can essentially
take α = 1 (up to lower-order terms). For the pMOM prior in the first term of (19) one
may take a larger α < 3. Similarly, for normalized L0 criteria,

Ef∗(1− h̃(t,y)) ≤
p̄∑

l=pt+1

∑
k∈Sl

e
−(ηk−ηt)

(
1−4

√
ηk−ηt
n−pk

)
+

p̄∑
l=0

∑
k∈Sc

l

e−
λα
tk
2 −α(ηk−ηt), (20)

where ηk is the L0 penalty, e.g. for the BIC ηk = 0.5pk log(n). The bounds in Sections 3–
4 also feature terms such as e−κn that vanish exponentially with n. We omitted these,
since they are typically of a smaller order, but they can easily be plugged into (19)–(20).

This section derives simpler asymptotic expressions for (19)–(20) for the uniform,
Beta-Binomial and Complexity priors in (6), and for the BIC, RIC and EBIC. We study
separately spurious and non-spurious models, i.e. Ef∗(p(S | y)) and Ef∗(p(Sc | y)), and
discuss the use of priors or L0 penalties that are not particularly sparse. Such priors
attain worse asymptotic rates to discard spurious models, but they can significantly
improve finite n performance. The reason for the mismatch between asymptotic and
finite n results is that Ef∗(p(Sc | y)) is typically negligible for large n, as it vanishes
exponentially under eigenvalue conditions. However, Ef∗(p(Sc | y)) can be large for
finite n, particularly when optimal model is not sparse. See Section 6 for examples.

5.1 Uniform prior, spurious models

The uniform prior sets p(Mk)/p(Mt) = 1. From the first term in (19), using that there
are |Sl| =

(
p−pt

l−pt

)
spurious models of size l and the geometric series, one obtains

Ef∗(P (S | y)) ≤
p−pt

(τn)α/2 −
(

p−pt

(τn)α/2

)p̄−pt+1

1− (p− pt)/(τn)α/2
� p− pt

(τn)α/2
, (21)
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for sufficiently large n. The asymptotic expression in the right-hand side of (21) holds
if p− pt � (τn)α/2, i.e. when Ef∗(P (S | y)) converges to 0. Rates for the BIC and RIC
are obtained by plugging τ = 1 and τn = p2 into (21).

Expression (21) describes the effect of the prior dispersion τ on sparsity. For example,
for τ = 1 then P (S | y) vanishes as long as p−pt � n1/2, under Zellner and Normal pri-
ors. Under the pMOM one can handle p � n3/2. Another default is τ = max{1, p2+a/n}
for small a > 0 (Fernández et al., 2001), which effectively sets a diffuse prior (τ grows
with n, whenever p  √

n). Under such a diffuse prior, p− pt � (τn)α/2 and P (S | y)
vanishes under Zellner’s, Normal and pMOM priors, regardless of the magnitude of p.

5.2 Beta-binomial prior, spurious models

The Beta-Binomial prior sets p(Mm)/p(Mt) =
(
p
pt

)
/
(

p
pm

)
. Using simple algebra and the

binomial coefficient’s ordinary generating function,

Ef∗(P (S | y)) <
[
1− (p− pt)

1−α

(τn)
α
2

]−pt−1

− 1 � (pt + 1)(p− pt)
1−α

(τn)α/2
,

where the right-hand side holds if (τn)α/2  (pt + 1)(p − pt)
1−α, by l’Hopital’s rule.

If α is arbitrarily close to 1, P (S | y) vanishes as long as pa+ε
t (p − pt) � (τn)a/2 for

arbitrarily large but fixed a > 0 and any small ε > 0. For instance, under τ = 1 one
can handle p − pt � na/2 variables, i.e. p can grow polynomially with n (provided
pt � n grows sub-linearly in n, as in Condition B1. Despite not necessarily leading to
the optimal asymptotic rate, the Beta-Binomial prior handles problems of fairly large
dimension and still discard all spurious models.

One can obtain slightly tighter rates for L0 penalties and for specific priors. For
Zellner’s prior and known φ∗ Lemmas S20 and S16 give

Ef∗(P (S | y)) 	 (pt + 1)(p̄− pt)
a/2 log3/2((τn)1/2(p− pt))

(τn)1/2
,

for any fixed a > 1, i.e. the dependence on p is now logarithmic. Similarly, for unknown
φ∗ and Zellner’s prior Lemma S17 gives that

Ef∗(P (S | y)) 	 (pt + 1)

(τn)1/2
e2[log

3/2((τn)1/2(p−pt))]
√

(p−pt)/(n−p̄).

Rates for the EBIC are obtained by plugging τ = 1 into this last expression.

5.3 Complexity prior, spurious models

Here p(Mm)/p(Mt) � pc(pt−pm)
(
p
pt

)
/
(

p
pm

)
, where c is the Complexity prior’s parameter

in (6). Simple algebra shows that

Ef∗(P (S | y)) 	
p̄∑

l=pt+1

(
l

pt

)(
(p− pt)

1−α

(τn)
α
2 pc

)l−pt

	 (pt + 1)(p− pt)
1−α

(τn)α/2pc
.
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Since α is arbitrarily close to 1, P (S | y) vanishes under the minimal requirement
that p1+ε

t � pc(τn)1/2 for some (small) fixed ε > 0. That is, the Complexity prior can
handle almost any p and discard all spurious models, even for small c > 0. However, as
illustrated next, c also plays a role in slowing down the rate to discard small non-spurious
models, which can reduce the statistical power to detect non-zero coefficients.

5.4 Non-spurious models

Our main result is Proposition 9, describing the total posterior probability assigned to
models of size pm < pt (smaller than Mt) and to those of size pm ≥ pt. The rates depend
on two parameters (λ, λ̄) that bound uniformly the non-centrality parameters λtm. We
first define (λ, λ̄) and explain that, by Lemma S12, in Gaussian regression both are
roughly proportional to n times a beta-min parameter.

Let λ = minpm<pt λ
α
tm/(pt−pm) ≥ [nvminj(θ

∗
j )

2/φ∗]α (Lemma S12), for α as in (19),

where v is the smallest eigenvalue vtm across models of size pm < pt. Regarding λ̄, let
Sc
l,j ⊆ Sc

l be the set of non-spurious models Mm of size pm = l that contain j truly

active parameters (non-zero elements in θ∗). Let λ̄ = minj≥pt,m∈Sc
l,j

λα
tm/(pt − j) be

an analogous quantity to λ, when minimizing over m ∈ Sc
l,j . By Lemma S12, we have

λ̄ ≥ [nv̄minj(θ
∗
j )

2/φ∗]α, where v̄ is the smallest vtm across models of size pm ∈ [pt, p̄].

Proposition 9 requires Condition F1 below to ensure that C2 in Section 2.2 holds
uniformly across pm < pt. For the uniform prior p(Mk), F1 is the mild requirement that
λ/2 + log p− 0.5 log(nτ)  1. F1 requires λ/2 + (1− α) log p− 0.5 log(nτ)  1 for the
Beta-Binomial prior. F1 is more stringent for the Complexity prior and for large prior
dispersion τ , which are sparser priors, and hence require a stronger signal. F1 is not
needed for Part (ii). There, by setting sufficiently sparse priors (large τ or c) one may
discard models of size > pt. In particular, one could potentially set the maximum model
complexity to p̄ > n and still attain convergence in Part (ii).

(F1) Assume that limn→∞ λ/2− (α(1+ c)−1) log p−0.5 log(nτ) = ∞ holds for c = −1
when p(Mk) is the uniform prior, c = 0 when it is the Beta-Binomial and c > 0
when it is the Complexity(c) prior in (6).

Proposition 9. Let p(Mk) be either the uniform or the Complexity(c) prior in (6),
where c = 0 is the Beta-Binomial prior. Assume that for all non-spurious m ∈ Sc

Ef∗(p(Mm | y)) ≤ e−
λα
tm
2 (nτ)−α(pm−pt)/2

(
p(Mm)

p(Mt)

)α

,

for some α < 1 and all n ≥ n0, where n0 is fixed.

(i) Assume that F1 holds. Then, for the Complexity prior

lim
n→∞

Ef∗

(
pt−1∑
pm=0

P (Sc
l | y)

)
≤ e−

λ
2 +[pt−1+α(1+c)] log p+α

2 log(nτ),

for all n ≥ n0. The result for the uniform prior is obtained by setting c = −1.
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(ii) Suppose that limn→∞ λ̄/2 + log pt − log(p− pt) = ∞. Then, for all n ≥ n0,

lim
n→∞

Ef∗

(
p̄∑

pm=pt

P (Sc
l | y)

)
≤ e−

λ̄
2 +pt log(pe) +

e−λ̄/2+pt log pt+log p

[(nτ)α/2pα(c+1)−1]p̄−pt
.

If limn→∞ λ̄/2 + log pt − log(p− pt) = −∞, then

lim
n→∞

Ef∗

(
p̄∑

pm=pt

P (Sc
l | y)

)
≤ e−ptλ̄/2

(
1

nτ

)α(p̄−pt)
2

(
1

p

)α(c+1)(p̄−pt)−1

.

The results for the uniform prior are obtained by setting c = −1 above.

6 Empirical examples

We illustrate the effect of the prior formulation and signal strength on linear regression
rates with two simple studies. Section 6.1 shows simulated data under orthogonal X ′X
and Section 6.2 a setting where all pairwise correlations are 0.5, in both cases covari-
ates are normally distributed with zero mean and unit variance. We considered three
prior formulations: Zellner’s prior (τ = 1) coupled with either a Complexity(c = 1) or
Beta-Binomial(1,1) priors on the model space, and the pMOM prior (default τ = 0.348
from Johnson and Rossell, 2010) coupled with a Beta-Binomial(1,1). For the error vari-
ance we set p(φ | Mk) ∼ IG(0.005, 0.005). In Section 6.1 we used the methodology
in Papaspiliopoulos and Rossell (2017) to obtain exact posterior probabilities, and in
Section 6.2 the Gibbs sampling algorithm from Johnson and Rossell (2012) (functions
postModeOrtho and modelSelection in R package mombf, respectively) with 10,000
iterations (i.e. 104 × p variable updates) after a 1,000 burnin.

6.1 Orthogonal design

We considered four scenarios and simulated 100 independent datasets under each. In
Scenario 1 we set p = 100, n = 105 and pt = 5 truly active variables with coefficients
θ∗j = 0.25, 0.5, 0.75, 1, 1.5 for j = 1, . . . , pt. In Scenario 2 again p = 100, n = 105 but
coefficients were less sparse, we set pt = 20 by repeating four times each coefficient in
Scenario 1, i.e. θ∗j = 0.25, 0.25, 0.25, 0.25, . . . , 1.5, 1.5, 1.5, 1.5 for j = 1, . . . , pt. Scenarios
3-4 were identical to Scenarios 1-2 (respectively) setting p = 500 and n = 510. The true
error variance was φ∗ = 1 under all scenarios.

Figure 1 shows marginal inclusion probabilities P (θj �= 0 | y). The Zellner-Complex-
ity prior gave the smallest inclusion probabilities to truly inactive variables (θ∗j = 0), but
incurred a significant loss in power to detect truly active variables. In agreement with
our theory this drop was particularly severe for pt = 20, e.g. when n = 110 inclusion
probabilities were close to 0 even for fairly large coefficients. Also as predicted by the
theory the power increased for (n, p) = (510, 500) under all priors, but under the Zellner-
Complexity prior it remained low for θ∗j = 0.25. The MOM-Beta-Binomial prior showed
a good balance between power and sparsity, although for n = 100 it had slightly lower
power to detect θ∗j = 0.25 relative to the Zellner-Beta-Binomial.
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Figure 1: Average marginal inclusion probabilities under orthogonal X ′X and
φ∗ = 1 for three priors: Zellner-Complexity(1), Zellner-Beta-Binomial(1,1), pMOM-
Beta-Binomial(1,1). For Zellner and pMOM priors τ was set to obtain unit prior variance
(τ = 1, τ = 0.348).

6.2 Correlated predictors

We considered normally-distributed covariates with all pairwise correlations equal to
0.5. We set p = n, pt = 10 and considered two scenarios. In Scenario 1 θ∗j = 0.5 for all
active variables j = 1, . . . , pt, whereas Scenario 2 considered weaker signals θ∗j = 0.25
again for j = 1, . . . , pt. Figure 2 shows that whichever prior achieved largest p(Mt | y)
depended on n and the signal strength. For large enough n all three priors discarded
small non-spurious models, i.e.

∑
l<pt

P (Sc
l | y) vanished, but the required n can be

fairly large. Overall, the MOM-Beta-Binomial prior achieved a reasonable compromise
between discarding spurious m ∈ S and detecting truly active variables.
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Figure 2: Linear regression simulation with pairwise correlations = 0.5. Average
p(Mt | y), P (S | y) and

∑
l<pt

P (Sc
l | y) under Zellner-Complexity(1), Zellner-Beta-

Binomial(1,1), pMOM-Beta-Binomial(1,1) priors.
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7 Discussion

We outlined a strategy to study the L1 convergence of posterior probabilities and nor-
malized L0 criteria and showed that, when such convergence occurs, one can bound
frequentist probabilities of correct model selection, and type I–II errors. The strategy
applies generically to any model, prior and L0 penalty, but requires non-negligible work
to bound tails of Bayes factors and likelihood-ratio test statistics. Our supplementary
material derives said tails for Gaussian regression, and integral bounds that may be
useful for more general exponential and polynomial tails. Our rates for regression unify
literature and clarify the consequences of setting sparse priors or L0 penalties. They
also clarify how convergence depends on the prior dispersion, model prior probabilities,
and whether the prior is local or non-local, as well as on problem characteristics such as
n, p, true sparsity pt and the signal strength. Model misspecification also plays a role.
Misspecifying the mean in (potentially non-linear) regression causes an exponential drop
in power, whereas choosing the wrong error correlation can hamper type I error control.

We gave simple asymptotic expressions for popular priors and L0 criteria. We did
not study thick-tailed parameter priors, but such variations affect model selection rates
only up to lower-order terms. For a wide class of local priors it is known that for spurious
models Bmt = Op((τn)

(−pm−pt)/2) (Dawid, 1999), which implies that L1 convergence
rates cannot be any faster. Since our obtained L1 rates are (τn)−α(pm−pt)/2 (or tighter)
for any fixed α < 1, one cannot attain significantly faster rates with other prior fam-
ilies. We avoided a detailed study of eigenvalues, and referred to restricted eigenvalue
conditions common in the literature. This was to highlight the main principles (the role
of non-centrality parameters) and keep the results as general as possible. For a study on
eigenvalues see Narisetty and He (2014) (Remarks 4–5 and Lemma 6.1), for example.

An interesting observation is that, depending on how large p is relative to n one can
consider less sparse priors to detect smaller signals, which may have implications for
parameter estimation. By restricting the model complexity, one can also use less sparse
formulations within the set of allowed models. This is particularly relevant when the
truth is non-sparse, effect sizes are small or the model’s mean structure is strongly mis-
specified. Per our examples in this situation it can be helpful to consider strategies that
exercise moderation at enforcing sparsity (e.g. the Beta-Binomial prior or the EBIC),
or that do so in a data-adaptive manner (e.g. using non-local priors on parameters or
empirical Bayes). Such strategies are an interesting venue for future research.

Supplementary Material

File Supplementary Material (DOI: 10.1214/21-BA1262SUPP; .pdf). Proofs and auxil-
iary technical results
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