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Abstract. We prove that in every finite dimensional normed space, for “most” pairs (x, y) of points

in the unit ball, ∥x − y∥ is more than
√
2(1 − ε). As a consecuence, we obtain a result proved by

Bourgain, using QS-descomposition, that guarantees an exponentially large number of points in the
unit ball any two of which are separated by more than

√
2(1− ε).

Introduction and previous results.

Let X = (Rn, || · · · ||) be an n-dimensional normed space, K = {x ∈ Rn : ||x|| ≤ 1} its closed unit
ball and let m be the Lebesgue measure restricted to K, normalized so that m(K) = 1. It easy to
see that when n is large, most of the points in K lie near its surface: so their norm is about 1. In
this article, our aim is to investigate the typical behaviour of the distance between two points in
the ball.

The investigation is motivated by a number of recent results showing that in a wide variety of
special spaces, it is possible to find many points, any two of which are roughly distance 1 apart.
Given X of dimension n, let N = N(ε) be the highest cardinality of a subset T of X such that

1− ε ≤ ||x− y|| ≤ 1 + ε, for all x, y ∈ T, x ̸= y. (1)

A volume argument easily shows that N(ε) ≤ exp{φ(ε)n} for some function φ, independent of
X. In [BBK] an exponential estimate from below is obtained, for finite dimensional spaces with
a 1-subsymmetric basis: in particular, for example, for ℓp spaces. Some extensions of this result
appear in [BB], where sharp estimates are given for the case of the space ℓnp (ℓ

m
q ) (1 ≤ p, q < ∞).

Related results can be found in [BPS1], [BPS2] and [BMW].
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The results in each of these articles depend upon the construction of some probability measure on
the unit ball with respect to which, two independent random vectors are almost exactly a fixed
distance apart with very high probability. In this article we consider the simplest such measure,
Lebesgue measure, and examine the distribution of the random variable ||x− y|| (x, y ∈ K),

F (t) = m⊗m{(x, y) ∈ K ×K : ||x− y|| ≤ t}.

If F (t) jumps from δ to 1 − δ as t goes from a(1 − ε) to a(1 + ε), then we can find N points
x1, . . . , xN ∈ K, such that a−1x1, . . . , a

−1xN satisfy (1), as long as 2N2δ ≤ 1. Our interest is in
exponentially large sets of points so we shall look for a number a for which we have something like

F (a(1 + ε))− F (a(1− ε)) > 1− exp{−2cε2n}

for some constant c.

In Section 1, we show that there are normed spaces for which there is no threshold behaviour
for the distribution function. However, our main result guarantees that in all normed spaces, the
distance between “most” pairs of points in the unit ball is greater than

√
2(1 − ε). We show, in

fact, that for any space,

F (
√
2(1− ε)) < exp

(
−nε2(2− ε)2

2

)
.

Hence, in particular, if the distance does concentrate around a number, then this number must be
no smaller than

√
2. This result is sharp in that, for Euclidean space, there is a threshold at

√
2.

(In this case

F (
√
2(1− ε)) >

1

2
√
n
(1− ε2(2− ε)2)

n
2 ,

so our argument actually recovers the “correct” exponent.)

Section 2 is concerned with spaces which do exhibit some kind of threshold behaviour. It is shown
in [GM] (see [A] for an easier proof along the same lines) that the balls of uniformly convex spaces
enjoy a concentration of measure phenomenon: if K is such a set, then for any ε > 0 and any Borel
set A ⊂ K with m(A) ≥ 1/2, the measure of the expanded set Aε = {x ∈ K : dist(x,A) ≤ ε}
satisfies

m(Aε) ≥ 1− e−φ(ε)n

for some positive function φ. We have included a very short proof of this fact. We then observe
that such a concentration of measure guarantees threshold behaviour for our distribution F .

We should mention that there are some results known for isometric embeddings, see [P], and that
infinite-dimensional analogues of some of these problems appear in [D] and [EO].

§1. Large distances.

As above, let X = (Rn, || · · · ||) be an n-dimensional normed space, let K = {x ∈ Rn : ||x|| ≤ 1} be
its closed unit ball and let m be the Lebesgue measure on K normalized so that m(K) = 1. The
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distribution function of the distance between two independent points, each distributed uniformly
on K, is given by,

F (t) = m⊗m{(x, y) ∈ K ×K : ||x− y|| ≤ t}.

It is easy to check that

F (t) =

∫
tK

m(K ∩ (x+K))dm(x).

We begin the section with some simple examples showing, among other things, that there are
spaces for which F does not have a sharp threshold.

Examples. (1) X = ℓn2 . It is clear from standard results that the Euclidean distance between

independent random points in the Euclidean ball, concentrates around
√
2 since both points are

very close to the surface and each one is almost certain to be near the equator “perpendicular to”
the other. However, it will be useful later, if we examine the distribution more carefully.

For any x ∈ 2K,

m(K ∩ (x+K)) =
2

vn
vn−1

∫ 1

r/2

(1− s2)
n−1
2 ds,

where r = ||x|| and vn is the volume of the unit ball in ℓn2 . Integrating over tK we get

F (t) =
2nvn−1

vn

∫ t

0

rn−1

(∫ 1

r/2

(1− s2)
n−1
2 ds

)
dr

From this we get that the density of the random variable ∥x− y∥ is roughly

t 7→
√

n

π

(
t2(4− t2)

4

)n
2

.

(A similar expression will reappear later on.)

(2) X = ℓn∞. For 0 ≤ t ≤ 2,

F (t) =

∫
R2n

χK(x)χK(y)χtK(x− y)dm(x)dm(y)

is nth power of the two-dimensional measure of the set

{(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ 1, |x− y| ≤ t},

and so,

F (t) =

(
t(4− t)

4

)n

.
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Since t(4 − t) attains its maximum at t = 2, this shows that the distance in the ball of ℓn∞
concentrates around a = 2.

(3) The next example shows that there are normed spaces where concentration of the distance does
not occur. The real point is that concentration can occur at different points for different spaces.
Let X = (ℓn2 ⊕ R)∞ = (Rn+1, || · · · ||), where

||(x, y)|| = sup{||x||2, |y|}, x ∈ ℓn2 , y ∈ R.

Thus K is a “circular” cylinder in Rn+1.

It is easy to check that for a Cartesian product set, the distribution function F is just the product of
the distributions for the two factors. So for our space, F (t) = F1(t)F2(t), F1 being the distribution

function for ℓn2 and F2 being the one for R. F1 has a sharp threshold at
√
2 and so is almost equal

to 1 on the interval [
√
2(1 + ε), 2]. Thus, F is almost the same as F2 from

√
2 onwards. From

example (2) we see that F2 is given by

F2(t) =
t(4− t)

4

and hence F has no sharp threshold.

Despite examples like the preceding one, our main result, Theorem 1 below, shows that in any
normed space “most” of the pairs of points in the unit ball are separated by more than

√
2(1− ε):

in particular, that we may find exponentially many, that are so separated. This fact was proved
by Bourgain using QS-descomposition (see [FL] for a proof). It was proved in [EO] that in any
infinite-dimensional normed space, there is an infinite subset of the unit ball whose elements are
(1 + ε)-separated, for some ε > 0 depending on the normed space. Theorem 1 seems stronger
than this, in spirit, but in [BRR] it was shown that the greatest separation of any infinite subset
in the unit ball of ℓp (1 ≤ p < ∞) is 21/p: so Theorem 1 cannot be used to improve the infinite
dimensional statement.

Theorem 1. Let X be an n-dimensional normed space, K its closed unit ball and m, the Lebesgue
measure on K normalized so that m(K) = 1. Then, for any 0 < t <

√
2

m⊗m{(x, y) ∈ K ×K : ||x− y|| ≤ t} ≤
(
t2(4− t2)

4

)n
2

.

If t =
√
2(1− ε) the latter is no more than

exp
{
−ε2n/2

}
.

Note. The sharpness of the result can be gauged by referring to the example X = ℓn2 discussed
earlier.
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Proof. For any t ∈ [0, 2], let

F (t) = m⊗m{(x, y) ∈ K ×K : ||x− y|| ≤ t}.

It is clear that F (t) is a value of the threefold convolution of the characteristic functions of K
(twice) and tK,

F (t) = χtK ∗ χK ∗ χK(0).

To estimate this we use the sharp form of Young’s inequality for convolutions on Rn (see note
below): for any p, q, r ≥ 1 with 1

p + 1
q + 1

r = 2 there is a constant C(p, q, r;n) > 0 such that for

any functions f ∈ Lp(Rn), g ∈ Lq(Rn) and h ∈ Lr(Rn), we have

|f ∗ g ∗ h(0)| ≤ C(p, q, r;n)||f ||p||g||q||h||r.

The sharp constant C(p, q, r;n) equals (CpCqCr)
n, where C2

p = p1/pp′
−1/p′

(p′ being the conjugate
exponent to p). If q = r we obtain

C(p, q, q;n) =

[
(2q)1/q

2

(
2

q
− 1

)1/q−1/2
]n

for any p, q ≥ 1 with 1
p + 2

q = 2. Hence, for any q ≥ 1,

F (t) = χtK ∗ χK ∗ χK(0) ≤

[
(2q)1/q

2

(
2

q
− 1

)1/q−1/2
]n

||χtK ||p||χK ||2q

=

[
t2(1−1/q) (2q)

1/q

2

(
2

q
− 1

)1/q−1/2
]n

.

For t <
√
2, the last expression is minimum for q = 4−t2

2 and for this q the expression simplies to
give

F (t) ≤
(
t2(4− t2)

4

)n/2

.

Then, if 0 < ε < 1, we have

F (
√
2(1− ε)) ≤

(
(
√
2(1− ε))2(4− (

√
2(1− ε))2)

4

)n/2

=
(
1− ε2 (2− ε)

2
)n/2

≤ exp
{
−ε2n/2

}
. �

Note. The sharp constant in Young’s inequality was determined by Beckner, [Be], in connection
with his study of the Fourier transform. An important extension of Young’s inequality, again with
sharp constant, was proved by Brascamp and Lieb, [BL]. Recently, a very elegant new proof of
their inequality was found by F. Barthe [Ba].
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§2. A concentration of measure phenomenon. Uniformly convex spaces. We begin
this section with a short proof of the concentration phenomenon in uniformly convex spaces,
proved by Gromov and Milman, [GM]. The origin of our argument is in a paper of Talagrand [T]
concerning Gauss space. A simplification of his argument was found by Maurey [M], and was used
by Schmuckensläger [S] to study uniformly convex spaces. The proof below is in the same spirit.
Unfortunately, the proof is now so short that one can’t see the ideas behind it.

For a uniformly convex normed space X, we define the modulus of convexity, δ, of X by

δ(ε) = inf

{
1−

∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ : ||x− y|| ≥ ε, ||x|| ≤ 1, ||y|| ≤ 1

}
.

This definition is slightly different from that in the standard texts but the difference is of no real
consequence. As before, for a subset A of X and a number ε > 0 we write Aε for the set of points
whose distance (in norm) from A is at most ε.

Theorem 2. Let X be an n-dimensional uniformly convex normed space, K its closed unit ball,
m the normalized Lebesgue measure on K and let δ be the modulus of convexity of X. Then for
any Borel set A ⊂ K with m(A) ≥ 1/2 and any ε > 0,

m(Aε) > 1− 2e−2nδ(ε).

Proof. Recall the multiplicative Brunn-Minkowski inequality:

m

(
A+B

2

)
≥ m(A)1/2m(B)1/2.

Suppose A ⊂ K and put
B = {y ∈ K : d(y,A) ≥ ε} .

If x ∈ A and y ∈ B then ∥x− y∥ ≥ ε and hence∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ(ε).

Therefore
A+B

2
⊂ (1− δ(ε))K

and so
m(A)m(B) ≤ (1− δ(ε))

2n ≤ e−2nδ(ε). �

The remainder of this section is devoted to showing that a concentration of measure such as the
above, suffices to guarantee that the distance between two independent points in the unit ball,
concentrates around some number.
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Theorem 3. Let X be an n-dimensional normed space, K its closed unit ball and m the normalized
Lebesgue measure on K. Assume that there exists an increasing function φ such that for any ε > 0
and any Borel set A ⊂ K satisfying m(A) ≥ 1/2,

m(Aε) ≥ 1− e−φ(ε)n.

Then there exists a number a ∈ [1/2, 2] such that for any ε > 0,

m⊗m{(x, y) ∈ K ×K : a(1− ε) ≤ ||x− y|| ≤ a(1 + ε)} ≥ 1− 4 exp{−φ(ε/6)n},
and hence, for any ε > 0 there exist N points x1, . . . , xN ∈ X so that

1− ε ≤ ||xi − xj || ≤ 1 + ε 1 ≤ i < j ≤ N,

as long as N < (1/2) exp{φ(ε/6)n/2}.

Proof. For each x ∈ K, consider the function fx : K → R defined by fx(y) = ||x− y||. Let α(x) be
the median of fx so that the ball of radius α(x) includes half of K. (The median is clearly unique.)
Whatever the dimension, 1

2K has volume at most one half that of K so α(x) is at least 1
2 for each

x.

Let a be a median of the function α. We have a ≥ 1/2.

Now let A = {x ∈ K : α(x) ≤ a}. Since Aaε ⊂ {x ∈ K : α(x) ≤ a(1 + ε)}, the concentration
hypothesis ensures that,

m({x ∈ K : α(x) ≤ a(1 + ε)}) ≥ 1− exp{−φ(aε)n} ≥ 1− exp{−φ(ε/2)n}.
Similarly

m({x ∈ K : α(x) ≥ a(1− ε)}) ≥ 1− exp{−φ(ε/2)n},
and hence

m({x ∈ K : a(1− ε) ≤ α(x) ≤ a(1 + ε)}) ≥ 1− 2 exp{−φ(ε/2)n}.

The same argument can be applied for each fixed x ∈ K to get

m({y ∈ K : α(x)(1− ε) ≤ ||x− y|| ≤ α(x)(1 + ε)}) ≥ 1− 2 exp{−φ(ε/2)n}.
These two inequalities give

m⊗m({(x, y) ∈ K ×K : a(1− ε)2 ≤ ||x− y|| ≤ a(1 + ε)2}) ≥ 1− 4 exp{−φ(ε/2)n},
and thus, for any ε < 1

m⊗m({(x, y) ∈ K ×K : a(1− 3ε) ≤ ||x− y|| ≤ a(1 + 3ε)}) ≥ 1− 4 exp{−φ(ε/2)n}.
So

m⊗m({(x, y) ∈ K ×K : a(1− ε) ≤ ||x− y|| ≤ a(1 + ε)}) ≥ 1− 4 exp{−φ(ε/6)n},
for every ε > 0, as required.

The conclusion concerning the choice of N points is now obvious. �
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