
Citation: Day, R.-F.; Yin, P.-Y.; Huang,

Y.-C.T.; Wang, C.-Y.; Tsai, C.-C.; Yu,

C.-H. Concentration-Temporal

Multilevel Calibration of Low-Cost

PM2.5 Sensors. Sustainability 2022, 14,

15. https://doi.org/10.3390/

su141610015

Academic Editor: Elena Cristina

Rada

Received: 23 April 2022

Accepted: 3 August 2022

Published: 12 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Concentration-Temporal Multilevel Calibration of Low-Cost
PM2.5 Sensors
Rong-Fuh Day 1, Peng-Yeng Yin 2,*, Yuh-Chin T. Huang 3,4, Cheng-Yi Wang 5 , Chih-Chun Tsai 1

and Cheng-Hsien Yu 6

1 Department of Information Management, National Chi Nan University, No. 1, University Rd.,
Puli 545, Nantou County, Taiwan

2 Information Technology and Management Program, Ming Chuan University, No. 5 De Ming Rd.,
Taoyuan City 333, Gui Shan District, Taiwan

3 Department of Medicine, Duke University Medical Center, 10 Duke Medicine Circle,
Durham, NC 27710, USA

4 Department of Medicine, Duke University School of Medicine, 10 Duke Medicine Circle,
Durham, NC 27710, USA

5 Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, College of Medicine,
Fu Jen Catholic University, New Taipei City 231, Taishan District, Taiwan

6 Department of Information Management, China University of Technology, No. 56, Sec. 3, Xinglong Rd.,
Taipei City 116, Wunshan District, Taiwan

* Correspondence: pengyengyin@gamil.com

Abstract: Ambient aerosols have a significant impact on plant species mortality, air pollution, and
climate change. It is critical to monitor the concentrations of aerosols, especially particulate matter
with an aerodynamic diameter ≤ 2.5 µm (PM2.5), which has a direct relationship with human
respiratory diseases. Recently, low-cost PM2.5 sensors have been deployed to provide a denser
monitoring coverage than that of government-built monitoring supersites, which only give a macro
perspective of air quality. To increase the measurement accuracy, low-cost sensors need to be
calibrated. In current practice, regression techniques are used to calibrate sensors. This paper proposes
a concentration-temporal multilevel calibration method to cope with the varying regression relation
in different concentration and temporal domains. The performance of our method is evaluated
with real field data from a supersite sensor and a low-cost sensor deployed in Puli, Taiwan. The
experimental results show that our calibration method significantly outperforms linear regression in
terms of R2, Root Mean Square Error, and Normalized Mean Error. Moreover, our method compares
favorably with a machine learning calibration method based on gradient regression tree boosting.

Keywords: PM2.5; supersite sensor; low-cost sensor; multilevel calibration; linear regression

1. Introduction

The impact of PM2.5 on human health has become an issue of concern globally and
has motivated many governments to deploy supersite sensors for monitoring air quality.
Many researchers have empirically shown the strong correlation between ambient PM2.5
concentrations and human health [1]. As the government-built supersites need to analyze
the apportionment of air pollutants, the facilitated sensors and human resources are very
expensive. Since 2015, the Taiwan Environmental Protection Administration (TEPA) has
collaborated with our research group, the AIRQ laboratory at National Chi Nan University
(NCNU), to implement an affordable IoT of low-cost microsite PM2.5 sensors to provide a
greater and denser coverage of Puli Township, which was underserved by a single gov-
ernment supersite for measuring real-time air quality [2]. There are only a few studies
reporting comparative performance evaluations of low-cost sensors. Manikonda et al. [3]
tested four low-cost sensors under lab conditions, namely, Speck (Airviz Inc., Pittsburgh,
PA, USA), Dylos 1100 Pro/Dylos 1700 (Riverside, CA, USA), AirAssure PM2.5 IAQ Monitor
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(TSI Inc., Shoreview, MN, USA), and AirSense (Buffalo, NY, USA). Sayahi et al. [4] evaluated
the performance of Plantower PMS 1003 in the field for more than 320 days, as well as
PMS 5003 (G5). Jayaratne et al. [5] evaluated six low-cost PM2.5 sensors, namely, Sharp
GP2Y1010AU0F (Sharp-G), Shinyei PPD42NS, Plantower PMS 1003, Innocible PSM305,
Nova SDS011, and Nova SDL607. Chen et al. [6] carried out a laboratory comparison
between the Sharp DN7C3CA006 (Sharp-D) and Plantower PMS 3003 (3rd generation,
G3) sensors, and found that G3 significantly outperformed Sharp-D in reducing the mea-
surement offset with reference to a professional ground-truth sensor. A follow-up field
verification of G3 was conducted in two places, an urban area and a petrochemical complex.
The experiment results show the high stability of G3 at different locations and in various
concentration ranges. Therefore, the Plantower 7th generation (G7) model PMS 7003 was
deployed in our research.

Through the low-cost IoT, we superimposed real-time PM2.5 concentrations as mon-
itored by microsite sensors onto maps, as shown in Figure 1a, and recorded historical
PM2.5 events in order to promote public discussion. Citizens’ perceptions of air pollu-
tion can be transformed from just thinking of monolithic airsheds to being aware of local
air pollution events, making them more motivated to take appropriate actions to protect
themselves. For example, the PM2.5 IoT may reveal how much residential incense and joss
paper burning is contributing to local air pollution. As a result, citizens may voluntarily
change their life patterns and behaviors to reduce activities that induce air pollution. The
strategy of combining PM2.5 IoT and citizen science activities is very promising in reducing
environment-threatening anthropogenic activities, and this ideology has been practiced
in reality around the globe, such as in the United States, Europe, and Australia, among
others [7–9]. This solution also creates possible business models for commercial services,
such as air quality data access and sensor deployment. One such example is provided by
PurpleAir, Inc. (see Figure 1b).

Figure 1. Cont.
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Figure 1. Low-cost PM2.5 IoT solutions: (a) AIRQ lab at NCNU (https://www.airq.org.tw/ (accessed
on 1 July 2022)) (translation of Chinese symbols: Map; Satellite Monitor; Current average of visible
area) and (b) PurpleAir, Inc. (https://www.purpleair.com/ (accessed on 1 July 2022)).

The specifications of a standard PM2.5 sensor equipped in a supersite station generally
require precise filter holes to collect particles of the designated size, and the airflow speed
should be well controlled. Then, the weight of PM2.5 particles can be precisely measured
with weighing equipment at reference temperature and humidity to calculate the concentra-
tion. On the contrary, as the microsite sensors used in the PM2.5 IoT are low-cost, they lack
the standard sampling design and procedure. Most low-cost sensors use light scattering to
estimate the size and concentration of PM2.5 particles, instead of using specified filter holes
and weighing equipment. Although the measurements obtained by low-cost sensors show
correlations with those obtained by supersite sensors, the relation varies to different degrees
under distinct circumstances, depending on, for example, the range of PM2.5 concentration,
monitoring period in a year, location of the monitoring stations, atmospheric temperature,
or relative humidity. It has been empirically proven that the correlation between supersite
and low-cost sensors can be more correctly modeled if both spatial and temporal factors
are taken into account in addition to just using cross-sectional data [10]. The main objective
of this paper is to propose calibration equations that ensure the reliability and validity
of low-cost sensors as compared with a standard supersite sensor. Moreover, our main
finding is that the correlation between supersite and low-cost sensors not only shows a
seasonal variability, but also manifests different magnitudes in distinct PM2.5 concentration
ranges. Clearly, it is not prudent to apply linear regression with the PM2.5 data in the
entire concentration range and across multiple years to find the relationship expression
between the two types of sensors. In order to successfully run the PM2.5 IoT with acceptable
accuracy for public use, it is mandatory to calibrate the low-cost sensors with reference
to standard measurements from a nearby supersite station to eliminate the measurement
discrepancy [11]. The traditional numerical calibration technique adopted by TEPA is the
linear regression method. Every year, TEPA announces the updated coefficient values of
one linear regression expression for each supersite based on the data collected in the entire
previous year. However, with our previous observations and discussions, a single linear
regression expression cannot fully describe the relationships between the PM2.5 measure-
ment series obtained from two different types of sensors. It may potentially be beneficial

https://www.airq.org.tw/
https://www.purpleair.com/
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to apply a separate linear regression for each typical range of PM2.5 concentrations and
monitoring time period.

The contributions of this paper are the following. (1) We propose a concentration-
temporal multilevel calibration method. Both the concentration and temporal domains
are divided into multiple intervals to form concentration-temporal crossing subdomains.
For each subdomain, a regression is learned between historical measurements of supersite
and low-cost sensors. (2) We formulate a proof that both linear regression and quadratic
regression are a special case of our concentration-temporal multilevel calibration model.
(3) We validate our model with various settings of concentration-temporal divisions to
determine the best parameters. (4) The experimental results of the field data show that our
calibration model compares favorably with classic linear regression and state-of-the-art
calibration methods.

The rest of this paper is organized as follows. Section 2 describes our IoT sensors,
data materials, and the proposed concentration-temporal multilevel calibration method.
Section 3 presents the experimental results and comparative performance. Finally, Section 4
presents the conclusions of this work.

2. Materials and Methods
2.1. Deployment of PM2.5 Sensor IoT

The AIRQ laboratory at NCNU has been building and maintaining an IoT of low-
cost PM2.5 sensors in Central Taiwan, including Nantou, Changhua, and Taichung, since
2015. Currently, nearly 200 monitoring microsite sensors are in operation. As previous
research reported, the Plantower 7th generation (G7) model PMS 7003 shows better stability
than other low-cost sensors, and therefore the AIRQ laboratory replaced the PM sensory
component of the monitoring point with Plantower PMS 7003 in September 2017. The
Plantower PMS 7003 has a miniature exhaust fan that sends airflow into the internal
ventilation duct. Then, the interior projects laser light onto the ventilation duct and detects
the scattered light with a photodiode detector. The detected amount of light is converted
into a voltage, and further into a PM2.5 value [12].

2.2. Field Study

The location of this field study is Puli Township, which is in a mountain basin of an
area around 16 × 16 km2 as shown in Figure 2. The height of the surrounding mountains
is between 1000 and 3500 m. TEPA has deployed only one monitoring supersite station
(marked by a red dot in Figure 2) in the basin because Puli Township is in a rural area and
the main occupation is agriculture. However, there are occasional crop burning activities
in farms, and lots of tourists visit Puli at weekends. The only TEPA supersite definitely
cannot provide a full coverage for air quality monitoring of Puli, especially for detecting
local emerging air pollution events. This motivates our field study for establishing a PM2.5
IoT of low-cost G7 sensors.

To publicize the use of our PM2.5 IoT to Puli citizens, the measurement of G7 sensors
should be calibrated before the deployment. We placed a G7 sensor in a spacious corridor
of an elementary school, which is next to the TEPA supersite station, with no buildings
or obstacles in between the two sites. Conspicuously, the two monitoring sites are close
enough and with similar ventilation and background air conditions. This field arrangement
provides a feasible and fair comparison between the TEPA supersite and the low-cost
sensor for the IoT deployment.

The time span of the field study is from 1 January 2018 to 31 December 2019. We
recorded hourly PM2.5 measurements from both the TEPA supersite and the microsite G7
sensor. Data from the whole of the year 2018 are used for training the comparative models,
and data from the year 2019 are used for testing.

As previously mentioned, we found that the correlation between the supersite and low-
cost sensors not only shows a seasonal variability, but also manifests different magnitudes
in distinct PM2.5 concentration ranges. For example, Figure 3 shows a comparison between
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the hourly measurements of the TEPA supersite in Puli Township (orange curve) and a
nearby low-cost sensor (blue curve). It can be seen that the two measurement time series
have similar trends; however, they have different correlation degrees in various time and
concentration regions. The value difference between the two measurement time series is
relatively small when the measurements of the TEPA supersite are below 20 µg/m3, and
the difference proliferates when the measurements are above 20 µg/m3. Analogously, the
difference between the two measurement time series is relatively smaller in the first half
of October than in the second half. Clearly, it is not prudent to apply linear regression
with the PM2.5 data in the entire concentration range and across multiple years to find
the relationship expression between the supersite and low-cost sensors. We propose
improving the accuracy of calibration learned in different segments of concentration range
and time duration.

Figure 2. Puli Township is in a mountain basin, and there is only one government-built PM2.5

monitoring supersite (marked by a red dot) (translation of Chinese symbols: Wujie Tribe).

Figure 3. In various segments of PM2.5 concentration range and time duration, the measurements of
low-cost sensors show different degrees of deviation from the standard measurements.
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2.3. Concentration-Temporal Multilevel Calibration Model

The traditional calibration method adopted by TEPA is the linear regression (LR)
model, which intends to find a linear function relating the measurement of a calibrating
sensor to that of a reference sensor based on the data of the entire past year. Let the
measurement of the calibrating sensor at hour i be xi, and the measurement of the reference
sensor at hour i be yi. Linear regression (Equation (1)) minimizes the difference between yi
and the calibrated value of xi over all measurements.

Minimize

√
∑n

i=1(yi − x̂i)
2

n
, x̂i = w1xi + w0 (1)

where w1 is the regression coefficient, w0 is the residue, x̂i is the calibrated value of xi, and
n is the number of measuring hours.

Some References [13,14] have found that quadratic regression (QR) may be more
useful than LR for estimating the PM2.5 concentration in particular cities. QR calibrates the
measurement by Equation (2).

x̂i = w2x2
i + w1xi + w0 (2)

where w1 and w2 are the regression coefficients and w0 is the residue.
In this paper, we propose a concentration-temporal multilevel linear regression

(CTMLR) method for improving the sensor calibration accuracy. As previously noted,
we found that the correlation between the supersite and low-cost sensors shows variations
in both PM2.5 concentration and temporal domains. The performance of sensor calibration
is likely to improve if the regression can be conducted separately in the concentration-
temporal crossing intervals. Let the concentration domain be divided into J ranges, Cj, j = 1,
2, . . . , J, and the temporal domain into K ranges, Tk, k = 1, 2, . . . , K. The division can be
made uniformly or non-uniformly considering the distributions of historical measurements.
For convenience of presentation, we assume the corresponding concentration and temporal
intervals of xi are Cj and Tk, respectively. The CTMLR method employs the following
multilevel linear regression (Equation (3)) to calibrate the measurement.

x̂i = w1
(
Cj, Tk

)
xi + w0

(
Cj, Tk

)
, ∀j = 1, 2, . . . , J; k = 1, 2, . . . , K (3)

where w1(Cj, Tk) is the regression coefficient and w0(Cj, Tk) is the residue. The difference
between CTMLR and LR is that both w1(Cj, Tk) and w0(Cj, Tk) used in CTMLR are a
concentration-temporal function in terms of Cj and Tk. Meanwhile in LR, w1 and w0 are
just scalar values, which are independent of the observed concentration (xi) and time
(hour i). Consequently, CTMLR employs a form for learning the weight function in the
concentration-temporal domain. In the following, we show that both LR and QR are a
special case of CTMLR, so the latter can learn a more sophisticated relationship between
the measurements of supersite and microsite sensors.

Theorem 1. Both LR and QR are a special case of CTMLR.

Proof. For LR, assume the learned regression form is x̂i = w1xi + w0.We can let w1(Cj, Tk)
and w0(Cj, Tk) be fixed constant values for all combinations of concentration and temporal
domains, i.e.,

w1
(
Cj, Tk

)
= w1; w0

(
Cj, Tk

)
= w0, ∀j = 1, 2, . . . , J; k = 1, 2, . . . , K (4)

So, CTMLR reduces to LR.
For QR, let the learned regression form be x̂i = w2x2

i +w1xi +w0. We consider CTMLR
learns the following weight functions.
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w1
(
Cj, Tk

)
= w2Cj + w1; w0

(
Cj, Tk

)
= w0, ∀j = 1, 2, . . . , J; k = 1, 2, . . . , K (5)

Then, Equation (3) derives to x̂i = w2Cjxi + w1xi + w0. If we conduct the finest
range division in the concentration domain, viz., Cj = xi, CTMLR derives to the following
regression form.

x̂i = w2xixi + w1xi + w0 = w2x2
i + w1xi + w0, (6)

which is exactly the QR regression form.
To conclude the proof, LR is a special case of CTMLR with a single range of the entire

concentration-temporal domain, and QR can be learned through CTMLR if we conduct the
finest division in the concentration domain and no division in the temporal domain. �

To make the CTMLR method more computationally efficient, the regression can be
only conducted in those concentration-temporal crossing domains that contain a significant
number of historical measurements from the reference and calibrating sensors. The optimal
weight functions of CTMLR can be learned by applying any feasible optimization approach.
In this study, we employ particle swarm optimization (PSO) [15] to learn the weight
functions in every concentration-temporal crossing domain because PSO is computationally
fast and converges to quality local optima in practice.

2.4. Performance Indicators

In the following, the broadly used performance indicators for evaluating calibration
methods are introduced.

Coefficient of Determination (R2)

R2 = 1− ∑n
i=1(yi − x̂i)

2

∑n
i=1(yi − y)2 (7)

where y is the mean observed value of all reference measurements,

y =
∑n

i=1 yi

n
(8)

Root Mean Square Error (RMSE)

RMSE =

√
∑n

i=1(yi − x̂i)
2

n
(9)

Normalized Mean Error (NME)

NME =
∑n

i=1|yi − x̂i|
∑n

i=1(yi)
(10)

Except for R2 which is the higher the better, the other indicators are to be minimized
in the calibration process.

3. Results
3.1. Validation of CTMLR Calibration

We validate the CTMLR calibration method with our low-cost G7 PM2.5 sensor de-
ployed near to the TEPA Puli supersite. The time span of the collected PM2.5 hourly
measurements is from 1 January 2018 to 31 December 2019. The data from the year 2018
are used for training, and the data from the year 2019 are used for testing. We first calibrate
the low-cost sensor with reference to the Puli supersite with the classic LR method. The
result will be used as baseline performance for evaluating the CTMLR calibration method.
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We then analyze the influence of using various lengths of division interval for slicing the
concentration and temporal domains in the performance of CTMLR calibration. To this
end, we experiment with setting the length of the division interval in the concentration
domain to 5, 10, 15, 20, and 25, respectively. The temporal domain is divided by month,
season, or year. For each parameter combination of concentration-temporal division, the
resulting CTMLR version is trained with data from the year 2018. The testing performance
on data from the year 2019 achieved by various versions of CTMLR is shown in Table 1,
which also includes the baseline LR performance. It can be seen that for all performance
indicators, CTMLR outperforms LR for every parameter combination of concentration-
temporal division. The result validates that CTMLR is more capable than LR of rendering
the relationship between the low-cost sensor and the reference supersite sensor.

Table 1. Testing performance evaluation of the CTMLR and LR calibration methods.

Indicators Temporal
Concentration (µg/m3)

5 10 15 20 25 LR

R2
month 79% 79% 79% 79% 79% 78%
season 80% 80% 80% 80% 80% 78%

year 82.81% 82.85% 82.87% 82.7% 82.6% 80%

RMSE
month 4.99 4.9 4.9 4.9 4.9 5.0
season 4.8 4.8 4.8 4.8 4.8 5.0

year 4.51 4.503 4.502 4.52 4.53 4.7

NME
month 0.22 0.22 0.21 0.22 0.22 0.22
season 0.21 0.21 0.21 0.21 0.21 0.22

year 0.1939 0.1938 0.1937 0.194 0.196 0.20

We further analyze the best division parameters for creating the multilevel concentration-
temporal crossings for the Puli dataset. From the performance evaluation shown in Table 1,
we observe that the best calibration result (shown in bold) for all performance indicators
is always obtained by dividing the concentration domain with an interval of 15 µg/m3

and using the entire year as the temporal interval. The implication is that the correlation
between the two types of sensors varies more significantly in the concentration domain
than the temporal domain. The reason for this is that the major PM2.5 concentration range
in a month or a season is relatively typical, so many concentration-temporal crossings
contain too few data to learn representative regression on a monthly or a seasonal basis.
For the best division parameter in the concentration domain, we further test with finer
divisions between 15 and 20 µg/m3. As shown in Table 2, the best calibration performance
in terms of R2 is obtained with an interval division of 15 µg/m3, while the best performance
in terms of RMSE and NME is obtained when the concentration interval division is set to
16 µg/m3. The two interval lengths are very close, showing the stability of our CTMLR
calibration method against different performance indicators. Again, the best performance in
all indicators is produced with the temporal interval of an entire year to collect a sufficient
number of samples.

With the best parameters for training the CTMLR calibration method, we visualize
the difference in training performance between CTMLR and LR by comparing their scatter
plots. Figure 4a shows the scatter plot of the supersite sensor and low-cost sensor before
calibration. The blue line depicts the principal axis of the plots, and the green line indicates
the ideal line y = x. It can be seen that the original plots are tilted away from the ideal
line. With the LR calibration result as shown in Figure 4b, the plots are drawn closer to
the ideal line. However, the upper-right region of the plots (for supersite measurements
between 40 and 90 µg/m3) crosses the ideal line to the other side. As a comparison, we
apply CTMLR calibration to the training data. The calibrated plots perfectly align with the
ideal line as shown in Figure 4c. The is because CTMLR applies multilevel linear regression
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in the concentration domain and is able to adjust the weights in the upper-right region of
the plots. Clearly, the learning capability of CTMLR significantly outperforms that of LR.

Table 2. Finer testing performance evaluation of the CTMLR calibration method.

Indicators Temporal
Concentration (µg/m3)

15 16 17 18 19 20

R2
month 79% 79% 79% 80% 79% 79%
season 80% 80% 80% 80% 80% 80%

year 82.873% 82.868% 82.82% 82.80% 82.80% 82.76%

RMSE
month 4.9 5.0 5.0 4.9 4.9 4.9
season 4.8 4.8 4.8 4.8 4.8 4.8

year 4.502 4.501 4.51 4.51 4.52 4.52

NME
month 0.21 0.22 0.22 0.22 0.22 0.22
season 0.21 0.21 0.21 0.21 0.21 0.21

year 0.1937 0.1936 0.194 0.195 0.195 0.195

Figure 4. Scatter plots for the training data: (a) before calibration, (b) after LR calibration, and (c) after
CTMLR calibration.
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For the testing data, the original plots of the supersite sensor and low-cost sensor
before calibration are displayed in Figure 5a. Again, the blue line is tilted away from the
ideal green line. By applying the LR calibration method to the testing data, as shown
in Figure 4b, the plots align with the ideal line. However, the central region of the plots
is a little lower than the ideal line. On the other hand, the CTMLR calibration method
generalizes better to the testing data than the LR method. The calibrated plots uniformly
are distributed over the ideal line as shown in Figure 5c. The calibration effectiveness of the
CTMLR method is due to the multilevel regression in the concentration-temporal crossing
domain. The CTMLR method is a generalized model of LR and QR as we have previously
proven. The multilevel regression mechanism enables the flexibility of the CTMLR method
in fitting to various distribution forms manifested in different subdomains.

Figure 5. Scatter plots for the testing data: (a) before calibration, (b) after LR calibration, and (c) after
CTMLR calibration.

3.2. Comparison with Other Calibration Methods

In this section, the proposed CTMLR approach is compared with state-of-the-art
calibration methods. XGBoost is a gradient-based boosting algorithm [16] for learning
regression trees, and it has won several machine learning competitions such as Kaggle
challenges and the KDD Cup. Ensemble XGBoost [6] is a novel calibration method, which
constructs an ensemble for learning spatiotemporal parameters in order to build XGBoost
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regression trees. Three versions of XGBoost regression trees were constructed in [6] by using
the Sobol [17], Nelder and Meads (N&M) [18], and PSO [15] methods, respectively. We
applied the three versions of XGBoost regression trees to calibrate the low-cost sensor with
the TEPA Puli dataset. The testing calibration performance of the three XGBoost ensembles
is shown in Table 3. It can be seen that Sobol-learned XGBoost is the best version overall,
though its R2 value is slightly worse than that obtained by PSO-learned XGBoost. We then
compare Sobol-learned XGBoost with our CTMLR approach (see Tables 1 and 2). Clearly,
CTMLR outperforms Sobol-learned XGBoost in terms of R2 and RMSE measurements.
However, Sobol-learned XGBoost is able to achieve a better NME value than CTMLR. The
implication is that CTMLR tends to calibrate the sensors by normally distributing the main
error residues to all samples, such that a lower R2 or RMSE value can be obtained (see the
quadratic expression in Equations (7) and (9)). On the other hand, Sobol-learned XGBoost
focuses on minimizing error residues in most samples while allowing the existence of larger
residues in the remaining samples (see the NME L1-norm expression in Equation (10)). In
summary, CTMLR and Sobol-learned XGBoost are both effective in calibration, and they
may fit better in different measurement scenarios.

Table 3. Testing performance evaluation of the three XGBoost ensembles.

Indicators
XGBoost Ensembles

Sobol N&M PSO

R2 80% 78% 80%
RMSE 5.7 5.8 5.7
NME 0.173 0.18 0.175

4. Conclusions

This paper proposes an affordable low-cost sensor IoT to provide a complementary
microlevel air quality perspective for individual needs. Measurements from low-cost
sensors have a varying relationship with those from supersite sensors. The variables
influencing this relationship, at the least, include meteorological, spatial, temporal, and
concentration factors. We propose a concentration-temporal multilevel linear regression
(CTMLR) method for improving the calibration accuracy of low-cost sensors. We also show
that the classic calibration methods, namely, linear regression (LR) and quadratic regression
(QR), are special cases of the CTMLR method. In other words, the CTMLR method is more
general than LR and QR, and it is capable of rendering the complex relationship between
supersite sensors and low-cost sensors. The experimental results with the field data show
that the CTMLR method outperforms LR with reference to all popular calibration measures.
When compared with Ensemble XGBoost, which is one of the state-of-the-art calibration
methods, CTMLR surpasses two versions of Ensemble XGBoost and is comparable to
another version that is trained by the Sobol optimizer.

Our future research scope includes the following directions. In the present study,
the CTMLR method is facilitated by fixed-length intervals in both the concentration and
temporal domains. It would be worthwhile to study whether the calibration performance of
the CTMLR method improves when varying-length intervals are considered in the training.
Another direction for our future research is to include other calibration variables in the
CTMLR method. Some useful variables suggested in the literature include meteorological,
spatial, and land use factors. Such a hybrid model has the potential to adapt to different
field scenarios that are not sufficiently described by a single type of calibration variable.
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funding acquisition, R.-F.D. and P.-Y.Y. All authors have read and agreed to the published version of
the manuscript.



Sustainability 2022, 14, 15 12 of 12

Funding: This research was funded by the Environmental Protection Administration, Executive
Yuan, R.O.C., grant number EPA024-105025, and the Ministry of Science and Technology, Executive
Yuan, R.O.C., grant number MOST 107-2410-H-260-015-MY3.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: [https://www.airq.org.tw/ (accessed on 1 July 2022)] and [https://www.epa.gov.tw/
(accessed on 1 July 2022)].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Song, C.; He, J.; Wu, L.; Jin, T.; Chen, X.; Li, R.; Ren, P.; Zhang, L.; Mao, H. Health burden attributable to ambient PM2.5 in China.

Environ. Pollut. 2017, 223, 575–586. [CrossRef] [PubMed]
2. Day, R.F. Developing the Local PM2.5 Monitoring System and the Volunteer Program for Air Protection; Technical Report EPA024 105025;

Environmental Protection Administration, Executive Yuan, R.O.C.: Taipei, Taiwan, 2017.
3. Manikonda, A.; Zíková, N.; Hopke, P.K.; Ferro, A.R. Laboratory assessment of low-cost PM monitors. J. Aerosol Sci. 2016,

102, 29–40. [CrossRef]
4. Sayahi, T.; Butterfield, A.; Kelly, K. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ.

Pollut. 2019, 245, 932–940. [CrossRef] [PubMed]
5. Jayaratne, R.; Liu, X.; Ahn, K.-H.; Asumadu-Sakyi, A.; Fisher, G.; Gao, J.; Mabon, A.; Mazaheri, M.; Mullins, B.; Nyaku, M.

Low-cost PM2. 5 sensors: An assessment of their suitability for various applications. Aerosol Air Qual. Res. 2020, 20, 520–532.
6. Chen, L.J.; Ho, Y.H.; Lee, H.C.; Wu, H.C.; Liu, H.M.; Hsieh, H.H.; Huang, Y.T.; Lung, S.C.C. An open framework for participatory

PM2.5 monitoring in smart cities. IEEE Access 2017, 5, 14441–14454. [CrossRef]
7. Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M. Community Air

Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern
United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. [CrossRef] [PubMed]

8. Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.
Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?
Environ. Int. 2018, 116, 286–299. [CrossRef] [PubMed]

9. English, P.; Richardson, M.; Garzón-Galvis, C. From crowdsourcing to extreme citizen science: Participatory research for
environmental health. Annu. Rev. Public Health 2018, 39, 335–350. [CrossRef] [PubMed]

10. Yin, P.Y.; Tsai, C.C.; Day, R.F.; Tung, C.Y.; Bhanu, B. Ensemble learning of model hyperparameters and spatiotemporal data for
calibration of low-cost PM2.5 sensors. Math. Biosci. Eng. 2019, 16, 6858–6873. [CrossRef] [PubMed]

11. Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor
platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [CrossRef] [PubMed]

12. Kelly, K.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation
of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [CrossRef] [PubMed]

13. Yin, Q.; Wang, J.; Hu, M.; Wong, H. Estimation of daily PM2.5 concentration and its relationship with meteorological conditions
in Beijing. J. Environ. Sci. 2016, 48, 161–168. [CrossRef] [PubMed]

14. Baker, K.R.; Foley, K.M. A nonlinear regression model estimating single source concentrations of primary and secondarily formed
PM2.5. Atmos. Environ. 2011, 45, 3758–3767. [CrossRef]

15. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks
IV, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

16. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD2016), San Francisco, CA, USA, 13–17 August 2016.

17. Joe, S.; Kuo, F.Y. Remark on algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw.
(TOMS) 2003, 1, 49–57. [CrossRef]

18. Lagarias, J.C.; Reeds, J.A.; Wright, M.H. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J.
Optim. 1998, 9, 112–147. [CrossRef]

https://www.airq.org.tw/
https://www.epa.gov.tw/
http://doi.org/10.1016/j.envpol.2017.01.060
http://www.ncbi.nlm.nih.gov/pubmed/28169071
http://doi.org/10.1016/j.jaerosci.2016.08.010
http://doi.org/10.1016/j.envpol.2018.11.065
http://www.ncbi.nlm.nih.gov/pubmed/30682749
http://doi.org/10.1109/ACCESS.2017.2723919
http://doi.org/10.5194/amt-9-5281-2016
http://www.ncbi.nlm.nih.gov/pubmed/32802212
http://doi.org/10.1016/j.envint.2018.04.018
http://www.ncbi.nlm.nih.gov/pubmed/29704807
http://doi.org/10.1146/annurev-publhealth-040617-013702
http://www.ncbi.nlm.nih.gov/pubmed/29608871
http://doi.org/10.3934/mbe.2019343
http://www.ncbi.nlm.nih.gov/pubmed/31698592
http://doi.org/10.1016/j.envint.2016.12.007
http://www.ncbi.nlm.nih.gov/pubmed/28038970
http://doi.org/10.1016/j.envpol.2016.12.039
http://www.ncbi.nlm.nih.gov/pubmed/28012666
http://doi.org/10.1016/j.jes.2016.03.024
http://www.ncbi.nlm.nih.gov/pubmed/27745661
http://doi.org/10.1016/j.atmosenv.2011.03.074
http://doi.org/10.1145/641876.641879
http://doi.org/10.1137/S1052623496303470

	Introduction 
	Materials and Methods 
	Deployment of PM2.5 Sensor IoT 
	Field Study 
	Concentration-Temporal Multilevel Calibration Model 
	Performance Indicators 

	Results 
	Validation of CTMLR Calibration 
	Comparison with Other Calibration Methods 

	Conclusions 
	References

