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Abstract

Information Retrieval systems traditionally rely on textual keywords to in-
dex and retrieve documents. Keyword-based retrieval may return inaccurate
and incomplete results when different keywords are used to describe the same
human concept in the documents and in the queries. Furthermore, the rela-
tionship between those keywords may be semantic rather than syntactic, and
capturing it thus requires access to comprehensive human world knowledge.
Concept-based retrieval methods have attempted to tackle these difficulties
by using manually-built thesauri, by relying on term co-occurrence data,
or by extracting latent word relationships and concepts from a corpus. In
this paper we introduce a new concept-based retrieval method that is based
on Explicit Semantic Analysis (ESA). ESA is a recently proposed repre-
sentation method that can augment the keyword-based representation with
concept-based features, automatically extracted from massive human knowl-
edge resources such as Wikipedia. We have found that high-quality feature
selection is required to make the retrieval more focused. However, due to
the lack of labeled data, traditional statistical filtering methods cannot be
used. We introduce several selection methods that use self-generated labeled
training data. The resulting system is evaluated on TREC data, showing
superior performance over previous state-of-the-art results.
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Chapter 1

Introduction

Information Retrieval (IR) systems are concerned with providing the most
relevant documents to a user’s query. With early IR systems used mainly by
retrieval experts, initial IR methodology was based on keywords manually
assigned to documents, and on complicated Boolean queries. As automatic
indexing and natural language queries gained popularity in the 1970s, IR sys-
tems became increasingly more accessible to non-expert users. Documents
were indexed by automatically considering all terms in them as independent
keywords, in what is known as the Bag-of-Words (BOW) representation,
and query formatting was simplified to a short natural language formulation.
However, even as the keywords became “noisier,” the basic methodology for
indexing them remained unchanged. Thus, these non-expert users were in-
creasingly faced with what was described as “the vocabulary problem” [15].
The keywords chosen by the users were often different from those used by
the authors of the relevant documents, lowering the systems’ recall rates.
In other cases, the contextual differences between ambiguous keywords were
overlooked by the BOW approach, reducing the precision of the results.
These two problems are commonly referred to as synonymy and polysemy,
respectively.

IR researchers attempted to resolve the synonymy problem by expanding
the original query with synonyms of query keywords [52]. However, the
relationship between the keywords chosen by the users and those used by
the authors often extends beyond simple synonymy. Consider the short
query “Estonia economy,” an actual query (#434) in the TREC-8 Adhoc
test collection [55]. A relevant document may discuss announcements by the



ministry of trade in Tallinn (the Estonian capital), with no mention of any
direct synonym of any of the query keywords.

To handle such problems, new query expansion methods that rely on
corpus-based evidence were suggested. For example, [57] suggested identi-
fying terms that co-occur with query keywords in the top-ranked documents
for the query, to be used as expansion terms that are more broadly related to
the query (such as “trade” and “Tallinn,” in this example). Such approaches
showed significant improvement, but require manual tuning in order not to
adversely affect performance: too few expansion terms may have no impact,
and too many will cause a query drift [37].

For tackling polysemy, the main proposed method was to apply auto-
matic word sense disambiguation algorithms to the documents and query.
Disambiguation methods use resource such as the Wordnet thesaurus [51] or
co-occurrence data [45] to find the possible senses of a word and map word
occurrences to the correct sense. These disambiguated senses are then used
in indexing and in query processing, so that only documents that match the
correct sense are retrieved. The inaccuracy of automatic disambiguation is
the main obstacle in achieving significant improvement using these meth-
ods, as incorrect disambiguation is likely to harm performance rather than
merely not improve it.

Concept-based information retrieval is an alternative IR approach that
aims to tackle these problems differently. Concept-based IR represents both
documents and queries using semantic concepts, instead of (or in addition
to) keywords, and performs retrieval in that concept space. This approach
holds the promise that representing documents and queries using high-level
concepts will result in a retrieval model that is less dependent on the specific
terms used. Such a model could yield matches even when the same notion
is described by different terms in the query and target documents, thus
alleviating the synonymy problem and increasing recall. Similarly, if the
correct concepts are chosen for ambiguous words appearing in the query
and in the documents, non-relevant documents that were retrieved with the
BOW approach could be eliminated from the results, thus alleviating the
polysemy problem and increasing precision.

Existing concept-based methods can be characterized by the following
three parameters:

1. Concept representation — the “language” the concepts are based on.



Explicit real-life concepts [51, 19] better lend themselves to human in-
terpretation and reasoning than do implicit or latent concepts [10, 25,
59]. However, sufficient coverage and granularity are major challenges.

2. Mapping method — the mechanism that maps natural language texts to
these concepts. The most accurate mechanism would likely be manual,
building a hand-crafted ontology of concepts with a list of words to
be assigned to each [35], but such an approach involves huge effort
and complexity. The mapping can also be automatic, using machine
learning [19], though that would usually imply less accurate mapping.

3. Use in IR — the stages in which the concepts are used. Concepts
would be best used throughout the entire process, in both indexing
and retrieval stages [20]. A simpler but less accurate solution would
apply concept analysis in one stage only, as in concept-based query
expansion [40].

Of all the approaches suggested so far for concept-based IR, none offers
an optimal combination of the above choices. An ideal approach would use
explicit semantic concept representation, with no limits on domain coverage
or conceptual granularity, would support a fully-automatic mechanism for
mapping texts onto those concepts, would be computationally feasible even
for very large corpora, and would integrate concept-based processing in both
indexing and retrieval stages.

In this paper we propose a novel concept-based IR approach that meets
all of the above requirements, using Explicit Semantic Analysis (ESA). The
concepts used are taken from a very comprehensive, human-defined ontology
of explicit concepts. Text analysis methods are used to automatically and
efficiently extract these concepts and represent any document or query text
using them. Finally, the proposed system builds upon existing IR method-
ology and integrates concepts into both document indexing and retrieval,
using standard data structures and ranking methods.

We show that a naive implementation of IR using these concepts is in-
sufficient, due to the concepts’ inherent noisy nature. We address these
difficulties by embedding feature selection methods into the retrieval pro-
cess, and we further improve the results by combining the concept-based
results with those of keyword-based retrieval. We evaluate the proposed
system on TREC datasets to show significant improvement in performance



compared both with our own baseline and with published results of other
state-of-the-art systems.

Our main contributions in this work are threefold: a framework for using
the ESA representation method in information retrieval, a method for inte-
grating feature selection into the concept-based IR task, and three selection
methods that are based on common Al methods and shown to be beneficial
for the task at hand.

The remainder of this paper is organized as follows. Section 2 provides
background on ESA. Sections 3 to 5 describe the proposed concept-based
algorithms and empirical evaluation results. Section 6 surveys related work
on concept-based IR, and Section 7 concludes the paper.



Chapter 2

Explicit Semantic Analysis
(ESA)

Explicit Semantic Analysis, or ESA [17], is a recently proposed method
for semantic representation of general-domain natural language texts. ESA
represents meaning in a high-dimensional space of concepts, automatically
derived from large-scale human-built repositories such as Wikipedial. Since
it was first proposed, ESA has been successfully applied to text catego-
rization [17, 21, 7], semantic relatedness calculation [18, 22], cross-language
information retrieval [39, 49], and concept-based information retrieval [12].

In Wikipedia-based ESA, the semantics of a given word are described
by a vector storing the word’s association strengths to Wikipedia-derived
concepts. A concept is generated from a single Wikipedia article, and is
represented as a vector of words that occur in this article weighted by their
tf.idf score. Once these concept vectors are generated, an inverted index is
created to map back from each word to the concepts it is associated with.
Thus, each word appearing in the Wikipedia corpus can be seen as triggering
each of the concepts it points to in the inverted index, with the attached
weight representing the degree of association between that word and the
concept. The process is illustrated in Figure 2.1.

With this resource in hand, any input word to a text processing task can
now be semantically represented as a sparse vector in the high-dimensional
space of Wikipedia concepts. Larger text fragments are represented as a

"http://www.wikipedia.org
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Figure 2.1: Generation of an ESA model from Wikipedia articles. The

articles and words in them are processed to build a weighted inverted

index, representing each word as a vector in the space of all Wikipedia
concepts (articles).

concept vector that is a combination of the separate vectors of its individual
terms, and ESA operations can then be carried out by manipulating these
vectors. For example, computing semantic relatedness between two texts
can be reduced to generating the ESA concept vectors for each of them, and
then calculating their cosine similarity.

To illustrate the nature of ESA concepts, we show the top concepts
generated by our ESA implementation for two short news clip fragment:

e Text: “A group of Furopean-led astronomers has made a photograph
of what appears to be a planet orbiting another star. If so, it would be
the first confirmed picture of a world beyond our solar system.”

Top generated concepts: (1) PLANET; (2) PLANETARY ORBIT; (3)
SOLAR SYSTEM; (4) EXTRASOLAR PLANET; (5) JUPITER; (6) ASTRONOMY;
(7) DEFINITION OF PLANET; (8) PLuTo; (9) MINOR PLANET; (10) PSR
1257+12

All concepts are highly relevant and describe or relate to the subject
of the text, with the fourth concept (EXTRASOLAR PLANET) being the
exact topic, despite the fact that these words were not explicitly men-
tioned in the text. PSR 1257+12 is the name of a pulsar around which
the first extrasolar planets were discovered orbiting.

o Text: “New Jaguar model unveiled by firm”



Top generated concepts: (1) Jacuar XJ; (2) JAGUAR (CAR); (3)
ForD MoOTOR COMPANY; (4) JAGUAR XK; (5) LAND ROVER RANGE
ROVER; (6) JAGUAR S-TYPE; (7) JAGUAR X-TYPE; (8) NISSAN MICRA;
(9) V8 ENGINE; (10) JAGUAR E-TYPE

This example demonstrates the disambiguation power of ESA, as the
top concepts all refer to Jaguar the car maker rather than to the name-
sake animal or American football team. Despite the text containing no
explicit car-related terms, words such as “model” and “unveil” were
more related to the industry meaning and helped trigger the correct
concepts. The concepts generated also hint at rich world knowledge,
such as the business relations to ForRpD MoTorR CompaNy and LAND
ROVER RANGE ROVER and the use of a V8 ENGINE on Jaguar models.
The NissaAN MICRA concept was triggered by a Micra variant that was
inspired by a Jaguar model.

The use of a knowledge repository as large and diverse as Wikipedia
creates a powerful concept ontology, well suited for concept-based IR. First,
Wikipedia’s broad coverage of a huge range of topics, coupled with auto-
matic ontology-building, yields a highly fine-grained ontology. Second, the
language coverage of the inverted index, mapping from a massive aggrega-
tion of natural language terms (the entire Wikipedia corpus) to the concepts
in which they occur, produces a powerful classifier to automatically map any
given text fragment to this concept ontology. Finally, the use of a semantics-
based ontology such as Wikipedia’s, or in another implementation the Open
Directory Project [16], generates meaningful and human-readable concepts
that can provide additional reasoning for the researcher and for system users.



Chapter 3

ESA-Based Retrieval

Given the described advantages of ESA as a semantic representation and
its demonstrated success in other text analysis tasks, it appears well suited
for building a successful concept-based IR model. In this section we in-
troduce our first algorithm for concept-based IR using ESA representation.
The algorithm maps documents and queries to the Wikipedia-ESA concept
space, and performs indexing and retrieval in that space. We then evaluate
the algorithm’s performance on TREC datasets. We show that combining
concept-based relevancy of documents with that of passages in these docu-
ments, performs best for ESA-based retrieval. We also find that the quality
of generated concepts is lower than expected, and analyze the potential
causes and remedies to be applied in the next section.

3.1 ESA Concept-Based Indexing

We use ESA to map each document in the corpus to a weighted vector
of concepts. Like BOW vectors, concept-based vectors are also sparse, with
concept weights being zero for most of the Wikipedia concepts. Nevertheless,
given that each word in the document to be indexed may still be related to
a large number of concepts, and that a document containing a collection of
words is likely to be related to an even larger number, indexing the entire
list of related concepts for every document is not feasible. We therefore use
only the concepts with the highest weights (association scores). In a sorted
representation of the vector, this subset of concepts is simply its prefix.

10



Long documents are more difficult to map in full into the ESA concept
space. A small part of a long document might be relevant to the current
query, but the semantics of this part may be underrepresented in the con-
cepts vector for the full document. A similar problem exists also in BOW
approaches, where the term frequency (TF) measure must be normalized [48]
to account for documents of different lengths. However, for concept-based
retrieval the challenge is even greater: because of the averaging effect of the
representation of longer text fragments and the practical need to use only
a small subset of the representation concepts, the concepts of the relevant
section might be pruned out of the indexed vector.

Previous research using BOW representation has shown that breaking
long documents into shorter passages can improve document retrieval [5],
with the ranking of passages viewed as evidence to the relevance of their
source documents. Furthermore, it has been shown that fized-length pas-
sages yield better results than passages based on syntactic or semantic seg-
mentation [5, 28]. We therefore suggest a similar approach, breaking docu-
ments into length-based overlapping passages and representing each passage
separately by its own generated set of concepts. We expect such an ap-
proach to achieve better results, in particular with long documents that
cover several themes.

Note that while [17] also split documents into sentence and paragraph
contexts in applying ESA to text categorization, they eventually combined
the concepts of these sub-contexts into a single unified representation. In
our approach, each passage is indexed and may be retrieved as a stand-alone
unit of information. Thus, a passage is ranked separately as an independent
indicator of its original document’s relevance.

We now have, for any document to be indexed, a set of passages and a
concept vector representation for each. We index these concepts in a stan-
dard IR inverted index, using the concepts’ unique identifiers as tokens. The
score associated with each concept in the vector is used as the token weight,
equivalent to term frequency in standard text indexing. The pseudocode for
the above indexing algorithm is described in Figure 3.1.

11



#Index corpus D using ESA concepts; trim ESA vector to the s
# first concepts, segment documents to passages of length |
Procedure ESA-INDEXING(D, s,1)
Foreach d € D
Fy — ESA(d, s)
Foreach (c;, w;) € Fy
add (d, w;) to Invindex|c;
P4 < DIVIDE-INTO-PASSAGES(d, [)
Foreach p € Py
F, — ESA(p,s)
Foreach (c;,w;) € E,
add (p,w;) to InvIndex|c]

Figure 3.1: ESA-based indexing in an inverted index

3.2 ESA-Based Retrieval Algorithm

Upon receiving a query, our algorithm first converts it to an ESA concept
vector. The representation method is identical to the one by which doc-
uments and passages are represented at index time. Having indexed full
documents and passages, we now have to choose how these two types of
evidence are to be combined for ranking. Following [5], we retrieve both
sets of results and sum each document’s full score with the score of the best
performing passage in it'. The documents are then sorted by this combined
score and the top scoring documents are output, as described? in Figure 3.2.

The retrieval algorithm has a single parameter s controlling the cutoff
(as described in the previous section) of the query concept vector. The
value for s may be chosen to be the same as that in the indexing process,
but not necessarily. Indexing the entire corpus with large cutoff values
would incur significant storage and computation costs, and is therefore not

'We also experimented with assigning different weights to these two summed scores
but found no improvement in doing so

2In practice, the retrieval process is optimized to not iterate on all indexed documents;
hence this combination is performed only for the top ranking documents (the top 1000 in
our case), but the principle is similar.

12



# Retrieve ESA concept-based results for query ¢, cutoff
# concept vector at s
Procedure ESA-RETRIEVAL({, )

F, — ESA(q, s) B

Return DocsPASS-RETRIEVE(F)

# Retrieve results for query ¢ from the combined indezx.
#INVINDEX-SCORE() stands for the standard inverted index
# function that scores a document’s match to a query
Procedure DoCSPASS-RETRIEVE((])
Foreach d € D
Wy < INVINDEX-SCORE({, d)
Foreach p € PASSAGES(d)
W, < INVINDEX-SCORE({, p)
W) «— Wq + max W),
Return ranked list according to W7,

Figure 3.2: ESA-based retrieval

feasible. The query representation, on the other hand, being derived from a
much shorter text fragment and incurring no such costs, could benefit from
a finer representation, using a higher value for s.

3.3 Empirical Evaluation

In order to evaluate the usefulness of ESA concept-based retrieval, we carried
out a set of experiments.

3.3.1 Implementation

We used Xapian®, an open source probabilistic IR library, as the basis for
our experimental platform. Document keywords and concepts were indexed
in a Xapian inverted index. In addition, Xapian’s implementation of the
popular Okapi BM25 ranking formula [42] served as a BOW baseline. Most
of the experiments used the TREC-8 Adhoc [55] and the TREC Robust 2004

3http://xapian.org/
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[53] datasets. The TREC-8 dataset consists of 528,000 documents (mostly
newswire) and 50 topics (information-need descriptions, to be transformed
into queries), and the Robust-04 dataset uses the same document collection
with a different set of 49 topics. We used only the short (“title”) queries in
TREC topics, since these short (1-3 words) queries better represent common
real-life queries, in particular on the Web [2], and since short texts stand best
to benefit from conceptual representation [38]. We use the Mean Average
Precision (MAP) evaluation measure, commonly used by TREC participants
[55], which combines precision and recall while assigning higher importance
to the higher-ranking relevant documents.

Documents and passages were stemmed, stopped and indexed by their
BOW representation, to serve as the keyword baseline index. Then, ESA-
based representations were created and indexed separately as described in
Figure 3.1. Passages were set to be fixed-size overlapping segments, shown
to be most effective by [28], with passage size set to 50 words. We also tried
to use longer passages (200 words) but this proved to be less effective.

The ESA implementation used in our experiments is as described in [17],
with ESA vector cutoff in the indexing stage (s in Figures 3.1 and 3.2) set

to 50 concepts for practical reasons (index size)?.

3.3.2 Results

Figure 3.3 shows the performance (MAP) of our ESA-based retrieval algo-
rithm for various parameter values. To assess the impact of the concept
vector truncation, we measured performance for varying values of s (the
ESA vector cutoff level) in the query vector. In addition, to validate the
added value of combining documents and passages scores, we compared per-
formance of the combined score to that of documents and passages alone.

As Figure 3.3 clearly shows, passage context outperforms document con-
text significantly, but the best results are achieved when both are combined,
an outcome that is consistent with previous IR findings for BOW repre-
sentations [8]. We will be using the combined documents+passages scoring
from here onwards.

Results for increasing values of s indicate that merely adding lower-

4We have also experimented with indexing the 100 strongest concepts instead of the
50 strongest, and found no significant impact on the performance.

14
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Figure 3.3: ESA-based retrieval performance as a function of ESA cutoff
and ranking contexts

ranking concepts in the ESA vector does not improve retrieval. Not only
does the precision-oriented MAP score decrease as concepts are added, but
the absolute recall (measured in the top 1000 retrieved documents) decreases
as well. This finding suggests that some of the generated concepts may
be detrimental, and that successful application of ESA to IR may require
further selection of the concepts initially generated for the query. We will
revisit this hypothesis later on.

However, even when choosing the best performing parameter values,
ESA-based retrieval (MAP of 0.1760) is significantly inferior to that of our
BOW baseline (MAP of 0.2481). Considering the superior results obtained
when ESA-based representation was applied to previous text analysis appli-
cations ([17, 18]), this result is quite surprising. In the following subsection,
we conduct a qualitative analysis of specific retrieval cases in order to bet-
ter understand the causes of this inferior retrieval and to suggest ways to
remedy them.

3.3.3 Qualitative Analysis

The results shows that ESA-based retrieval can indeed, as expected, identify
relevant documents even when these do not include query terms or their
simple synonyms. Let us consider TREC query 411 (“salvaging shipwreck
treasure”). The following short relevant document was retrieved by the
ESA-based method but not by the BOW baseline:

15



“ANCIENT ARTIFACTS FOUND. Divers have recovered arti-
facts lying underwater for more than 2,000 years in the wreck of
a Roman ship that sank in the Gulf of Baratti, 12 miles off the
island of Elba, newspapers reported Saturday.”

The top 10 concepts generated for this document were:
SCUBA DIVING
WRECK DIVING
RMS TITANIC
USS HoEeL (DD-533)
SHIPWRECK
UNDERWATER ARCHAEOLOGY
USS MAINE (ACR-1)
MARITIME ARCHAEOLOGY
ToMB RAIDER 11
USS MEADE (DD-602)

whereas the query’s top 10 concepts were:
SHIPWRECK
TREASURE
MARITIME ARCHAEOLOGY
MARINE SALVAGE
HisTORY OF THE BRITISH VIRGIN ISLANDS
WRECKING (SHIPWRECK )
KEY WEST, FLORIDA
FLOTSAM AND JETSAM
WRECK DIVING
SPANISH TREASURE FLEET

With 3 matches in the top-10 concepts (and more in lower positions), the
ESA-based method was capable of retrieving this relevant document as its
third ranked result, despite the fact that not one of the query terms appears
in the document’s text.

Let us now examine a contrary example, where concept-based retrieval
returned a non-relevant document, one that was not returned by the BOW
baseline. We revisit query 434 (“Estonia economy” ), for which the following
short document was retrieved using the concept-based method:

16



“Olympic News In Brief: Cycling win for Estonia. Erika Salumae
won Estonia’s first Olympic gold when retaining the women’s cy-
cling individual sprint title she won four years ago in Seoul as a
Soviet athlete.”

Although this document is Estonia-related, it concerns not economy but
sports. The document’s top 10 concepts were:

EsTONIA AT THE 2000 SUMMER OLYMPICS

EsTONIA AT THE 2004 SUMMER OLYMPICS

2006 COMMONWEALTH GAMES

ESTONIA AT THE 2006 WINTER OLYMPICS

1992 SUMMER OLYMPICS

ATHLETICS AT THE 2004 SUMMER OLYMPICS - WOMEN’S MARATHON

2000 SUMMER OLYMPICS

2006 WINTER OLYMPICS

CROSS-COUNTRY SKIING AT THE 2006 WINTER OLYMPICS

NEW ZEALAND AT THE 2006 WINTER OLYMPICS

The concepts seem quite relevant, discussing Estonia and various Olympics-
related themes. Now let us examine the query’s top 10 concepts:

EsTonNiA

EconoMy OF ESTONIA

ESTONIA AT THE 2000 SUMMER OLYMPICS

ESTONIA AT THE 2004 SUMMER OLYMPICS

ESTONIA NATIONAL FOOTBALL TEAM

EsTONIA AT THE 2006 WINTER OLYMPICS

BALTIC SEA

EUROZONE

Tt VAHI

MILITARY OF ESTONIA

Technically, this document was correctly retrieved by the system, with
three of the top concepts shared between query and document. But why were
these sports-related concepts generated for this query, despite the query’s
bearing no relation whatsoever to sports?

The Wikipedia articles from which these sports-related concepts were

derived contain no mention of the word “economy,” but do contain many
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instances of the word “Estonia.” Thus, the tf.idf score used to compute the
weight for the word “Estonia” in these sports-related concepts was very high.
Hence, even when the query contains other words (such as “economy”) for
which the weight of these sports-related concepts is very low, the ESA vector
for the entire query still assigns them a high weight. As a result, Estonian
sports-related documents are ranked too high and are incorrectly retrieved
by the system, degrading overall performance. The query concept vector
does include concepts related to Estonia’s economy, such as ECONOMY OF
EsTtoniA, Tt VAHI (Estonia’s prime minister during the country’s major
economic transformation period) and EUROZONE, but these are not effective
in removing the non-relevant sports results. In this respect, the effect is
similar to that of query drift [37] that is caused by excessive text-based
query expansion.

Our observation, then, is that since the ESA classifier is created from
a noisy unstructured information source, and one that is different from the
target corpus, the initial concept vector might carry noise and ambiguities.
To counter such problems, we hypothesized that the concept vector should
first be tuned to better fit the corpus it is querying. This is similar to the
idea that a corpus-based similarity thesaurus [40] is better than a general
purpose one.

An ESA vector has two candidates for such tuning — the subset of con-
cepts and the weights assigned to them. To check whether tuning should be
performed for both of them, we ran the same tests as before, but with all
query concept weights set to a uniform value. We found that this change
hardly made any difference in performance, and this conclusion was also
verified in similar tests in later experiments. Thus, we conclude that tuning
the original concepts is useful only when altering the set of concepts to be
used. We will focus on this in the next section.
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Chapter 4

Selective ESA-Based
Retrieval

We have shown that the basic ESA concept-based representation of a query
or a document may be ambiguous and noisy, requiring tuning before it can
be used efficiently. Before we propose tuning methods, we must decide where
in the retrieval process the tuning should be applied. As the concept-based
representation is used in both the document indexing and query processing
stages, it would seem reasonable to suggest that tuning should also be done
in both.

We chose, however, to focus on the query processing stage only. The main
reason was that queries are much shorter than documents or even passages.
For a longer text fragment, the generated concepts reinforce the main topics
in the text and noise is restricted, whereas fragments such as short queries
(typically 2-3 words in TREC Adhoc datasets) generate concepts that still
contain much noise. In addition, tuning a document’s representation during
the indexing phase is problematic because it lacks the context provided by
a given query, and a certain feature may be considered noise for one query
but informative for another. Finally, changes in indexing parameters require
reindexing, incurring extensive experimentation costs.
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4.1 Feature Selection using Pseudo-Relevance Feed-
back

When ESA was applied to the text categorization task [17], it was vulnerable
to the same problems we have just described. Nevertheless, the researchers
overcame these problems by employing aggressive feature selection (FS). FS
methods use labeled training examples to evaluate the utility of candidate
features [23]. In text categorization, these examples are provided as part of
the task data. In contrast, the IR task inherently lacks any labeled training
data; hence applying FS to information retrieval will require finding an
alternative method of evaluating the utility of features (concepts in our
case).

For this purpose, we note that there exists also a supervised version of
IR, called relevance feedback [43], where the user provides relevance judg-
ments on an initial set of retrieved results. This feedback is then used to
reformulate the query and retrieve an improved set of results. Relevance
feedback can be extended to the unsupervised case, by assuming that the
top ranked results (documents or passages) in the initial retrieved results
are relevant [44]. This method is commonly referred to as pseudo-relevance
feedback (PRF).

Inspired by PRF, we decided to use the results of keyword-based retrieval
as a source for evaluation in our FS process. Our updated retrieval method
will thus become two-phased, first performing keyword-based retrieval, then
using its results to tune the query concepts and perform concept-based re-
trieval.

Next, we had to decide which subsets of the results are to be used. Most
of the work on PRF used the top ranked documents or passages [42, 57| as
pseudo-relevant documents (or positive examples). Some researchers chose
to include also pseudo-non-relevant documents (or negative examples), by
using the bottom-ranked documents [26]. We chose to use both positive
and negative examples, as the initial query representation includes irrele-
vant concepts to be removed (for which we believe negative examples will
be useful), in addition to missing relevant concepts (for which the positive
examples alone are sufficient).

One may argue that, for the purpose of negative examples, randomly
selected documents may make a better choice, in particular for queries with
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many relevant documents. [47] analyzed a similar claim, when suggesting
which documents should be used as non-relevant ones for learning a query
profile for information filtering. They showed that sampling non-relevant
documents from the “query zone” (meaning the set of non-relevant docu-
ments that are similar enough to the query) is better than sampling from
the entire corpus (minus the relevant documents) when it comes to choosing
features that are strong indicators of relevance.

Like the findings of [47], our early findings showed that using the bottom-
ranking documents (a “query zone” equivalent) as non-relevant examples
produced better results than using random documents. We also found early
in our experimentation that keyword-based passages significantly outper-
formed full documents. This can be explained by the more coherent concepts
produced by concise passages, similar to our findings in Section 3.3.2.

Following these findings, our algorithm will be using the top ranking
keyword-based passages as positive examples, and the bottom ranking pas-
sages as negative examples. The next section will describe an algorithm for
ESA-based retrieval that uses these pseudo-relevant examples to tune and
select the query features.

4.2 Selective ESA-Based Retrieval Algorithm

Now that we have decided on a framework for evaluating features, let us de-
scribe the integration of FS into the general ESA-based retrieval algorithm.
Since we chose to perform FS only on the query representation, the indexing
algorithm is unchanged and remains as described in Figure 3.1, and we shall
now elaborate on the revised retrieval algorithm, provided in Figure 4.1.

First, as in the non-selective algorithm, the textual query ¢'is represented
by an ESA concept vector P_’;. Then, the first n results ranked by keyword-
based retrieval for ¢ are fetched. The top k of these (kK < n) are tagged
as pseudo-relevant, or positive examples, and the bottom k are tagged as
pseudo-non-relevant, or negative examples. Feature selection is then applied
to these examples in order to select the best performing concepts in F;],
resulting in a modified ESA vector f‘q’. Finally, concept-based retrieval is
performed using FZ and results are returned. The entire process is illustrated
in Figure 4.2.

Given this generic algorithm and information on positive and negative
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# Retrieve ESA concept-based results for query ¢, cutoff concept vector at s;
# select initial concepts based on k pseudo-relevant examples, taken from BOW
# retrieval of depth n, to keep only fraction 0 from initial set (where applicable)
Procedure SELECTIVE-ESA-RETRIEVAL({, s, k,n,0)

F, — ESA(7,5)

(dy,..,dn) — BOW-RETRIEVAL({J,n) # ordered by relevance

D, — (dy,..,d)

Dy <dn—k+17 P dn>

F! « FEATURES-SELECT(Fy, Dy, Dpy, 0)

Return DOCSPASS-RETRIEVE(F))

Figure 4.1: Selective ESA-based retrieval

examples, several actual FS methods can be suggested to implement the
generic FEATURES-SELECT() step in the algorithm. In the following subsec-
tions we propose and experiment with three such FS methods.

4.2.1 Feature Selection using Information Gain

The first F'S method uses each feature’s individual utility to select a subset
of the initial concept-based representation. This utility is measured by the
information gained in separating the set of positive and negative examples
[41]. Information gain (IG) was originally suggested in the context of a
decision tree induction method for choosing which feature to branch on, but
is also used extensively in feature selection [58]. For a feature f and a set S
composed of positive and negative examples, the IG of f is calculated as the
change in information entropy E when splitting S into subsets S; according
to their value of f:

1Sil
S|

IG(f,8) = E(S) - ZE(&-)

where F(S) stands for the information entropy in a set S. In our case, f
is an ESA concept, and we define the value of f in each example to be the
IR score of that example when f is used as the query. Since such feature
values are continuous, they must be discretized in order to split them into
subsets and calculate IG. Following [41], the feature values are discretized
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Figure 4.2: The PRF-based feature selection process

by calculating IG for every possible cutoff value, and using the best value as
this feature’s IG. The complete utility calculation is described in function
U() in Figure 4.3. The function is generalized to calculate utility for a set
of features as well, as some of our F'S methods require.

We note that a feature that retrieves primarily negative examples is less
useful for IR purposes. The scarcity of relevant documents and the random
nature of non-relevant documents usually imply that very little information
is expected to be added by such features. Our version of IG, shown as
function IR-IG in Figure 4.3 and used by the utility function (), takes
that into account by negating the result value when more negative examples
are retrieved than positive ones. Negating (rather than setting to zero) also
proves useful in producing a value that is easy to sort by, in case we have
to select the “least-worst” features. One may argue that features with a
large negative value may better be used in a negation retrieval clause (NOT
operator), but our experiments showed no added value in doing so, which is
probably explained by the incidental and anecdotal nature of those features.

The resulting IG feature selection method is shown in Figure 4.4. The
procedure returns the best performing query features as measured by their
IG values, cutting off at the requested level (6).
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# Calculate the utility for the feature set in ﬁ, by calculating how well it separates
# pseudo-positive examples D, from pseudo-negative examples Dy,
Function Z/{(ﬁ, Dy, Dyyr)
m «— |D, U Dy, |
(dy,..,dy) — (D, UD,,) sorted by their ranking in DocsPAss-RETRIEVE(EF)
best «— maxX;—1..m (IR—IG(D,«, 'Dm«, {dl,..,di}, {di+1,..,dm})
Return best

# Calculate the information gained by splitting the examples in D, and Dy, into
# the two subsets Sg (predicted as relevant) and Sg (predicted as non-relevant)
Function IR-1G(D,, Dy, Se, So)
IG —1 — |Sg|/|Se USs|- ENTROPY(Sg) — |Ssl/|Se USs|- ENTROPY(Ss)
If ‘DT ﬂS@‘ < ’Dnr N S@‘
I1G — —1G
Return IG

Figure 4.3: Utility calculation for a set of concepts to be used in IR

#Select a portion 0 from the initial features F;, using positive examples set D,
# and negative examples set Dy, to calculate IG for each feature
Procedure FEATURES-SELECT-IG(F’Q, Dy, Dpy, 0)

<f1"f|ﬁz|> — sort Fy by U({f}, Dy, Dpr) in descending order

Return {fl--fm.@\]}

Figure 4.4: Selective ESA-based retrieval — IG selection method
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4.2.2 Feature Selection using Incremental Information Gain

In the previous section, we described a selection method based on the IG
value of each individual feature. In our case, however, these features are ul-
timately used as part of a complete set of query concepts, and dependency
between the different features may imply that individual utility calculation
is inaccurate. The Incremental Information Gain (IIG) method hypothe-
sizes that feature utility would be better evaluated in the context of a full
set of query features. Since examining all subsets of the initial feature set is
exponential in the number of initial features and not computationally feasi-
ble, we perform a heuristic search in this space using our utility function U
as the heuristic function.

# Filter original query features vector F_’:] by incrementally adding features that
# improve or sustain best retrieval IG-based utility (calculated using D, and Dy, ).
# The parameter 0 is ignored in this method.
Procedure FEATURES—SELECT—IIG(FZ, Dy, Dyy, 6)

<f1"f|F}\> — sort F’q by U({f}, Dy, Dp,) in descending order

7y () )

For i from 1 to |Fy|

If u(f(; U {fi}vaDnr) > u(fé7Dr7Dn7")
Fq— Foul{fit
Return F

Figure 4.5: Selective ESA-Based Retrieval - IIG selection method using
forward-selection

The IIG method builds the representation incrementally, using forward
selection or backward elimination [27]. Features are first sorted by their
individual IG value, and the candidate query set is an empty one (or the full
one, for backward-elimination). Then, in each iteration a feature is added
to the candidate set (or removed, for backward-elimination) if this step does
not degrade! current pseudo-relevance based performance, or discarded oth-
erwise. When all features have been evaluated, the algorithm terminates

IThis condition implies that for forward-selection we will keep redundant features,
whereas for backward-elimination we will remove them. We elaborate on this in the
results section.
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and returns the selected features. In addition to the advantage of evaluat-
ing the feature in the context of other features, this method also has the
advantage of not requiring a predefined selection level, thus removing one
parameter from the system.

Figure 4.5 shows the IIG selection method, when using forward-selection.
For backward-elimination, the algorithm will begin with the full feature set,
and in each iteration attempt to eliminate the lowest-performing feature,
choosing to keep it if its removal harms performance.

4.2.3 Feature Selection using Rocchio’s Vector

In the two previously described FS methods, the set of candidate features
were those generated for the query by the ESA feature generator, F, =
ESA(q, s). However, the extremely short queries (1-3 words in the datasets
we used) may not suffice to generate and assign high weight to important
concepts.

Consider query 415 in TREC-8, “drugs, Golden Triangle.” This query
refers to an area in southeast Asia that is known for illicit opium production,
but since no such single explicit concept existed in our ESA model, the
query’s top concepts were related to other “golden triangle” meanings, and
relevant topic-related concepts were not considered. Employing FS on the
generated concepts was naturally not helpful, as the initial candidate set’s
coverage was not sufficient.

Yet, our ESA model does include other features that could represent
the correct “golden triangle” using other concepts, such as ILLEGAL DRUG
TRADE, OPIUM, MYANMAR and LAOS (two countries located in this tri-
angle). Such ESA concepts could be generated from texts discussing the
correct query interpretation. Since the top retrieved documents for the
keyword-based query are expected to be such texts, we may use them to
try and compensate for the inaccurate query concepts. Hence, we would
like to generate and use these concepts as additional concepts in the set of
candidate features to be selected.

We thus propose a new F'S method where the augmented set of candidate
features is F; = ESA(7,s) \J {ESA(d,s) | d € D,}. Now we need to
evaluate and select features from this set. Using IG to evaluate how well
each feature separates top-ranking documents from bottom-ranking ones
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# use positive examples set D, and negative examples set Dy,
# to reformulate initial query features vector Iy,
# and return 6 strongest fraction of resulting vector
Procedure FEATURES-SELECT-RV(Fq, Dy, Dy, 0)
- - 1 - 1 -
Fé — Fq + m ZJE_I?T ESA(d, S) — 7|Dmn‘ ZJEDnT ESA(d, S)
(f1.. f| ﬁ'|> « sort Fy by weight of f in descending order
q
Return {fl"fﬂ"\ﬁéﬂ}

Figure 4.6: Selective ESA-based retrieval — RV selection method

is not sound, as the additional features were already taken from the top
ranking documents. Instead, we will use the weights of each feature in each
document in the sets of positive and negative examples, average these values
into a combined weight and use the results to select features.

We calculate the features’ weights based on Rocchio’s algorithm for rel-
evance feedback [43]. Each feature receives a weight that is the sum of its
weights in the original query and in the positive example documents, and
then its weights in the negative example documents are subtracted. Finally,
the strongest features are kept and the rest discarded. The pseudocode for
applying the RV method is provided in Figure 4.6.

4.3 Empirical Evaluation

This section describes experiments carried out using selective ESA-based
retrieval with each of the selection methods, and a comparative analysis of
the results.

4.3.1 Methodology

We continue using the experimental framework described in Section 3.3.1,
and evaluate each suggested selection method with various system parameter
settings. The following parameters have been fixed to a predefined value in
all these experiments: s, the concept vector cutoff, has been set to 50; and n,
the BOW retrieval depth for pseudo-relevance, has been set to the first 1000
results. The system parameters we will be experimenting with are k, the
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pseudo-relevant result set size, and 6, the feature selection aggressiveness
level (where applicable).

To further assess the value of feature selection in itself, we also experi-
mented with a fourth, random method, which randomly selects a subset of
features of the required size (as defined by ) from the original representa-
tion, regardless of the provided examples. We used this method to reject
the hypothesis that an observed improvement in performance may solely or
partly be attributed to the use of a smaller subset of the original features
rather than the specific features selected.

4.3.2 1IG Method Results

The IG method has two primary parameters: the number of pseudo-relevant
examples (k) and the selection level (#). Figure 4.7 shows retrieval perfor-
mance (averaged over all queries in each dataset) as a function of 6 for sev-
eral values of k, compared with a baseline that performs no FS at all. Both
datasets show similar behavior, with F'S performance consistently improving
as selection level increases, peaking at 6 = 20% (which implies retaining 10
out of the initial 50 features). More aggressive selection is already damaging,
probably as the result of removing useful features along with non-relevant
ones.

Figure 4.8 shows the same experiment from a different perspective, with
performance as a function of & for several values of . The number of ex-
amples used seems to influence performance less than selection level, except
when too few examples are used (k = 5), resulting in insufficient informa-
tion for IG to be reliable. Nevertheless, adding more and more examples
degrades rather than improves performance. This may be attributed to the
decrease in actual relevance of the pseudo-relevant examples, when taken
from lower rank positions.

4.3.3 IIG Method Results

The IIG method requires only one parameter to be set, the size of the
positive/negative example set (k). In addition, the algorithm may be run
in forward-selection or in backward-elimination mode. Figure 4.9 shows
retrieval results for different values of k in both modes, compared with results
of the initial baseline query.
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Figure 4.7: Concept-based performance as a function of a fraction of the
concepts selected (6), IG method
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Figure 4.8: Concept-based performance as a function of the number of
pseudo-relevant examples (k), IG method
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In both datasets, the IIG method shows consistent improvement over the
performance of the baseline. The results also show the forward-selection ap-
proach consistently outperforming the backward-elimination approach. One
reason we found for this was the inherent filtering of redundant features in
backward elimination. If a certain query has two highly informative but sim-
ilar features, it is quite possible that each alone will be sufficient to perfectly
separate the positive from negative examples. Then, backward elimination
will eliminate one of them, as its removal does not degrade performance,
although in a full corpus retrieval, that additional feature could have con-
tributed to the query’s performance. This may also explain why the differ-
ence between forward selection and backward elimination is greatest when

very few examples are used.
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Figure 4.9: Concept-based performance as a function of the number of
pseudo-relevant examples (k), IIG method

We also experimented with another variation of the IIG method, where
the weights of each examined feature were recalculated in each iteration.
In this version, the next feature to add will be the one to maximize the
local value U(F, U {f}) rather than the global U({f}) used in the algo-
rithm described in Figure 4.5. Despite this version being more in line with
common practice hill climbing implementations, it performed well below the
global one. We suspect this is due to the inaccurate nature of the example
documents, which increase the chance for local maxima.
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4.3.4 RV Method Results

The RV method, like IG, requires setting two parameters, k and 6. Like the
graphs in the previous sections, the graphs in Figures 4.10 and 4.11 show
the impact of these parameters on the system’s performance. But whereas
with the IG method the query reverts to the original query at # = 100%,
this is not the case with the RV method. Even without any selection, the
query changes as a result of adding the features generated from the positive
example documents and of the reweighting step.
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Figure 4.10: Concept-based performance as a function of a fraction of the
concepts selected (6), RV method

Figure 4.10 shows that even without selection, performance is better than
the baseline, and that the improvement generally increases with the selection
level (except for the very high selection levels). Figure 4.11 shows that using
a very small set of examples (k = 5) yields poor results, with performance
improving and stabilizing as more examples are provided. Once performance
stabilizes. adding further examples does not seem to make much difference.
The impact of FS is also clearly demonstrated, with the # = 100% curve
mostly lower than the highly selective curves.

4.3.5 Random Selection Results

We replaced the PRF-based selection process with a random one. A subset
of the required size (determined by the parameter §) was randomly sampled
from the initial query features set for each query, and retrieval results for
these randomized concept-based queries were evaluated. This process was
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Figure 4.11: Concept-based performance as a function of a fraction of the
number of pseudo-relevant examples (k), RV method

then repeated 10 times (for each choice of §). The parameter k was irrelevant
for these experiments, as the examples were not used in any way.

The results in Figure 4.12 show a continuous decrease in performance as
more features are randomly removed from the initial set. This clearly indi-
cates that the improvement shown by previous methods must be attributed
to the specific set of features chosen, rather than just the act of using a
smaller set of features.

4.3.6 Parameter Tuning through Training

All selection methods shown in this section rely on one or two system param-
eters, whose values may have a significant impact on system performance.
These parameters can be tuned if a set of queries is provided with relevance
judgments on result documents. We used a third dataset, TREC-7 [54],
which shares the same corpus as TREC-8 and Robust-04 but has a different
set of queries, to perform parameter tuning.

We operated the system on TREC-7 queries with the three proposed
FS methods and varied the parameter value ranges. The resulting best
performance values obtained were: for IG FS (k = 10,0 = 30%), for IIG
FS (forward-selection, & = 10) and for RV FS (k = 35,0 = 20%). All of
these values fall well within the top performing value ranges (though not
always the peak values) in TREC-8 and Robust-04. This result, coupled
with the similarity of the system’s performance graphs over the TREC-8
and Robust-04 datasets, suggests that relatively consistent system behavior
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can be expected, and ESA-based systems may be tuned on one set of queries
and then used on other test sets.

4.4 Analysis

Having evaluated each of the suggested FS methods, let us examine the
results in greater depth. We have demonstrated that feature selection on
the query concept vector is effective in obtaining better retrieval results,
and that this improvement is not the result of merely using a smaller set of
concepts. Now let us compare the effectiveness of each method, in order to
draw some general conclusions as to what scenario they may be best suited
for.

The IG method exhibits good peak behavior, but it seems to be highly
sensitive to the chosen selection level . Tuning the system parameters using
training data, if available, may significantly alleviate this problem, as shown
by the tuning experiment we conducted.

The IIG forward-selection method appears to perform better than backward-
elimination. This method requires tuning only a single parameter — the
number of examples to be used. It would therefore be the preferred choice
when no training data is available. Its performance, though, is slightly lower
than IG, and it is still quite sensitive to the k parameter value.

The RV method performs slightly worse than IG for small example set
sizes, probably due to its overdependence on the quality of these examples
(as they are a source of generating features, not just filtering harmful ones).
For larger example sets (in our case, k > 15), it performs comparably to the
IG method. In addition, the RV method appears to be more robust than
the other two, in that it yields overall good results for a broader range of
parameter settings, rather than a pinpointed peak, and therefore will depend
less on accurate parameter tuning.

Let us now revisit the Estonian economy example from Section 3.3.3.
The revised query, after being processed by the RV method (as an example),
is:

EcoNoMY OF ESTONIA

MONETARY POLICY

ESTONIA
Euro
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EcoNnoMY OF EUROPE
NEOLIBERALISM

Tt VAHI

PRIME MINISTER OF ESTONIA
EUROZONE

NORDIC COUNTRIES

The noisy sports-related concepts that appeared in the initial features are now
filtered out of the query, as they appear very rarely (if at all) in the concepts
of both sets of positive and negative examples. Other concepts that may seem
relevant at first, such as ESTONIA and BALTIC SEA, are filtered out for being too
broad, appearing frequently in the concepts of both example sets. Concepts that
are highly relevant to Estonia’s economy, such as EcCONOMY OF ESTONIA, TIIT
VAHI and EUROZONE, are retained in the top positions, while other relevant ones
percolate upwards. In addition, the RV method also added NEOLIBERALISM, an
economy-related concept relevant to Estonia’s economy that was not included in
the original query concepts but appeared frequently in the concepts of positive
examples.

To summarize, Figure 4.13 shows the improvement over the baseline for the
three methods for 6 = 20%. On the basis of this figure, we can state that adding
FS to ESA concept-based retrieval can significantly improve retrieval results, with
improvement of up to 40% over the non-selective ESA baseline in both datasets.

Nevertheless, even with this significant improvement, retrieval performance still
stands at just over 85% of our BOW baseline. We believe that an inherent bias
in the evaluation methodology may contribute to this low measured performance,
and we will elaborate on this issue in Section 7, but for now we want to find ways
to further improve the result. In the following section we show how information
already available to the system can be further leveraged to produce our final and
best performing algorithm.
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Figure 4.12: Performance of random selection method, averaged over 10
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Chapter 5

Fused Selective ESA-Based
Retrieval

A large body of research [13, 30, 50, 8] shows that combining (also known as ‘fusion’
of) retrieval methods may improve final results. Fusion of ranking approaches is
known to achieve best results when the methods to be combined are substantially
different in their approach [30]. With the significant difference between BOW and
ESA representations, we expect that combining them will also yield better results.
This idea is further reinforced by the findings of [16] in applying ESA to text
categorization, which showed that augmenting the BOW representation with ESA
concepts outperforms each individual representation alone.

5.1 Fused Selective ESA-Based Retrieval Algorithm

A survey of combining approaches can be found in [8]. In our study we use the
simple, widely used model of Linear Combination [50], where document scores are
weighted sums of the scores assigned by the individual retrieval methods to be fused,
with weighting determined using training data. Before summing, document scores
are normalized to account for the different ranges in score values, as suggested by
[30].

Once both retrieval results (concept-based and keyword-based) are normalized,
document scores are then weighted and summed using the weight factor w, provided
as an additional parameter. The pseudocode for this algorithm is described in
Figure 5.1. The value for this parameter can be obtained using parameter tuning
on a dataset with relevance judgments.
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# Retrieve ESA concept-based results fused with BOW keyword-based results for query q,
# cutoff concept vector at s and select using k pseudo-relevant examples, all retrieval
# is to depth n. Scores are a weighted sum using the parameter w as the weight.
Procedure FUSED-SELECTIVE-ESA-RETRIEVAL(G, s, k, n, w)

B — BOW-RETRIEVAL(q, n)

€ «— SELECTIVE-ESA-RETRIEVAL({, s, k,n)

D—BUE

#calculate normalized score in both retrieval modes (zero if not retrieved)

Foreach d € D

score(d,B) — minycp(score(b,B))
normScoreBOW(d) - maxpep(score(b,B)) — fninbeg(score(b,B))

score(d,£) — mingeg(score(e,€))
normScoreESA(d) - maxecg (score(e,€)) — renineeg(score(e,é’))

score(d) <« w - normScoreESA(d) + (1 — w) - normScore BOW (d)
(di...djp|) — sort D by score(d) in descending order
Return (d; ...d,)

Figure 5.1: Fused selective ESA-based retrieval — the MORAG algorithm

5.2 The Morag System

Let us now recap the entire resulting system, which we named MoORAG!, as il-
lustrated in Figure 5.2. First, an ESA model is built from Wikipedia or another
source, as described in [17]. During the indexing stage, MORAG indexes the cor-
pus in both BOW and ESA representations. Then, at retrieval time, the BOW
query is submitted; its results are kept for the fusion phase and also fed into the
FS module, together with the ESA query representation. After FS is complete, the
resulting features are used to perform a concept-based retrieval, and the results of
the concept-based and keyword-based retrieval runs are fused to produce the final
MORAG results.

Note that in our implementation of MORAG we have used the same BOW
subsystem for both purposes: generating pseudo-relevant examples, and fusion to
concept-based results. However, other implementations using different BOW re-
trieval systems for each of these purposes are also possible.

'Morag is the Hebrew word for flail, an agricultural tool used to separate grain from
chaff.
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Figure 5.2: The MORAG solution architecture

5.3 Empirical Evaluation

We ran a set of experiments to evaluate the performance of the MORAG system,
and to analyze its robustness and further potential.

In addition, we evaluated MORAG in combination with and in comparison to
top performing systems in TREC-8. As [3] recently pointed out, it is not sufficient
for IR researchers to show improvement over their own baseline, rather they should
strive to show that their method can improve over systems that are already highly
effective. We will show that our method is indeed capable of doing that.

5.3.1 Methodology

The experimental methodology generally follows that of the previous section. Specif-
ically, in this algorithm, we also need to tune the value for the parameter w. We
used the TREC-7 dataset for this purpose too, selecting the parameter value that
maximized the performance of MORAG on TREC-7, which was found to be w = 0.5
for the combination of ESA and Xapian BOW.
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MoORrAG — IG  MORAG — IIG  MORAG — RV
tuned tuned tuned

Dataset  Baseline

Morac
optimal

TREC-8  0.2481 | 0.2864(+15.4%) 0.2734(+10.2%) 0.2888(+16.4%)
Robust-04  0.2622 | 0.2914(+11.1%) 0.2923(+11.5%) 0.2879(+9.8%)

Table 5.1: Performance of MORAG using tuned parameter values and
optimal parameter values. Improvement percentage over baseline is shown
in parentheses next to each result.
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Figure 5.3: MORAG performance as a function of a fraction of the number
of pseudo-relevant examples (k), all methods

5.3.2 Morag Results

Table 5.1 shows results for both TREC-8 and Robust-04 datasets for all three FS
methods, with parameters tuned on the TREC-7 dataset. The last column shows
the system’s performance with optimal choice of parameters, as an indicator of
what further improvement can be achieved by better parameter tuning.

The results show an impressive improvement over the BOW baseline, for all
FS methods. Parameter tuning yields reasonable results: 55%-85% of the optimal
performance. We checked the statistical significance of the results using a paired
two-tailed t-test, and all the results were significant at p > 0.95.

Figure 5.3 compares performance for the different selection methods in MORAG,
for various values of the parameter k, assuming that the parameter 6 is easier to
optimize due to its peak behavior (or its irrelevance for IIG). The results show the
RV method achieves best results, for sufficiently large values of k.

Figure 5.4 shows results for one specific choice of selection method and level,
comparing the performance of the fused system with that of its components. The
graph demonstrates how fusion with ESA-based results improves the system’s per-
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Figure 5.4: Comparison of fused results with results of each fused
subsystem on its own (for a single choice of FS method and selection level)

formance by an increment that is correlated with the ESA system’s performance,
as expected. Note that despite the relatively low performance of the ESA run, fu-
sion still yields good improvement. Similar behavior is also observed for the other
methods and selection level values.

5.3.3 Fusion with Alternative BOW Subsystems

The previous experiments were carried out using our choice of an experimental
BOW system (Xapian). However, since MORAG is modular, it can be used with any
other BOW component, and we were interested in assessing the system’s robustness
over different (and better performing) BOW systems.

We used two additional effective and common retrieval approaches implemented
in the Lemur toolkit?: a TF.IDF-weighted vector space model with pseudo relevance
feedback (we denote this run FB-TFIDF), and a language model based on KL-
divergence using Dirichlet prior smoothing (denoted LM-KL-DIR). We used the
“out of the box” Lemur implementations with default parameter values, and set
the MORAG-specific parameters for these systems by parameter tuning on TREC-7.

In addition, we wanted to use systems that achieved the highest results in the
original TREC runs. Normally, such experimentation is not feasible, since these
systems (or their exact detailed implementation) are usually not available, and
evaluations of this kind are not common in IR. However, since MORAG performs
fusion on the result-set level (rather than change the core ranking functions), such
comparisons are possible in our case using only the target systems’ output. TREC
provides access to past participants’ raw results, and we used this data as additional
BOW systems.

*http://www.lemurproject.org/
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When determining which TREC systems are best to compare with, we searched
for those that employed standard BOW approaches, were among the top performing
on the evaluated datasets, and that participated in TREC-7 (with no major internal
changes) so that we could also perform parameter tuning using their TREC-7 re-
sults. We could not find candidates in the Robust-04 dataset that were good enough
for this comparison; hence, we will show results only on the TREC-8 dataset.

Note that the BOW system is used twice in MORAG — once as a source for
PRF, and once for fusing the results. However, since relevance feedback in MORAG
is passage-based, and the system outputs we had access to were document-based
results, we still had to use our own BOW baseline for the PRF stage.

We used BOW results from the Okapi [42], PIRCS [29] and AT&T [46] teams,
which were 3 of the top performing systems of TREC-8 participants using short
queries. The Okapi and AT&T teams augmented standard BOW retrieval with
extensive query expansion methods based on PRF, while the PIRCS team used a
system that combined different BOW retrieval models (probabilistic and language
modeling). As stated earlier, our relevance feedback utilized Xapian passage-based
results for all runs, and the ESA FS method used in these experiments was IG. All
three teams stated in their publications that their system was virtually the same as
that used in TREC-7; hence we take the parameter tuning on TREC-7 to be valid
for these systems as well.

Table 5.2 shows the improvement gained by using each of these systems as the
BOW component in MORAG. The third column shows results when fusing with
tuned parameter values as described above, while the fourth column shows results
for optimal parameter values. We evaluated these results for statistical significance
as well, and significant results are marked in boldface.

These results demonstrate that improvement can also be achieved with top
performing BOW systems, although the added value of the fusion was lower in
those cases. This is understandable, given the current relatively low performance
of ESA retrieval alone, and considering that successful fusion is known to require
the fused systems to have comparable performance levels [8].

5.3.4 Comparison to Fusion of BOW Systems

Fusing results from two retrieval systems is known to be a potential source of
improvement in itself [8], regardless of the underlying text representations. To assess
the true contribution of ESA concepts to the results shown thus far, we wanted to
measure what portion of the improvement gained by MORAG can be attributed
solely to the act of fusing results. To do so, we compared the improvement attained
by MORAG with that attained by fusing the baseline BOW results with results
of another BOW system whose measured performance is similar to that of our
concept-based retrieval subsystem.
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BOwW Baseline MORAG MoRrAG

system (tuned) (optimal)

Xapian 0.2481 | 0.2864 (15.4%) 0.2947 (18.8%)
LM-KL-DIR  0.2498 |0.2877 (15.2%) 0.2924 (17.1%)
FB-TFIDF  0.2697 | 0.2820(4.9%)  0.2951 (9.4%)

Okapi 0.2787 | 0.3042 (9.1%) 0.3065 (10.0%)
AT&T 0.2853 | 0.2977(4.3%)  0.3096 (8.5%)
PIRCS 0.3063 | 0.3211(4.8%)  0.3239 (5.7%)

Table 5.2: TREC-8 results for MORAG with several BOW baselines, using
tuned parameter values and optimal parameter values. Improvement
percentage is provided in parentheses. Statistically significant results are
marked in boldface.

We compared optimal results for MORAG with optimal-w results of fusion with
several other TREC-8 participants who applied the BOW approach and used short
queries: RMIT [14], ACSys [24] and INQUERY [1]. These three system runs had
a comparable or slightly higher MAP score than our ESA-based run, and fusing
them with each of the BOW systems in the table provides an indication of the
value of fusion itself. We used optimal rather than tuned w values, since only one
of these participant groups (INQUERY) stated that no changes were made between
TREC-7 and TREC-8, and hence training on TREC-7 was not sound.

Table 5.3 shows the results of these experiments. For comparison, the last col-
umn lists the optimal MORAG improvements again. The obtained results are much
poorer than MORAG’s and most are not statistically significant, despite being pro-
duced by fusion with systems that perform slightly better than our ESA retrieval
method. This indicates that the improvement in the previous section cannot be
attributed solely to fusion, and demonstrates the added value in the concept-based
retrieval component of MORAG. This finding is also in line with [30], who posited
that combining retrieval approaches works best when the representation and weight-
ing schemes differ significantly.

5.3.5 Additional Measures and Analysis

We have shown in the previous sections that fusion with ESA concept-based re-
trieval produces better results than fusing with BOW systems. We now try to
better understand why this is so.

Table 5.4 shows additional IR measures for several of the tested BOW systems,
listing measured values for the baseline run of each system (first line), for the
MORAG run using that system (second line) and for a run that fuses with another
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BOW +RMIT +ACSys +INQUERY MORAG
system (MAP=0.2236) (MAP=0.2309) (MAP=0.2325) (MAP=0.2223)

Xapian | 0.2524 (+1.7%) 0.2569 (+3.5%) 0.2586 (+4.2%) 0.2947 (+18.8%)
Okapi | 0.2921 (+4.8%)  0.2882(+3.4%) 0.2903 (+4.1%) 0.3065 (+10.0%)
AT&T | 0.2943(+3.2%)  0.2933(+2.8%)  0.2897(+1.5%)  0.3096 (+8.5%)
PIRCS | 0.3086(+0.8%)  0.3068(+0.1%)  0.3075(+0.4%)  0.3239 (+5.7%)

Table 5.3: Comparison of MORAG TREC-8 results (optimal parameter
values) with TREC-8 results of BOW-BOW fusion (optimal w values).
Statistically significant results are in boldface.

BOW system (fourth line). In this latter run, for Xapian and Okapi we used the
best performing fusion in Table 5.3, while the two Lemur runs were fused with each
other.

Examining the “P@5”, “P@10” and “relevant retrieved” columns, we observe
that the improvement in MAP demonstrated by MORAG is not to be attributed
primarily to an improvement mainly in recall or mainly in precision - both measures
are substantially improved. To further assess the improvement in recall we have also
measured the overlap in relevant documents retrieved between each pair of fused
systems (“overlap of relevant” column). Little overlap between the systems means
that there is more chance that each system contributes new relevant documents to
the pool, thus higher chances for higher overall recall. However, the Lemur fusion
run (LM-KL-DIR w/FB-TFIDF), where 2922 of the final 3124 relevant documents
are shared between the two fused runs and yet the overall recall is higher than
MORAG’s and nevertheless the final MAP is lower, demonstrates that other factors
need to be examined to get the full picture.

The “non-rel retrieved” column measures the number of documents retrieved
by each system, that were judged by TREC assessors to be not relevant for the
dataset’s queries. The results in this column indicate that MORAG consistently
reduces the number of non-relevant documents retrieved, whereas the BOW fusion
usually increases this number. This can be explained by the different ranking ap-
proach taken by a concept-based method: many non-relevant documents retrieved
by a keyword-based approach may include the query terms in a high frequency
but are not related to the query. Other keyword-based systems, ranking by similar
principles, are likely to rank these documents high as well and reinforce these false
positives, whereas a concept-based approach, ranking by conceptual similarity, is
more likely to rank them low. This hypothesis is further reinforced by the “overlap
of non-rel” column, where we explicitly quantify this overlap.

If we now revisit the Lemur fusion run, we’ll notice that the two fused Lemur
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methods have not only a high overlap in relevant documents, but also a significantly
high overlap in non-relevant documents. Such a high overlap implies that non-
relevant documents are reinforced too, thus hurting the overall precision despite
the substantial improvement in recall. This low result is despite the fact that the
fused systems perform well individually and use quite different ranking approaches.
Finally, we point at a third group of documents worth examining — the un-
judged documents. The “pooling” method used in the TREC methodology [55]
implies that only a small fraction of the corpus is evaluated for relevance by the hu-
man assessors, and any un-judged documents are then assumed to be non-relevant.
This approach was found to work well when comparing the relative performance
of IR systems. However, research has shown that the use of pooling could dis-
criminate against a new method that is based on novel principles [61], and it has
been recommended that researchers consider the number of un-judged documents
being fetched as an indication that performance is probably being underestimated.
Following this recommendation, we found that our concept-based runs retrieved al-
most 40% more un-judged documents than an average BOW system (about 35000
documents compared to about 25000 in the evaluated BOW systems). Hence, there
is reason to suspect that the true performance of MORAG may be even higher than
the reported results, since some of these un-judged documents may well be relevant
documents that could not be detected by any of the previous BOW approaches.

5.3.6 The Impact of Using More Relevant Examples

In this research, we have used the top and bottom ranked documents (in BOW
retrieval) as positive and negative examples in the feature selection process. Nat-
urally, these pseudo-relevant examples are a practical compromise, as they are
assumed to be relevant (or non-relevant) but may not be so in practice. Ideally,
we would prefer to use only documents indicated as relevant or non-relevant by the
user. In considering this compromise, we were interested in learning more about
the possible improvement to be gained by using better examples, and conducted
additional experiments relying on TREC’s human relevance judgments as “oracle”
knowledge.

The retrieval process in these experiments was similar to that described in
Section 4, except for the choosing of positive examples, for which we added a step
of iterating through the top retrieved documents and selecting only those marked
as relevant for this query in the TREC relevance judgments. Thus, the k positive
examples were chosen from a larger subset of top documents, and were guaranteed
to be relevant. Negative examples are chosen as before, since relevant documents
are very unlikely to appear in the bottom-ranked documents, and it is even less
likely that the bottom ranked documents will be judged at all. We then compare
the results with those using standard pseudo-relevant positive examples.
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BOW MAP pras P@10 relevant overlap of non-rel overlap of
system retrieved relevant retrieved  non-rel
Xapian 0.2481  0.484 0.472 2735 20106

w/MORAG 0.2864  0.552 0.478 3062 1824 19400 7115
(+15.4%) (4+14.0%) (+1.3%) (+12.0%) (-3.5%)
w/ing601 0.2586  0.484 0.462 2907 2299 21436 15180
(+4.2%)  (0.0%)  (-21%)  (+6.3%) (+6.6%)
Okapi 0.2787  0.552 0.488 3013 21271
w/MORAG 0.3042  0.580 0.522 3168 2161 20410 8531
(+9.1%)  (+5.1%)  (+7.0%) (4+5.1%) (-4.0%)
w/RMIT 0.2921  0.536 0.474 3095 2370 22878 13790
(+4.8%) (-2.9%) (-9.2%) (-2.3%) (+12.1%)
LM-KL-DIR | 0.2498  0.468 0.442 2857 22048
w/MORAG 0.2877  0.552 0.506 3087 2042 20553 7759
(+15.2%)  (+17.9%) (+14.4%)  (+8.1%) (-6.8%)
w/FB-TFIDF | 0.2717  0.488 0.444 3124 2922 22450 17012
(+8.8%)  (+4.3%)  (+0.5%)  (+9.3%) (+1.8%)

Table 5.4: Additional IR evaluation measures for TREC-8 results using
several BOW baselines. BOW systems are fused with concept-based
retrieval (using MORAG) and with another BOW system for comparison.
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Figure 5.5 shows results for the TREC-8 dataset using the IG FS method,
with and without “oracle” relevance knowledge in choosing positive examples. The
results indicate that using verified relevant documents as positive examples indeed
improves performance by about 10%-15%. In addition, using more examples does
not degrade performance as it did with pseudo-relevant examples (see, for example,
Figure 4.8), reinforcing our earlier assumption that the decrease in performance was
due to the decreasing relevance of lower ranking documents. This result implies that
there is value in more refined methods of choosing pseudo-relevant examples, which
could be the subject of future work.

5.3.7 Estimating Optimal FS Performance

The ESA-based performance was shown in Section 4.3 to depend directly on the
choice of subset: a better selection process yielded better performance. It will be
safe to assume that further research could derive even better FS methods than those
described, and consequently better overall performance. We believe, therefore, that
it would be worthwhile to estimate how much further improvement can be expected
by employing MORAG with better feature selection methods.

In this final experiment, we iterated across all possible subsets of each query’s
initial features, and instead of using the described FS methods, we evaluated the
subsets with relevance (“oracle”) knowledge to find the one that gives optimal
performance. Naturally, this process cannot be applied in a real-life scenario, but
its results indicate the improvement that might be gained through better feature
selection. Due to computation limitations, we only evaluated subsets of size < 3
out of initial 50 generated features, and subsets of size < 4 of initial 20 generated
features.

Table 5.5 shows the results of these experiments. As expected, the performance
of the resulting ESA queries was high, and at MAP of 0.3189 was even higher than
the top keyword-based system we compared to (and far higher than the current
optimal ESA-only result of 0.2223). Furthermore, fusing these results with BOW
systems in MORAG yielded far better results, with improvements in performance of
up to almost 50%.

In addition, comparing the performance of the two experiments (best 4 out of
20 initial features and best 3 out of 50) shows that selecting out of a larger pool of
features worked better despite fewer features being selected. This result indicates
that if superior feature selection capability is available, it would be preferable to
select from a longer prefix of the ESA concept vector. Note that a result for subsets
of size < 4 out of 20 features is an upper bound for subsets of size < 3 out of 20,
and thus this finding is valid even though the subset sizes were not identical. For
some queries the optimal subset indeed was a smaller set, occasionally even a single
feature, which indicates that using a uniform selection level parameter (6) is not
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BOW  Baseline | MORAG (optimal4/20)) MORAG(optimal3/50)
system (MAP=0.2947) (MAP=0.3189)
Xapian  0.2481 0.3322(+33.9%) 0.3692(+48.8%)

Okapi 0.2787 0.3406(+22.2%) 0.3714(+33.3%)
AT&T  0.2853 0.3475(+21.8%) 0.3673(+28.7%)
PIRCS  0.3063 0.3568(-+16.5%) 0.3792(+23.8%)

Table 5.5: TREC-8 results with several BOW baselines, using optimal
(“oracle”) concept subset selection. All results were statistically significant.

an optimal strategy. Future work may investigate methods that utilize a per-query
selection level, possibly using ideas such as query clarity [9].
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Chapter 6

Related Work

Early approaches to concept-based IR attempted to leverage pre-existing conceptual
thesauri such as Wordnet [35] for concept representation. Wordnet’s synsets, like
ESA concepts, represent real-life semantic human concepts and provide an intuitive,
natural representation. Unlike ESA, the mapping method was not automatically
generated by leveraging an existing resource, but rather by manual assignment of
terms to synsets by Wordnet’s editors. For example, in the Estonia-related example
query, Wordnet’s editors provided the synonymous “Esthonia” form for “Estonia,”
and “economic system” or “thriftiness” equivalents for the different meanings of
“economy.” Using such synonyms may assist recall to some limited extent, but it
is clear that the “thriftiness” sense is not the intended one for the query, and using
it would cause the retrieval to drift away, degrading system performance. Previous
research has indeed shown the inconsistent improvement with this approach [52],
which is successful only when applied manually [20] or augmented by other sources
[34].

A major drawback of manually mapping words to concepts is the great ef-
fort invested in achieving good coverage of the domain language. Some researchers
chose to overcome this obstacle by turning to automatic construction of a thesaurus
from the target corpus itself, somewhat similar to the automatic construction of an
ESA model from an ezternal knowledge base (e.g., Wikipedia). [40] described a
method for extracting a similarity thesaurus based on co-occurrence in the target
corpus, thus obtaining more relevant concepts based on implicit domain knowl-
edge, and yielding effective improvement. Another variant method combining the
two approaches was suggested in [60], where a predefined dictionary of concepts
was augmented with similar terms co-occurring in the corpus. Creating such co-
occurrence resources is a computationally expensive process for large corpora, and
one that needs to be constantly repeated for very dynamic corpora (such as the
Web). With ESA-based concept representation the case is different, as the ESA
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feature generator is built once, regardless of the actual corpus used and of corpus
changes.

Another automated approach used document ontologies as a source for concept
representation. One example, KeyConcept [19], is a retrieval system that maps
documents to a limited subset of the concepts represented in the Open Directory
Project! (ODP), using documents categorized to those concepts as training data
for concept classifiers, and conducting search on the augmented text/concept rep-
resentation. The use of ODP as a source for concept representation and automatic
mapping has some parallels with our ESA approach, in particular when considering
that ESA was implemented over ODP data as well [16]. However, the use of a lim-
ited concept ontology in KeyConcept resulted in a classifier that was not powerful
enough to accurately classify the (short) queries. Thus query concepts were not
automatically generated (as in this research) but had to be manually assigned by
KeyConcept users. [6] describe another ontology-based approach, one that makes
use of more formal semantic structures and queries, and combines semantic search
with keyword-based retrieval to compensate for the knowledge base incompleteness.
As with KeyConcept, this paper also assumes that semantic queries are created by
the system user. The system was not evaluated on common IR benchmarks or
against state-of-the-art IR systems.

Representing texts using concepts that are words, or explicit syntactic/semantic
classes (such as Wordnet’s synsets or ODP nodes), has the benefit of producing
concepts that are human-readable, easy to analyze and reason about, and can be
displayed to a user of such a system. ESA concepts, too, are based on human-
defined natural concepts, as the example concept names throughout this paper
show. Yet concepts may also be defined using latent semantics, with possibly
broader concept coverage. By analyzing the latent relationships between terms in
the target corpus, methods such as Latent Semantic Indexing (LSI) [10] can project
the term space to a reduced-dimensions concept space, shared by documents and
queries, and thus be applied successfully to the IR task [11, 25]. Like generating
an ESA model or a co-occurrence thesaurus, generating an LSI model for a large
corpus involves heavy computation. Unlike ESA, though, the generated LSI model
is corpus-dependent, hence requiring the generation process to be repeated when
the corpus changes or when a different corpus is used. In addition, the non-explicit
nature of resulting concepts makes LSI difficult to tune and reason about [11].
More recent dimensionality reduction methods applied to IR have included Topic
Models approaches [59] such as Latent Dirichlet Allocation [56] and the Pachinko
Allocation Model [31].

All previously mentioned methods, including the one described in this paper,
apply concept-based analysis to both the indexing and the retrieval stages of IR.

"http://dmoz.org
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There also exists a large body of research applied to using concepts and ontolo-
gies in the retrieval stage only. Concept-based query expansion methods have been
implemented using corpus-based similarity thesauri [40], domain-specific knowl-
edge sources [33], or an ontology derived from Web sources such as Wikipedia
[36]. But methods based on query expansion, in addition to the aforementioned
representation-related issues, are also vulnerable to expansion-specific problems
such as query drift and sensitivity to parameter tuning [4].

o1



Chapter 7
Conclusion

We have presented a novel approach to concept-based IR using ESA as a rep-
resentation method, introducing a feature selection component that is based on
pseudo-relevance feedback. We have evaluated the proposed algorithms experimen-
tally and demonstrated their improved performance. We have also estimated the
potential for further improving the results of this approach, and outlined several
insights in this regard that can guide future work.

Concept-based IR using ESA makes use of concepts that encompass human
world knowledge, encoded into resources such as Wikipedia (from which an ESA
model is generated), and that allow intuitive reasoning and analysis. Feature se-
lection is applied to the query concepts to optimize the representation and remove
noise and ambiguity. The results obtained by our proposed system (MORAG) are
significantly better than the baselines used, including those of top performing sys-
tems in TREC-8. Analysis of the results shows that improving the performance of
the FS component is possible and will directly lead to even better results. In fu-
ture work we plan to optimize the documents’ representation as well, by leveraging
recent work on compact ESA representations [32].

We believe the results we have shown in Section 5.3, coupled with the potential
improvement demonstrated there, position ESA and the MORAG framework as
promising steps on the road to semantic retrieval solutions. Our work may provide
both a leap in retrieval relevance and a potential shift in the IR paradigm, to one
that is capable of manipulating human concepts rather than keywords only.

92



Bibliography

1]

James Allan, Jamie Callan, Fang-Fang Feng, and Daniella Malin. Inquery and
trec-8. In Proceedings of the Eighth Text RFEtrieval Conference (TREC-8),
pages 637-644, Gaitherburg, MD, 1999. NIST.

Avi Arampatzis and Jaap Kamps. A study of query length. In Proceedings
of the 81st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 811-812, Singapore, 2008. ACM.

Timothy G. Armstrong, Alistair Moffat, William Webber, and Justin Zobel.
Improvements that don’t add up: ad-hoc retrieval results since 1998. In Pro-

ceeding of the 18th ACM conference on Information and knowledge manage-
ment (CIKM '09), pages 601-610, Hong Kong, China, 2009. ACM.

Bodo Billerbeck and Justin Zobel. Questioning query expansion: an exami-
nation of behaviour and parameters. In Proceedings of the 15th Australasian
Database Conference, pages 69-76, Darlinghurst, Australia, 2004. Australian
Computer Society, Inc.

James P. Callan. Passage-level evidence in document retrieval. In Proceedings
of the 17th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 302—-310, Dublin, Ireland, 1994.
ACM/Springer.

Pablo Castells, Miriam Fernandez, and David Vallet. An adaptation of the
vector-space model for ontology-based information retrieval. IEEE Transac-
tions on Knowledge and Data Engineering, 19(2):261-272, 2007.

Ming-Wei Chang, Lev Ratinov, Dan Roth, and Vivek Srikumar. Importance of
semantic representation: dataless classification. In Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, pages 830-835, Chicago, 1L,
2008. AAAI Press.

Bruce W. Croft. Combining Approaches to Information Retrieval, chapter 1,
pages 1-36. Kluwer Academic Publishers, 2000.

53



[9]

18]

Steve Cronen-Townsend, Yun Zhou, and W. Bruce Croft. Predicting query
performance. In Proceedings of the 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 299—
306, Tampere, Finland, 2002. ACM.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.
Furnas, and Richard A. Harshman. Indexing by latent semantic analysis.
Journal of the American Society for Information Science, 41(6):391-407, 1990.

Susan T. Dumais. Latent semantic indexing (Isi) and trec-2. In Proceedings of
the Second Text REtrieval Conference (TREC-2), pages 105-116, Gaitherburg,
MD, 1994. NIST.

Ofer Egozi, Evgeniy Gabrilovich, and Shaul Markovitch. Concept-based fea-
ture generation and selection for information retrieval. In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, pages 1132-1137,
Chicago, IL, 2008. AAAT Press.

Edward A. Fox and Joseph A. Shaw. Combination of multiple searches. In
Proceedings of the Second Text REtrieval Conference (TREC-2), pages 243—
252, Gaitherburg, MD, 1994. NIST.

Michael Fuller, Marcin Kaszkiel, Sam Kimberley, Corinna Ng, Ross Wilkinson,
Mingfang Wu, and Justin Zobel. The rmit/csiro ad hoc, q&a, web, interactive,
and speech experiments at trec 8. In Proceedings of the Eighth Text REtrieval
Conference (TREC-8), pages 549-564, Gaitherburg, MD, 1999. NIST.

G. W. Furnas, T. K. Landauer, L. M. Gomez, and S.T. Dumais. The vocabu-
lary problem in human-system communication. Communications of the ACM,
30(11):964-971, 1987.

Evgeniy Gabrilovich and Shaul Markovitch. Feature generation for text catego-
rization using world knowledge. In Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI-05), pages 1048-1053, Ed-
inburgh, Scotland, 2005. Morgan Kaufmann Publishers Inc.

Evgeniy Gabrilovich and Shaul Markovitch. Overcoming the brittleness bottle-
neck using wikipedia: enhancing text categorization with encyclopedic knowl-
edge. In Proceedings of the Twenty-First National Conference on Artificial
Intelligence (AAAI-06), pages 1301-1306, Boston, MA, 2006. AAAT Press.

Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness
using wikipedia-based explicit semantic analysis. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI-07), pages
1606-1611, Hyderabad, India, 2007. Morgan Kaufmann Publishers Inc.

o4



[19]

[20]

[21]

[22]

[25]

[26]

Susan Gauch, Juan M. Madrid, Subhash Induri, Devanand Ravindran, and
Sriram Chadlavada. Keyconcept: a conceptual search engine. Tech. Report
TR~8646-37, University of Kansas, 2003.

Julio Gonzalo, Felisa Verdejo, Irina Chugur, and Juan Cigarrin. Indexing with
wordnet synsets can improve text retrieval. In COLING/ACL Workshop on
Usage of WordNet for NLP, Montreal, Canada, 1998.

Rakesh Gupta and Lev-Arie Ratinov. Text categorization with knowledge
transfer from heterogeneous data sources. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, pages 842-847, Chicago, IL, 2008.
AAAT Press.

Iryna Gurevych, Christof Muller, and Torsten Zesch. What to be? - electronic
career guidance based on semantic relatedness. In Association for Compu-
tational Linguistics (ACL), pages 1032-1039. The Association for Computer
Linguistics, 2007.

Isabelle Guyon and Andre Elisseeff. An introduction to variable and feature
selection. Journal of Machine Learning Research, 3:1157-1182, 2003.

David Hawking. Acsys trec-8 experiments. In Proceedings of the Eighth
Text REtrieval Conference (TREC-8), pages 307-316, Gaitherburg, MD, 1999.
NIST.

Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’99), pages 50-57, Berkeley,
California, 1999. ACM.

Xiangji Huang, Yan Rui Huang, Miao Wen, Aijun An, Yang Liu, and Josiah
Poon. Applying data mining to pseudo-relevance feedback for high perfor-
mance text retrieval. In Proceedings of the Sizth IEEE International Con-
ference on Data Mining (ICDM’06), pages 295-306, Hong Kong, 2006. IEEE
Computer Society.

George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the
subset selection problem. In Proceedings of the 11th International Conference
on Machine Learning, pages 121-129, New Brunswick, NJ, 1994.

Marcin Kaszkiel and Justin Zobel. Effective ranking with arbitrary passages.
Journal of the American Society for Information Science and Technology,
52(4):344-364, 2001.

95



[29]

[31]

[32]

[33]

[35]

[36]

K. L. Kwok, L. Grunfeld, and M. Chan. Trec-8 ad-hoc, query and filtering
track experiments using pircs. In Proceedings of the Fighth Text RFEtrieval
Conference (TREC-8), pages 217-228, Gaitherburg, MD, 1999. NIST.

Joon Ho Lee. Combining multiple evidence from different properties of weight-
ing schemes. In Proceedings of the 18th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 180—
188, Seattle, WA, 1995. ACM.

Wei Li and Andrew McCallum. Pachinko allocation: Dag-structured mixture
models of topic correlations. In Proceedings of the 23rd International Confer-
ence on Machine Learning (ICML ’06), pages 577-584, Pittsburgh, Pennsyl-
vania, 2006. ACM.

Sonya Liberman and Shaul Markovitch. Compact hierarchical explicit se-
mantic representation. In Proceedings of the IJCAI 2009 Workshop on
User-Contributed Knowledge and Artificial Intelligence: An Evolving Synergy
(WikiAI09), Pasadena, CA, 2009. Morgan Kaufmann Publishers Inc.

Zhenyu Liu and Wesley W. Chu. Knowledge-based query expansion to support
scenario-specific retrieval of medical free text. In Proceedings of the 2005 ACM
Symposium on Applied Computing, pages 1076-1083, Santa Fe, New Mexico,
2005. ACM.

Rila Mandala, Tokunaga Takenobu, and Tanaka Hozumi. The use of word-
net in information retrieval. In Proceedings of the COLING/ACL Workshop
on Usage of WordNet in Natural Language Processing Systems, pages 31-37,
Montreal, Canada, 1998.

George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and
Katherine J. Miller. Introduction to wordnet: an on-line lexical database.
International Journal of Lexicography, 3:235-244, 1990.

David N. Milne, Ian H. Witten, and David M. Nichols. A knowledge-based
search engine powered by wikipedia. In Proceedings of the Sizteenth ACM Con-
ference on Information and Knowledge Management, pages 445-454, Lisbon,
Portugal, 2007. ACM.

Mandar Mitra, Amit Singhal, and Chris Buckley. Improving automatic query
expansion. In Proceedings of the 21st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages 206—214,
Melbourne, Australia, 1998. ACM.

o6



[38]

[39]

[40]

[48]

Rifat Ozcan and Y. Alp Aslandogan. Concept-based information access. In
Proceedings of the International Conference on Information Technology: Cod-
ing and Computing (ITCC’05), pages 794-799, Las Vegas, NV, 2005. IEEE
Computer Society.

Martin Potthast, Benno Stein, and Maik Anderka. A wikipedia-based multi-
lingual retrieval model. In Proceedings of the 30th Furopean Conference on IR
Research (ECIR), pages 522-530, Glasgow, UK, 2008. Springer.

Yonggang Qiu and Hans Peter Frei. Concept based query expansion. In Pro-
ceedings of the 16th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 160-169, Pittsburgh, PA,
1993. ACM Press.

J Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106,
1986.

Stephen E. Robertson and Steve Walker. Okapi/keenbow at trec-8. In Pro-
ceedings of the Eighth Text REtrieval Conference (TREC-8), pages 151-162,
Gaitherburg, MD, 1999. NIST.

Joseph John Rocchio. Relevance feedback in information retrieval. In Gerard
Salton, editor, The SMART Retrieval System: Ezxperiments in Automatic Doc-
ument Processing, pages 313-323. Prentice Hall, Englewood Cliffs, NJ, 1971.

Gerard Salton and Chris Buckley. Improving retrieval performance by rel-
evance feedback. Journal of the American Society for Information Science,
41(4):288-297, 1990.

Hinrich Schuetze and Jan O. Pedersen. Information retrieval based on word
senses. In Proceedings of the 4th Annual Symposium on Document Analysis
and Information Retrieval, pages 161-175, Las Vegas, NV, 1995.

Amit Singhal, Steve Abney, Michiel Bacchiani, Michael Collins, Donald Hindle,
and Fernando Pereira. At&t at trec-8. In Proceedings of the Fighth Text RE-
trieval Conference (TREC-8), pages 317-330, Gaitherburg, MD, 1999. NIST.

Amit Singhal, Mandar Mitra, and Chris Buckley. Learning routing queries in
a query zone. In Proceedings of the 20th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 25—
32, Philadelphia, Pennsylvania, 1997. ACM.

Amit Singhal, Gerard Salton, Mandar Mitra, and Chris Buckley. Document
length normalization. Tech. Report TR95-1529, Cornell University, Ithaca,
NY, 1995.

o7



[49]

[52]

[54]

[55]

[56]

Philipp Sorg and Philipp Cimiano. Cross-lingual information retrieval with
explicit semantic analysis. In Working Notes for the CLEF 2008 Workshop,
2008.

Christopher C. Vogt and Garrison W. Cottrell. Fusion via a linear combination
of scores. Information Retrieval, 1(3):151-173, 1999.

Ellen M. Voorhees. Using wordnet to disambiguate word senses for text re-
trieval. In Proceedings of the 16th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pages 171-180,
Pittsburgh, PA, 1993. ACM.

Ellen M. Voorhees. Query expansion using lexical-semantic relations. In Pro-
ceedings of the 17th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 61-69, Dublin, Ireland, 1994.
Springer-Verlag New York, Inc.

Ellen M. Voorhees. Overview of the TREC 2004 robust retrieval track. In
Proceedings of the 13th Text REtrieval Conference (TREC-13), pages 70-79,
Gaitherburg, MD, 2005. NIST.

Ellen M. Voorhees and Donna Harman. Overview of the seventh text retrieval
conference (trec-7). In Proceedings of the Seventh Text REtrieval Conference
(TREC-7), pages 1-24, Gaitherburg, MD, 1998. NIST.

Ellen M. Voorhees and Donna Harman. Overview of the eighth text retrieval
conference (trec-8). In Proceedings of the Fighth Text RFEtrieval Conference
(TREC-8), pages 1-24, Gaitherburg, MD, 1999. NIST.

Xing Wei and W. Bruce Croft. Lda-based document models for ad-hoc re-
trieval. In Proceedings of the 29th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR '06),
pages 178-185, Seattle, Washington, 2006. ACM.

Jinxi Xu and W. Bruce Croft. Improving the effectiveness of information re-
trieval with local context analysis. ACM Transactions on Information Systems,
18(1):79-112, 2000.

Yiming Yang and Jan O. Pedersen. A comparative study on feature selection
in text categorization. In Proceedings of the Fourteenth International Confer-
ence on. Machine Learning, pages 412—-420, Nashville, Tennessee, 1997. Morgan
Kaufmann.

o8



[59]

Xing Yi and James Allan. A comparative study of utilizing topic models for
information retrieval. In Proceedings of the 31st European Conference on IR
Research (ECIR), pages 29-41, Toulouse, France, 2009. Springer.

Xiaohua Zhou, Xiaodan Zhang, and Xiaohua Hu. Using concept-based index-
ing to improve language modeling approach to genomic ir. In Lecture Notes
in Computer Science, pages 444-455, London, UK, 2006. Springer.

Justin Zobel. How reliable are the results of large-scale information retrieval
experiments? In Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 307—
314, Melbourne, Australia, 1998. ACM Press.

99



60

Technion - Computer Science Department - M.Sc. Thesis M SC-2010-06 - 2010



Technion - Computer Science Department - M.Sc. Thesis M SC-2010-06 - 2010



YR NPN NPLIDVI YYDV IT-DY NDIWNN MM IN T MDY NDIY DIV
NN OY OOVINN-DDID INNNRD THRNT DX 0RNA NN WND (Data Fusion)
1NN PONNT MNDNTN NPND D) NN YIOY IWR 7)) DIPN-DDI1IN IMNN

NOIWNN NN NN PYTAT XTI (MX3N”) 1WIAY NIIWNN NN SY NPNYN NPNI NYNI
OINAN SY IPTI) DYINIAN PR I GR PN NN YT 7T I T NPNN
VPN AMAN TMOIWNY NP NYNPNRN INMIAN 1IN VYN WX TREC NPy inn
NI MNHONN IOR OINADL INP2 VN TIRINN DX WYN WX MO0 5m
NNINY N I¥ IR P TAIW TOIWNN 2T YW DN JY XMYNUn 191N DWW DININA
TENATINN )21 7VN 2PY ION NIWNI DWW DNVIANY NIND TD? LY

2 ¥ PNONn MOV 730 TREC

DR-DDIAN IMNN NIIVN T2 YHNYND NIVAND) TPINTIN NN 1772 XN
NNIN NIAY DM NITO YA XTI R NTIIWA DYNHNYN .DDIN NIIWND NN IYP
0N PIDN TMAWVN PV R DY 930 1NN MDIMN TMIWNNND HNX 992 MY
IV 000 NYN T TNN INNYIVI YR NN MDD 0% NDWNN PoN PR RPTA
NIV NINK DX2N-DDIAN INNK NI DY NPTV DXPN-DDIAN INNK NIWN 79
TPV 0P 7PN HINNY NDYN ITIAD DIYINN-DDIAN INNRD JY R NNYT 1pyINda
DOUIN-DD1IN IMNNN JY STIVIYNN GOMN TIWN DY WIANIY 72T 3702 WY mn

DONYY 'Y NAN TIVY INIXIVION NDYN NN NIDN DD NITOA NPT HNDAD
TIIND MYN2 IR 9D NPOYT 39 DIPH ININ IMIRINN NPNONN NN PO5NM
NPNIAN DIPIVON NYPYWMY ,NIPNIAN TONNI YIDWI NINIY TINDNTN NNIP NDOY

Ny

"y DYTINY 29D, WD Y0VIND MIPI NRYI DIVIN-DDNIN INNNI YIPYN ,DIDO?
-MODIIND MKBPP MIIWNI FPON? MNNRD M1 NN 181D MY {PNNKA 3N NN
M2WN TNINHN PYN ,TPINTIV NVIVI NNVPVLIIIN NYYA MNNY NIWNHN DN
MNDYY NPYPITPR NRIN OGN PNHN .DINNA INPI MAWVT NI TY 1AWNIY MOV 7Y

VRN PN 'Y VI NPNT 1D WN GON SMIYHUN SININIVI



-ND MY DY NOODIINN NDYTH DAYIN-DDIAN IMNX DO OO¥N NN M IPNNA
NY¥ NINT NN ININRT IYNINY VOPL N NV NN ESA (ESA) ¢1oan »v)
TN PUDMDIN TIXPH WYX NPNON ,DAVIN-MODIN NPNIN 'Y OYNR-DD1AN
DN MNWYII VOPL JY NSMN NONN DIWIDN 17T N DI SWNN YT YNNI
YN MNPH 5Y MINNODNN TN INONN YN NNRD N FTPOUMLIN NN D))
DONMNN DHWIN OPN YW NXND DY ONAY DXIWIND TP WD MAan »oya
- WD YT INVNND SV ANTIN ND’IN TN, NDAY DPDNIVIN DOPYNNR DHIVIN
DONTINDY MIYO-TN 19IN YNINND NI POR NN TPNPND DHWIN DY 113,77

DY NIV YDV DY WIDYD

YNIS NIN-2Y MNDNYN) DXINDNN MINPHN NPNINI 2IVWI YIPWYY NN NIPNNI
231 Y0021 NNONY PN IR, MNNNDN MNHINT TN NN NN I ANINI IMNN
-2 YTPRN IND NENN JY TPUMOND 717120 DOV DYINN ,DPYT-INY YW
(Feature NPMON 0PN YW ML YNV ,NINX 1YY 5y 72NN >10 TP
P2V MNNND NDY RNDRYN NYHI NPNONN VO IR IMNAY N DY Selection)

,DPVDPL NIVP NMPWYN MY NN I9YWD T ESA NOOwa vinnwn DT 7NN IWNRD
TINNIT PN, WYINN YT PON 19O PINNNND 2WN PON MPH NPNONN NN A5V
NPN YR IMNN HDYN DN DI DVIN NPV NN OW ESA-1 vidwn
-WUna MDMPY 93 MPNITIND MNDYT N2 MPNDE XD 1991 PRI NTRD DY N0 NN
NN NIIWNT YHYLY INK YN NPR RINDT IWIY 7PN P .DVOPL 2WVID N

IRNND MNSINDY 57NN 92 DV

NOWN  IPNNB NTPNROT IMNNI TMT WR YN IMNN TMIWNH MN»P > PN
N9VNN Y'Y IRNINY 000N IPNJ YNNI TMIVARND YRNWVHNN WD MaAownn
PN INY NNINM NANDINRY NN NOIWNY IWANRD 7221 ,0P0INII-ND N D»OIMNID
NJY D) OIWNN OYINAT MDY PYND JIPIY NN OIPNND UNNYNY TPIINNIN NN
DYIN0KN IMNND MNP DNYRIN DXINDND MONPTIN Y'Y ,WNRNWNRNN DY 1IN
Pseudo- INT7) 1% Y2 TPNWYNIN RIPRYN NN 79¢7 »12 DIDMNA YIdY) ,D»OUINIA

D7MD POON MY MDD MXHPNT NI DDA N Relevance Feedback

DDNN MNAN NIIWHIN NYNN PYUNRIT AOWA - 2I5¢-1TD IMNND DX 1IN T2 DY
-)7A090 MIXONTN VO TPNAT MYNYN M IMNN NN POITIVD NN MMIN
SINN NVNTY YR, DPVINTT DXINDND DOPNINKD DINYNRI NINTY DINONN :NYLINII
-LD MAYNA YN NPNA VY T901) DDV NN NYD .DOVINTI-RID DIIND D
D»VINTIN OINONN PA NTIONA DINT NINON TPNIN 53 WK YN W NPPUYOY

JPMDN RNZIRYA WD NNNRNN ITN DX TIWNY 7221, 07077 DIRY 1IN

TRMND TN I INN 7Y MNPDY DNNINIIN DIINONN PIVOY NNIN Q0N
INANT NN PIXP MNPO YIPY ANRNN PYTN NDYO TPMYNYN 0NN TI9)3
TP PN NON MINDTY PO DINDN D¥IN00NI YD DY Ty PO Navn
Y 29 79010 5010 DO0Y TWN DOV DXINDN NNV DN DONPHN DOYINI NP



PTG XPN

DOONDN NNNN NN T3 NNOD M2 YIPY AT MUY YN INNN MO
ST PRY N TNOY IPRY INIRNIN MNNT 910Y NNAD M»N DYy 001NN IMNN
NONTD NPNY) DINO0NI MNY DONA ININND YNNI X IWND TP
IUND AUNHD DOIYN PN NN "TON” NN YNNYNZ MYy DIDN JHDN AMD
-0 Q0N N NN IVNIVNN RNPRY DNAT NYY INNND NIIWNI vnnvn
JUNo IO NN RYNA DPNRY D¥INDN IRNRD DYN) NPYHIYN-17 NP M0y O
TONT D) MONPINN MNNT NRNNT XA NAPNYY GO0INN IWND ["Ton” 120N
DN NN DXNYY WY MNY D20 IR PA DN N NI PIVRD N1 DY
POWN TN0N SUN2 T2 IPVIND NATP 2Y DOIANNZ MATI DN S VIV NN
N2 "TOR" N2MN DX 0) 9730 RNPRYI S0IMJT 1IPNZ WY AWNNT SN 2pnna
YT O DXANT DYNDRNDT MY YYD N210Y MO DN 1NN WN9NI 1 NN
DNDINAN YT NINT WY THN AW NON OO0 WP WN YN 1Y PYINN DY

DNMN NN OYPN

VIDY TIN YN IPYA DY TTINNNY 92¥2 Y0 ¥ PR IMNND DIVI-MDDIAN MY
WIDY 512> DY SY NOVIN NTIAYA NIY DINNNI VDY DN YR mMNpNa
PPV P 12T IYITIN NTIAYN MM OIN,7NZT9N G AT D20 NINONNI
PINN VLY T DTN MPY NP NPNR R DYNIY TI7 NN YITIN YN 92 NN
D YN . DONON HYW AN DIVNPA NP DD NYNINA MMITHY MTIX Y1 NYN)
NI IPNIMD NIONA NIPX N NATP IWRD 0 D1 PA NP DY WIANND 212 51
N NI YN 2NN PR 23 OX ,TPUMOVIN NNPNA O NN INTIPN IY R DY Y
DOV XOND NND) NINN DY) DIDNPA DINONN INNVN BY POY IMNI ¥ a9
DIWP TN NIVANRD TWN ,(20I0T) 12N 20IND M YINKY TN VDPLI OMIAN
N R NV DN, DIVNPN 220DNI INVHN YN THD 2Y Y DN Pa DY
DX DDA DPVHINN DN NI OX72PNHN DHYIND G0N DWPN NPNY INY G

DPYNIN DOYIN P DINMN



Technion - Computer Science Department - M.Sc. Thesis M SC-2010-06 - 2010



AVNNN SYTNS NVNPA PPN SINY 9119 NININI NYYI IPNHNN



Technion - Computer Science Department - M.Sc. Thesis M SC-2010-06 - 2010



1IN Q°AWI2-001272 Y7772 MNINKX
WAIDN VIR0 NIN°12 WINW

PPN 2Y NN

NN NP7 MLITN 2V PPN NP0 DY
YNNI KYTNL DIYTNY TOONIN

MR 1D

HNIYY MNTNOV NON — PITON LIDY YN
2009 92120 non YU MYUN



Technion - Computer Science Department - M.Sc. Thesis M SC-2010-06 - 2010



1IN Q°AWI2-001272 Y7772 MNINKX
WAIDN VA0 NN WINW

MR DY



