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Abstract

We seek to learn models that we can interact with

using high-level concepts: if the model did not

think there was a bone spur in the x-ray, would

it still predict severe arthritis? State-of-the-art

models today do not typically support the manip-

ulation of concepts like “the existence of bone

spurs”, as they are trained end-to-end to go di-

rectly from raw input (e.g., pixels) to output (e.g.,

arthritis severity). We revisit the classic idea of

first predicting concepts that are provided at train-

ing time, and then using these concepts to predict

the label. By construction, we can intervene on

these concept bottleneck models by editing their

predicted concept values and propagating these

changes to the final prediction. On x-ray grading

and bird identification, concept bottleneck mod-

els achieve competitive accuracy with standard

end-to-end models, while enabling interpretation

in terms of high-level clinical concepts (“bone

spurs”) or bird attributes (“wing color”). These

models also allow for richer human-model inter-

action: accuracy improves significantly if we can

correct model mistakes on concepts at test time.

1. Introduction

Suppose that a radiologist is collaborating with a machine

learning model to grade the severity of knee osteoarthritis.

She might ask why the model made its prediction—did it

deem the space between the knee joints too narrow? Or she

might seek to intervene on the model—if she told it that the

x-ray showed a bone spur, would its prediction change?

State-of-the-art models today do not typically support such

queries: they are end-to-end models that go directly from

raw input x (e.g., pixels) to target y (e.g., arthritis severity),
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Figure 1. We study concept bottleneck models that first predict

an intermediate set of human-specified concepts c, then use c to

predict the final output y. We illustrate the two applications we

consider: knee x-ray grading and bird identification.

and we cannot easily interact with them using the same

high-level concepts that practitioners reason with, like “joint

space narrowing” or “bone spurs”.

We approach this problem by revisiting the simple, clas-

sic idea of first predicting an intermediate set of human-

specified concepts c like “joint space narrowing” and “bone

spurs”, then using c to predict the target y. In this paper, we

refer to such models as concept bottleneck models. These

models are trained on data points (x, c, y), where the input

x is annotated with both concepts c and target y. At test

time, they take in an input x, predict concepts ĉ, and then

use those concepts to predict the target ŷ (Figure 1).

Earlier versions of concept bottleneck models were over-

taken in predictive accuracy by end-to-end neural networks

(e.g., Kumar et al. (2009) for face recognition and Lam-

pert et al. (2009) for animal identification), leading to a

perceived tradeoff between accuracy and interpretability in

terms of concepts. In this paper, we propose a straightfor-

ward method for turning any end-to-end neural network

into a concept bottleneck model, given concept annota-

tions at training time: we simply resize one of the layers
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to match the number of concepts provided, and add an in-

termediate loss that encourages the neurons in that layer to

align component-wise to the provided concepts. We show

that concept bottleneck models trained in this manner can

achieve task accuracies competitive with or even higher than

standard models. We emphasize that concept annotations

are not needed at test time; the model predicts the concepts,

then uses the predicted concepts to make a final prediction.

Importantly—and unlike standard end-to-end models—

these bottleneck models support interventions on concepts:

we can edit the concept predictions ĉ and propagate those

changes to the target prediction ŷ. Interventions enable

richer human-model interaction: e.g., if the radiologist real-

izes that what the model thinks is a bone spur is actually an

artifact, she can update the model’s prediction by directly

changing the corresponding value of ĉ. When we simulate

this injection of human knowledge by partially correcting

concept mistakes that the model makes at test time, we

find that accuracy improves substantially beyond that of a

standard model.

Interventions also make concept bottleneck models inter-

pretable in terms of high-level concepts: by manipulating

concepts ĉ and observing the model’s response, we can ob-

tain counterfactual explanations like “if the model did not

think the joint space was too narrow for this patient, then it

would not have predicted severe arthritis”. In contrast, prior

work on explaining end-to-end models in terms of high-level

concepts has been restricted to post-hoc interpretation of

already-trained end-to-end models: for example, predicting

concepts from hidden layers (Kim et al., 2018) or measuring

the correlation of individual neurons with concepts (Bau

et al., 2017).

The validity of interventions on a model depends on the

alignment between its predicted concepts ĉ and the true

concepts c. We can estimate this alignment by measuring

the model’s concept accuracy on a held-out validation set

(Fong & Vedaldi, 2017).1 A model with perfect concept

accuracy across all possible inputs makes predictions ĉ that

align with the true concepts c. Conversely, if a model has

low concept accuracy, then the model’s predictions ĉ need

not match with the true concepts, and we would not expect

interventions to lead to meaningful results.

Contributions. We systematically study variants of con-

cept bottleneck models and contrast them with standard

end-to-end models in different settings, with a focus on the

previously-unexplored ability of concept bottleneck models

to support concept interventions. Our goal is to characterize

concept bottleneck models more fully: Is there a tradeoff

between task accuracy and concept interpretability? Do

1With the usual caveats of measuring accuracy: in practice, the
validation set might be skewed such that models that learn spurious
correlations can still achieve high concept accuracy.

interventions at test time help model accuracy, and is con-

cept accuracy a good indicator of the ability to effectively

intervene? Do different ways of training bottleneck models

lead to significantly different outcomes in intervention?

We evaluate concept bottleneck models on the two appli-

cations in Figure 1: the osteoarthritis grading task (Nevitt

et al., 2006) and a fine-grained bird species identification

task (Wah et al., 2011). On these tasks, we show that bot-

tleneck models are competitive with standard end-to-end

models while also attaining high concept accuracies. In con-

trast, the concepts cannot be predicted with high accuracy

from linear combinations of neurons in a standard black-box

model, making it difficult to do post-hoc interpretation in

terms of concepts like in Kim et al. (2018). We demonstrate

that we can substantially improve model accuracy by inter-

vening on these bottleneck models at test time to correct

model mistakes on concepts. Finally, we show that bottle-

neck models guided to learn the right concepts can also be

more robust to covariate shifts.

2. Related work

Concept bottleneck models. Models that bottleneck on

human-specified concepts—where the model first predicts

the concepts, then uses only those predicted concepts to

make a final prediction—have been previously used for

specific applications (Kumar et al., 2009; Lampert et al.,

2009). Early versions did not use end-to-end neural net-

works, which soon overtook them in predictive accuracy.

Consequently, bottleneck models have historically been

more popular for few-shot learning settings, where shared

concepts might allow generalization to unseen contexts,

rather than the standard supervised setting we consider here.

More recently, deep neural networks with concept bottle-

necks have re-emerged as targeted tools for solving par-

ticular tasks, e.g., Fauw et al. (2018) for retinal disease

diagnosis, Yi et al. (2018) for visual question-answering,

and Bucher et al. (2018) for content-based image retrieval.

Losch et al. (2019) and Chen et al. (2020) also explore

learning concept-based models via auxiliary datasets.

Concept bottlenecks differ from traditional feature engi-

neering: we learn mappings from raw input to high-level

concepts, whereas feature engineering constructs low-level

features that can be computed by handwritten functions.

Concepts as auxiliary losses or features. Non-bottleneck

models that use human-specified concepts commonly use

them in auxiliary objectives in a multi-task setup, or as aux-

iliary features; examples include using object parts (Huang

et al., 2016; Zhou et al., 2018), parse trees (Zelenko et al.,

2003; Bunescu & Mooney, 2005), or natural language ex-

planations (Murty et al., 2020). However, these models do

not support intervention on concepts. For instance, consider
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a multi-task model c ← x → y, with the concepts c used

in an auxiliary loss; simply intervening on ĉ at test time

will not affect the model’s prediction of y. Interventions do

affect models that use c as auxiliary features by first predict-

ing x → c and then predicting (x, c) → y (e.g., Sutton &

McCallum (2005)), but we cannot intervene in isolation on

a single concept because of the side channel from x→ y.

Causal models. There has been extensive work on learning

models of causal relationships in the world (Pearl, 2000).

While concept bottleneck models can represent causal re-

lationships between x → c → y if the set of concepts c is

chosen appropriately, they are flexible and do not require

c to cause y. This is an advantage in settings where it is

difficult to fully specify the causal c → y graph. For ex-

ample, imagine that arthritis grade (y) is highly correlated

with swelling (c). In this case, c does not cause y (hypothet-

ically, if one could directly induce swelling in the patient, it

would not affect whether they had osteoarthritis). However,

concept bottleneck models can still exploit the fact that c

is highly predictive for y, and intervening on the model by

replacing the predicted concept value ĉ with the true value c

can still improve accuracy, even if c does not cause y.

A central claim of this paper is that we can intervene on

concept bottleneck models. Intervention is a standard notion

in causal inference, and we emphasize that we intervene on

the value of a predicted concept within the model, not on

that concept in reality. In other words, we are interested in

how changing the model’s predicted concept values ĉ would

affect its final prediction ŷ, and not whether intervening on

the true concept value c in reality (e.g., by inducing swelling)

would affect the true label y. See, e.g., Goyal et al. (2019);

O’Shaughnessy et al. (2020) for discussions on causality in

the context of interpreting models with concepts.

Post-hoc concept analysis. Many methods have been de-

veloped to interpret models post-hoc, including recent work

on using human-specified concepts to generate explana-

tions (Bau et al., 2017; Kim et al., 2018; Zhou et al., 2018;

Ghorbani et al., 2019). These techniques rely on models

automatically learning those concepts despite not having

explicit knowledge of them, and can be particularly useful

when paired with models that attempt to learn more inter-

pretable representations (Bengio et al., 2013; Chen et al.,

2016; Higgins et al., 2017; Melis & Jaakkola, 2018). How-

ever, post-hoc methods can fail when the models do not

learn these concepts, and also do not admit straightforward

interventions on concepts. In this work, we instead directly

guide models to learn these concepts at training time.

3. Setup

Consider predicting a target y ∈ R from input x ∈ R
d; for

simplicity, we present regression first and discuss classifica-

tion later. We observe training points {(x(i), y(i), c(i))}ni=1,

where c ∈ R
k is a vector of k concepts. We consider bot-

tleneck models of the form f(g(x)), where g : Rd → R
k

maps an input x into the concept space (“bone spurs”, etc.),

and f : R
k → R maps concepts into a final prediction

(“arthritis severity”). We call these concept bottleneck mod-

els because their prediction ŷ = f(g(x)) relies on the input

x entirely through the bottleneck ĉ = g(x), which we train

to align component-wise to the concepts c. We define task

accuracy as how accurately f(g(x)) predicts y, and concept

accuracy as how accurately g(x) predicts c (averaged over

each concept). We will refer to g(·) as predicting x → c,

and to f(·) as predicting c→ y.

In our work, we systematically study different ways of learn-

ing concept bottleneck models. Let LCj
: R× R→ R+ be

a loss function that measures the discrepancy between the

predicted and true j-th concept, and let LY : R× R→ R+

measure the discrepancy between predicted and true targets.

We consider the following ways to learn a model (f̂ , ĝ):

1. The independent bottleneck learns f̂ and ĝ indepen-

dently: f̂ = argminf
∑

i LY (f(c
(i)); y(i)), and ĝ =

argming
∑

i,j LCj
(gj(x

(i)); c
(i)
j ). While f̂ is trained

using the true c, at test time it still takes ĝ(x) as input.

2. The sequential bottleneck first learns ĝ in the same way

as above. It then uses the concept predictions ĝ(x) to

learn f̂ = argminf
∑

i LY (f(ĝ(x
(i))); y(i)).

3. The joint bottleneck minimizes the weighted sum

f̂ , ĝ = argminf,g
∑

i

[

LY (f(g(x
(i))); y(i)) +

∑

j λLCj
(g(x(i)); c(i))

]

for some λ > 0.

4. The standard model ignores concepts and directly min-

imizes f̂ , ĝ = argminf,g
∑

i LY (f(g(x
(i))); y(i)).

The hyperparameter λ in the joint bottleneck controls the

tradeoff between concept vs. task loss. The standard model

is equivalent to taking λ → 0, while the sequential bottle-

neck can be viewed as taking λ→∞.

We propose a simple scheme to turn an end-to-end neural

network into a concept bottleneck model: simply resize

one of its layers to have k neurons to match the number of

concepts k, then choose one of the training schemes above.

Classification. In classification, f and g compute real-

valued scores (e.g., concept logits ℓ̂ = ĝ(x) ∈ R
k) that we

then turn into a probabilistic prediction (e.g., P (ĉj = 1) =

σ(ℓ̂j) for logistic regression). This does not change the in-

dependent bottleneck, since f (the c→ y model) is directly

trained on the binary-valued c. For the sequential and joint

bottlenecks, we connect c→ y to the logits ℓ̂, i.e., we com-

pute P (ĉj = 1) = σ(ĝj(x)) and P (ŷ = 1) = σ(f̂(ĝ(x))).
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Table 1. Task errors with ±2SD over random seeds. Overall, con-

cept bottleneck models are competitive with standard models.

MODEL y RMSE (OAI) y ERROR (CUB)

INDEPENDENT 0.435± 0.024 0.240±0.012
SEQUENTIAL 0.418± 0.004 0.243±0.006
JOINT 0.418± 0.004 0.199±0.006

STANDARD 0.441± 0.006 0.175±0.008
NO BOTTLENECK 0.443 ± 0.008 0.173±0.003

MULTITASK 0.425± 0.010 0.162±0.002

4. Benchmarking bottleneck model accuracy

We start by showing that concept bottleneck models achieve

both competitive task accuracy and high concept accuracy.

While this is necessary for bottleneck models to be viable in

practice, their strength is that we can interpret and intervene

on them; we explore those aspects in Sections 5 and 6.

4.1. Applications

We consider an x-ray grading and a bird identification task.

Their corresponding datasets are annotated with high-level

concepts that practitioners (radiologists/birders) use to rea-

son about their decisions. (Dataset details in Appendix A.)

X-ray grading (OAI). We use knee x-rays from the Os-

teoarthritis Initiative (OAI) (Nevitt et al., 2006), which com-

piles radiological and clinical data on patients at risk of

knee osteoarthritis (Figure 1-Top; n = 36, 369 data points).

Given an x-ray, the task is to predict the Kellgren-Lawrence

grade (KLG), a 4-level ordinal variable assessed by radiolo-

gists that measures the severity of osteoarthritis, with higher

scores denoting more severe disease.2 As concepts, we use

k = 10 ordinal variables describing joint space narrow-

ing, bone spurs, calcification, etc.; these clinical concepts

are also assessed by radiologists and used directly in the

assessment of KLG (Kellgren & Lawrence, 1957).

Bird identification (CUB). We use the Caltech-UCSD

Birds-200-2011 (CUB) dataset (Wah et al., 2011), which

comprises n = 11, 788 bird photographs (Figure 1-Bot).

The task is to classify the correct bird species out of 200

possible options. As concepts, we use k = 112 binary bird

attributes representing wing color, beak shape, etc. Because

the provided concepts are noisy (see Appendix A), we de-

noise them by majority voting, e.g., if more than 50% of

crows have black wings in the data, then we set all crows

to have black wings. In other words, we use class-level

concepts and assume that all birds of the same species in the

training data share the same concept annotations. In contrast,

the OAI dataset uses instance-level concepts: examples with

the same y can have different concept annotations c.

2Due to technicalities in the data collection protocol, we use a
modified version of KLG where the first two grades are combined.

Table 2. Average concept errors. Bottleneck models have lower

error than linear probes on standard and SENN models.

MODEL c RMSE (OAI) c ERROR (CUB)

INDEPENDENT 0.529±0.004 0.034±0.002
SEQUENTIAL 0.527±0.004 0.034±0.002
JOINT 0.543±0.014 0.031±0.000

STANDARD [PROBE] 0.680±0.038 0.093±0.004
SENN [PROBE] 0.676±0.026 -

Models. For each task, we construct concept bottleneck

models by adopting model architectures and hyperparam-

eters from previous high-performing approaches; see Ap-

pendix B for experimental details. For the joint bottleneck

model, we search over the task-concept tradeoff hyperpa-

rameter λ and report results for the model that has the high-

est task accuracy while maintaining high concept accuracy

on the validation set (λ = 1 for OAI and λ = 0.01 for

CUB). We model x-ray grading as a regression problem

(minimizing mean squared error) on both the KLG target

y and concepts c, following Pierson et al. (2019); we fine-

tune a pretrained ResNet-18 model to predict x → c (He

et al., 2016), and use a small 3-layer MLP for c → y. We

model bird identification as multi-class classification for

the species y and binary classification for the concepts c.

Following Cui et al. (2018), we fine-tune an Inception-v3

network (Szegedy et al., 2016) to predict x→ c, and use a

single linear layer (logistic regression) to predict c→ y.

4.2. Task and concept accuracies

Table 1 shows that concept bottleneck models achieve com-

petitive task accuracy with standard black-box models on

both tasks, despite the bottleneck constraint (all numbers

reported are on a held-out test set). On OAI, joint and se-

quential bottlenecks are actually slightly better in root mean

square error (RMSE) than the standard model,3 and on CUB,

sequential and independent bottlenecks are slightly worse

in 0-1 error; all other models perform similarly. From Ta-

ble 1, joint bottlenecks can do slightly better than sequential

bottlenecks, which in turn can do better than independent

bottlenecks, though this difference is not consistent. Com-

pared to independent bottlenecks, sequential bottlenecks

allow the c → y part of the model to adapt to how well it

can predict x → c; and joint bottlenecks further allow the

model’s version of the concepts to be refined to improve

predictive performance.

At the same time, the bottleneck models are able to accu-

rately predict each concept well (Figure 2), and they achieve

low average error across all concepts (Table 2). As discussed

3To contextualize RMSE, our modified KLG ranges from 0-3,
and average Pearson correlations between each predicted and true
concept are ≥0.87 for all bottleneck models.
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Figure 2. Left: The shaded regions show the optimal frontier between task vs. concept error. We find little trade-off; models can do well

on both task and concept prediction. For standard models, we plot the concept error of the mean predictor (OAI) or random predictor

(CUB). Mid: Histograms of how accurate individual concepts are, averaged over multiple random seeds. In our tasks, each individual

concept can be accurately predicted by bottleneck models. Right: Data efficiency curves. Especially on OAI, bottleneck models can

achieve the same task accuracy as standard models with many fewer training points.

in Section 1, low concept error suggests that the model’s

concepts are aligned with the true concepts, which in turn

suggests that we might intervene effectively on them; we

will explore this in Section 6.

Overall, we do not observe a tradeoff between high task

accuracy and high concept accuracy: pulling the bottleneck

layer towards the concepts c does not substantially affect

the model’s ability to predict y in our tasks, even when the

bottleneck is trained jointly. We illustrate this in Figure 2-

Left, which plots the task vs. concept errors of each model.

Additional baselines. We ran two further baselines to de-

termine if the bottleneck architecture impacted model per-

formance. First, standard models in the literature do not

use concept bottlenecks, so we trained a variant of the stan-

dard model without the bottleneck layer (directly using a

ResNet-18 or Inception-v3 model to predict x → y); this

performed similarly to the standard bottleneck model (“Stan-

dard, no bottleneck” in Table 1). Second, we tested a typical

multi-task setup using an auxiliary loss to encourage the

activations of the last layer to be predictive of the concepts

c, hyperparameter searching across different weightings of

this auxiliary loss. These models also performed compara-

bly (“Multitask” in Table 1), but since they do not support

concept interventions, we focus on comparing standard vs.

concept bottleneck models in the rest of the paper.

Data efficiency. Another way to benchmark different mod-

els is by measuring data efficiency, i.e., how many training

points they need for a desired level of accuracy. To study

this, we subsampled the training and validation data and

retrained each model (details in Appendix B.4). Concept

bottleneck models are particularly effective on OAI: the

sequential bottleneck model with ≈ 25% of the full dataset

performs similarly to the standard model. On CUB, the joint

bottleneck and standard models are more accurate through-

out, with the joint model slightly more accurate in lower

data regimes (Figure 2-Right).

A drawback of concept bottleneck models is that they re-

quire annotated concepts at training time. However, if the

set of concepts are good enough, then fewer training exam-

ples might be required to achieve a desired accuracy level

(as in OAI). This allows model developers to trade off the

cost of acquiring more detailed annotations against the cost

of acquiring new training examples, which can be helpful

when new training examples are expensive to acquire, e.g.,

in medical settings where adding training points might entail

invasive/expensive procedures on patients, but the incremen-

tal cost in asking a doctor to add annotations to data points

that they already need to look at might be low.
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5. Benchmarking post-hoc concept analysis

Concept bottleneck models are trained to have a bottleneck

layer that aligns component-wise with the human-specified

concepts c. For any test input x, we can read out predicted

concepts directly from the bottleneck layer, as well as inter-

vene on concepts by manipulating the predicted concepts

ĉ and inspecting how the final prediction ŷ changes. This

enables explanations like “if the model did not think the

joint space was too narrow for this patient, then it would not

have predicted severe arthritis”. An alternative approach to

interpreting models in terms of concepts is post-hoc analy-

sis: take an existing model trained to directly predict x→ y

without any concepts, and use a probe to recover the known

concepts from the model’s activations. For example, Bau

et al. (2017) measure the correlation of individual neurons

with concepts, while Kim et al. (2018) use a linear probe to

predict concepts with linear combinations of neurons.

Post-hoc analysis does not enable interventions on concepts:

even if we find a linear combination of neurons that predicts

a concept well, it is unclear how to modify the model’s

activations to change what it thinks of that concept alone.

Without this ability to intervene, interpretations in terms of

concepts is suggestive but fraught: even if we can say that

“the model thinks the joint space is narrow”, it is hard to

test if that actually affects its final prediction. This is an

important limitation of post-hoc interpretation. Nonetheless,

setting this point aside for a moment, post-hoc interpreta-

tions require high concept accuracy. We therefore evaluate

how accurately probes can predict concepts post-hoc.

Following Kim et al. (2018), we trained a linear probe to

predict each concept from the layers of the standard model

(see Appendix B). We found that these linear probes have

lower concept accuracy compared to simply reading con-

cepts out from a bottleneck model (Table 2). On OAI, the

best-performing linear probe achieved an average concept

RMSE of 0.68, vs. 0.53 in the bottleneck models; average

Pearson correlation dropped to 0.72 from 0.84. On CUB,

the linear probe achieved an average concept error of 0.09
instead of 0.03; average F1 score dropped to 0.77 from 0.92.

We also tested if we could predict concepts post-hoc from

models designed to learn an interpretable mapping from

x → y. Specifically, we evaluated self-explaining neu-

ral networks (SENN) (Melis & Jaakkola, 2018). As with

standard models, SENN does not use any pre-specified con-

cepts; it learns an input representation encouraged to be

interpretable through diversity and smoothness constraints.

However, linear probes on SENN also had lower concept

accuracy on OAI (0.68 concept RMSE; see Appendix B).4

4We were unable to run SENN on CUB because the default
implementation was too memory-intensive; CUB has many more
classes/concepts than the tasks SENN was originally used for.

The comparative difficulty in predicting concepts post-hoc

suggests that if we have prior knowledge of what concepts

practitioners would use, then it helps to directly train models

with these concepts instead of hoping to recover them from

a model trained without knowledge of these concepts. See

Chen et al. (2020) for a related discussion.

6. Test-time intervention

The ability to intervene on concept bottleneck models en-

ables human users to have richer interactions with them. For

example, if a radiologist disagrees with a model’s prediction,

she would not only be able to inspect the predicted concepts,

but also simulate how the model would respond to changes

in those predicted concepts. This kind of test-time interven-

tion can be particularly useful in high-stakes settings like

medicine, or in other settings where it is easier for users to

identify the concepts c (e.g., wing color) than the target y

(exact species of bird).

We envision that in practice, domain experts interacting

with the model could intervene to “fix” potentially incorrect

concepts. To study this setting, we use an oracle that can

query the true value of any concept for a test input. Figure 3

shows several examples of interventions that lead to the

model making a correct prediction.

6.1. Intervening on OAI

On OAI, we intervene on a concept by simply replacing

the model’s corresponding predicted concept ĉj with its

true value cj (Figure 3-Left). To simplify testing multiple

interventions, we use an input-independent ordering over

concepts computed from the held-out validation set (i.e., we

always intervene on some concept ci1 first, followed by ci2 ,

etc.; see Appendix B).

Test-time intervention on OAI significantly improved task

accuracy: e.g., querying for just 2 concepts reduces task

RMSE from >0.4 to≈0.3 (Figure 4-Left). Neural networks

similar to ours have been previously noted to be compa-

rable with individual radiologist performance on grading

KLG (compared to the consensus grade, which we use as

ground truth; see Tiulpin et al. (2018); Pierson et al. (2019)).

As the concept values used for intervention mostly come

from a single radiologist instead of a consensus reading

(see Appendix A), these results hint that a single radiologist

collaborating with bottleneck models might be able to out-

perform either the radiologist or model alone, though more

careful human studies would be needed to evaluate that.

The independent bottleneck achieved better test error when

all k = 10 concepts are replaced than the sequential or joint

bottlenecks (Figure 4-Left). This is expected; when all con-

cepts are replaced, the x→ c part of the model is irrelevant,

and all that matters is the c → y part. Recall that in the
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Figure 3. Successful examples of test-time intervention, where intervening on a single concept corrects the model prediction. Here, we

show examples from independent bottleneck models. Right: For CUB, we intervene on concept groups instead of individual binary

concepts. The sample birds on the right illustrate how the intervened concept distinguishes between the original and new predictions.

Figure 4. Test-time intervention results. Left: Intervention substantially improves task accuracy, except for the control model, which

is a joint model that heavily prioritizes label accuracy over concept accuracy. Mid: Replacing c → y with a linear model degrades

effectiveness. Right: Intervention improves task accuracy except for the joint model. Connecting c → y to probabilities rescues

intervention but degrades normal accuracy.

independent bottleneck, c → y is trained using the true c,

which is what we replace the predicted concepts ĉ with. In

contrast, in the sequential and joint models, c→ y is trained

using the predicted ĉ, which in general will have a differ-

ent distribution from the true c. This example illustrates a

trade-off between intervenability and task accuracy: the in-

dependent bottleneck performs worse without interventions

(Table 1), but better with interventions.

To better understand what influences intervention effective-

ness, we ran two ablations. First, we found that intervention

can fail in joint models when λ is too small (recall that the

smaller λ is, the more we prioritize fitting y over c in train-

ing). Specifically, the joint model with λ = 0.01 learned

a concept representation that was not as well-aligned with

the true concepts, and replacing ĉ with the true c at test

time slightly increased test error (“control” model in Fig-

ure 4-Left). Second, we changed the c→ y model from the

3-layer MLP used throughout the paper to a single linear

layer. Test-time intervention was less effective here com-

pared to the non-linear counterparts (Figure 4-Mid), even

though task and concept accuracies were similar before inter-

vention (concept RMSEs of the sequential and independent

models are not even affected by the change in c→ y).

Altogether, these results suggest that task and concept accu-

racies alone are insufficient for determining how effective

test-time intervention will be on a model. Different induc-

tive biases in different models control how effectively they

can handle distribution shifts from ĉ→ y (pre-intervention)

to c→ y (post-intervention). Even without this distribution

shift, as in the case of the linear vs. non-linear independent

bottlenecks, the expressivity of c→ y has a large effect on

intervention effectiveness. Moreover, it is possible that the

average concept accuracy masks differences in individual

concept accuracies that influence these results.
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6.2. Intervening on CUB

Intervention on CUB is complicated by the fact that it is clas-

sification instead of regression. Recall from Section 3 that

for sequential and joint bottleneck classifiers, we connect

c→ y to the logits ℓ̂ = ĝ(x). To intervene on a concept ĉj ,

we therefore cannot directly copy over the true cj . Instead,

we need to alter the logits ℓ̂j such that P (ĉj = 1) = σ(ℓ̂j)
is close to the true cj . Concretely, we intervene on ĉj by

setting ℓ̂j to the 5th (if cj = 0) or 95th (if cj = 1) percentile

of ℓ̂j over the training distribution.

Another difference is that for CUB, we group related con-

cepts and intervene on them together. This is because many

of the concepts encode the same underlying property, e.g.,

c1 = 1 if the wing is red, c2 = 1 if the wing is black, etc.

We assume that the human (oracle) returns the true wing

color in a single query, instead of only answering yes/no

questions about the wing color; see Figure 4-Right.

An important caveat is that we use denoised class-level con-

cepts in the CUB dataset (Section 4.1). To avoid unrealistic

scenarios where a bird part is not visible in the image but

we still ‘intervene’ on it, we only replace a concept value

with the true concept value if that concept is actually vis-

ible in the image (visibility information is included in the

dataset). The results here are nonetheless still optimistic, be-

cause they assume that human experts do not make mistakes

in identifying concepts and that birds of the same species

always share the same concept values.

Test-time intervention substantially improved accuracy on

CUB bottleneck models (Figure 4-Right), though it took

intervention on several concept groups to see a large gain.

For simplicity, we queried concept groups in random order,

which means that many queries were probably irrelevant for

any given test example.

Test-time intervention was more effective on independent

bottleneck models than on the sequential and joint mod-

els (Figure 4-Right). We hypothesize that this is partially

due to the ad hoc fashion in which we set logits to the

5th or 95th percentiles for the latter models. To study this,

we trained a joint bottleneck with the same task-concept

tradeoff λ but with c → y connected to the probabilities

P (ĉj = 1) = σ(ℓ̂j) instead of the logits ℓ̂j . This model

had a higher task error of 0.224 vs. 0.199 with the normal

joint model; we suspect that the squashing from the sigmoid

makes optimization harder. However, test-time interven-

tion worked better (“Joint, from sigmoid” vs. “Joint” in

Figure 4-Right), and it is more straightforward as we can

directly edit ĉ. This poses the question of how to effectively

intervene in the classification setting while maintaining the

computational advantages of avoiding the sigmoid in the

c→ y connection.

Figure 5. We change the image backgrounds associated with each

class from train to test time (illustrated above for a single class).

Table 3. Task and concept error with background shifts. Bottleneck

models have substantially lower task error than the standard model.

MODEL y ERROR c ERROR

STANDARD 0.627±0.013 -
JOINT 0.482±0.018 0.069±0.002
SEQUENTIAL 0.496±0.009 0.072±0.002
INDEPENDENT 0.482±0.008 0.072±0.002

7. Robustness to background shifts

Finally, we investigate if concept bottleneck models can be

more robust than standard models to spurious correlations

(e.g., the background) that hold in the training distribution

but not the test distribution. Whether bottleneck models are

more robust depends on the choice of the set of concepts c

and the shifts considered; a priori, we do not expect that an

arbitrary set of concepts c will lead to a more robust model.

We constructed a variant of the CUB dataset where the

target y is spuriously correlated with image background in

the training set. Specifically, we cropped each bird out of

its original background (using segmentation masks from the

original dataset) and onto a new background from the Places

dataset (Zhou et al., 2017), with each bird class (species)

assigned to a unique and randomly-selected category of

places. At test time, we shuffle this mapping, so each class is

associated with a different category of places. For example,

at training time, all robins might be pictured against the sky,

but at test time they might all be on grassy plains (Figure 5).

As images from each class now share common background

features, standard models leverage this spurious correla-

tion and consequently fail on the shifted test set (Table 3).

Concept models do better as they rely less on background

features, since each concept is shared among multiple bird

classes and thus appears in training data points that span mul-

tiple background types, reducing the correlation between
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the concept and the background. This toy experiment shows

that concept bottleneck models can be more robust to spuri-

ous correlations when the target y is more correlated with

training data artifacts compared to the concepts c.

8. Discussion

Concept bottleneck models can compete on task accuracy

while supporting intervention and interpretation, allowing

practitioners to reason about these models in terms of high-

level concepts they are familiar with, and enabling more

effective human-model collaboration through test-time in-

tervention. We believe that these models can be promising

in settings like medicine, where the high stakes incentivize

human experts to collaborate with models at test time, and

where the tasks are often normatively defined with respect to

a set of standard concepts (e.g., “osteoarthritis is marked by

the presence of bone spurs”). A flurry of recent papers have

used similar human concepts for post-hoc interpretation of

medical and other scientific ML models, e.g., Graziani et al.

(2018) for breast cancer histopathology; Clough et al. (2019)

for cardiac MRIs; and Sprague et al. (2019) for meteorol-

ogy (storm prediction). We expect that concept bottleneck

models can be applied directly to similar settings. Below,

we discuss several directions for future work.

Learning concepts. In tasks that are not normatively de-

fined, we can learn the right concepts by interactively query-

ing humans. For example, Cheng & Bernstein (2015) asked

crowdworkers to generate concepts to differentiate between

adaptively-chosen pairs of examples, and used those con-

cepts to train models to recognize the artist of a painting, tell

honest from deceptive reviews, and identify popular jokes.

Similar methods can also be used to refine existing concepts

and make them more discriminative (Duan et al., 2012).

Side channel from x→ y. We can also account for having

an incomplete set of concepts by adding a direct side chan-

nel from x → y to a bottleneck model. This is equivalent

to using the concepts as auxiliary features, and as discussed

in Section 2, has the drawback that we cannot cleanly in-

tervene on a single concept, since the x → y connection

might also be implicitly reasoning about that concept. De-

vising approaches to mitigate this issue would allow concept

models to have high task accuracy even with an incomplete

set of concepts; for example, one might consider carefully

regularizing the x → y connection or using some sort of

adversarial loss to prevent it from using existing concepts.

Theoretically analyzing concept bottlenecks. A better un-

derstanding of when and why concept bottlenecks improve

task accuracy can inform how we collect concepts or design

the architecture of bottleneck models. As an example of

what this could entail, we sketch an analysis of a simple

well-specified linear regression setting, where we assume

that the input x ∈ R
d is normally distributed, and that the

concepts c ∈ R
k and the target y ∈ R are noisy linear

transformations of x and c respectively. We compared an

independent bottleneck model (two linear regression prob-

lems for x → c and c → y) to a standard model (a single

linear regression problem) by deriving the ratio of their ex-

cess mean-squared-errors as the number of training points

n goes to infinity:

Excess error for indp bottleneck model

Excess error for standard model
≤

k
d
σ2
Y + σ2

C

σ2
Y + σ2

C

,

where σ2
C and σ2

Y are the variances of the noise in the con-

cepts c and target y, respectively. See Appendix C for a

formal statement and proof. Note that the asymptotic rela-

tive excess error is small when k
d

is small and σ2
Y ≫ σ2

C ,

suggesting that concept bottleneck models can be particu-

larly effective when the number of concepts is much smaller

than the input dimension and when the concepts have rela-

tively low noise compared to the target.

Intervention effectiveness. Our exploration of the design

space of concept bottleneck models showed that the training

method (independent, sequential, joint) and choice of archi-

tecture have a large influence not just on task and concept

accuracies, but also on how effective interventions are. This

poses several open questions, for example: What factors

drive the effectiveness of test-time interventions? Does con-

cept accuracy suffice for comparing the interpretability of

concept bottleneck models, or is intervention effectiveness

more important? Could adaptive strategies that query for

the concepts that maximize expected information gain on a

particular test example make interventions more effective?

Finally, how might we have models learn from interventions

to avoid making similar mistakes in the future?

Reproducibility

The code for replicating our experiments is available

on GitHub at https://github.com/yewsiang/

ConceptBottleneck. An executable version of the

CUB experiments in this paper is on CodaLab at https:

//worksheets.codalab.org/worksheets/

0x362911581fcd4e048ddfd84f47203fd2. The

post-processed CUB+Places dataset can also be downloaded

at that link. While we are unable to release the OAI dataset

publicly, an application to access the data can be made at

https://nda.nih.gov/oai/.
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