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Abstract. Unlabeled document collections are becoming increasingly common and available; mining such data
sets represents a major contemporary challenge. Using words as features, text documents are often represented
as high-dimensional and sparse vectors—a few thousand dimensions and a sparsity of 95 to 99% is typical. In
this paper, we study a certagpherical k-meanalgorithm for clustering such document vectors. The algorithm
outputsk disjoint clusters each with eoncept vectothat is the centroid of the cluster normalized to have unit
Euclidean norm. As our first contribution, we empirically demonstrate that, owing to the high-dimensionality
and sparsity of the text data, the clusters produced by the algorithm have a certain “fractal-like” and “self-
similar” behavior. As our second contribution, we introdec&icept decompositiorie approximate the matrix

of document vectors; these decompositions are obtained by taking the least-squares approximation onto the linear
subspace spanned by all the concept vectors. We empirically establish that the approximation errors of the concept
decompositions are close to the best possible, namely, to truncated singular value decompositions. As our third
contribution, we show that the concept vectors are localized in the word space, are sparse, and tend towards
orthonormality. In contrast, the singular vectors are global in the word space and are dense. Nonetheless, we
observe the surprising fact that the linear subspaces spanned by the concept vectors and the leading singular
vectors are quite close in the sense of small principal angles between them. In conclusion, the concept vectors
produced by the spheric&t means algorithm constitute a powerful sparse and localized “basis” for text data
sets.
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1. Introduction

Large sets of text documents are now increasingly common. For example, the World-
Wide-Web contains nearly 1 billion pages and is growing rapidiyng.alexa.com), the

IBM Patent server consists of more than 2 million patemts.patents.ibm.com), the
Lexis-Nexis databases contain more than 2 billion documentsv(exisnexis.com). Fur-
thermore, animmense amount of text data exists on private corporate intranets, in archives of
media companies, and in scientific and technical publishing houses. In this context, apply-
ing machine learning and statistical algorithms such as clustering, classification, principal
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component analysis, and discriminant analysis to text data sets is of great practical interest.
In this paper, we focus on clustering of text data sets.

Clustering has been used to discover “latent concepts” in sets of unstructured text doc-
uments, and to summarize and label such collections. Clustering is inherently useful in
organizing and searching large text collections, for example, in automatically building an
ontology like Yahoo! www.yahoo.com). Furthermore, clustering is useful for compactly
summarizing, disambiguating, and navigating the results retrieved by a search engine such
as AltaVista www.altavista.com). Conceptual structure generated by clustering is akin to
the “Table-of-Contents” iriront of books, whereas an inverted index such as AltaVista is
akin to the “Indices” at thdackof books; both provide complementary information for
navigating a large body of information. Finally, clustering is useful for personalized infor-
mation delivery by providing a setup for routing new information such as that arriving from
newsfeeds and new scientific publications. For experiments describing a certain syntactic
clustering of the whole web and its applications, see (Broder et al., 1997). We have used
clustering for visualizing and navigating collections of documents in (Dhillon et al., 1998).
Various classical clustering algorithms such addmeeans algorithm and its variants, hier-
archical agglomerative clustering, and graph-theoretic methods have been explored in the
text mining literature; for detailed reviews, see (Rasmussen, 1992; Willet, 1988). Recently,
there has been a flurry of activity in this area, see (Boley et al., 1998; Cutting et al., 1992;
Hearst & Pedersen, 1996; Sahami et al., 1999ug&&h& Silverstein, 1997; Silverstein &
Pedersen, 1997; Vaithyanathan & Dom, 1999; Zamir & Etzioni, 1998).

A starting point for applying clustering algorithms to unstructured text data is to create
avector space modébr text data (Salton & McGill, 1983) The basic idea is (a) to extract
unique content-bearing words from the set of documents and treat these wéedtigss
and (b) to represent each document as a vector of certain weighted word frequencies in
this feature space. Observe that we may regard the vector space model of a text data set
as aword-by-document matriwhose rows are words and columns are document vectors.
Typically, a large number of words exist in even a moderately sized set of documents—a
few thousand words or more are common. Hence, the document vectors atggrery
dimensional However, typically, most documents contain many fewer words, 1-5% or less,
in comparison to the total number of words in the entire document collection. Hence, the
document vectors are vesparse Understanding and exploiting the structure and statistics
of such vector space models is a major contemporary scientific and technological challenge.

We shall assume that the document vectors have been normalized to halvé nmritn,
that is, they can be thought of as points on a high-dimensional unit sphere. Such nor-
malization mitigates the effect of differing lengths of documents (Singhal et al., 1996).
It is natural to measure “similarity” between such vectors by their inner product, known
ascosine similarity(Salton & McGill, 1983). In this paper, we will use a variant of the
well known “Euclidean’k-means algorithm (Duda & Hart, 1973; Hartigan, 1975) that uses
cosine similarity (Rasmussen, 1992). We shall show that this algorithm partitions the high-
dimensional unit sphere using a collection of great hypercircles, and hence we shall refer to
this algorithm as thepherical k-meanalgorithm. The algorithm computes a disjoint par-
titioning of the document vectors, and, for each partition, computes a centroid normalized
to have unit Euclidean norm. We shall demonstrate that these normalized centroids contain
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valuable semantic information about the clusters, and, hence, we refer to tlvamcapt
vectors The sphericak-means algorithm has a number of advantages from a computa-
tional perspective: it can exploit the sparsity of the text data, it can be efficiently parallelized
(Dhillon & Modha, 2000), and converges quickly (to a local maxima). Furthermore, from

a statistical perspective, the algorithm generates concept vectors that serve as a “model”
which may be used to classify future documents.

In this paper, oufirst focus is to study the structure of the clusters produced by the spher-
ical k-means algorithm when applied to text data sets with the aim of gaining novel insights
into the distribution of sparse text data in high-dimensional spaces. Such structural insights
are a key step towards osecondfocus, which is to explore intimate connections between
clustering using the spheridaimeans algorithm and the problem of matrix approximation
for the word-by-document matrices.

Generally speaking, matrix approximations attempt to retain the “signal” present in the
vector space models, while discarding the “noise.” Hence, they are extremely useful in
improving the performance of information retrieval systems. Furthermore, matrix approx-
imations are often used in practice for feature selection and dimensionality reduction prior
to building a learning model such as a classifier. In a search/retrieval context, Deerwester
et al. (1990) and Berry et al. (1995) have propokadnt semantic indexin@-Sl) that
uses truncated singular value decomposition (SVD) or principal component analysis to dis-
cover “latent” relationships between correlated words and documents. Truncated SVD is a
popular and well studied matrix approximation scheme (Golub & Van Loan, 1996). Based
on the earlier work of O’Leary and Peleg (1983) for image compression, Kolda (1997)
has developed a memory efficient matrix approximation scheme known as semi-discrete
decomposition. Gallant (1994) and Caid and Oing (1997) have used an “implicit” matrix
approximation scheme based on their context vectors. Papadimitriou et al. (1998) have
proposed computationally efficient matrix approximations based on random projections.
Finally, Isbell and Viola (1998) have used independent component analysis for identifying
directions representing sets of highly correlated words, and have used these directions for
an “implicit” matrix approximation scheme. As our title suggests, our main goal is to derive
a new matrix approximation scheme using clustering.

We now briefly summarize our main contributions:

— In Section 3, we empirically examine the average intra- and inter-cluster structure of the
partitions produced by the spheridaimeans algorithm. We find that these clusters have
a certain “fractal-like” and “self-similar” behavior that is not commonly found in low-
dimensional data sets. These observations are important in that any proposed statistical
model for text data should be consistent with these empirical constraints. As an aside,
while claiming no such breakthrough, we would like to point out that the discovery of
fractal nature of ethernet traffic has greatly impacted the design, control, and analysis of
high-speed networks (Leland et al., 1994).

— InSection 4, we propose a new matrix approximation scheomeept decompositier
that solves a least-squares problem after clustering, namely, computes the least-squares
approximation onto the linear subspace spanned by the concept vectors. We empirically
establish the surprising fact that the approximation power (when measured using the
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Frobenius norm) of concept decompositions is comparable to the best possible approx-
imations by truncated SVDs (Golub & Van Loan, 1996). An important advantage of
concept decompositions is that they are computationally more efficient and require much
less memory than truncated SVDs.

— In Section 5, we show that our concept vectors are localized in the word space, are sparse,
and tend towards orthonormality. In contrast, the singular vectors obtained from SVD
are global in the word space and are dense. Nonetheless, we observe the surprising
fact that the subspaces spanned by the concept vectors and the leading singular vectors
are quite close in the sense of small principal anglesrj& Golub, 1973) between
them. Sparsity of the concept vectors is important in that it speaks to the economy or
parsimony of the model constituted by them. Also, sparsity is crucial to computational
and memory efficiency of the spheridaimeans algorithm. In conclusion, the concept
vectors produced by the spheridameans algorithm constitute a powerful sparse and
localized “basis” for text data sets.

Preliminary versions of this work were presented at the 1998 Irregular Conference held
in Berkeley, CA (vww.nersc.gov/conferences/irregular98/program.html), and at the 1999
SIAM Annual meeting held in Atlanta, GAnfvw.siam.org/meetings/an99/MS42.htm).
Due to space considerations, we have removed some experimental results from this paper;
complete details appear in our IBM Technical Report (Dhillon & Modha, 1999). Proba-
bilistic latent semantic analysis (PLSA) of Hofmann (1999) views the word-by-document
matrix as a co-occurrence table describing the probability that a word is related to a docu-
ment, and approximates this matrix using the aspect model (Saul & Pereira 1997). While
similar in spirit, concept decompositions are distinct from PLSA. Our framewogkds
metric and is concerned with orthonormbf projections, while PLSA igprobabilistic
and is concerned with statistical Kullback-Leibler projections. We examine the nature of
large, sparse, high-dimensional text data, and find a certain fractal-like behavior (see Sec-
tions 3 and 5). On the other hand, PLSA uses a classical multinomial model to describe
the statistical structure of a cluster. We employ the sphekiecakans algorithm followed
by a least-squares approximation step, while PLSA employs an EM-type algorithm. For
mining extremely large text data sets, speed is of essence, and our spgheneahs-least-
squares is generically faster than a corresponding EM-type algorithm. Finally, we explore
document clustering, show that matrix approximation power of concept decompositions is
close to the truncated SVDs, and compare and contrast concept vectors to singular vectors.
decompositions for enhancing precision in information retrieval.

A word about notation: small-bold letters suchxasn, ¢ will denote column vectors,
capital-bold letters such a§ C, Z, R will denote matrices, and script-bold letters such as
C and& will denote linear subspaces. Alsfx| will denote theL2 norm of a vectorx'y
will denote the usual inner product or dot product of vectors, and, finliyr will denote
the Frobenius norm of a matrix.

2. Vector space models for text

In this section, we briefly review how to represent a set of unstructured text documents as
a vector space model. The basic idea is to represent each document as a vector of certain
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weighted word frequencies. In addition, we introduce two text data sets that will be used
throughout the paper to present our results.

2.1. Parsing and preprocessing

1. Ignoring case, extract all unique words from the entire set of documents.

2. Eliminate non-content-bearing “stopwords” such as “a”, “and”, “the”, etc. For sample
lists of stopwords, see Frakes and Baeza-Yates (1992, Chap. 7).

3. For each document, count the number of occurrences of each word.

4. Using heuristic or information-theoretic criteria, eliminate non-content-bearing “high-
frequency” and “low-frequency” words (Salton & McGill, 1983). Such words and the
stopwords are both known as “function” words. Eliminating function words removes
little or no information, while speeding up the computation. Although, in general, the
criteria used for pruning function words are ad-hoc; for our purpose, any word that does
not help in discriminating a cluster from its neighbors is a function word. We will see
in figures 7 and 9 that when the number of clusters is small, a large fraction of words
can be treated as function words; we have selected the function imdefzendentlyf
the number of clusters.

5. After above elimination, supposkeunique words remain. Assign a unique identifier
between 1 and to each remaining word, and a unique identifier between 1ratad
each document.

The above steps outline a simple preprocessing scheme. Inaddition, one may extract word
phrases such as “New York,” and one may reduce each word to its “root” or “stem”, thus
eliminating plurals, tenses, prefixes, and suffixes (Frakes & Baeza-Yates, 1992, Chap. 8).
We point out, in passing, that an efficient implementation of the above scheme would use
lexical analyzers, fast and scalable hash tables or other appropriate data structures.

2.2. Vector space model

The above preprocessing scheme yields the number of occurrences of imatdcument
i, say, f;i, and the number of documents which contain the wjgrday,d;. Using these
counts, we now create document vectors ifR?, namely,x1, Xo, . . ., X, as follows. For
1 < j <d, setthej-th component of document vectar, 1 < i < n, to be the product of
three terms

Xji =tji x gj X §, 1)

wheret;; is the term weighting componergnd depends only orfji, g; is the global
weighting componerdand depends od;, ands is the normalization componerfor x;.
Intuitively, t;; captures the relative importance of a word in a document, vgiteaptures

the overall importance of a word in the entire set of documents. The objective of such
weighting schemes is to enhance discrimination between various document vectors and to
enhance retrieval effectiveness (Salton & Buckley, 1988).



148 I. S. DHILLON AND D. S. MODHA

There are many schemes for selecting the term, global, and normalization components,
for example, Kolda (1997) presents 5, 5, and 2 schemes, respectively, for the term, global,
and normalization components—a total 0k x 2 = 50 choices. From this extensive
set, we will use two popular schemes denotedxasand tfn, and known, respectively,
asnormalized term frequen@ndnormalized term frequency-inverse document frequency
Both schemes emphasize words with higher frequencies, ang usef;;. Thetxn scheme
usesg; = 1, while thetfn scheme emphasizes words with low overall collection frequency
and useg; = log(n/d;). In both schemes, each document vector is normalized to have
unit L2 norm, that is,

d _1/2
5 = (Z(tji gj)2> : @)
=1

Intuitively, the effect of normalization is to retain only thigectionof the document vectors.
This ensures that documents dealing with the same subject matter (that is, using similar
words), but differing in length lead to similar document vectors. For a comparative study
of various document length normalization schemes, see Singhal et al. (1996).

We now introduce two sets of text documents: “CLASSIC3” and “NSF”.

Example 1.ACLASSIC3). We obtained the CLASSIC3 data set containing 3893 doc-
uments by merging the popular MEDLINE, CISI, and CRANFIELD sets. MEDLINE
consists of 1033 abstracts from medical journals, CISI consists of 1460 abstracts from in-
formation retrieval papers, and CRANFIELD consists of 1400 abstracts from aeronautical
systems paperstg://ftp.cs.cornell.edu/pub/smart).

We preprocessed the CLASSIC3 collection by proceeding as in Section 2.1. After re-
moving common stopwords, the collection contained 24574 unique words from which we
eliminated 20471 low-frequency words appearing in less than 8 documents (rou2ftly O
of the documents), and 4 high-frequency words appearing in more than 585 documents
(roughly 15% of the documents). We were finally left with 4099 words—still a very high-
dimensional feature space. We created 3893 document vectors usirg sasbeme. Each
document vector has dimension 4099, however, on an average, each document vector con-
tained only about 40 nonzero components and is more than 99% sparse.

Example 2.ANSF). We obtained the NSF data set by downloading 13297 abstracts of
the grants awarded by the National Science Foundation between March 1996 and August
1997 fromwww.nsf.gov. These grants included subjects such as astronomy, population
studies, undergraduate education, materials, mathematics, biology and health, oceanogra-
phy, computer science, and chemistry.

We preprocessed the NSF collection by proceeding as in Section 2.1. After removing
common stopwords, the collection contained 66006 unique words from which we elimi-
nated 60680 low-frequency words appearing in less than 26 documents (rol&§hlgfihe
documents), and 28 high-frequency words appearing in more than 1994 documents (roughly
15% of the documents). We were finally left with 5298 words. We created 13297 document
vectors using th&n scheme. Each document vector has dimension 5298, however, on an
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average, each document vector contained only about 61 nonzero components and is roughly
99% sparse.

We stress that in addition to then and thetfn weighting schemes, we have conducted
extensive experiments with a number of different schemes. Furthermore, we have also
experimented with various cut-off thresholds other th&¥®and 15% used above. In all
cases, the essence of our empirical results has remained the same.

3. The sphericalk-means algorithm

In this section, we study how to partition high-dimensional and sparse text data sets such
as CLASSIC3 and NSF into disjoint conceptual categories. Towards this end, we briefly
formalize the spheric&-means clustering algorithm. Moreover, we empirically study the
structure of the clusters produced by the algorithm.

3.1. Cosine similarity

It follows from (1) and (2) that the document vectoss x», . . ., X, are points on the unit
sphere inRY. Furthermore, for most weighting schemes, all components of the document
vectors are nonnegative, hence the document vectors are in fact in the nonnegative “orthant
of RY, namely,RSo. For these vectors, the inner product is a natural measure of similarity.
Given any two unit vectors andy in Rﬂo, let 0 < 6(x,y <)r/2 denote the angle between;
then,

X"y = [IX|[[lyll cosO (X, y)) = cosO(X, y)).

Hence, the inner product’y is often known as the “cosine similarity.” Since cosine
similarity is easy to interpret and simple to compute for sparse vectors, it is widely used
in text mining and information retrieval (Frakes & Baeza-Yates, 1992; Salton & McGill,
1983).

3.2. Concept vectors

Suppose we are givendocument vectorgy, Xo, ..., X, in Rgo. Letny, 7o, ..., mx denote
a partitioning of the document vectors irkalisjoint clusters such that

k
Umi =t xe.....xa} and mjnm =¢ ifj#L
=1

Foreachfixed k j < k, themean vectoor thecentroidof the document vectors contained
in the clustetr; is

1
mJ-:FZx,

) Xem;
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wheren; is the number of document vectorssry. Note that the mean vecton; need
not have a unit norm; we can capture its direction by writing the correspordingept
vectoras

mj
Il

]‘ =

The concept vector; has the following important property. For any unit vectan RY,
we have from the Cauchy-Schwarz inequality that

Y xX'z< > X' 3)

Xem; Xem;

Thus, the concept vector may be thought of as the vector that is closest in cosine similarity
(in an average sense) to all the document vectors in the clugter

3.3. The objective function

Motivated by (3), we measure the “coherence” or “quality” of each clusiefl < j <k,
as

Z XTCJ‘.

Xem;j

Observe that if all document vectors in a cluster are identical, then the average coherence
of that cluster will have the highest possible value of 1. On the other hand, if the document
vectors in a cluster vary widely, then the average coherence will be small, that is, close to
0. Since,Xxcr; X = njm; and||cj|| = 1, we have that

T T T
E X'cj =njm; ¢c; =n;Imjl[¢ ¢ = njllm;|| =
XEnJ

S«

XET[]

4

This rewriting yields the remarkably simple intuition that the quality of each clustés
measured by the? norm of the sum of the document vectors in that cluster.

We measure the quality of any given partitionifig }‘le using the followingobjective
function

k

Q(tmifiL) =Y Y- x"c, (5)

j=l XEJTj

Intuitively, the objective function measures the combined coherence of &l ¢hesters.
Such an objective function has also been proposed and studied theoretically in the context
of market segmentation problems (Kleinberg, Papadimitriou, & Raghavan, 1998).



CONCEPT DECOMPOSITIONS 151

3.4. Spherical k-means

We seek a partitioning of the document vectagsxo, ..., X, into k disjoint clusters
wy, w3, ...,y that maximizes the objective function in (5), that is, we seek a solution
to the following maximization problem:

il = a9 () ”

{”j}j:;l

Finding the optimal solution to the above maximization problem is NP-complete (Kleinberg,
Papadimitriou, & Raghavan, 1998, Theorem 3.1); also, see Garey, Johnson, and
Witsenhausen (1982). We now discuss an approximation algorithm, namebpliee

ical k-meansalgorithm, which is an effective and efficient iterative heuristic.

1. Start with an arbitrary partitioning of the document vectors, nan{aiﬁ?,)}'j‘:l. Let
{cﬁo)}‘f:1 denote the concept vectors associated with the given partitioning. Set the index
of iterationt = 0.

2. For each document vectgr,1 < i < n, find the concept vector closest in cosine
similarity to x;. Now, compute the new partitioningr*}*_, induced by the old
concept vectorgc!"}¥_;:

wt = {x e Xy x> xTe) 1<t <n € j}, 1<j<k (@

In words, "™ is the set of all document vectors that are closest to the concept vector
cﬁt). If it happens that some document vector is simultaneously closest to more than
one concept vector, then it is randomly assigned to one of the clusters. Clusters defined
using (7) are known agoronoior Dirichlet partitions.

3. Compute the new concept vectors corresponding to the partitioning computed in (7):

C(_t+1) — m§t+1)/||m(jt+1)

J

, 1<j<k (8)

wherem}”l) denotes the centroid or the mean of the document vectors in citféfé}.

4. If some “stopping criterion” is met, then sef = 7" and setc] = ¢ for
1 < j <k, and exit. Otherwise, incremenby 1, and go to step 2 above.

An example of a stopping criterion is: Stop if

‘Q ({n;t)}?:l) —0 ({jTj(tJrl)}Ij(:l)‘ <e

for some suitably chosen> 0. In words, stop if the “change” in objective function after an
iteration of the algorithm is less than a certain threshold. We now establish that the spherical
k-means algorithm outlined above never decreases the value of the objective function.
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Lemma 3.1. For everyt > 0, we have that

o({"Y=) = o (I="12)-

k

Proof : Q( (t) ) Z Z x'c (t)

i=1 \Xex®
]

k

Z Z X7 C(t)

=1 Xe (T)ﬁ n(Prl)

Il
™M=

Il
a8

k

X7l

-

1
1N

=1 Xen Ot

k k
-2y X e
=1 \ j=1xc mﬂﬂ(wl)
k
-3 ¥ e
5:1X€n§'+1’
< Z Z xT¢ (t+1) <{7Tj(t+1)}lj(=1)’
1X€7T(!+1)

where the first inequality follows from (7) and the second inequality follows from(3).
Intuitively, the above proof says that the spherikaeans algorithm exploits a

duality between the concept vectors and partitioning: the concept ve{«:#Br}# . In-

duce a partltlonlng {n(t“’} _1 Which in turn implies better concept vectors
Dk
e

Corollary 3.1. The following limit exists:
®
tango Q <{ }J 1) '

Proof: We have from Lemma 3.1 that the sequence of numb@(mjm}‘j(:l)}tzo is in-
creasing. Furthermore, for evety> 0, it follows from (4) and the triangle inequality
that

Q( _(t) ) Zn(t>”m<t>”<zn<t>

Thus, we have an increasing sequence of numbers that is bounded from above by a constant.
Hence, the sequence converges, and the limit exists. O
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Corollary 3.1 says that if the spheridameans algorithm is iterated indefinitely, then the
value of the objective function will eventually converge. However, it is important to realize
that the corollary does not imply that the underlying partitionﬂfaé‘)}‘]f=l converges. We
refer the reader interested in more general convergence results to Pollard (1982) and Sabin
and Gray (1986).

The sphericak-means algorithm (like other gradient ascent schemes) is prone to local
maximas. Nonetheless, the algorithm yielded reasonable results for the experimental results
reported in this paper. Akey to the algorithm is a careful selection of the starting partitioning
{nj(o)}‘j‘zl, for example, (a) one may randomly assign each document to onelo€lsters
or (b) one may first compute the concept vector for the entire document collection and
obtaink starting concept vectors by randomly perturbing this vector, and use the Voronoi
partitioning corresponding to this setloEoncept vectors. Furthermore, one can try several
initial partitionings and select the best (in terms of the largest objective function) amongst
these trials. In this paper, we tried exactly one initial partitioning according to the strategy
(b) above.

3.5. Experimental results

Before we undertake an empirical study of the sphekealeans algorithm, we present the
following example to persuade the reader that the algorithm indeed produces meaningful
clusters.

Example 1.Bconfusion matrix). We clustered the CLASSIC3 data setknto3 clusters.
The following “confusion matrix” shows that the cluster$, z), and=J produced by the
algorithm can be reasonably identified with the MEDLINE, CISI, and CRANFIELD data
sets, respectively.

o om
MEDLINE 1004 18 11
CIsl 5 1440 15
CRANFIELD 4 16 1380

We can conclude from the above table that the algorithm indeed “discovers” the class struc-
ture underlying the CLASSIC3 data set. Also, see figure 7 for the top ten words describing
each of the three clusters, 7}, andr,.

Example 2.B We clustered the NSF data set itite- 10 clusters. See figure 9 for the top
seven words corresponding to four of the ten clusters. Forthe top sevenwords corresponding
to the remaining clusters, see Dhillon and Modha (1999). These words constitute an
anecdotal evidence of the coherence of the clusters produced by the algorithm.

We now empirically validate Lemma 3.1 and Corollary 3.4.

Example 1.Qobjective function never decreases). We clustered the CLASSIC3 data set
into k=8, 64, 128, and 256 clusters. For each clustering, in figure 1 (left panel), we plot
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Figure 1 Value of the objective functio® versus the number df-means iterations for the CLASSIC3 (left
panel) and the NSF (right panel) data sets.

the value of the objective function versus the numbet-ofeans iterations. It can be seen

from the figure that for a fixe#t, as the number of iterations increases, the value of the
objective never decreases, and, in fact, quickly converges. Furthermore, we can see that the
larger the number of clusteksthe larger the value of the objective function.

Example 2.objective function never decreases). We repeat Example 1.C for the NSF
data set in figure 1 (right panel).

In low dimensions, we may picture a cluster of data points as a “nice” and “round” cloud
of points with the mean in the center. We now show that such intuitions do not directly
carry over to high-dimensional sparse text data sets. Specifically, we examine the intra-
and inter-cluster structure produced by the sphekigakans algorithm.

Suppose that we have clustered the document vectoriinmters{nf}le, and let
{c]-‘}‘j;1 and{n]r}'j‘:l, respectively, denote the corresponding concept vectors and the num-
ber of document vectors. We can obtain an insight into the structure of a cluster by the
distribution of the cosine similarities within the cluster. We do this as follows. nFj*or
compute then numbers:

Aj = {xTc}szean}.

Since usually there are many clusters, we can obtain an insight iraeéhage intra-cluster
structureby computing thex numbers:

k
A ©)
j=1

and by plotting an estimated probability density function (pdf) of these numbers. We recall
that a pdf compactly and completely captures the entire statistics underlying a set of data
points. Also, a pdf is a honnegative function with unit area. In this paper, we estimate
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k=512

Figure 2 Averageintra-cluster estimated probability density functions foe 8, 64, and 512 clusters of the
NSF data set.

the pdf of a set of one-dimensional data points using the unweighted mixture of histogram
method of Rissanen, Speed, and Yu (1992).

Example 2.00Average intra-cluster structure). We clustered the NSF data sek iat8,

64, and 512 clusters. In figure 2, we plot the estimated pdfs ofitee13297 numbers

in (9) for these three clusterings. Note that the range ofthaais is [Q 1] since we are
plotting cosine similarities. Fdk = 8, the majority of the mass of the estimated pdf lies

in the interval [Q 0.4]; hence, it follows thathere are virtually no document vectors even
close to the corresponding concept vett@onsequently, the concept vectors can hardly

be pictured as surrounded by data points, in fact, there is a large empty space between
the document vectors and the corresponding concept vectors. Now, observekhiat as
increased from 8 to 64 and then to 512, the mass of the estimated pdfs progressively shifts
to the right towards 1, that is, with increasikghe clusters become more coherent, and
document vectors become progressively closer to the corresponding concept vectors. As
increases, the empty space around the concept vectors progressively shrinks.

In spite of the above behavior, as Examples 1.B and 2.B show, the algorithm does tend
to find meaningful clusters. We reconcile these facts by studyingutbeage inter-cluster
structure that is, by computing the cosine similarity between a document vector and concept
vectors corresponding to all clusters tla@t not containthe document. We compute the

following n(k — 1) numbers:
k

{xTc}r:xgn”, (10)
=1

J

and plot an estimated pdf of these numbers.
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Figure 3  Averageinter-cluster estimated probability density functions koe= 8, 64, and 512 clusters of the
NSF data set.

Example 2.EAverage inter-cluster structure). We use the same three clusterings with

k = 8,64, and 512 as in Example 2.D. In figure 3, we plot the estimated pdfs for 23297
13297x 63, and 1329% 511 numbers in (10) correspondingde- 8, 64, and 512, respec-

tively. Fork = 8, by comparing the inter-cluster estimated pdf in figure 3 to the intra-cluster
estimated pdf in figure 2, we can see that the corresponding peaks are separated from each
other and that the former assigns more mass towards 0 and the latter assigns more mass
towards 1. Thus, although the document vectors within a cluster are not that close to the
corresponding concept vector, the document vectors outside the cluster are even further. In
a sense, it is this relative difference that makes it possible to meaningfully cluster sparse
data. By comparing the intra- and inter-cluster estimated pdfk fer8, 64, and 512 in

figures 2 and 3, we can see thatkascreases, the overlap between corresponding inter-
and intra-cluster estimated pdfs steadily decreases. Furthermdrés ereased from 8

to 64 and then to 512, the mass of the estimated inter-cluster pdfs in figure 3 progressively
shifts to the left towards O.

Examples 2.D and 2.E show that the clusters of high-dimensional sparse data have prop-
erties not commonly observed in low-dimensional data sets. In light of these examples,
it follows that modeling the multidimensional distributions of document vectors within a
cluster is likely to be a daunting problem, for example, a Gaussian distribution around the
mean is hardly a tenable model. We uked 8x 1, 64= 8x 8, and 512= 8 x 64 in Exam-
ples 2.D and 2.E to illustrate that average intra- and inter-cluster structures exhibit the same
behavior at various scalings or resolutions of the number of clusters. The only essential
difference between these structures is the progressive movement of the intra-cluster pdfs
towards 1 and the corresponding movement of the inter-cluster pdfs towards 0. We believe
that these facts point to a certain “fractal-like” or “self-similar” nature of high-dimensional
sparse text data that needs to be further studied.
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3.6. Comparison with the Euclidean k-means algorithms

We now point out the difference between our objective function (5) and the following more
traditional objective function (Duda & Hart, 1973; Hartigan, 1975):

k
DN Ix—myl2, (11)

j=1 XEJTJ‘

wherem; is the mean vector associated with the clusterThe objective function in (11)
measures the sum of the squared Euclidean distances between document vectors and the
closest mean vectors. The above objective function can be minimized using the well known
Euclideank-means algorithm (Duda & Hart, 1973). The Eucliddameans algorithm
is very similar to the sphericd-means algorithm. It can be obtained by replacing the
partitioning (7) by:
rrj(tH) = {x e (X, [x— m?) ||2 <|x- m?)||2, 1<¢t< n}, 1<j<k (12
. o : P —
arzt? by c?mputlng the mean vector;” in step (3) instead of the concept vecu? =
t (t
my/fmil.
j j
We now contrast the cluster boundaries corresponding to the objective functions in (5)
and (11). By (7), the boundary between any two clusters associated with the spherical
k-means algorithm, say;; andrn,, is the locus of all points satisfying:

x"(cj —¢) = 0.

This locus is a hyperplane passing through the origin. The intersection of such a hyperplane
with the unit sphere is a great hypercircle. Thus, the sphdcioatans algorithm partitions

the unit sphere using a collection of great hypercircles. Similarly, by (12), the boundary
between any two clusters associated with the Eucliteareans algorithm, say,; andr,,

is the locus of all points satisfying:

1
—(mJ-ij —m; my).

xT(mj —my) = 5

This locus is a hyperplane whose intersection with the unit sphere will not, in general, be
a great hypercircle. Since we use cosine similarity as a measure of closeness it is more
natural to partition the document vectors using great hypercircles, and hence, we use the
objective functionQ.

Observe that we can write the objective funct@nn (5) equivalently as

Kk

Qimt) =" Y xTg

j=1Xem;

k
- 2n—22 Z Ix — cjII> = 2n — 2F ({7 }_y) . (13)

j=1 X€7Tj
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Hence, it follows that the maximization problem in (6) is equivalent to the following mini-
mization problem:

{nj*}']‘ = a{rg}mln}‘ ({nJ}J 1) - (14)

In the next section, we show that (14) can be naturally thought of as a matrix approximation
problem.

4. Matrix approximations using clustering

Given n document vectorsy, Xa, . .., X, in RY, we define ad x n word-by-document
matrix as
X=[X1 Xo ... X,

that is, as a matrix whose columns are the document vectors. The sphentzns
algorithm is designed to cluster document vectors into disjoint partitions. Itis not explicitly
designed to approximate the word-by-document matrix. Nonetheless, there is a surprising
and natural connection between clustering and matrix approximation that we explore in this
section.

4.1. Clustering as matrix approximation

Given any partltlonlng{yrj}k,1 of the document vectorg; }i_; into k clusters, we can
approximate a document vector by the closest concept vector In other words, if a document
vector is in clusterrj, we can approximate it by the concept vectpr Thus, we can
define ad x n matrix apprOX|mat|oer = Xk({n,} _y) such that, for I<i < n, itsi-th
column is the concept vector closest to the document vector

A natural question is: How effective is the matdi in approximating the matrix?
We measure the error in approximatiKdoy X using the squared Frobenius norm of the
difference matrix:

IX — X2,

where for anyp x g matrix A = [a&;], its Frobenius norm(Golub & Van Loan, 1996) is
defined as

IAllF =
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Observe that we can write the matrix approximation error as

k
IX =Rl =303 Ik — ¢l = F ({mey) - (15)

j=1 Xem;

It follows from (13), (14), and (15) that maximizing the objective functi@rcan also be
thought of as a constrained matrix approximation problem.

The martrlx approxmatlor)(k has rank at mosk. In partlcular the matrix approxi-
mation X, corresponding to the final partitioningr; }k,l has rank at most.
In the next subsection, we compare the apprOX|mat|on powetkdb that of the best
possible rankk approximation to the word-by-document matkx

4.2. Matrix approximation using singular value decompositions

Singular value decomposition (SVD) has been widely studied in information retrieval and
text mining, for example, in latent semantic indexing (Berry, Dumais, & O’Brien, 1995;
Deerwester et al., 1990). Letdenote the rank of the x n word-by-document matrixX.
Following Golub and Van Loan (1996), we define the SVIXds

X=Ux=VT,

whereU is thed x r orthogonal matrix ofeft-singularvectors,V is then x r orthogonal
matrix of right-singular vectors, andz is ther x r diagonal matrix of positivesingular
values(o1, 02, ..., oy) arranged in decreasing order of their magnitude. Note that we can
write

T_—yuxaT, XTX =Vz2VT.

Hence, the columns df andV define the orthonormal eigenvectors associated with the
r nonzero eigenvalues X" andX' X, respectively, while the diagonal elementssf
are nonnegative square roots of the nonzero eigenvalués beand ofX T X. In statistical
terminology, the columns df are known as principal componerts.

For1l< k <r,letUy, andV be obtained by deleting the last-k) columns, respectively,
from U andV, and letXy be obtained by deleting the lagt— k) rows and columns of.
Thed x n matrix

Xk = UeSV] = U(UTU) TUEX = UUT X (16)

is known as thé&-truncated SVIf the matrixX, and has rank equal to As written above,
Xk can be thought of as a least-squares approximation of the méatixto the column
space of the matriiy.

Example 1.D(singular values). In figure 4 (left panel), we plot the largest 256 singular
values of the CLASSIC3 word-by-document matrix.
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Figure 4 The largest 256 and 235 singular values of the CLASSICS3 (left panel) and the NSF (right panel)
word-by-document matrices.

Example 2.Hsingular values). In figure 4 (right panel), we plot the largest 235 singular
values of the NSF word-by-document matrix.

We mention that all experiments which report results on SVDs including the above
examples use Michael Berry’s SVDPACK@wWw.netlib.org/svdpack/index.html). It can
be seen from figure 4 that the singular values decrease continuously without any obvious
sudden drop. Hence, there is no natural cut-off point; in practice, for various information
retrieval experiments, a truncation valuekdietween 100—300 is normally used.

The following well known result (Golub & Van Loan, 1996) establishes thatkthe
truncated SVD is the best ratkapproximation tX in the squared Frobenius norm. Hence,
k-truncated SVDs are the baseline against which all other kamiatrix approximations
should be measured.

Lemma 4.1. Foranyd x n matrixY such that rank¥) < k <, the following holds:

r
Y ol =X =Xl < IX - Y|E.
(=k+1

Lemma 4.1 holds for arbitrary matric&with rank less than or equal to In particular,
it holds for the matrix approximatiob(l corresponding to the final partitionir{@;ro}'J-‘:l
produced by the spherickimeans algorithm, that is,

r
~ T
2 2
> o <X = Xl
(=k+1

We now empirically validate and examine this lower bound.

Example 1.HcomparingXy and)A(E). In figure 5 (left panel), we compare the errors in
approximating the CLASSIC3 word-by-document matrix usingkfteincated SVDs and
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Figure 5. Comparing the approximation errdfX — Xz and||X — XIH% for the CLASSICS3 (left panel) and
the NSF (right panel) data sets for various valuek.of

oot . , .
the matricesX for various values ok. It can be seen that, for each fixkdthe approxi-
mation error for thék-truncated SVD is significantly lower than that dgf.

Example 2.GcomparingXy and)A(,ﬁ). In figure 5 (right panel), we repeat Example 1.E
for the NSF data set.

Remark 4.1. Observe that for the NSF data set, in figure 5 (right panel), we do not
give results for more than 235 singular vectors. In trying to compute more singular vec-
tors, the subroutinkasqg2() from SVDPACKC ran out of memory on our workstation—an
IBM/RS6000 with 256 MBytes of memory. On the other hand, we could easily compute
512 concept vectors for the NSF data set.

It follows from figure 5 IQat the matrix approximatioht is very bad! With hindsight,
this is to be expected, sinég uses a naive strategy of approximating each document vector
by the closest concept vector. Hence, there is a significant room for seeking bett&r rank-
matrix approximations.

4.3. Concept decompositions

We now show that by approximating each document vector by a linear combination of the
concept vectors it is possible to obtain significantly better matrix approximations.

Let {n,—}'j‘:l denote a partitioning of the document vectfxg"_, into k clusters. Let
{c,~}‘j<:l denote the corresponding concept vectors. Definedmeept matrixas ad x k
matrix suchthat, for k< j <k, thej-th column of the matrix is the concept vectprthatis,

Ck=[cc...cl.

Assuming linear independence of theoncept vectors, it follows that the concept matrix
has rankk.
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For any partitioning of the document vectors, we define the correspordimept de-
compositiorX of the word-by-document matri as the least-squares approximatioiXof
onto the column space of the concept ma@jx We can write the concept decomposition
as ad x n matrix

Xk = CkZ*,

whereZ* is ak x n matrix that is to be determined by solving the following least-squares
problem:

Z* = arg min| X — CxZ|2. (17)
zZ

Itis well known that a closed-form solution exists for the least-squares problem (17), namely,
z* = (Clcy) X,

Although the above equation is intuitively pleasing, it does not constitute an efficient and

numerically stable way to compute the ma#ix Computationally, we use the QR decom-

position of the concept matrix (Golub & Van Loan, 1996). The following lemma establishes

that the concept decompositiofy is a better matrix approximation thagx.

Lemma 4.2.

r
@ -, b .
2 2 2
d " of < IIX = XullZ = 11X — Xkl
k]

Proof: Since the matrix approximatioXy has rankk, the inequality(a) follows from
Lemma 4.1. Now, observe that we may write

Xk = CkPx

wherePy = [pji]is ak x nmatrix suchp;; = 1ifthe document vectos is in the clusterr;
andp;; = Ootherwise. Hence, by (17), the inequality follows. O

Lemma 4.2 holds for any partitioning, in particular, it holds for the concept decomposition
~t T -1
% =ct[(chcl] "ch™x

corresponding to the final partitioningrro}'Jf:l p;oduced by the sphericd-means
algorithm. We next show that the approximatiotsturn out to be quite powerful; but,
before that we introduce “random” matrix approximations.

Let Rk denote al x k matrix whose entries are randomly generated using a uniform dis-
tribution on [Q 1]. For our experiments, we used tlaad function of MATLAB. Assuming
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Figure 6. Comparing the approximation errofX — Xy ||, |IX — >~(I|\2 ,and||X — )V<k||2F for the CLASSIC3
(left panel) and the NSF (right panel) data sets for various valuks of

that the columns dRy are linearly independent, we can write the least-squares approxima-
tion of X onto the column space & as

Xk = Re(RIRe) "REX.

Example 1.RcomparingXy, )~<l anka). Infigure 6 (left panel), we compare the errorsin
approxirrje}ting the CLASSIC3 word-by-document matrix usingktirincated SVDs, the
matricesX,, and random matrix approximations for various valuds df can be seen from
the figure that the approximation errors attained by concept decompositnrs X, (1%,
are quite close to those attained by the optinixl,— >_<k||2F. In comparison, the random
matrix approximations are much worse.

Example 2.HcomparingXy, X,, andXy). I figure 6 (right panel), we repeat Example 1
for the NSF data set.

5. Concept vectors and singular vectors: A comparison

In Section 4, we demonstrated that concept vectors may be used to obtain matrix approx-
imations, namely, concept decompositions, that are comparable in quality to the SVD. In
this section, we compare and contrast the two basis sets: (a) concept vectors and (b) singular
vectors (columns df) in (16)).

5.1. Concept vectors are local and sparse

As before, Iel{yr;r}'j‘:1 denote a partitioning of the document vectors ktlisjoint clusters.
For 1 < j < k, we now associate word cluster W with the document clustet; as
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follows. Aword 1< w < d is contained irW;, if the weight of that word irc; is larger
than the weight of that word in any other concept vectiold < ¢ < k, ¢ # j. Precisely,
we define

Wj={w:l<w=d, Cyj>Cp,1=<l=<K €#]|}

The following examples show that the word clusters can be used for “labeling” a cluster of
document vectors.

Example 1.Gword clusters). Here, we use the same clustering of the CLASSIC3 data
set withk = 3 as in Example 1.B. On the right hand side of figure 7 we list the top ten
words from each of the three corresponding word clusters. Itis clear that each word cluster
is essentially localized to only one of the three underlying concepts: MEDLINE, CISI,
and CRANFIELD. In contrast, as seen in figure 8, the top ten words for the three leading
singular vectors are distributed across all the three underlying concepts.

Example 2.(word clusters). For this example, we clustered the NSF data set iatt0
clusters. Infigure 9, we display four of the ten concept vectors, and, in figure 10, we display
the four leading singular vectors. Each of the concept vectors and the singular vectors is
annotated with top seven words. For plots of the remaining concept vectors and the next 6
singular vectors, see Dhillon and Modha (1999).

We now define dotal orderon thed words as follows. For ¥ j < k, we order the
words in theW; in the increasing order of their respective weightjnNext, we impose an
arbitrary order on the word clusters themselves. For example, order the word clusters such
that words inW; precede words iV, if j < £. We now use such total orders to illustrate
the locality of the concept vectors.

Example 1.Hlocality). Using the same clustering of the CLASSIC3 data setknto3

clusters as in Example 1.G, in figure 7, we plot the three concept vectors. For these plots
we used the total order on words described above; the boundaries of the three word clusters
are evident in the figure and so is the ordering of the words within a word cluster. Figure 7
shows that most of the weight of a concept vector is concentrated in or localized to the
corresponding word cluster. Analogously, in figure 8, we plot the leading three singular
vectors of the CLASSIC3 word-by-document matrix by using the same total order on the
words. In contrast to the concept vectors, the singular vectors distribute their weight across
all the three word clusters’hus, the concept vectors are localized, while singular vectors
are global in nature. Intuitively speaking, the concept vectors can be compared to wavelets,
while the singular vectors can be compared to Fourier setigsally, observe that the con-

cept vectors are always nonnegative, whereas the singular vectors can assume both positive
and negative values.

Example 2.Jlocality). We repeat Example 1.H for the NSF data set With 10 clusters
in figures 9 and 10. We leave the task of comparing and contrasting these figures to the
reader as an exercise.
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Figure 7. The three concept vectors corresponding to a clustering of the CLASSIC3 data set into 3 clusters. For
each concept vector, the top ten words with the corresponding weights are shown on the right.



166 I. S. DHILLON AND D. S. MODHA
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Figure 8 The three leading singular vectors for the CLASSIC3 word-by-document matrix. For each singular
vector, the top ten words with the corresponding weights are shown on the right.
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Figure 9 Four concept vectors corresponding to a clustering of the NSF data set into 10 clusters. For each
concept vector, the top seven words with the corresponding weights are shown on the right.
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Figure 10 The leading four singular vectors for the NSF word-by-document matrix. For each singular vector,
the top seven words with the corresponding weights are shown on the right.



CONCEPT DECOMPOSITIONS 169

— 1 -
09 osb
gosr § o8}
: 3
07} orh
-3
3
08 08
Sos g
3 05,
1
Soe fo
k-]
im Foof
0.2 %oz L 1
<
0.1 0.t
() 100 20 %00 500 500 o 100 200 300 300 500
Number of clusters Nurmiber of clusters

Figure 11 The sparsity of the NSF concept mami( (left panel), and the average inner product between concept
vectors for the NSF data set (right panel).

Example 2.Ksparsity). Infigure 11 (left panel), we plot the ratio of the number of nonzero
entries in allk concept vectors to the total number of entries, namely, 52B&or various

values ofk. We see that as k increases the concept vectors become progressively sparser.
For example, fok = 512, the concept vectors are roughly 85% spateecontrast, the
singular vectors are virtually completely dense.

Intuitively, as the number of clusters increases, there are fewer document vectors within
each cluster (in an average sense). Recall that the document vector are almost 99% sparse,
consequently, the concept vectors are sparse.

TFEr anyk > 2, we write the average inner product between the concept vectors
{c]- } j—1@S

2 kK k
kk — 1) Z Z (C})TCZ' (18)

j=1e=j+1

The average inner product takes a value betwegh][@vhere a value of O corresponds to
orthonormal concept vectors and a value of 1 corresponds to identical concept vectors.

Example 2.L(orthonormality). For the NSF data set, in figure 11 (right panel), we plot
the average inner product given in (18) versus the number of clusteAs the number

of clustersk increases, we see that the average inner product between the concept vectors
progressively moves towards Bence, the concept vectors tend towards “orthonormality.”

In contrast, the singular vectors are orthonormal.

So far, we have contrasted concept vectors and singular vectors. Nonetheless, the next
subsection shows the surprising fact that the subspaces spanned by these vectors are in fact
quite close.
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5.2. Principal angles: Comparing concept and singular subspaces

Given k concept vectorsﬁcﬁ}'}=1 corresponding to the final partitioning produced by the
k-means algorithm, define the correspondiogcept subspaces

Cy = spar{c], ¢}, ..., cl}.

Now, for 1 < k < n, define thesingular subspacé&y as thek-dimensional linear subspace
spanned by the leadidgsingular vectors, that is,

Sk = sparfug, Uz, ..., Ug}.

The closeness of the subspacéandsk can be measured by quantities known as principal

angles (Bpick & Golub, 1973; Golub & Van Loan, 1996). Intuitively, principal angles

generalize the notion of an angle between two lines to higher-dimensional subspR€es of
Let F andG be given subspaces 8. Assume that

p=dim(F) >dimG) =q > L

The q principal anglesd, € [0, /2] betweenF andG are recursively defined foi =
1,2,...,qby

cosf, = maxmax f'g,
feF geg

subject to the constraintgf|| = 1, ||gll = 1, foJ- =0, ngj =0,j=12,---,£—1. The
vectors(fy, - - -, fq) and(g,, - - -, g4) are calledorincipal vectorsof the pair of subspaces.
Intuitively, 6, is the angle between two closest unit vectare F andg; € G, 6, is the
angle between two closest unit vectbys= F andg, € G such thaf, andg, are, respec-
tively, orthogonal td; andg,, and so on. Write thaverage cosine of the principal angles
between the subspacésandg as(l/q)Zgz1 cost,. See Bprck and Golub (1973) for an
algorithm to compute the principal angles.

Example 1. principal angles). In the following table, we compare the singular subspace
S3 with various concept subspac@bfor the CLASSIC3 data set.

CO0sHy CO0SsH2 C0SH3
cl 0.996 0.968 0.433
ch 0.996 0.989 0.557
cs 0.997 0.992 0.978

cls 0997 0.994 0.990

Observe that, ak increases, the cosines of all the principal angles tend to 1. In fact,
for k = 16 the singular subspac®; is essentially completely contained in the concept
subspace, and even foe= 3 the two subspaces virtually share a common two-dimensional
subspace spanned by the leading two principal vectors.
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Figure 12 Average cosine (left panel) and cosines (right panel) of the principal angles befgseand various
concept subspaces for the NSF data set.

Example 2.Mprincipal angles). Inthe following table, we compare the singular subspace
S10 with various concept subspac@%for the NSF data set.

C0sf, c0s4> c0sf3 €04 C0sfs c0sg cosf7 c0osfg c0sfgy c0sf19

CIO 0.999 0.990 0.985 0.980 0.967 0.943 0.921 0.806 0.400 0.012
CL3 0.999 0.991 0.985 0.981 0.978 0.963 0.954 0.903 0.844 0.377
C;Z 0.999 0.993 0.990 0.985 0.984 0.976 0.974 0.973 0.952 0.942

Again, ask increases, the cosines of all the principal angles tend to 1.

We are not interested in comparinglividual singular subspaces todividual concept
subspaces, rather we are interested in comparirggtipgencef singular subspacésy }i-1
to thesequencef concept subspaceéi}kzl. Since it is hard to directly compare the se-
quences, in the following example, we compare a fixed singular subspace to various concept
subspaces. For results comparing a fixed concept subspace to various singular subspaces,
see Dhillon and Modha (1999).

Example 2.N(comparing a singular subspace to various concept subspaces). For the
NSF data set, in figure 12, we plot the average cosine of the principal angles (left panel) and
the cosines of all the principal angles (right panel) between the singular sulisgaaed
various concept subspaces. Note thatkfer 512 the average cosine betwegs, andCﬁ

is greater than @5 (left panel), and almost all the cosines are greater ttgafright panel).

In figure 13, we furnish similar plots for the singular subsp&gg; and various concept
subspaces.

In closing, even though individually the concept vectors are very different from the
singular vectors, concept subspaces turn out to be quite close to singular subspaces. This
result is rather surprising, especially in very high-dimensions.
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concept subspaces for the NSF data set.

6. Conclusions

In this paper, we have studied vector space models of large document collections. These
models are very high-dimensional and sparse, and present unique computational and sta-
tistical challenges not commonly encountered in low-dimensional dense data.

Clustering is an invaluable tool to organize a vector space model and the associated doc-
ument collection. We have used the fast sphekealeans clustering algorithm to produce
meaningful clusters with good, descriptive labels (see figures 7 and 9). Geometrically, the
sphericak-means clustering algorithm partitions the high-dimensional space into Voronoi
or Dirichlet regions separated by hyperplanes passing through the origin. Along with each
cluster, we associatec@ncept vectothat provides a compact summary of the cluster.

The sphericak-means algorithm seeks high-coherence clusters. We found average clus-
ter coherence to be quite low, that is, in the high-dimensional space there is a large void
surrounding each concept vector (see Example 2.D). This behavior is uncommon for low-
dimensional, dense data sets; for example, think of the distribution of a Gaussian cloud
around its mean. If the ties between document vectors and the nearest concept vectors
are so weak, then a natural question is: why is clustering of such data even possible? We
reconcile this paradox by observing that document vectors are indeed close to their nearest
concept vector; not in ambsolute sendautrelative totheir distances from the other concept
vectors.

Furthermore, we found the average intra- and inter-cluster structures to be similar at
various resolutions. The only essential difference is the progressive separation of the intra-
from inter-cluster structure. This prompts an obvious analogy with fractals (Mandelbrot,
1998). Thus, any proposed statistical model for text data should be consistent with this
fractal behavior. In fact, it might be meaningful to seek maximum entropy distributions
subject to such empirical constraints. Further evidence of self-similarity is provided by
our concept vector plots (figures 7 and 9) that demonstrate that word counts within and
outside of each cluster have the same general distribution. It is well known that word count
distributions in text collections obey a certain Zipf's law (Zipf, 1949). Our results suggest
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the possibility that Zipf’s law may hold in a recursive fashion, that is, for each cluster within
a collection, and for each sub-cluster within a cluster, and so on.

One of our main findings is that concept decompositions that are derived from concept
vectors can be used for the more basic task of matrix approximation. Surprisingly, the
approximation power of concept decompositions is comparable to that of truncated SVDs
(figure 6). Furthermore, the subspaces spanned by concept vectors are quite close to the
subspaces spanned by the singular vectors (figures 12 and 13). The SVD computation
is known to have large time and memory requirements. Thus, our faster and memory-
efficient concept decompositions can profitably replace SVDs in many applications such as
dimensionality reduction, feature selection, and improved information retrieval.

In spite of the fact that both the concept decompositions and the truncated SVDs possess
similar approximation power, their constituent concept vectors and singular vectors are
quite unlike each other. In particular, the concept vectors are localized in the word space,
while the singular vectors are global in nature (figures 7, 8, 9, and 10). The locality of
concept vectors is extremely useful in labeling (in a human intelligible fashion) the “latent
concepts” discovered by the algorithm, for example, see the words on the right-hand side
panelsinfigures 7and 9. Furthermore, unlike singular vectors, the conceptvectors are sparse
(figure 11), and, hence, constitute a more compact description of the data. In conclusion,
the concept vectors constitute a powerful sparse and localized “basis” for text data sets. We
cannot resist the temptation to compare the concept vectors to wavelets and the singular
vectors to Fourier series.

Note

1. Precisely speaking, to obtain principal components we should subtract the(in@ai ,x; from every
document vector.
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