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Bâtiment 121, 91405 Orsay, France

10Instituto de Fisica de Cantabria (IFCA, CSIC-UC), Avenida los Castros SN, 39005,
Santander, Spain

11International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy

Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, edited by Makenzie Lystrup, 
Howard A. MacEwen, Giovanni G. Fazio, Proc. of SPIE Vol. 10698, 106981Y  

© 2018 SPIE · CCC code: 0277-786X/18/$18 · doi: 10.1117/12.2313432

Proc. of SPIE Vol. 10698  106981Y-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/3/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
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ABSTRACT

LiteBIRD is a candidate for JAXA’s strategic large mission to observe the cosmic microwave background (CMB)
polarization over the full sky at large angular scales. It is planned to be launched in the 2020s with an H3 launch
vehicle for three years of observations at a Sun-Earth Lagrangian point (L2). The concept design has been studied
by researchers from Japan, U.S., Canada and Europe during the ISAS Phase-A1. Large scale measurements of
the CMB B-mode polarization are known as the best probe to detect primordial gravitational waves. The goal
of LiteBIRD is to measure the tensor-to-scalar ratio (r) with precision of δr < 0.001. A 3-year full sky survey
will be carried out with a low frequency (34 - 161 GHz) telescope (LFT) and a high frequency (89 - 448 GHz)
telescope (HFT), which achieve a sensitivity of 2.5 µK-arcmin with an angular resolution of ∼ 30 arcminutes
around 100 GHz. The concept design of LiteBIRD system, payload module (PLM), cryo-structure, LFT and
verification plan is described in this paper.

Keywords: Cosmic microwave background, space program, millimeter-wave polarization, cryogenic telescope

1. INTRODUCTION

LiteBIRD, Lite (Light) satellite for the studies of B-mode polarization and Inflation from cosmic background
Radiation Detection, observes the cosmic microwave background (CMB) polarization over the full sky at large
angular scales.1–5 Cosmological inflation predicts primordial gravitational waves, which imprinted large-scale
curl (B-mode) patterns in the CMB polarization map.6–9 Measurements of the CMB B-mode signals are known
as the best probe to detect the primordial gravitational waves and to measure the inflation energy. The scientific
objective of LiteBIRD is to test major inflationary models.10 The power of the B-modes is proportional to the
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Figure 1. The LiteBIRD spacecraft

tensor-to-scalar ratio, r. The current upper limit on r is r < 0.07.11 The mission goal of LiteBIRD is to measure
r with a precision of δr < 0.001, which provides a crucial test of the cosmic inflation. The required angular
coverage is 2 < l < 200, where l (ell) is the multipole moment.

LiteBIRD is a candidate for JAXA’s strategic large mission. LiteBIRD has been endorsed as one of the
prioritized projects in the master plan 2017 by the Science Council of Japan. A down-selection by ISAS is
planned around late 2018 ∼ early 2019. It is scheduled to be launched around 2027 with an H3 vehicle for three
years of observations at a Lagrangian point (L2) of the Earth-Sun system. The concept design has been studied
by researchers from Japan, U.S., Canada, and Europe since September 2016. This proceedings presents a part
of the concept design. Details of the cryo-system,12 electric system,13 focal plane,14 LFT optics,15 and HWP16

of LiteBIRD are separately reported.

2. SYSTEM DESIGN

Requirements flow down from science goal of δr = 0.001. This requirement is equally divided into three;
statistical uncertainty of less than δr = 5.7 × 10−4, systematic uncertainty of less than δr = 5.7 × 10−4, and a
margin of δr = 5.7× 10−4. The statistical uncertainty includes uncertainties of lensing B-mode and foregrounds
subtraction.

One advantage of a space program for CMB B-mode polarization detection is foreground subtraction, which
is studied with broadband and large angles. Several approaches have been investigated for LiteBIRD.17–21 These
studies found that it can be marginal to achieve δr = 5.7 × 10−4 with the 2016 baseline sensitivity presented
at the last SPIE 2016 at Edinburgh.4 So we have designed an enhanced HFT; both HFT and LFT have equal
bandwidth of 1:5.

There are many sources of systematic errors. Each item of the errors contributes to be less than 1 % of
δr = 5.7 × 10−4. The HWP can reduce differential systematic errors, including with beam patterns, gain, and
bandpass.22 On the other hand, the HWP itself can produce the systematic errors23 and the study is in progress.

The LiteBIRD spacecraft is shown in Figure 1. The block diagram dipicting the preliminary task sharing
of LiteBIRD is shown in Figure 2. The spacecarft is composed of payload module (PLM) and service module
(SVM). The PLM consists of high frequency and low frequency telescopes, with their respective focal planes, and
cryo-structure and room-temperature part of PLM. The cryo-structure is made of active cooling chain including
sub-K cooler and passive cooling (V-groove), and mechanical structures. The basic parameters of LiteBIRD are
tabulated in Table 1.
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Figure 3. Sensitivity of LiteBIRD. The 2016 Baseline sensi-
tivity was reported in Ishino et al.4

The design and operation of the LiteBIRD satellite are driven by requirements, which derive from the top
requirement of δr = 0.001. A 3-year full sky survey will be carried out with LFT (34 - 161 GHz) and HFT (89 -
448 GHz) to achieve the unprecedented sensitivity (Figure 3 and Table 2) . The mission instruments are cooled
down below 5 K with mechanical cryocoolers and a passive cooling system.

Due to the limited bandwidth of a half-wave plate for polarization modulation, LiteBIRD has two telescopes:
a reflective low-frequency telescope with an aperture of 40 cm and a high-frequency telescope with an aperture of
30 cm. The angular resolution of each band is tabulated in Table 2. Both telescopes have polarization-sensitive
multi-chroic TES array detector operated at 100 mK.14

The LiteBIRD mission plan envisions three years of observations at the Sun-Earth Lagrangian 2 point. It is
a spinning satellite with a precession angle (α) of 45 degrees and spin angle (β) of 50 degrees with spin rate of
0.1 rpm and precession period of 93 minutes, which are optimized from crossing angles and revisits of previously
scanned regions.

The BUS or service module (SVM) of LiteBIRD is shown in Figure 1. The SVM supports scan, pointing,
power supply and communication as specified in Table 1. The mass and electrical power of LiteBIRD are 2.6
tons and 3.0 kW, respectively. The breakdown is tabulated in Table 3. The mass and electrical power of SVM
include a 10 % margin. The mass and electrical power of PLM include a 20 % margin. The electronics system
design of LiteBIRD has been reported by Tsujimoto et al.13

The power consumption of cooler compressors and drivers is about 1.5 kW, which is transferred to radiators
with heat pipes. The area of the radiators is required to be around 10 m2, so most outer panels of 300K PLM
and some part of upper surface of SVM are used as radiators.

The data transfer and telecommunication are planned with a new JAXA 54 m ground station, GREAT
(GRound station for deep space Exploration And Tele-communication), which is under construction near the
USUDA 64 m station, Nagano prefecture, Japan.

3. PAYLOAD MODULE

Requirements for payload module have been derived from the top-level requirement of achieving a tensor-to-scalar
ratio error of δr = 0.001. LiteBIRD observes millimeter waves from 34 GHz to 448 GHz with two telescopes, LFT
and HFT. A HWP for polarization modulation has a limited bandwidth, and so LiteBIRD has two telescopes
to cover the frequency bands as defined in Table 4. This focal plane design is based on multi-chroic TES at 100
mK operation.14

The frequency coverages of LFT and HFT have been modified after the last SPIE conference4,24 . Both
telescopes have equal 1:5 band coverage: LFT observes Synchrotron and CMB bands, and HFT covers both
CMB and dust bands. The CMB bands of 89 - 161 GHz are overlapped to reduce systematics associated with
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Table 1. LiteBIRD basic parameters

Low Frequency Telescope (LFT) High Frequency Telescope (HFT)
Frequency 34 ∼ 161 GHz 89 ∼ 448 GHz
field of view > 20 deg × 10 deg > 20 deg × 10 deg
aperture diameter 400 mm 300 mm
angular resolution 20 ∼ 70 arcmin 10 ∼ 40 arcmin
rotational HWP 88 rpm 170 rpm
number of detectors ∼1000 ∼2100
data sampling rate 22 Hz 46 Hz
Uncertainty of r δr < 1× 10−3

Observation period 3 years
Scan L2 Lissajous, precession angle 45 deg, spin angle 50 deg (0.1 rpm)
Sensitivity < 3µK·arcmin
pointing knowledge < 3 arcmin

bath temperature 100 mK
focal plane array NETP

array = 1.7µK ·
√
s

detector fknee < 20 mHz
data transfer 7 GByte/day
mass 2.6 ton
electrical power 3.0 kW

Table 2. Sensitivity and beam size of LiteBIRD

Band NET array LFT HFT polarization
beam size NETarray beam size NETarray sensitivity

GHz µK-s1/2 arcmin µK-s1/2 arcmin µK-s1/2 µK-arcmin
40 13.4 69.2 13.4 27.9
50 9.4 56.9 9.4 19.6
60 7.5 49.0 7.5 15.6
68 5.9 40.8 5.9 12.3
78 4.8 36.1 4.8 10.0
89 4.5 32.3 4.5 9.4
100 3.7 27.7 5.9 37.0 4.6 7.6
119 3.0 23.7 4.6 31.6 4.1 6.4
140 2.4 20.7 4.4 27.6 2.9 5.1
166 3.4 24.2 3.4 7.0
195 2.8 21.7 2.8 5.8
235 3.8 19.6 3.8 8.0
280 4.4 13.2 4.4 9.1
337 5.5 11.2 5.5 11.4
402 9.4 9.7 9.4 19.6
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Table 3. Mass and power estimates of LiteBIRD

mass electrical
[kg] power [W]

5K PLM 260
LFT 148
HFT 91
sub-K cooler 7
margin 14

Structure 188.4
truss 71.4
V-groove 107
harness 4
He pipes 6

Coolers and compressors 297
ST coolers 86 450
JT cooler compressors 86 165
base, radiators 125

Cooler drivers 149
ST drivers 110 651
JT drivers 280
sub-K driver 39 26

Electronics 44
HWP controller 5.2 52
house keeping 5.2 26
data compression electronics 28 26
warm electronics unit 172
squid controller
power distribution unit 6 20
M-SWR (14port) 5

Radiator/heaters 108
MLI, heaters, sensors 15.4
radiator/heat pipes 93

300K PLM sum 787 1873
300K PLM sum + 20 % margin + 5K PLM 1204 2247
SVM (including 10 % margin) 1357 715
Total 2561 2962
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Figure 4. Left: a cartoon of the payload module (PLM) including 300 K part. Right : LFT and HFT. This LFT drawing
shows cold aperture stop (CAS), two mirrors and the focal plane array. HFT is the smaller one. The envelope of LFT
and HFT is less than 1.7 m × 1.7 m × 1.4 m height.
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(5K – 300K)
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(φ1800)

HWP

Focal 
Plane
(0.1K)
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Optical bench
For HFT
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Figure 5. LFT and its support structure. There is a 5K optical bench for HFT in the back side. The outmost of both
telescopes is less than1.7 m × 1.7 m × 1.4 m height. LFT and HFT have apertures of 400 and 300 millimeter, respectively.
The right-side panel shows the low frequency antenna design, which is supported from the 300K ring (ϕ = 1800 mm) by
bipods.

the telescope and as a redundancy. A design of LFT and PLM is shown in Figure 5. Both telescopes are cooled
down to 5K. The major requirements on the PLM of LiteBIRD are tabulated in Table 5.

LFT has an aperture of 40 cm, and HFT has an aperture of 30 cm. The envelope of LFT and HFT is less than
1.7 m × 1.7 m × 1.4 m height. This size should be kept as small as possible, because the radiative cooling power
of a non-expandable V-groove is dependent on the opening angle. The weights of LFT and HFT are expected
to be 148 kg and 91 kg, respectively. This is also kept as light as possible, because the thermal conductivity of
the support truss depends on the mass.

HFT has been designed by the European consortium and the European Space Agency (ESA). Current baseline
design of HFT is a reflective antenna with a reflective HWP. The broadband capability of the reflective HWP
has been demonstrated.25 An optical design of the HFT has been presented by Hasebe et al.26
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4. LOW FREQUENCY TELESCOPE (LFT)

Challenges of LiteBIRD are wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization
measurements, which are derived from the sensitivity requirements. The wide FoV corresponds to a large focal
plane area; a detector pixel has different spill-over or edge-taper depending on the pixel position on the focal
plane. Possible paths of stray light increase with a wider FoV. The broad-band (1:5) capability requires different
frequency modules. Current planar band-pass filter technology has limited bandwidth, so for example, one
frequency module receives 40 GHz, but the higher frequency modules reflect 40 GHz (see Table 4). There are
many band edges, where the feed pattern may distort. The telescope has many reflection paths among FP, CAS,
HWP, among quasi-optical LP Filters. The absorbers covering the optics and the focal plane are not ideal and
they have frequency dependence as well as angle dependence of reflectance. These challenges shall be overcome
by design and demonstrations.

After various trade-off studies of various optical configurations including a front-fed Dragone,27 we concluded
that the crossed Dragone antenna is the best option for LiteBIRD. Wide FoV design of a crossed Dragone antenna
has been studied by Kashima et al. 2018.28 A ray diagram of LFT is shown in Figure 6, which has an FoV of
20 degrees × 10 degrees. The F#3.0 and the crossing angle of optical axes of 90 degrees are chosen after an
extensive study of stray light. We found that ”clipped” side lobe29 or triple reflection15 of the crossed Dragone
optics can be avoided with this configuration. Primary and secondary mirrors have rectangular shape (∼ 900
mm ×800 mm) with serrations to reduce diffraction pattern from the edges of mirrors. An optimization for the
serration pattern has been reported.30 The far sidelobe knowledge of -60 dB (see Table 5) is one of challenging
requirements. In flight, the calibration accuracy of LiteBIRD is not as good as that of the Planck satellite. The
far sidelobe is designed as low as possible in order to predict it from room temperature measurements of the far
sidelobes, cryogenic measurements of near sidelobes, and in-flight calibration of near sidelobes.

Physical optics simulation of LFT with GRASP1031 is reported by Imada et al.,15 the simulated telescope
elements including LFT reflectors and cold aperture stop. At this stage, the HWP, which may generate additional
side-lobes, is not taken into account for the physical optics simulation. LiteBIRD is more challenging for modeling
the optics than Planck.32 It is necessary to take into account following items: (1) absorbers on enclosures,
aperture stops, hoods, baffles; (2) broadband feeds with lower return loss and larger side lobes; (3) HWP effects
including the rotation mechanism on the beam.

There is a trade-off of mechanical structure in LFT between a frame type and an optical bench type. A
frame-type design of LFT is shown in Figure 5. The frame and LF mirrors are made of aluminum in order to
shrink similarly to 5 K. The mass of LFT including the focal plane is estimated to ∼ 150 kg. The frame is
supported by trusses made of CFRP via a kinematic mount to release thermal stress.

In the optical bench configuration as shown in Figure 4, the LF-antenna, 5K enclosure and the focal plane
are independently supported on the optical bench. The 5K enclosure supports the HWP and cold aperture stop.
The 5K frame plays the roles of an optical bench, 5K enclosure, and support for LF mirrors, and thus the mass
of LFT can be reduced. There is a concern on possible distortion of the 5K frame by thermoelastic effect of
absorbers or the rotating HWP. The absorber, made of plastic/carbon is adhered to a panel with epoxy, then the
panel is fixed to the 5K frame. The cryogenic contraction of the absorber and the epoxy is a potential source of
thermal deformation of the antenna. If there is non-uniformity of mass distribution of the HWP at 88 r.p.m., the
HWP may be a possible source of distortion. The optical bench can mitigate such distortions. From the view
point of verification and tests, the frame architecture can be used as an LF antenna structure. The 5K frame
has a position reference for the focal plane and the HWP. The current baseline of HWP is a transmissive one,
then extremely precise alignment is not required. In the case of reflective HWP, very precise alignment between
the mirrors and HWP is required.

The 5 K frame is directly connected by the trusses, which have a temperature gradient from 300K to 5K and
a finite thermal expansion coefficient. Because the trusses for the 5K frame architecture have different lengths,
this can be a possible source for cryogenic deformation of the crossed Dragone antenna, but it can be mitigated
by measuring the the thermal expansion coefficient.

A transmissive sapphire HWP has been developed for LiteBIRD.16,33 The HWP is placed as the first optical
element of the telescope, which is in front of the cold aperture stop or entrance pupil. The HWP is inclined at 5
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Table 4. Frequency bands and detector configuration. The CO lines are avoided with planar notch filters. This table
shows only optical TESs. There are additional dark TESs for the monitor purpose.

Type Center BW Low High Num. of TES channels
[GHz] [GHz] [GHz] wafers Opt/wf Total

LFT 34 - 161 GHz 1 40 0.30 34 46 3 14 42
60 0.23 53 67 3 14 42
78 0.23 69 87 3 14 42

2 50 0.30 43 58 4 14 56
68 0.23 60 76 4 14 56
89 0.23 79 99 4 14 56

3 68 0.23 60 76 3 38 114
89 0.23 79 99 3 38 114
119 0.30 101 137 3 38 114

4 78 0.23 69 87 3 38 114
100 0.23 89 112 3 38 114
140 0.30 119 161 3 38 114

HFT 89 - 448 GHz 5 100 0.23 89 112 3 74 222
140 0.30 119 161 3 74 222
195 0.30 166 224 3 74 222

6 119 0.30 101 137 2 74 148
166 0.30 141 191 2 74 148
235 0.30 200 270 2 74 148

7 235 0.30 200 270 1
337 0.30 286 388 1 338 338

8 280 0.30 238 322 1 338 338
402 0.23 356 448 1 338 338

Total 3102
LFT 978
HFT 2124

16:45:24

cdf30ep400xet75 et=7dB img=300 cross=90

Position:  2

kas  05-Apr-18 

250.00  MM   1.23m

1.23m
Focal plane

Primary mirror

Secondary mirror

Figure 6. Ray trace of LFT crossed Dragone optics with an
aperture diameter of 400 mm and FoV of 20 degrees × 10
degrees. The optical configuration is F#3.0 and the crossing
angle of the optical axes of 90 degree.
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Figure 7. A design of cold aperture stop at 2 K. The HWP
is inclined at 5 degrees.

Proc. of SPIE Vol. 10698  106981Y-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/3/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Table 5. Major requirements of PLM and verification methods. CT represents cryogenic test, A analysis, T room tem-
perature test. DM: demonstration model, STM: structure thermal model, EM: engineering model, FM: flight model.

Requirements Method Model method
Instrument Sensitivity Table 2 CT DM, EM, FM hot-cold
Spectral optical response 0.10% CT DM, FM CW/FTS
Band definitions Table 4 CT DM, FM CW/FTS
Data loss due to Cosmic rays 5% A DM, EM, FM hot-cold
Operating life of instruments 3 years A, CT DM, EM
Post demodulation 1/f noise fknee < 0.2 mHz CT DM, EM, FM rotating wire grid
Modulation synchronous instr. pol. < 0.03 % CT DM, FM rotating wire grid
Far sidelobe knowledge -60dB(diffuse) T, A DM, FM compact range
Near sidelobe knowledge TBD CT DM, FM phase retrieval near field
Beam flattening < 15 % CT DM, FM phase retrieval near field
Response non-linearity TBD CT DM, EM, FM hot-cold
Gain variation in time (single det.) < 10 % (600sec) CT DM, EM, FM hot-cold
Linear pol. responsivity TBD CT DM, FM rotating wire grid
Pointing offset knowledge < 3 arcmin CT, A DM, FM phase retrieval near field
Abs. pol. angle knowledge < 3 arcmin CT DM, FM rotating wire grid
Cooling capability CT STM, EM, FM
Mechanical properties T, A STM, EM, FM standard tests

degrees to mitigate multiple reflections including optical ghost between the HWP and the focal plane. The HWP
uses superconducting magnet for levitation. The eddy current and magnetic hysteresis dissipate and increase
the temperature of rotating HWP from 5 K to 10 K. The re-cooling of HWP synchronizes to the re-cycling of
the sub kelvin cooler.

A design of the cold aperture stop at 2.0 K with inner and outer diameters of 400 mm and 800 mm, respectively,
is shown in Figure 7. This works to make good beam shape and to reduce the photon noise for relatively low edge
taper of ∼ 3 dB configuration. It is thermally isolated from the 5K structure with CFRP pipes. A millimeter
absorber, TK-RAM,34,35 is attached on Aluminum cone, which is connected to 1.8 K stage with thermal strap.
The weight of the cold aperture stop including the absorber is estimated to be 7 kg. The first eigen frequency of
the cold aperture stop was analyzed to be 120 Hz. The heat load to the 1.8K stage is around 2.0 mW including
heaters to stabilize the temperature to less than 0.2 mK peak-to-peak.

Millimeter absorbers to reduce reflections are attached on the inside surface of the 5K frame, which plays
an role of a cavity. Eccosorb AN72 and HR10 are candidates of such absorber, however, they have large TML
(total mass loss) and CVCM (collected volatile condensable materials). According to NASA outgass database,36

AN72 washed with ethanol shows reasonable TML and CVCM.

LF focal plane has been described by A. Suzuki et al.14 The lens and sinuous antenna have broadband
capability.37 The focal plane with AlMn TES is cooled to 100 mK. Cosmic ray mitigation has been investigated.38

A quasi-optical metal-mesh low-pass filter39 is put in front of hexagonal modules to reduce thermal loads from
the 5 K cavity. The focal plane is covered with a hood to reduce stray light. Magnetic shield to reduce magnetic
variation from HWP covers the focal plane except for the optical input.

5. CRYO-STRUCTURE

Thermal design of LiteBIRD is based on studies for SPICA.40,41 Cooler configuration composed of active me-
chanical coolers and passive radiative cooler is shown in Figure 8.

Radiative cooling with V-groove42 is efficient especially for Sun-Earth Lagrangian 2 point, as Planck satellite
demonstrated efficient passive cooling capability with V-groove.43 The V-groove consists of several cones, whose
facing surfaces are not parallel but open for sky. Infrared photons between them are radiated to cold space in a
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few reflections. The V-groove has been designed wit for the current scan strategy with a spin angle of 50 degrees.
Details of the thermal design are described by Hasebe et al.12

Radiative cooling power of the V-groove is roughly proportional to the opening angle/area. The outer
circumference of the V-groove is limited by the fairing of the H3 vehicle, 4.5 m, if an expanding/deployment
mechanism after the launch is not employed. To keep the current radiative cooling power, the outer circumference
of the 5 K enclosure shall be less than a diameter 2.4 m (1.7 m × 1.7 m). We are investigating the possibility to
reduce the volume/size of LFT to increase available 4.8K cooling power.

A schematic drawing of the cryogenic design of LFT and HFT is shown in Figure 9. In this figure, one 1.8K
JT cooler and one 4.8K JT cooler are drawn as a single functional element, although there are two 1.8K JT
coolers and two 4.8K JT coolers as redundancy in Figure 8. The 4.8K-JT and 1.8K-JT coolers have cooling
capacities of 40 mW at the 4.8 K stage and 10 mW at the 1.8 K stage, respectively, at the end of life (EOL).41

The 2ST cooler has cooling capacity of 200 mW at the 20 K stage at the end of life (EOL).41 Taking into account
the 30% margin for these mechanical coolers, available cooling powers at the 4.8 K stage and 1.8 K stage are
30 mW and 7 mW, respectively. The redundancy of the mechanical coolers for SPICA has been studied by
Shinozaki et al.41 The 4.8K JT and 2ST coolers achieved TRL (technical readiness level) 8 and the 1.8K JT
cooler did TRL 5.

A candidate for a sub-Kelvin cooler is an ADR/sorption hybrid cooler developed by CEA.44 This cooler has
been demonstrated with JT/ST coolers by the cooling chain core technology program.45 This cooler achieved
TRL 6. The hybrid cooler needs recycling phase once per day. The recycling heat load of ∼ 10 mW for the 4.8K
JT cooler is a bottle neck of the thermal design. To reduce the heat load, there is an option that two hybrid
coolers for two telescopes have different recycling phase.

Another candidate for a sub-Kelvin cooler is a closed-cycle dilution refrigerator (CCDR)46 developed by Neel
institute and IAS. The CCDR is continuously operated, but it requires large cooling power for the 1.8K stage.
A program to raise the TRL to 5 is running.

A structure analysis of the whole PLM including V-groove structures predicts the first eigen frequency of 74
Hz and 34 Hz for vertical and horizontal axes, respectively. An estimate of conductive and radiative load to the
5 K cooler is 12 mW. Then, the available cooling power for HWPs of LFT and HFT and sub-Kelvin cooler(s) at
4.8 K is 18 mW. The available cooling power of 7 mW at 1.8K is used for cold aperture stops and focal planes
of LFT and HFT.
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6. ASSEMBLY, INTEGRATION, AND VERIFICATION (AIV) PLAN

The verification and calibration of a warmly-launched cryogenic telescope on the ground are challenging. After
the accident of the Hitomi satellite47 in March 2016, JAXA has been carrying out operational reform, which
suggests a front heavy assembly, integration, and verification (AIV) plan. It requires that technical challenges
of a mission shall be verified before PDR (preliminary design review). Technical challenges of LiteBIRD are
(1) sensitive polarization measurement capability and (2) cooling chain down to 0.1K and mechanical support
structure.

The Demonstration model (DM) of LFT is fully characterized to verify its millimeter-wave beam and noise
performances under the cryogenic environments. The requirements are tested and calibrated as shown in Table 5.
A dedicated cryogenic chamber will be built for LFT to measure millimeter polarization performance with phase-
retrieval near field beam measurements (eg. Manabe et al.48), spectral responses with FTS (Fourier transform
spectrometer) or CW (continuous wave) sources, and polarization angles with rotating wire-grid mechanism. An
FTS has crude spectral resolution of 1 GHz, in general. LiteBIRD needs fine spectral resolution at synchrotron
frequencies or for CO lines. A broadband CW source with an appropriate optical design has fine spectral
resolution of 0.01 GHz to measure the spectral response. A candidate of the CW source is a photomixer.49,50

One of the issues of the ground calibration is far sidelobe measurement. It is ideal to measure the far sidelobe
pattern in the cryogenic environment with the focal plane, but, it is difficult to prepare the cryogenic test-set
within the reasonable cost. In this current plan, the far sidelobe is measured with a representative feed at room
temperature. The main lobe and near sidelobes measured at cryogenic temperature are compared with those at
room temperature, then the far side lobe at the cryogenic temperature is estimated with auxiliary simulations.

Procedure of LFT assembly, integration and verification (AIV) is as follows: 1) dimensions of the 5K frame
are measured with a 3D coordinated measurement machine; 2) primary and secondary mirrors are fixed to the
frame. After the reference positions of the mirrors are checked with the 3D coordinated measurement machine,
the mirror shape is measured with photogrammetry at both room and cryogenic temperatures. Millimeter beam
pattern is measured at room temperature; 3) absorbers and cold aperture stop are fixed to the frame. The
millimeter beam is measured at both room and cryogenic temperatures. 4) focal plane is fixed to the frame.
The millimeter beam, polarization angle, and spectral response are measured at cryogenic temperature. 5) the
HWP is installed into the frame. The millimeter beam, polarization angle, and spectral response are measured
at cryogenic temperature. Multiple reflections among HWP, FP, reflector and baffles are extensively studied
with LFT DM.

A structure thermal model (STM) of the mission payload is constructed and tested with mechanical coolers
down to 0.1K and V-grooves to verify mechanical and thermal interfaces. The STM consists of cryo-structure,
dummy LFT and dummy HFT. Standard vibration tests to verify the mechanical interfaces of PLM are planned.
Both DM and STM are verified in parallel before PDR in the current schedule.

The STM and DM of LFT will be refurbished and used as an Engineering model (EM). The first integration
of PLM including HFT is planned with EM to verify all interfaces. This means that one model of LFT and
cryo-system is manufactured and is used for both DM and EM. End-to-end tests of noise and optical efficiency
measurements are planned with hot-cold loads in front of the apertures of both telescopes. A topic of EM is
EMC/EMI tests with electrical power supplies and HGA (high gain antenna) power amplifiers. SVM (service
module/BUS) is manufactured as proto-FM (PFM), so EM doesn’t test SVM.

A preliminary integration plan of flight model (FM) is shown in Figure 10. It takes long time to make AIV
and calibrations of LFT and HFT, so which are done in parallel.
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