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Abstract This paper presents a video analysis approach based on concept detection
and keyframe extraction employing a visual thesaurus representation. Color and
texture descriptors are extracted from coarse regions of each frame and a visual
thesaurus is constructed after clustering regions. The clusters, called region types, are
used as basis for representing local material information through the construction of
a model vector for each frame, which reflects the composition of the image in terms
of region types. Model vector representation is used for keyframe selection either
in each video shot or across an entire sequence. The selection process ensures that
all region types are represented. A number of high-level concept detectors is then
trained using global annotation and Latent Semantic Analysis is applied. To enhance
detection performance per shot, detection is employed on the selected keyframes of
each shot, and a framework is proposed for working on very large data sets.
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1 Introduction

During the last few years, rapid advances in hardware and telecommunication
technologies in combination with the World Wide Web proliferation have boosted
wide scale creation and dissemination of digital visual content and stimulated new
technologies for efficient searching, indexing and retrieval in multimedia databases
(web, personal databases, professional databases and so on). This trend has also
enabled propagation of content adaptation and semantics’ aspects throughout the
entire multimedia analysis value chain. In the process, the value of the richness
and subjectivity of semantics in human interpretations of audiovisual media has
been clearly identified. Research in this area is extremely important because of the
overwhelming amount of multimedia information available and the very limited
understanding of the semantics of such data sources. However, in spite of the
multitude of those activities, there is a lack of appropriate outlets for presenting high-
quality research in the prolific and prerequisite field of multimedia content analysis.
More specifically, the traditional keyword-based annotation approaches have started
to reveal severe disadvantages. Firstly, manual annotation of digital content appears
a very tedious and time consuming task, due to the exponential increasing quantity
of digital images and videos and also because “images are beyond words” [32], that
is to say that their content can not be fully and efficiently described by a set of words.
For these problems, certain content-based retrieval and detection algorithms have
been proposed to support efficient image and video analysis and understanding.

However, the well-known “semantic gap” [32] often characterizes the differences
between descriptions of a multimedia object by discrete and heterogeneous repre-
sentations and the linking from the low- to the high-level features. Therefore, one of
the most interesting problems in multimedia content analysis remains the detection
of high-level concepts within multimedia documents. These high-level features may
either characterize a multimedia document globally, e.g. an image depicting an
indoor or an outdoor scene or locally e.g. concept sand detected in a beach scene. This
problem is often referred to as Scene/Global Classification. On the other hand, local
high-level features may be distinguished in two major categories. The first contains
those that are often denoted as materials, since they cannot have a specific shape, but
they are described solely by their color and texture properties. Some examples within
this category are sea, sky, vegetation, road, etc. The latter contains concepts that may
be characterized based mainly on their shape such as person, car, airplane etc. These
concepts are often denoted as objects and the specific problem as Object Detection.
The nature of the high-level concepts that have to be detected plays a crucial role in
the selection of both appropriate low-level features and applicable machine learning
techniques.

In this work, we extend our previous research efforts on high-level concept detec-
tion [35, 38] using a region thesaurus of visual words on keyframe extraction,
based on a locally extracted (within a video/video shot) region thesaurus [36] and
unify them in a framework capable for video analysis and summarization (Fig. 1).
More specifically, the objective of this work is to provide a generic approach for
the detection of certain high-level concepts within the scope of TRECVID 2007.
Detection of a concept within a video shot is achieved by representing each shot
with a single keyframe and while trying to enhance the performance of detection,
a keyframe extraction algorithm is used on each shot. Representative frames are
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Fig. 1 Keyframe extraction
and concept detection by
utilizing a visual thesaurus

therefore selected from each shot and the high-level feature extraction algorithm is
applied on them. The keyframe extraction algorithm presented herein uses a visual
dictionary that is formed within the shot in order to provide a model vector that
describes each frame based on the region types it contains. Moreover, a keyframe
extraction algorithm is applied in order to provide summarization of a video by
selecting a relatively small number of frames, able to catch the visual and semantic
properties of a video or a video shot. Thus, our approach emphasizes both content
coverage and perceptual quality and is capable of reducing content redundancy.

Using a visual dictionary that is formed based on coarsely segmented regions from
keyframes extracted from all the available development data videos, our approach
tackles 9 concepts within the TRECVID 2007 collection, using a generic detection
approach for all and not specialized algorithms for each one. The concepts that have
been selected are vegetation, road, explosion_fire, sky, snow, office, desert, outdoor

and mountain and as obvious, they cannot be described as “objects”, but rather
as “materials” and “scenes”. For the extraction of low-level features from these
keyframe regions, MPEG-7 descriptors have been selected. Since neither of the
aforementioned concepts falls within the category of “objects”, color and texture
features are the only applicable low-level features. For each concept an SVM-
based detector is trained based on features extracted from keyframe regions, while
keyframes are annotated globally. The next step of the presented high-level concept
detection approach, is to apply the Latent Semantic Analysis (LSA) technique in an
effort to exploit the latent relations among the set of keyframes and the region types
they contain.

Our approach exploits the novel model vector representation, in order to extract
a number of representative keyframes and perform video summarization. Video
summarization is essential to enable the user to skim through the content and speed
up the browsing of large video databases, instead of traditionally representing the
video as a sequence of consecutive frames, each of which corresponds to a constant
time interval. This linear representation, though adequate for playing a video in a
movie, is not appropriate for the new emerging multimedia services that require
new tools and mechanisms for interactive navigating video information over various
networks and devices of limited bandwidth. With video summarization, a video table
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of contents and video highlights are constructed to enable end users to sift through
all this data and find what they want.

The rest of this article is organized as follows: Section 2 deals with current
similar research efforts in the field, whereas Section 3 summarizes the extracted
MPEG-7 color and texture descriptors and their properties. Therein, from each
coarsely segmented region of a keyframe, a feature vector is formed containing all
the necessary low-level features. Then, in Section 4, a visual thesaurus is formed.
The most representative region types are selected. These region types allow a model
vector representation of each keyframe’s visual features, as described in Section 5. In
Section 6 the LSA technique is described. This technique acts as a transformation on
the model vector and provides an image representation based not only on the region
types but also on their latent relations. The keyframe extraction algorithm using a
local visual thesaurus is described in Section 7. In Section 8 our concept detection
approach is presented for a single frame and for several keyframes extracted from
each shot. Extensive experimental results are presented in Section 9, where the two
techniques are compared in a large dataset consisting of 110 videos segmented into
shots and derived from the TRECVID 2007 development data and the summariza-
tion results of the keyframe extraction are presented. Finally, conclusions and plans
for future work are drawn in Section 10.

2 Related work

Due to the continuously growing volume of audiovisual content, the problem of
high-level concept detection within multimedia documents has attracted a lot of
interest within the multimedia research community during the last years. Many
research efforts have set focus on the extraction of various low-level features, such
as audio, color, texture and shape properties of audiovisual content, in order to
extract meaningful and robust descriptions in a standardized way. Some of the afore-
mentioned works have led to the MPEG-7 standard [5] that focuses on the descrip-
tion of multimedia content, providing among others, a set of low-level descriptors
useful for tasks such as image classification, high-level concept detection, image/
video retrieval and so on. The MPEG-7 visual descriptors and many similar works
aim to extract features globally, or locally, i.e. from regions or image patches. On the
other hand, many low-level description schemes are inspired from the SIFT features
[19]. Descriptors that fall within this category are locally extracted, based on the
appearance of the object at particular interest points.

Furthermore, utilization of machine learning approaches in multimedia process-
ing/manipulation problems is a trend followed by a huge number of works during
the last years. More specifically, techniques such as Neural Networks [13], Fuzzy
Systems [16], Genetic Algorithms [23] and Support Vector Machines [40] have been
successfully applied to the aforementioned problems, in order to link the low-level
features to the high-level features. In almost all of these approaches, an extracted
low-level description of (part of) a multimedia document is fed to an appropriately
trained machine learning-based detector/classifier, which makes the decision of the
presence or absence of the concept in question.

Another important aspect of any high-level concept detection problem is the
availability of annotated training data and also their annotation. The number of
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available and annotated globally data sets has been increased during the last few
years. An example falling in this category is the LSCOM workshop annotation [26].
Therein, a very large number of shots of news bulletins is globally annotated for
a large number of concepts. A common annotation effort [2] has been a result of
cooperation among many TRECVID 2007 participants for a large number of shots
of various cultural TV programmes. We should also note here that large region-
based annotated sets have started to appear, such as LabelMe [29] and PASCAL

[11], however these sets offer only a few thousands of annotated images, while the
LSCOM and the collaborative TRECVID annotation offer tens of thousands of
annotated images.

The idea of using a visual dictionary to describe a decomposed image that derived
from a clustering or a segmentation or a keypoint extraction approach has also
been exploited by many researchers. For instance, an image is divided into regions
using a segmentation algorithm, a visual dictionary is formed and a region-based
approach in content retrieval using LSA is presented in [34]. Therein, image regions
are regarded as words and LSA aims in exploiting the latent (hidden) relations
amongst them. A similar approach is presented in [30]. Therein, the pixels of a given
image are clustered using a mean-shift algorithm. Then, color and texture features
are extracted from the formed clusters and low-level features are assigned to the
high-level concepts using again a visual dictionary. In [12], images are partitioned
in regions, regions are clustered to obtain a codebook of region types, and a bag-
of-regions approach is applied for scene representation. Moreover, in [9] visual
categorization is achieved using a bag-of-keypoints approach.

One of the most well-known systems for multimedia analysis and retrieval,
MARVEL, is presented in [14]. This prototype system uses multi-modal machine
learning techniques in order to model semantic concepts in video, from automatically
extracted multimedia content. Also, in [41], a region-based approach is presented,
that uses knowledge encoded in the form of an ontology. MPEG-7 visual features
are extracted and combined and high-level concepts are detected. Moreover, a
hybrid thesaurus approach is presented in [3], where semantic object recognition and
identification within video news archives is achieved, with emphasis to face detection
and TV channel logos. Finally, in [28], separate shape detectors are trained using a
shape alphabet, which is actually a dictionary of curve fragments.

Another lexicon design for semantic indexing in media databases is also presented
in [27]. In the same context, [18] presents an approach for texture and object
recognition that uses scale- or affine-invariant local image features in combination
with a discriminative classifier. Support vector machines have been used for image
classification based on their histogram as in [6] and for the detection of semantic
concepts such as goal, yellow card and substitution in the soccer domain [33]. A
Self-Organized Map (SOM) that uses MPEG-7 features is presented in [17]. Within
this work, content-based image and information retrieval is achieved in large non-
annotated image databases. Learning algorithms are compared and novel fusion
algorithms are explored in [44], while detectors for 374 high-level concepts are
presented in [43].

However, efficient implementation of content-based retrieval algorithms requires
a more meaningful representation of visual contents. In this context many works
exist in the area of keyframe extraction for video summarization. For example,
in [45] keyframes are extracted in a sequential fashion via thresholding. A more
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sophisticated scheme based on color clustering can be found in [46]. Avrithis et al. [1]
presents a stochastic framework for keyframe extraction while in [22], a summa-
rization scheme based on simulated users experiments is presented. A multimodal
approach for video summarization is presented in [20]. Finally, in [8] keyframe
selection is performed by capturing the similarity to the represented segment and
preserving the differences from other segment keyframes.

Last but not least, evaluation and comparison to similar techniques has always
been important for every research work. Among others, special note should be
given to an effort to effectively evaluate and benchmark various approaches in the
field of information retrieval, by the TREC conference series, which has become
very popular during the last few years. Within this series, the TRECVID [31]
evaluation attracts many organizations and researchers, interested in comparing their
algorithms in tasks such as automatic segmentation, indexing, and content-based
retrieval of digital video. For the high-level feature detection task of TRECVID,
the aforementioned global annotations have been offered by different organizations
and a huge database of video keyframes has been available to active participants [2].

3 Image decomposition and low-level feature extraction

We begin by initially presenting the descriptor extraction procedure followed within
our approach. The fist step to consider is the extraction of low-level features from
regions of still images selected from raw video. A given video is segmented into
shots. For the keyframe extraction approach, a significantly large number of frames
are selected from each shot with a manually selected and arbitrarily small time
interval and then the representative keyframes are determined among them, while
for the concept detection and scene classification approach one or more keyframes
are selected from each shot and the high-level concepts are extracted within them.
Let ki ∈ K denote the aforementioned selected video frames (still images) and K the
set of all those images.

For the extraction of the low-level features of a still image, there exist generally
two categories of approaches:

– Extract the desired descriptors globally (from the entire video frame)
– Extract the desired descriptors locally (from regions of interest within the

video frame)

While global descriptor extraction appears a trivial task, extracting descriptors locally
may turn out to be a more complex task, since there does not exist neither a stan-
dardized way of dividing a given image to regions, from which the features are to
be extracted, nor a predefined method to combine and use those features. In the
presented approach, a color segmentation algorithm is first applied on a given image
as a pre-processing step. The algorithm is a multiresolution implementation [1] of the
well-known RSST method [25], tuned to produce a coarse segmentation. This way,
the produced segmentation can intuitively facilitate a briefly qualitative description
of the input image.

To make this easier to understand, a given image, along with its coarse segmen-
tation is depicted in Fig. 2. Therein, one can intuitively describe the visual content
of this image either in a high-level manner (i.e. the image contains sky, road and
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Fig. 2 Input frame and segmentation result

vegetation) or in a lower level, but higher than a low-level description (i.e. a “light

blue” region, a “grey” region, and two “green” regions. To begin, let R denote the
set of all regions, resulted after the aforementioned segmentation, and let R(ki) ⊂ R

denote the set of all regions of the frame ki.
For the representation of the low-level features of a given image, the well known

MPEG-7 standard [5] has been selected. In particular, several MPEG-7 color and tex-
ture descriptors [21] have been used to capture the low-level features of each region
ri ∈ R(ki). More specifically, Dominant Color Descriptor (DCD), Color Structure

Descriptor (CSD), Color Layout Descriptor (CLD) and Scalable Color Descriptor

(SCD) are extracted to capture the color properties and Homogeneous Texture

Descriptor (HTD) and Edge Histogram Descriptor (EHD) the texture properties.
Dominant Color Descriptor (DCD) is one of the most useful MPEG-7 descriptors

and probably the most useful for applications such as similarity retrieval using color,
as a set of dominant colors in a region of interest or in an image provide a com-
pact, yet effective representation. The descriptor comprises of the dominant colors’
values, their percentages and variances and the spatial coherency. Before the evalua-
tion of the descriptor, the colors present in an image are clustered in order to have a
small number in the remaining colors. This clustering is followed by the calculation of
their percentages and optionally their variances. It is important to mention that these
colors are not fixed in the color space but are computed each time based on the given
image. The spatial coherency is a single number that represents the overall spatial
homogeneity of the dominant colors in an image. The method of the dominant color
extraction is described in detail in [42]. Each image could have up to a maximum of
8 dominant colors, however experimental results show that 3–4 colors are generally
sufficient to provide a good characterization of the region colors.

Color Layout Descriptor (CLD) is a compact and resolution-invariant MPEG-7
visual descriptor designed to represent the spatial distribution of color in the YCbCr
color space. It can be used globally in an image or in an arbitrary-shaped region of
interest. The given picture or region of interest is divided into 8 × 8 = 64 blocks and
the average color of each block is calculated as its representative color. However the
representative color of each block is only implicitly recommended to be the average
color. A discrete cosine transformation is performed into the series of the average
colors and a few low-frequency coefficients are selected using zigzag scanning. The
CLD is formed after quantization of the remaining coefficients, as described in [42].
In conclusion, the CLD is an effective descriptor in applications such as sketch-based
image retrieval, content filtering using image indexing and visualization.

Color Structure Descriptor (CSD) captures both the global color features of an
image and the local spatial structure of the color. The latter feature of the CSD
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provides the descriptor the ability to discriminate between images that have the
same global color features but different structure, thus a single global color his-
togram would fail. An 8 × 8 structuring element scans the image and the number
of times a certain color is found within it is counted. This way, the local color
structure of an image is expressed in the form of a “color structure histogram”. This
histogram is identical in form to a color histogram, but is semantically different.
Let c0, c1, c2, . . . , cM−1 denote the M quantized colors. Then the color structure
histogram can be declared as: h(m), m = 0, 1, . . . , M − 1. The value in each bin
represents the number of occurrences of structuring elements as they scan the image,
that contain at least one pixel with color cM. The color representation is given in the
HMMD color space.

Scalable Color Descriptor (SCD) is a Haar-transform based transformation
applied across values of a color histogram that measures color distribution over an
entire image. The color space used here is the HSV, quantized uniformly to 256 bins.
The histogram values are extracted, normalized and nonlinearly mapped into a four-
bit integer representation, giving higher significance to small values. To sufficiently
reduce the large size of this representation, the histograms are encoded using a
Haar transform which provides the desired scalability when the full resolution is
not required.

Homogeneous Texture Descriptor (HTD) provides a quintative characterization of
texture and is an easy to compute and robust descriptor. This descriptor is computed
by first filtering the image with a bank of orientation and scale sensitive filters, and
computing the mean and standard deviation of the filtered outputs in the frequency
domain. The frequency space is divided in 30 channels, as described in [42], and the
energy ei and the energy deviation di of each channel are computed. These two values
are logarithmically scaled to obtain ei and di respectively, where i is the i-th feature
channel.

Edge Histogram Descriptor (EHD) captures the spatial distribution of edges. It
represents local-edge distribution in the image. Specifically, dividing the image in
4 × 4 subimages, the local edge distribution for each subimage can be represented by
a histogram. To generate the histogram, edges in the subimages are categorized into
five types, namely vertical, horizontal, 45◦ diagonal, 135◦ diagonal and nondirectional
edges. Since a given image is divided into 16 subimages, a total of 5 × 16 = 80

histogram bins are required. This descriptor is useful for image to image matching,
even when the underlying texture is not homogeneous.

To obtain a single region description from all the extracted region descriptions, we
choose to follow an “early fusion” approach, thus merging them after their extraction
[37]. The vector formed will be referred to as “feature vector”. The feature vector
that corresponds to a region ri ∈ R is thus given by equation (1):

fi = f (ri) =
[

DCD(ri), CLD(ri), SCD(ri), CSD(ri), HT D(ri), EHD(ri)
]

, ri ∈ R

(1)

where DCD(ri) is the Dominant Color Descriptor for region ri, CLD(ri) is the Color
Layout Descriptor for region ri etc. Each feature vector is denoted by fi and F is the
set of all feature vectors. In other words: fi ∈ F, i = 1 . . . NF = NR. Each descriptor
is comprised by a vector of a predefined dimension, while for the Dominant Color
Descriptor we keep only the values and the percentage of the most dominant color.
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Table 1 Dimension of the extracted MPEG-7 color and texture descriptors

Descriptor DCD SCD CLD CSD EHD HTD

Number of Coefficients 4 256 256 18 80 62

Since many of the MPEG-7 descriptors allow the user to select their level of detail,
thus offering a large number of available extraction profiles, we follow a procedure
similar to the one presented in [24], in order to select the one that best suits the needs
of our approach. The dimensions of the extracted descriptors are depicted in Table 1,
while the final dimension of the merged feature vector is 676.

The extraction of the low-level descriptors is performed using the Visual Descrip-
tor Extraction (VDE) application. This application is used to extract the selected vi-
sual MPEG-7 descriptors from the input images and for all the corresponding regions
maps created after the coarse segmentation. VDE is an application developed based
on the eXperimentation Model of MPEG-7 [42], using its extraction algorithms and
expanding its facilities. It is optimized in order to provide a faster performance than
the XM, while it remains fully compatible in terms of the introduced descriptions. It is
developed in C++ and tested for Windows. OpenCV computer vision library is used
for faster image loading and Xerces is used for the generation of the MPEG-7 XML
format output. Certain bugs detected in the XM implementation for arbitrary regions
have been fixed in VDE and new features have been made available. To make it
easier to understand the way descriptors can be extracted, an initial input image and
all possible ways of specifying a region from which descriptors are extracted, are
depicted in Fig. 3. Using the VDE application, descriptors may be extracted globally
from the entire image, locally from a single image region of a binary mask, from all
regions of a region map or finally by providing coordinates of rectangular regions.

Fig. 3 Multiple ways of
extracting descriptor from
image regions with the
VDE application
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The current version of VDE is available for downloading at our research team’s
web site.1

4 Visual thesaurus construction

Given the entire set of video frames and their extracted low-level features as
described in Section 3, one can easily observe that those regions that belong to
similar semantic concepts, also have similar low-level descriptions and also those
images that contain the same high-level concepts are consisted of similar regions.
Thus certain similar regions often co-exist with some high-level concepts. In other
words, region co-existences should be able to characterize the concepts that exist
within a keyframe.

It is eligible that all regions ri should be organized in order to construct a
structured knowledge base. By using this, an image will be represented as a set of
regions. Thus, it aims to bridge the low-level features to the high-level concepts.
Based on the aforementioned observations, a subtractive clustering [7] algorithm is
applied on all segmented regions. Let the number of clusters created be NT . It can be
easily observed that each cluster does not contain only regions from the same concept
and also that regions from the same concept could end up belonging to different
clusters. For example, regions from the concept vegetation can be found in more
than one clusters, differing e.g. in the color of the tree leaves. Moreover regions of
the concept sea could be mixed up with regions of the concept sky, considering that a
typical sea region is often much similar to a typical sky region. The region lying closest
to the centroid of the cluster is selected as the representative for each cluster. These
regions will be referred to as region types. Finally our constructed “knowledge base”
has the form of a Visual Thesaurus, which is actually a set of “visual words”. The
visual words will be denoted wi and the definition of the visual thesaurus is depicted
in Eq. 2.

T =
{

wi, i = 1, . . . , NT

}

, wi ⊂ R (2)

where NT denotes the number of region types of the thesaurus (and, obviously, the
number of clusters) and wi is the i-th cluster, which is a set of regions that belong to
R, as it is presented in Eq. 2. Additionally, according to Eqs. 3 and 4, the utilization of
all clusters provides the entire R set, if and only if all regions are used for clustering
and different clusters do not contain common regions.

⋃

i

w = R, i = 1, . . . , N (3)

⋂

i, j

w = ∅, i �= j (4)

A thesaurus is generally a list of terms (a list of region types in our approach) and
a set of related regions to each region type the list. Each region type is selected as

1http://www.image.ntua.gr/smag/tools/vde.

http://www.image.ntua.gr/smag/tools/vde


Multimed Tools Appl (2009) 41:337–373 347

the region whose feature vector has the smallest distance from the centroid of the
cluster it belongs, as it has already been mentioned before. The calculation of the
centroid is depicted in (5) where |wi| is the number of elements of the i-th cluster and
the selection of the region type is depicted in Eq. 6. The related regions (synonyms)
of each region type are all the remaining regions of the cluster.

z(wi) = 1
|wi|

∑

r∈wi

f (r) (5)

f (wi) = f
(

arg minr∈wi

{

d
(

f (r), z(wi)
)

})

(6)

Each region type is represented by a feature vector, which contains the fused low-
level information extracted from the region. As it is obvious, a low-level description
does not carry any semantic information. The region types lie in-between the low-
level features and the high-level concepts. They carry the appropriate information
to describe color and texture features with a higher semantic ability than low-level
descriptions, but yet a step lower than the semantic concepts.

5 Model vector formulation

This section presents the algorithm used to create a model vector to represent the
visual properties of a video frame based on the all the visual words (region types) of
the visual thesaurus constructed as described in Section 4.

To compare the low-level properties of two image regions, the Euclidean distance
has been applied on their feature vectors, as depicted in Eq. 7. Therein, f1, f2 ∈ F

and F ⊂ F . F denotes the set of feature vectors for the specific set of regions,
whereas F is the entire feature vector space.

d
(

f1, f2

)

=

√

√

√

√

n
∑

i=1

(

f i
1 − f i

2

)2
(7)

A model vector has the same dimension as the number of region types that consist
the visual thesaurus and is formulated by the following procedure: having calculated
all distances between all regions of each image and all region types of the visual
thesaurus, the minimum among them is kept for each region type. Thus, the i-th
element of a model vector is the minimum distance among wi and all feature vectors
of all regions of the corresponding image.

In particular the model vector describing keyframe ki, is depicted in equation (17).
Each model vector is denoted by mi ∈ M, i = 1 . . . NK, where is the set of all model
vectors, mi is the model vector of frame ki and NK is the cardinality of K. More
formally:

mi =
[

mi(1), mi(2), . . . , mi( j), . . . , mi(NT)
]

, i = 1, . . . , NK (8)
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where:

mi( j ) = min
r∈R(ki)

{

d
(

f (w j), f (r)
)}

, j = 1, . . . , NT (9)

Figure 4 presents an example of an image, segmented into 4 regions and a visual
thesaurus consisted of 10 region types. The model vector describing this image would
be the one depicted in Eq. 10. In the left image, the distances of all segmented
regions to region type 4 are depicted. In the right image, the distances between
the marked region of vegetation and all 10 region types are depicted. Based on the
aforementioned model vector calculation algorithm, the corresponding element of
the model vector, m(4) would be equal to 0.1. Finally, in Fig. 5 the model vectors for
5 images and the visual thesaurus of 10 region types, are depicted. The lower values
of model vectors are highlighted so as to note which region types of the thesaurus are

Fig. 4 Distances between regions and region types: on the top of the figure distances between an
image region and all region types are depicted, whereas on the bottom, distances between all regions
and a specific region type are depicted
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Fig. 5 Indicative selection of images and corresponding model vectors. Green highlighted values are
the smallest distances

contained within each image. These low values correspond to low distances between
the corresponding region types and a region of the image.

m = [m(1), m(2), . . . , m(10)] (10)

6 Latent semantic analysis

The next step of the presented high-level concept detection approach, is the use
of the well-known LSA technique [10], initially introduced in the field of natural
language processing. LSA aims to exploit the latent relations among a set of docu-
ments and the terms they contain. In this work, a frame corresponds to a document
and its segmented regions correspond to the terms. The goal is to investigate how
these hidden relations among region types may be exploited to improve the semantic
analysis.

After the formulation of the model vectors mi, all their values are normalized so
that they fall within [0, 1], with 1 depicting the maximum confidence of a region type
to a keyframe. The normalized model vectors will be denoted as m′

i.
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This way, the co-occurrence matrix M is formed, as depicted in equation (11),
describing the relations of region types to keyframes.

M =

⎛

⎜

⎝

m′
1(1) . . . m′

NK
(1)

...
. . .

...

m′
1(NT) . . . m′

NK
(NT)

⎞

⎟

⎠
(11)

More specifically, each line of M, qT
i =

(

m′
1(i), . . . , m′

NK
(i)

)

, describes the relation-
ship of region type wi, with each frame k (term vector). Also, each column of M,

m′
j =

(

m′
j(1) . . . m′

j(NT)
)T

corresponds to a specific frame, describing its relation
with every region type (document vector).

Thus, the co-occurrence matrix M may be described using the extracted (normal-
ized) model vectors m′

i as:

M =
[

m′T
1 , . . . , m′T

NK

]

(12)

Let qi and qp denote two term vectors. Then, their inner product qT
i qp denotes

their correlation. Thus, it may easily observed that MMT actually consists of all
those inner products. Moreover, MTM consists of all inner products between the
document vectors m′T

i m′
p, describing their correlation over the terms.

A decomposition of M is described by Eq. 13.

M = U�VT (13)

When U and V are orthonormal matrices and � is a diagonal matrix, This is the
Singular Value Decomposition (SVD), depicted in Eq. 14.

M =
(

u1 . . . uNT

)

⎛

⎜

⎝

σ1 . . . 0
...

. . .
...

0 . . . σNT

⎞

⎟

⎠

(

v1 . . . vNT

)T
(14)

In this equation σi are the singular values and ui,vi are the singular vectors of U and
V, respectively.

By keeping the NL larger singular values σ i along with the corresponding columns
of U and rows of V, an estimate of M, described in Eq. 15 occurs.

M̂ = MNL
= UNL

�NL
VT

NL
(15)

A normalized model vector m′
i, is transformed to the concept space, using

� and U, as depicted in Eq. 16, where m̂i is the transformed in the concept
space vector.

m̂i = �
−1
NL

UT
NL

m′
i (16)

This way, all model vectors extracted from frames of the training set are trans-
formed to the concept space and are then used to train several high-level concept
detectors, as described in Section 8.
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7 Keyframe extraction

We extend the notion of the visual thesaurus described approach towards efficient
keyframe extraction from video sequences. In the majority of the summarization
algorithms, certain low-level features are exploited and a frame description that relies
on them is created. More specifically, a relatively small number of representative
keyframes is selected, in order to capture the visual content of a video shot. Our
research effort lies clearly within the Image Storyboards video summarization
approach. In principle our approach may be decomposed in the following funda-
mental steps [39]:

– Determine an appropriate feature space to represent the images
– Cluster the image sequence in the feature space
– Compute a measure of importance to select the keyframes

First, we extract certain MPEG-7 low-level features, as described in Section 3.
Then, we form a local region thesaurus (within the video/video shot), following
the procedure described in Section 4. The selection of the representative frames is
performed based on this region thesaurus and the additional two steps that will be
presented within this section.

We should note here that our representation based on local region features is more
close to a semantic description than to a visual one. It relies on all the region types
that consist the local visual thesaurus and as we have already mentioned, the region
types although they are not actual high-level concepts, carry significant semantic
information.

As it has already been described in the previous sections, the semantic content of
a given video frame is modeled by combining certain MPEG-7 features extracted
locally from its segmented regions and with the aid of a locally extracted visual
thesaurus mapped to region types, the model vectors are formed. The first thing we
have to define is a distance function to compare the model vector of a frame with
that from any given frame within its shot.

One of the most popular distance functions used for comparing such descriptions
that have the form of a vector and carry semantic information is the cosine similarity
function. More specifically, let m1 and m2 denote the model vectors of two video
frames:

mi =
[

mi(1), mi(2), . . . , mi( j), . . . , mi(NT)
]

, i = 1, 2 (17)

Then, we use the cosine distance function to calculate their distance Dcos(m1, m2):

Dcos(m1, m2) = arccos
m1 · m2

||m1|| · ||m2||
(18)

where mi( j) has been defined in Section 5.
Within the first step of our algorithm we extract all the model vectors of the

frames selected with an interval within the shot (10 frames per second for example).
These are the frames from which the visual thesaurus was constructed. Then we
apply the subtractive clustering [7] algorithm in order to cluster them into groups
of semantically similar frames (Eq. 19 depicts these clusters), since this method
estimates the number of clusters NS and their corresponding centroids. This way,
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we keep a subset of the frames within the shot. The representative keyframes will be
selected among them.

S =
{

w′
i, i = 1 . . . NS

}

, w′
i ⊂ K (19)

We should emphasize here that some applications such as high-level concept
detection in video sequences sometimes require more than one keyframes from each
shot in order to be applied efficiently. That is because most of the times, a high-level
concept is not present within all the frames of the shot. When the video content to
be analyzed comes in large quantities, the application of such algorithms can become
very slow when performed on every frame individually. Thus the number of frames
that will be extracted, should contain all the semantic concepts, but should also
remain relatively small to allow the application of the current detection algorithms
in a large amount of video data.

Moreover, video summarization and retrieval applications are more efficient when
a shot is represented by a small set of frames rather than a single keyframe. This
way, the user is able to perceive the content of the full video document, rather than
the one of the presented frame. For those aforementioned reasons, more than one
keyframes should be extracted from a given shot, trying both to capture all possible
semantic entities and keep their number as small as necessary to facilitate such tasks.

The presented approach is used for the selection of a relatively small number
of representative keyframes within a video shot. The role of these keyframes is to
provide a video summary and also permit the aforementioned high-level concept
detection approach to be applied on them instead of the whole shot. The former is
achieved through keeping all those frames whose corresponding model vectors lie
closer to the aforementioned subset of cluster centroids. Equation 20 depicts the
centroids in the model vector space and Eq. 21 the model vectors closest to them.
Set MZ defined in Eq. 22 is the set of all those model vectors corresponding to the
keyframes which will be kept. Let Kz be this set of keyframes. The latter is achieved
by keeping the appropriate number of frames, within the subset Kz of the preselected
frames, which contain as much as possible information for all region types of the
region thesaurus.

z(w′
i) =

1

|w′
i|

∑

k∈w′
i

mk (20)

m(w′
i) = mk, k = arg min

k∈w′
i

{

Dcos

(

mk, z(w′
i)
)

}

(21)

Mz = {m(w′
i)}, i = 1 . . . NS (22)

The selection of the initial (most representative) keyframe involves finding the
region type with the larger number of synonyms, in other words, this region type
whose cluster in the feature vector space has the highest cardinality. The next step
is to find the model vector within Mz, which has the highest confidence to contain
this region type, i.e. the smallest distance to this region type. Thus if the region type
selected is the i-th of the Visual Thesaurus, then the selected model vector among
the Mz set is the one for which the value of the i-th element is minimized. For the
first selected representative frame and for every next one, it is checked which of the
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region types are contained within it. A video frame is supposed to contain a region
type if the distance for this particular region type is below a preselected threshold
ts. Let Rs,i and Ms,i denote the sets of the selected region types and model vectors,
at the i-th iteration of the algorithm, respectively. Rs,i actually contains the region
types’ indices. The selected region type and the model vector of the selected frame
are added to the initially empty sets Rs,0 and Ms,0 respectively, so they cannot be
selected again. We should also mention here that all other region types contained in
each selected frame are also added in Rs,i during the i-th iteration. The set of these
region types is depicted in Eq. 24.

Every other frame is then selected using the aforementioned procedure. The
model vector with the highest confidence for the region type with the larger number
of synonyms, omitting those region types which are contained in the already selected
frames. This process ends when all region types of the thesaurus are contained in the
selected frames (|Rs,i| = NT). It is obvious that the number of the selected keyframes
to represent the shot with this approach cannot be more than NT , which denotes the
number of the region types. The set Rs,k at the k-th iteration is depicted in Eq. 23,
while the determination of the region type that is selected each time is depicted in
Eq. 25.

Rs,k = {ri} ∪ {rc,i−1}, i = 0 . . . k − 1, Rs,0 = ∅ (23)

rc,k = { j ∈ [1 . . . NT ] : m̀k( j) < ts}, rc,0 = ∅ (24)

rk = arg maxi(|wi|), i /∈ Rs,k (25)

Also, the set of the selected model vectors at the k-th iteration, Ms,k is depicted
in Eq. 26 while the calculation of the model vector m̀k that is selected is depicted in
Eq. 27.

Ms,k = {m̀i}, i = 0 . . . k − 1, Ms,0 = ∅ (26)

m̀k = arg minm

(

m(rk)
)

, m ∈ Mz, m /∈ Ms,k (27)

When our approach for keyframe extraction is used for video summarization, it
provides a large number of keyframes to represent the video features. This number
is the number of clusters resulted after the subtractive clustering algorithm is applied
on the set of model vectors (NS). Moreover, when it is used for the selection of some
representative keyframes within a shot it results to a number of keyframes less or
equal to the one of the region types of the thesaurus. Thus, keyframes are selected
to carry as much information as possible of the entire visual thesaurus. The latter
can be useful in high-level concept detection in video, where a more meaningful
representation of the visual content is sometimes required.

8 Visual concept detection

In this section, we present the proposed approach for high-level concept detection
in video sequences. The concept detectors are applied on a small set of keyframes
extracted from each video shot (as it was described in Section 7) or on a single
keyframe representing the shot (following a more simplistic approach).



354 Multimed Tools Appl (2009) 41:337–373

When working on a single keyframe per shot and after extracting model vectors
from all keyframes of the (annotated) training set, an SVM-based detector is trained
separately for each high-level concept. For the implementation of the SVM detectors,
the well-known LIBSVM [4] library has been used and a polynomial kernel type has
been selected. The input of the detectors is either a model vector mi describing a
frame of the input video in terms of the visual thesaurus, or a transformed in the
concept space vector m̂i describing a keyframe in terms of regions co-occurrence,
in case that LSA was used. The output of the detector is the confidence that the
given video frame contains the specific concept, in other words, a value between 0
and 1. Values of confidence close to 1 indicate a high certainty that the concept is
depicted in the video frame, while values close to 0 indicate a low one. It is important
to clarify that the detectors are trained based on annotation per image and not per
region. The same stands for their output, thus they provide the confidence that the
specific concept exists somewhere within the frame in question. Several experiments,
presented in Section 9 indicate that the threshold above which it is decided that
a concept exists, also varies depending on the classifier and should be determined
experimentally, in a separate process for each concept. The confidence output for
a single keyframe represented by a model vector m is depicted in Eq. 28 and the
binary output after applying a threshold t to the confidence value is depicted in
Eq. 29. Instead of m, m̂ is used if LSA is applied.

c(m) ∈ [0, 1], m ∈ M (28)

d(m) =

{

0, c(m) ≤ t

1, c(m) > t
(29)

Keyframe extraction (as described in Section 7) is used to select a number of
frames able to represent the visual and the semantic content of a video shot. On
each video frame, the set of the high-level concept detectors that have already been
described are applied. Let Ns be the number of keyframes per shot, which varies
between the various shots. If m j, j = 1 . . . Ns, are the corresponding model vectors
to the selected keyframes, then the binary output of the detection per shot by using
all extracted keyframes is depicted in Eq. 30, where s is the shot in question.

ds(s) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0,

Ns
∑

j=1

d(m j) = 0

1,

Ns
∑

j=1

d(m j) > 0

(30)

This approach facilitates the high-level concept detection for those concepts that
may be depicted within the shot but not in the single keyframe that has been
selected to represents the shot content. Moreover, for some other cases, a concept
may be depicted in a keyframe, but due to effects like occlusion or blurring, its
detection is difficult, while in other frames of this shot those restraining effects
may not exist. Thus, selecting more frames before and after the most representative
keyframe increases the possibility of the concepts to be detected in one of them. It is
expected that with this approach, the recall of the high-level concept detection will
be significantly increased, while leaving precision to similar or slightly higher levels.
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Fig. 6 Examples of keyframes containing representative positive examples for each of the detected
high-level concepts

9 Experimental results

This section presents the results of the aforementioned techniques for concept
detection and keyframe extraction, applied on the TRECVID 2007 Development
Data. These data comprise a large dataset consisting of 110 videos, segmented into
shots. The shot segmentation is provided to all active TRECVID participants and
used herein. A keyframe has been selected from each shot, thus 18113 keyframes
have been made available. The annotation used herein, has resulted from a joint
effort among several TRECVID participants [2]. For the evaluation of our con-
cept detection approach we selected 9 of the TRECVID concepts. Representative
keyframes annotated as positive for these particular concepts are depicted in Fig. 6.
Moreover the keyframe extraction algorithm is applied on each shot and several
keyframes are selected. Then the high-level feature extraction algorithm is applied on
them to enhance detection performance. We used different measures for evaluating
the performance of the proposed detection approach, assuming a ground truth
notion. Precision, recall and average precision, using the extracted keyframes, were
determined and calculated using the ground truth data from the TRECVID 2007
dataset [2]. Our keyframe extraction approach is also used for a video summarization
and the selected keyframes are presented as an output of the algorithm. Human
evaluators/users were not involved in any evaluation procedure.

The TRECVID 2007 [31] development and test dataset consists of a number
of MPEG-1 videos provided by the Netherlands Institute for Sound and Vision.
This content is consisted of approximately 400 hours of news magazine, science
news, news reports, documentaries, educational programming, and archival video
in MPEG-1 format, available for use within the TRECVID benchmark. For the
high-level feature extraction task, 50 hours of these data are available to be used
for training.2

Last but not least and regarding our implementation of the aforementioned
algorithms we should note that the segmentation algorithm mentioned in Section 3
is a multi-resolution variation of the RSST algorithm implemented as a prior work

2More details can be found in http://www-nlpir.nist.gov/projects/tv2007/tv2007.html#3.

http://www-nlpir.nist.gov/projects/tv2007/tv2007.html#3
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Table 2 Number of positive
examples within the
development data and
the constructed training/
testing sets

Concept Number of positives

Development data Training Testing

Desert 52 36 16

Road 923 646 277

Sky 2146 1502 644

Snow 112 78 34

Vegetation 1939 1357 582

Office 1419 993 426

Outdoor 5185 3000 1556

Explosion_fire 29 20 9

Mountain 97 68 29

of some of the authors. This research effort is presented in detail in [1], where
a potential reader may seek further clarifications. The forthcoming extraction of
visual descriptors is performed using the VDE application, which is also described
in Section 3. Both the aforementioned implementations are command line tools,
whereas the rest of the detection and keyframe extraction algorithms have been
implemented in the MATLAB3 computing environment and programming language.

9.1 Large scale high-level concept detection experiments

Table 2 summarizes the detected concepts and the number of positive examples
within the development data and the constructed training/testing sets for each of
them. Using the constructed training set, due to the large number of regions derived
after segmentation, not all available regions are used. Instead, all regions derived
from keyframes that contain at least one of the high-level concepts and an equal
number of random regions derived from keyframes that do not contain any of the
high-level concepts, are used to form the visual thesaurus. Subtractive clustering is
applied, while NT is the number of the region types created.

First of all, several experiments are performed by varying the ratio λ of negative
to positive examples within the given training set. For a heterogeneous and loosely
annotated dataset such as TRECVID, it is very difficult to model positive examples
of each concept. More specifically, in Fig. 7 some representative examples of the
high-level concept vegetation both from the TRECVID and the COREL datasets
are depicted. It easy to observe that the low-level features of the regions that belong
to the specific concept vary a lot in the case of TRECVID, while appear very similar
in COREL. More examples are also shown in Fig. 6. Moreover, in TRECVID the
annotation is global, i.e. for the entire keyframe, while the concepts cover only a small
part of it. As it becomes obvious, a larger number of negative examples is needed,
but should be selected appropriately, in order to avoid biasing the detectors towards
the negative examples. To test the performance of the differently trained classifiers,
a testing set with a ratio λ = 1, i.e. consisting of an equal number of positive and
negative values is used. Results are summarized in Table 3, where the empasized
values are the highest average precision values for each concept. It may be easily

3http://www.mathworks.com/.

http://www.mathworks.com/
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a

b

Fig. 7 Example images depicting the concept vegetation from COREL (a) and TRECVID (b)

observed that for almost every concept, a value of λ between 4–5 is appropriate to
achieve the highest possible average precision (AP) [15] by the classifiers.

Having selected the training set, experiments on the threshold confidence value
for each classifier are performed. As testing set for each concept, the set of all
remaining keyframes is used. Precision and recall measures are calculated for each
high-level concept and for a range of threshold values, starting from 0 and increasing
with a step of 0.1 until they reach the value of 0.9. Then, the threshold value where
precision is almost equal to recall is selected (Fig. 8). This way, both measures are
kept in equally good values, as it is generally desirable. Curves for concepts desert

and explosion_fire having a too high ratio λ cannot be seen clearly because of the low
precision values. Table 4 summarizes the selected threshold values for all 9 concepts.
As it may be observed, for those concepts that their positive examples do not vary a
lot, in respect to their model vectors, such as desert and mountain, a high threshold
value is selected.

In the last part of the experiments, the proposed approach is evaluated on the
testing sets derived from the TRECVID 2007 development data. The testing set
of each concept contains 30% of all positive examples and is complemented using
part from negative examples, i.e. from all keyframes that do not contain the specific

Table 3 Average precision on a test set with λ = 1, for several values of the ratio λ within the training
set

Concept Average precision

λ = 1 λ = 2 λ = 3 λ = 4 λ = 5

Desert 0.659 0.699 0.365 0.477 0.663

Road 0.594 0.609 0.595 0.606 0.695

Sky 0.679 0.723 0.688 0.719 0.736

Snow 0.914 0.905 0.929 0.917 0.950

Vegetation 0.717 0.773 0.764 0.752 0.780

Office 0.633 0.707 0.738 0.707 0.723

Outdoor 0.683 0.684 0.697 – –

Explosion_fire 0.387 0.367 0.348 0.647 0.382

Mountain 0.687 0.611 0.545 0.625 0.766
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Fig. 8 Precision-recall for increasing threshold values

concept. The number of negative keyframes increases gradually, until it reaches
certain values of λ. For each concept, the value of λ is increased until it reaches its
maximum possible value. Each time the AP is calculated, with a window equal to all
the testing set.

Figures 9 and 10 show how AP changes with respect to λ of the test set. The
number of positive examples is kept fixed, while the number of negative increases. It
may be observed that when the value of λ is relatively small, i.e. λ = 4, as in the case
of typical data sets, the performances remain particularly high. When λ increases,
then the performances fall as expected. Table 5 summarizes the concepts that are
detected and the detection results.

In the TRECVID 2007 benchmark, 20 of the high-level concepts were selected
for evaluation. Office, desert, explosion_fire and mountain were included in the
evaluation process. Thus, in Table 6 we present one group for each concept, which

Table 4 Thresholds for the
high-level concept detectors

Concept Threshold

Desert 0.8

Road 0.5

Sky 0.3

Snow 0.6

Vegetation 0.4

Office 0.5

Outdoor 0.3

Explosion_fire 0.2

Mountain 0.8
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Fig. 9 AP vs. λ of the test set for desert, snow, explosion_fire and mountain

Fig. 10 AP vs. λ of the test set for office, outdoor, road, sky and vegetation
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Table 5 Experiments for test sets with λ = 4 and with the maximum value of λ. P=precision,
R=recall, AP=average precision

Concept λ = 4 λ = max

P R AP P R AP

Vegetation 0.643 0.312 0.460 0.322 0.313 0.232

Road 0.295 0.046 0.280 0.045 0.047 0.043

Explosion_fire 0.291 0.777 0.182 0.000 0.000 0.001

Sky 0.571 0.304 0.436 0.258 0.304 0.214

Snow 0.777 0.411 0.460 0.013 0.412 0.008

Office 0.446 0.157 0.318 0.117 0.157 0.072

Desert 0.333 0.312 0.287 0.003 0.313 0.064

Outdoor 0.425 0.514 0.361 0.425 0.514 0.361

Mountain 0.444 0.137 0.241 0.003 0.379 0.037

achieved one of the top rankings (between first and third) and the corresponding
average precision, mean and median score within results of all groups. The measure
calculated is the inferred average precision on a 50% random pool sample, while in
our experiments the actual average precision has been calculated. It should also be
noted that those results are on the TRECVID 2007 test data. The test data of our
approach is a subset of the TRECVID 2007 development data because 70% of the
positive examples and some negative examples (1 to 4 times the number of positives)
have been used to train the detectors. Our test data has a higher value of ratio λ from
the test data TRECVID 2007 thus leading to an uneven comparison since detection
performance depends on λ like we have already mentioned. By observing results of
Table 6 with the ones of Table 5 (AP of maximum λ) one can say that although our
method achieves lower scores than the best ones, it performs better than the mean
and median scores for 3 of the 4 concepts. For the concept explosion_fire the low AP
is achieved with our approach probably because only 20 positive examples were used
to train the detector.

Columbia university group employs a simple baseline method, composed of three
types of features, individual SVMs trained independently over each feature space,
and a simple late fusion of the SVMs and finally trains detectors for 374 high-
level concepts [43]. In addition a new cross-domain SVM (CDSVM) algorithm for
adapting previously learned support vectors from one domain to help classification
in another domain has been developed. Tsinghua university group uses 26 types
of various color, edge and texture features and compares Under-sampling SVM
(USVM) and SVM with RankBoost, direct Boosting algorithms. For fusion, sequen-
tial forward floating feature selection (SFFS), simulated annealing fusion (SA) and
Borda based rank fusion approaches are designed and compared respectively.

Table 6 Trecvid 2007 results on the evaluation data

Concept Group AP Mean Median

Office CITY UHK 0.222 0.074 0.066

Desert Tsinghua 0.155 0.022 0.009

Explosion_fire COL 0.037 0.010 0.006

Mountain OXVGG 0.120 0.037 0.032
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Fig. 11 AP vs λ for outdoor, office and road

Fig. 12 AP vs λ for vegetation and sky
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Fig. 13 AP vs λ for desert, explosion_fire, snow and mountain

9.2 Utilizing latent semantic analysis

A separate training and testing set has been generated for each concept. 70% of the
positive examples was randomly selected for the training set of each concept and the
remaining 30% for the testing set. Negative examples were selected randomly from
the remaining keyframes.

After segmenting every keyframe of the training set to coarse regions a visual
thesaurus of region types is constructed, by subtractive clustering. After extracting

Table 7 Experiments with the use of LSA for test sets with λ = 4 and with the maximum value of λ

Concept λ = 4 λ = max

P R AP P R AP

Vegetation 0.626 0.221 0.395 0.268 0.222 0.179

Road 0.400 0.050 0.210 0.036 0.051 0.044

Explosion_fire 0.200 0.111 0.148 0.001 0.111 0.000

Sky 0.559 0.271 0.372 0.288 0.207 0.184

Snow 0.818 0.264 0.529 0.023 0.265 0.012

Office 0.406 0.147 0.285 0.095 0.148 0.110

Desert 0.215 0.687 0.246 0.001 0.438 0.063

Outdoor 0.331 0.634 0.382 0.331 0.634 0.382

Mountain 0.110 0.035 0.072 0.003 0.172 0.001
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a

b

concept sky

concept vegetation

Fig. 14 True positive examples (a, b)

model vectors from all images of the training set, LSA is applied. The number k

of the largest singular values to keep is set to 70. Then an SVM-based detector is
trained for each concept. Its input is the output of the LSA algorithm m̂i and its
output denotes the confidence that the specific concept exists.

Figures 11, 12 and 13 show the Average Precision (AP) [15] vs the ratio λ of
negative to positive examples. The number of positive examples is kept fixed, while
the number of negative increases. It may be observed that when λ has a relatively
small value, i.e. λ = 4, as in the case of typical test sets, the performance of the

a

b

concept sky

concept vegetation

Fig. 15 False negative examples (a, b)
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a

b

concept sky

concept vegetation

Fig. 16 False positive examples (a, b)

classifiers remains particularly high. When λ increases, then the performance falls.
Moreover, we may observe that the use of LSA does not always improve the results.
For certain concepts such as outdoor, office and road, LSA improves the results, while
λ increases, as depicted in Fig. 11. This means that positive examples are detected in
a lower and more correct rank. The common property of these concepts is that they
cannot be described in a straightforward way, such as e.g. vegetation and sky (Fig. 12).
That becomes obvious when examining the TRECVID data. Finally, for the concepts
depicted in Fig. 13, where the available number of positive examples is particularly
small, using LSA improves only the semantic concept snow. Table 7 summarizes the
concepts that are detected and the detection results with the use of LSA.

9.3 Discussion on the detection results

In this section, some comments regarding the detection results are presented, focus-
ing on examples of true and false detections of high-level concepts. Examples are

Table 8 Detection results
while using more
representative keyframes
selected with our algorithm

Concept P R AP

Vegetation 0.625 0.450 0.515

Road 0.300 0.062 0.324

Explosion_fire 0.220 0.780 0.180

Sky 0.525 0.522 0.585

Snow 0.635 0.405 0.452

Office 0.433 0.170 0.320

Desert 0.312 0.375 0.348

Outdoor 0.410 0.658 0.450

Mountain 0.422 0.135 0.230
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Fig. 17 Frames within a shot

depicted for concepts sky and vegetation in Figs. 14, 15 and 16 for true positive, false
negative and false positive examples, respectively.

In Fig. 14a, 4 keyframes containing the concept sky and in Fig. 14b 4 keyframes
containing the concept vegetation are depicted. These examples correspond to
correct detection of the aforementioned concepts to the presented keyframes. One
can easily observe the characteristic regions of sky and vegetation.

Figure 15 presents false negative keyframes, which is keyframes depicting the
corresponding concepts but detected from the trained classifiers as negatives. First
and third images of Fig. 15a are examples of artificial regions of sky which have too
different visual features from the normal ones. A classifier trained to detect blue,
grey (cloudy) or even with an orange tone sky (sunset) faces difficulties in detecting
artificial purple (first) or yellow (third) sky. Moreover in the first and the second
image the segmentation actually merges region of sky with tree branches so visual
features are degraded. In the fourth image there is a totally white region of sky due to
the lightning conditions. As for the concept vegetation, in first, second and last image
of Fig. 15b, the existing small regions of vegetation are also merged with other regions
as a result of the under-segmentation of the image. Finally, third image contains

a bone keyframe more keyframes extracted

Fig. 18 Single keyframe selected manually by TRECVID to represent the shot (a) and more
keyframes extracted with our algorithm (b)
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a flower, but due to poorly trained annotators has been mistakenly annotated as
vegetation.

Finally, there also exist some examples of images which do not depict the selected
concepts, however they were detected as positive. These false positive examples
are depicted in Fig. 16. All images falsely detected are positive for the concept sky

(Fig. 16a) contain light blue regions which are similar to a typical region of sky in both
color and texture. Moreover, for the rest of the images, two annotation errors are
present where the concept vegetation is depicted but were not annotated as positive.
These are the first and third image in Fig. 16b. Second image of this figure has actually
a dark green tone and texture thus is similar with the ones that a typical vegetation

region would have.

Fig. 19 Frames within the video
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9.4 High-level concept detection using keyframe extraction on shots

The approach described in Section 8 of high-level concept detection while from each
shot a relatively small number of representative keyframes is extracted, as described
in Section 7, is evaluated in 6 of the TRECVID videos and compared with detection
results using a single keyframe. Results are depicted in Table 8. Results show exactly
what was expected, i.e. recall values are higher and precision values are more or less
of similar values.

To better understand why the representation of a shot with more than one
keyframes enhances detection in video shots, we present herein the example where
from a shot, a single keyframe extracted, and a larger number of more extracted
representative keyframes. A large number of frames within the shot are extracted to
represent its visual and semantic content and are depicted in Fig. 17. The duration
of this is almost equal to 5 seconds. The concepts it contains among those that have
been selected for the high-level concept detection are obviously outdoor, vegetation

Fig. 20 Keyframes extracted
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and sky. The single keyframe chosen to represent the shot is the one depicted in
Fig. 18a. Our keyframe extraction algorithm extracted the 4 keyframes depicted in
Fig. 18b. It is obvious that the 1st keyframe in Fig. 18b is better for detecting sky and
the 2nd is better for detecting vegetation than the single keyframe randomly selected.
Moreover the 4 keyframes will surely increase the possibility of detecting correctly
the outdoor concept too.

9.5 Keyframe extraction for summarization

In this final section we present indicative frames (Figs. 19 and 20) containing some
preliminary results of our proposed method for summarization using the aforemen-
tioned keyframe extraction algorithm. For the sake of a more clear presentation,
we used a part of a TRECVID video from the CNN news, since in this case, the
keyframes are more heterogeneous and the keyframe selection is more difficult.

The video contains the anchorman in the studio, some commercials, some indoor
and outdoor interviews, charts, etc. Its duration is approximately 620 seconds. In
Fig. 19 we present in brief the visual content of it. Then in Fig. 20 we present the
extracted keyframes. We should emphasize again that those keyframes are all
the frames closer to the centroid of the cluster created with subtractive clustering
on the model vectors.

Our approach for video summarization exploits the novel model vector repre-
sentation by utilizing a region thesaurus that is formed within the given video. This
way, a number of representative keyframes is extracted. In Section 9.4 the keyframe
extraction algorithm was evaluated in combination with high-level concept detection.
Therein, significant improvement on the performance has been observed. In Fig. 20
we present the results of the algorithm when used to summarize a whole video.
Keyframes extracted depict the most essential high-level concepts included in the
video. The novelty of this approach relies on the fact that the visual thesaurus is
constructed on each video. Thus the thesaurus is adapted on the specific content
and the keyframes are dynamically represented by the region types contained in
the particular video. However, we should note that it remains to further work to
evaluate each video individually using appropriate ground truth or involving users in
the evaluation procedure.

10 Conclusions and future work

Our research effort indicates clearly that high-level concepts can be efficiently
detected when an image is represented by a mid-level model vector with the aid
of a visual thesaurus. We presented a methodology on working with large data sets,
such as the TRECVID collections. Extensive experiments have been presented and
the effect of the ratio λ of negative to positive examples on training and testing data
has been examined and the applied generic approach tackled successfully most of
the selected high-level concepts. LSA was also exploited by transforming the image
descriptions into the concept space. Moreover a keyframe extraction algorithm based
also on image representation by a model vector was combined with the high-level
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concept detection scheme to provide a more meaningful representation of the visual
content and finally enhanced the detection performance.

To conclude, the main advantage of the presented high-level concept detection
approach is that it provides a generic method of detecting material-like concepts or
scenes, instead of concept oriented or heuristic methods. Moreover, since it is based
on the co-occurrences of the region types, it is invariant to the size of the area that
contains the concept in question. However, its main limitation is that it depends a
lot in the segmentation algorithm that is used at the initial stage. If the area of a
concept is significantly small and similar to its neighbor it may easily be merged,
thus a misleading model vector may be formed. Moreover, it is limited to this certain
type of concepts, that is materials and scenes while it cannot be extended to detect
objects. The keyframe extraction algorithm provides a novel approach based on the
local (within a shot) mid-level features and allows the concept detection approach
to efficiently detect the concepts in question within a shot without having to analyze
every video frame separately.

Future work aims to compare the presented algorithm with other approaches,
within the same data sets derived from the TRECVID collections. Moreover, the
contextual relations among image regions may also be exploited in order to assist
the results of the high-level detection. Finally, the summarization algorithm will be
separately evaluated for a large number of videos possibly with the involvement of
users.
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