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Abstract: Real-time exposure air monitoring is essential to protect the respiratory health of the
Malaysian traffic police. However, the data from monitoring stations have been inadequate to provide
accurate information about their exposure. This report describes the conceptual design of a wireless
exposure indicator system, and then evaluates the field performance of the system by collocation. The
study tested the accuracy of particulate matter size 2.5 (PM2.5), carbon monoxide (CO), and nitrogen
dioxide (NO2) by comparing the measurements from the prototype with the measurements from
reference instruments. The field testing found that the data tested were significantly correlated with
each other (PM2.5-rs = 0.207, p = 0.019; NO2-rs = 0.576, p = 0.02 and CO-rs = 0.545, p = 0.04). The
prototype proved to be successful as it can compute and transmit real-time monitoring data on the
level of exposure to harmful air.

Keywords: ambient air monitoring; air pollution; wireless sensor; occupational exposure; field evaluation

1. Introduction

Malaysia is facing a drawback in safety and health due to rapid industrialization
and urbanization, with increased pollution (notably air pollution) resulting in a lower
quality of life and reduced life expectancy [1]. Referring to an article by the World Health
Organization (WHO) (2018), air pollution will leave an impression on those who were
exposed to it. Polluted air can cause respiratory irritation or breathing difficulties even for
healthy people [2]. The actual risk depends on the current health status, the pollutant type
and concentration, and the length of exposure to polluted air [3]. Despite that, traffic police,
especially, are directly exposed to polluted air daily as they constantly work outdoors. This
is in line with several studies which found that these traffic police are affected in terms of
their respiratory health due to the exposure to high concentrations of particulate matter in
the polluted air [4,5]. With N95 face masks as their only protection in congested areas daily
for eight working hours, it is simply not enough to protect their respiratory health [4].

Air pollution monitoring is used for many purposes, from improving the quality of life
to military operations, as demonstrated by El Raey [6]. However, conventional methods are
not mobile, available only in fixed locations, expensive, have a limited spatial resolution,
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and are inefficient in communicating the results [7]. Most importantly, the methods to
communicate air quality data via government websites are ineffective and troublesome
because of the low spatial and temporal resolutions [8]. Although the low spatio-temporal
resolution is ideal for environmental monitoring, it is highly inadequate for communities,
especially outdoor workers, to know their exposure to air pollution, and cannot represent
individual health risks [9]. Maraiya, Kant, and Gupta have demonstrated a new technology
equipped with low-cost sensors that can directly track air pollutants and deliver online and
real-time results using the Wireless Sensor Network (WSN) [10]. Per the recommendations
of the US Environmental Protection Agency (EPA) and the European Union (EU) Directive,
various studies have been conducted on the use of real-time air monitoring using low-
cost sensors [11–13]. The new technology has leverage in terms of low-cost requirements,
being mobile, relatively small in size, having low power usage, large coverage area, and
most significantly, online availability of data on websites and smartphone applications [7].
Hence, this present study describes an available air monitoring method for ambient air and
low-cost sensors used as a new technology, which has attracted attention in recent years.
The search concludes on the gap which is the lack of a mobile air monitoring system that
provides real-time data communicated wirelessly among the users using low-cost sensors.
Reliable data generated from the sensors are also a gap to address. The development of the
prototype is explained in the study, focusing on the methodology of its development and
initial testing in field deployment.

The necessity for a useful tool that can efficiently assist in the detection of air con-
taminants was highlighted by several earlier studies conducted among the Malaysian
traffic police [14,15]. Implementing an indicator system with real-time exposure to air
pollutants allows the traffic police to be alert and aware of the changes in their surrounding
environment. This will encourage them to act accordingly when the exposure exceeds
the acceptable limit set by the Malaysian Department of Environment (DOE) at any given
time. Hence, it is crucial to develop a device that can help monitor and control the level
of exposure to outdoor air pollution. Nevertheless, air quality monitoring devices that
are currently equipped with this technology are still limited in Malaysia. In response to
this problem, this study proposes a conceptual design of a wireless outdoor individual
exposure indicator system prototype for the traffic police according to their needs while on
duty and conducts field testing for the functionality of each component of the prototype.

2. Materials and Methods
2.1. The System

One promising technology for monitoring ambient air pollution is using low-cost
sensors, which have mobile characteristics and low requirements for maintenance [16].
Subsequently, these sensors theoretically allow air pollution monitoring to become feasible
in far more locations [17]. In the field of air monitoring, low-cost sensors have a wide
range of applications but are not restricted to personal exposure and health monitoring,
community monitoring, and ambient air monitoring [18].

These small and lightweight sensors offer wearable applications, an opportunity that could
play a key role in determining the effect of air pollution on human health in the future [19].
In addition, the sensors can be incorporated on various mobile and stationary monitoring
frameworks to proactively manage pollutant sources and originating regions. With promising
results, these sensors have already been evaluated against reference methods [19,20].

A real time outdoor wireless system was developed using Wireless Sensor Networks
(WSNs) equipped with low-cost sensors (PM2.5, CO, and NO2, relative humidity, and
temperature). This system differs from other existing systems in that it addresses the needs
of the Malaysian traffic police and is aimed at mobility and efficient data communication
regarding air pollution. The system uses optical light scattering sensors for the PM monitor
and electrochemical sensing principles for CO and NO2 monitors. Communication wise, a
Wireless Sensor Network (WSN) is used with Arduino as its microcontroller and low-cost
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sensors for the air pollutants. This system has been used for a number of research projects
and has been proven to work well for multiple purposes [21].

2.2. Importance for Traffic Police

Since air pollution is often coupled with congested traffic in densely populated areas,
traffic police officers in Malaysia are overwhelmed by the consequences of working to
regulate traffic congestion [14], as the diesel engines in freight and passenger vehicles
produce extremely fine particles that are hazardous to human health [22]. The impact of
ambient air pollution can be seen annually among traffic police officers [4,5]. However, it is
difficult to limit or regulate personnel’s exposure to air pollutants as their work demands
them to be outdoors for most of the time. Therefore, the alternative solution is to monitor
their exposure and to have them act accordingly when the reading is high. To address this
issue, this research offers a conceptual design of a wireless outdoor individual exposure
indication system prototype for traffic cops based on their needs while on duty, as well as
field testing of the prototype’s performance.

2.3. The Conceptual Design

The conceptual design of the individual outdoor exposure indicator using a wireless
system involves several stages as summarized (Figure 1). Stage One is focused on the level
of exposure of traffic police to outdoor air pollution in a heavy traffic area using secondary
data from DOE, which is presented in another article by the same author [14]. Once the
current situation of the traffic police is identified in Stage One, the next stage involves
recognizing the occupational hazards faced by Malaysian traffic police in current situations
using previous literature as Stage Two, which is discussed in a recent publication [23]. The
review in Stage One and Stage Two presents a better knowledge of the actual situation and
the working environment [24]. Both stages are critical for identifying and recognizing the
Malaysian traffic police’s criteria and needs for the individual outdoor exposure indicator
using a wireless system. Data from these studies were analyzed and used as an input for
the third stage which is the conceptual design. A closed discussion was held a few times in
January 2019 at Bukit Aman Headquarters; in which the research team (a representative
from an Electronic System Design and Software Development company, a Supervisory
Committee, and a representative of Royal Malaysian Police) successfully worked together to
narrow down the criteria that were mutually agreed on, based on the scope and limitations
of the systems developed in previous studies. The discussions were carried out in order to
determine the most suitable and essential criteria including the prototype’s components.
The explanation of the concept development is further discussed in detail in another recent
publication by the same author [25].
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Figure 1. Summary of the design process. Figure 1. Summary of the design process.

These two stages illustrate a list of criteria (Figure 2). These criteria are subsequently
expanded into a Product Design Specification (PDS) document, which serves as a reference
throughout the prototype development process. Thereafter, a wireless outdoor individual
exposure indicator system prototype is developed, and initial testing to test its functionality
is conducted. The development process is a continuous process starting with the PDS
development to the field testing. The field-testing stage is critical for ensuring that the
system is free of mishaps [26].
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2.4. Experiment Location

The next stage is to conduct a use and field evaluation process which is undertaken
according to the guidelines of the National Exposure Research Laboratory of the United
States Environmental Protection Agency [16] and the United Kingdom of Environmental
Agency Technical Guidance Note [27].

The prototype involved in this study was designed utilizing user-centered concepts
with the goal of being a low-cost mobile monitoring device, and detailed designs have been
published by the same author elsewhere. The study tested the accuracy of the prototype’s
temperature, relative humidity, PM2.5, CO, and NO2 measurements by comparing them
with measurements from DustTrak II for PM2.5 and data from DOE for the rest of the
parameters. Table 1 shows the parameters and the instruments used for comparison.

Table 1. Parameters and reference monitors used in the study.

Parameters Reference Monitor

Particulate Matter with diameter of less than
2.5 micrometers (PM2.5) TSI DUSTTRAK II Aerosol Monitor 8532

Carbon Monoxide (CO) Data provided by Malaysia’s Department of
Environment (DOE)Nitrogen Dioxides (NO2)

Malaysian DOE is a department that is responsible for monitoring the air quality in
Malaysia. Air quality is continuously and routinely monitored to detect any changes in the
air quality status which may cause harm to human health and the environment [28]. This
monitoring is known as Continuous Air Quality Monitoring (CAQM). The Department
of Environment (DOE) tracks the ambient air quality of the country across a network of
51 stations. In order to identify any major change in air quality that could be detrimental
to human health and the environment, these monitoring stations are strategically located
in suburban, traffic, and industrial areas. Of the 51 stations built in Malaysia, 26% are
industrial stations, 57% are residential, 2% are traffic, 2% are background stations, and
13% are PM10 stations. These are methods of high resolution which provide continuous
records of the levels of pollutants. With minimal operator interference, they may work
over prolonged periods (weeks or months) [29]. They have a high degree of accuracy
of measurement and have levels of detection around one order of magnitude or more
below normal levels of background. These are the most expensive methods of tracking,
as would be expected. For good data quality, a high standard of maintenance, calibration,
and operational and quality control procedures are required [30]. The system consists of a
sensor mode gateway and back-end platform controlled by the lab view software system,
in which the data can always be recorded in a database. The system is installed to the main
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road in the city to observe the carbon monoxide concentration caused by the vehicle, but
most of these strategies are expensive, provide low resolution collected data, and these
stations are less densely deployed [31].

The DustTrakTM II Aerosol Monitor 8530 which is manufactured by TSI Incorpo-
rated, Minnesota, United States of America (USA) is a data-logging, single-channel, light-
scattering laser photometer that captures a gravimetric sample and provides real-time
aerosol mass values. It makes use of a sheath air system to keep the optics clean for in-
creased dependability and little maintenance. This system separates the aerosol in the optics
chamber. It is appropriate for both sterile office settings and tough industrial locations, as
well as for outdoor applications and construction and environmental sites. Dust, smoke,
fumes, and mists are among the aerosol pollutants that the DustTrak II Aerosol Moni-
tor monitors. With gravimetric sampling, the DustTrakTM II Aerosol Monitor provides
real-time aerosol mass data for particle sizes ranging from 0.1 to 10 m [32].

Due to the Movement Control Order (MCO) in Malaysia following the COVID-19
pandemic, a field research study is restricted; thus, the monitors were installed within a
residential area. For the stationary testing, the monitors were set to measure pollutants
simultaneously at 1 min intervals for eight hours daily (working hours), for 16 consecutive
days (from 13 November 2020 to 28 November 2020). Figure 3 shows the location of the
stationary testing for the collocation. The monitors were assembled at a junction in a
high-density residential area, in a suburban town, Ampang Jaya, near the Kuala Lumpur
city center. The monitors were located at an approximate height of 1 m. Care was taken to
ensure the monitors were placed away from any direct pollutant sources, heat sources, and
ventilation ducts or openings.
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65f86dd4897:0xdb6d184b895e07c7!8m2!3d3.133892!4d101.7516751, accessed on 10 November 2020).

To test its functionality while mobile, a mobile monitoring was deployed around the
same area due to the MCO. The mobile testing was carried out on 24 November 2020 for
two continuous hours. The routes taken during mobile testing are shown in Figure 4.
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+Kuala+Lumpur,+Selangor/@3.1311177,101.7523725,16z/data=!4m5!3m4!1s0x31cc365f86dd4897:
0xdb6d184b895e07c7!8m2!3d3.133892!4d101.7516751, accessed on 10 November 2020).

2.5. Data Analysis

The data from both monitors were exported into IBM SPSS Statistics Version 24 for
statistical analysis. The Kolmogorov Smirnov test rejected the hypothesis of normal distribu-
tion. Therefore, the Spearman’s rank correlation was carried out to determine the correlation
of both monitors. The linearity among the monitors was tested using linear regression.

3. Results
3.1. Conceptual Design Based on PDS

A detailed product design specification (PDS) was developed based on the criteria
acquired from previous research studies. PDS is used to analyze, design, manufacture,
and construct a component to achieve a specified degree of efficiency, performance, or
quality [33]. The PDS criteria were chosen for the development of the individual outdoor
exposure indicator using a wireless system. The details are tabulated in Table 2. The assem-
bly of the prototype of the individual outdoor exposure indicator using a wireless system
to measure PM, CO, and NO2 levels and other factors of influence such as temperature and
humidity among the Malaysian traffic police and the external view is illustrated (Figure 5).

Table 2. PDS for the individual outdoor exposure indicator using wireless system.

Criteria Requirements

1 Performance Using a cellular connectivity and rechargeable power supply; Data to be measured and uploaded
at 5 s time interval.

2 Environment It can withstand relatively high and low temperatures (0–60◦), vibration, and shock.

3 Life in service
It can withstand up to 2 to 5 years with regular calibration as claimed by the manufacturer,

SHINYEI Technology Co., Ltd. (Osaka, Japan). Further long-term experimentation needs to be
conducted to support the claim.

4 Maintenance Easy regular calibration is required for accuracy of data and efficient performance.

5 Standard &
Specification

Able to measure important parameters (according to the Malaysian Department of Environment
and US EPA) of air pollution:

Particulate Matter (PM2.5)
Carbon Monoxide
Nitrogen Dioxide

Temperature and humidity
Multi gases (Propane, Butane, Ammonia)

https://www.google.com/maps/place/Pandan+Indah,+Kuala+Lumpur,+Selangor/@3.1311177,101.7523725,16z/data=!4m5!3m4!1s0x31cc365f86dd4897:0xdb6d184b895e07c7!8m2!3d3.133892!4d101.7516751
https://www.google.com/maps/place/Pandan+Indah,+Kuala+Lumpur,+Selangor/@3.1311177,101.7523725,16z/data=!4m5!3m4!1s0x31cc365f86dd4897:0xdb6d184b895e07c7!8m2!3d3.133892!4d101.7516751
https://www.google.com/maps/place/Pandan+Indah,+Kuala+Lumpur,+Selangor/@3.1311177,101.7523725,16z/data=!4m5!3m4!1s0x31cc365f86dd4897:0xdb6d184b895e07c7!8m2!3d3.133892!4d101.7516751
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Table 2. Cont.

Criteria Requirements

6 Size Handheld size and mobile

7 Weight Lightweight material (<1 kg)

8 Target Product Cost Much lower cost compared to the conventional air monitoring station.

9 Materials It must be made from a strong, lightweight, water-resistant, and shockproof housing for all the
sensors to be embedded inside.

10 Customer Traffic policemen (exposed to outdoor air pollution).

11 Installation

Easily operated with a switch on the casing and is powered using a power bank. Once switched
on, the data are uploaded to the website and mobile application. The website serves as a platform

to collect and store the measured data at 5 s intervals.
The device is wearable and mobile, does not need to be fixed to anything.
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It is important to understand the requirements and functionality of an outdoor in-
dividual exposure indicator system to monitor the outdoor air quality. The system flow
for monitoring outdoor air quality is demonstrated (Figure 6). The flow starts with the
switching on of the device, and all the sensors will automatically run to measure the data
which are displayed on the website. If there are no data displayed or captured on the
website or apps, the user needs to restart the system by switching it off and on again. The
design, as discussed, enables the delivery of real-time data and information that can be
accessed from personal computers and smartphones [34]. This system uses minimal human
interaction with the device, has a small dimension, and is lightweight as well as mobile.
The complete internal architecture of the system design is illustrated (Figure 7).
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Figure 7. Internal Architecture of the Wireless Outdoor Individual Exposure Indicator System Prototype.

Specifically, the proposed system consists of sensor nodes equipped with a power
supply, CPU, 4G Wi-Fi Modem, and three sensors—each measuring PM, NO2, and CO,
temperature, and humidity. The connectivity of the prototype components to further
understand its working principle is demonstrated (Figure 8). The sensors collect data in
an analogue pattern, which are later converted into digital data by the CPU and then sent
wirelessly to the web server by the 4G Wi-Fi Modem. Data from the three sensors will be
displayed in the form of tables in Excel and PDF through the webserver. The data can also
be accessed by smart devices, implying that it can be viewed anywhere in real-time and
online. The functions of each sensor node were tabulated (Table 3).
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Table 3. Functions of sensor nodes.

Items Functions

Power Supply Module
Battery

A battery is a device that stores chemical energy and converts it into electrical energy
which produces an electrical current that can be used to do work [35].

Voltage regulator The voltage regulator produces an output voltage of a fixed magnitude that remains
constant in relation to changes in its input voltage or load conditions [36].

Charging circuit Functions switch between the conductive state to enable the current flow and the
non-conductive state to prevent the current flow [37].

Dust Sensor (Shinyei
PPD42NS Low-Cost Particulate
Matter Sensor)

Capable of detecting dust in the environment using an optical sensing method. A
photosensor and an infrared light-emitting diode, known as the IR LED, are optically
arranged in the dust sensor module. The photosensor (PT) detects the reflected IR
LED rays which are bounced off of the dust particles in the air [38].

DHT 11 (Temperature and air humidity) A digital temperature and humidity sensor is used to measure the surrounding air and
emits a digital signal to the data pin (no analog input pins are needed) [39].

CPU ESP32
Wi-Fi Module

It can either host an application or import all WiFi networking functions from another
application processor [40].

General Purpose Input Output Sends signals from sensors to the system [41].

Serial Communication To transmit or receive one bit of data at a time [24].

Multi-channel Gas Sensor
A sensor for the environment which is capable of detecting multiple gas types. Three
gases can be measured simultaneously due to its multi-channel; hence, it is able to
monitor more than one gas concentration [42].

4G Modem + Wi-Fi Transparent communication between mobile phones and serial devices [24].

According to Austin [43], within a set of predetermined settings, the Shinyei sensors
can be dependably utilized to detect particles with sizes ranging from 0.5 to 2.5 µm. In
addition, after translating each sensor response to a mass concentration using a linear
regression, as mentioned in the techniques section, the accuracy of the mean response of
these 20 sensors in the linear 0–50 µg/m3 range was estimated to be 9%. This is consistent
with the EPA’s description of particles in the respirable range.

The system is connected to the end user application (website and smartphone applica-
tion) to display the measurement data from the sensors. First, the initial component (sensor
network) comprises multiple nodes that integrate various types of sensors. The network
nodes were connected using the Arduino processor and a gateway was required to receive
data from each node and retransmit it to the cloud system. The gateway must also ensure
that packets from network nodes and the cloud system are received. Both the sensors and
the internet gateway were integrated within the prototype developed in this study. The
cloud system is also in charge of receiving data from the sensor network and delivering
particular data storage, categorization, and request services. Finally, end-user software
applications that provide services for requesting data from the cloud system make up the
final component. The prototype used a cloud system to provide a clearer understanding of
how it works (Figure 9).

The prototype uses the Internet of Things (IoT) concept to transmit the data wire-
lessly by using the 4G Modem + Wi-Fi components, which transmit the data to other
devices. The reading from the prototype was displayed in two manners: (i) the website
and (ii) the smartphone application. The data measured are displayed on a website at
https://airpolutionmonitor.web.app (accessed on 23 November 2020). The interface of the
webpage for the air quality monitoring system and the display on a smartphone application
are illustrated (Figure 10).

https://airpolutionmonitor.web.app
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A warning system was also integrated, where the traffic police in the location with
a high level of PM2.5 receive a warning in terms of messages to take actions, such as
leaving the area and switching with other colleagues. Before the system is ready, it must be
tested prior to launching it as a reliable measuring device. The developed prototype was
evaluated for field testing to confirm that the system captures and transmits all the data to
the software applications and is critical for ensuring the system is free of errors [25].

3.2. Measurement Results

Figure 11 shows the temporal distributions of PM2.5 during the collocation campaign
for 16 days from 13 November 2020 to 28 November 2020 (stationary field testing). The data
displayed are the static data collected at a junction in a suburban town, Ampang Jaya, near
the Kuala Lumpur city center. This shows that the prototype was able to serve its function of
collecting PM2.5 data in an environmental setting similar to the working environment of the
Malaysian traffic police. The trend indicates an increased concentration of PM2.5 on working
days from 16 November to 20 November 2020, while fewer vehicles were seen on site in the
following week due to stricter CMCO regulations and workers’ year-end holidays.
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The average readings of PM2.5 during the mobile test on 24 November 2020 can be seen
in Figure 12. The trend shows that the prototype was able to capture data and transmit it to
the website and smartphone applications which were accessible online. To further analyze
the performance in terms of accuracy, the measurements from both the prototype and the
DustTrak (reference instrument) were compared and are displayed in the graph below.
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Figure 13 shows the daily average PM2.5 mass concentration for the prototype and the
DustTrak (reference instrument). Over the 16 days of the testing period, the PM2.5 daily limit
of 35 µg/m3 was exceeded when compared to the Malaysian New Ambient Air Quality
Standard 2020 [44]. This was due to the associated traffic emissions and meteorological
conditions during testing; the result is consistent with that of a past study in 2016 [45].
Testing occurred at an average temperature of 34.4 degrees Celsius with an average relative
humidity of 56.6%. The prototype is extra privileged which allows notification in both the
website and smartphone application whenever the average of PM2.5 exceeds the daily limit
of Malaysian New Ambient Air Quality Standard 2020. Figure 14 show the smartphone’s
message display during the collocation. By having such system, it is possible to take
immediate action, such as avoiding polluted areas or staying at home as agreed upon by
Tomić et al. in their study on Supervisory Control and Data Acquisition system [22].
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Figure 15 shows the hourly average PM2.5 mass concentration for the DustTrak and the
prototype. The range of reading for the prototype was recorded from 33.01 to 75.7 µg/m3,
whereas the range for the DustTrak II was recorded from 23.61 to 62.24 µg/m3. The
trend shows similar readings from all the instruments. The finding indicates reliable
measurements from the prototype. The similarity was found with previous works of
literature [46–48].
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Hourly average NO2 and CO measurements in Figures 16 and 17 were derived from
the prototype itself and the DOE’s records. There was a similar range of readings for both
the prototype and the DOE’s records, i.e., 0.030 to 0.045 ppm for NO2. As for CO, the
range recorded by the prototype was from 1.36 to 5.4 ppm, whereas the range from 1.64 to
5.5 ppm was DOE’s records. The results suggest similar readings from all the instruments,
which also indicates that the sensors used in the prototype are dependable. This agrees
with the results reported by other researchers [49,50].
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3.3. Correlation between the Prototype and the Reference Instrument for PM2.5, NO2, and CO

A Spearman’s rank-order correlation was run for further analysis to determine the
relationship between the prototype and the DustTrak (reference instrument) for PM2.5
measurement. There was a moderate, positive correlation between the prototype’s data and
the DustTrak’s data, which was statistically significant (rs = 0.207, p = 0.019), as shown in
Table 4 below. This is consistent with similar conclusions made by other researchers [49–52].

Table 4. Correlation test for PM2.5, NO2, and CO.

Variables Frequency r Value p Value

PM2.5 Prototype/DustTrak 128 0.216 0.014 *

NO2 Prototype/DOE 128 0.576 0.02 *

CO Prototype/DOE 128 0.545 0.036 *
* Correlation is significant at the 0.05 level (2-tailed).

For CO and NO2 measurements, Spearman’s correlation was carried out for correlation
testing. There was a moderate, positive correlation between the prototype’s data and the
DOE’s records, which was statistically significant for both NO2 (rs = 0.576, p = 0.02) and
CO (rs = 0.545, p = 0.04), as shown in Table 4. Clearly, the sensors in the prototype provide
reliable and accurate readings. The positive correlation is supported by similar studies
using the same technology [46–48].

3.4. Linear Regression Test for Calibration

The field calibration was performed in September 2020, where the prototype was
placed next to a reference instrument (DustTrak) in Ampang Jaya in a near-road location
just east of Kuala Lumpur city center. The prototype was positioned at about the same
height and faced the same orientation as the DustTrak. The horizontal gap between
the prototype and DustTrak was approximately 30 cm. The calibration in the field was
performed for 128 h.

Linear regressions were used to evaluate the calibration of prototype sensors; the inde-
pendent variables were signals and data from prototype sensors, while the concentration of air
pollution from DustTrak was the dependent variable (Table 5). The regression equation was

Hourly average for Prototypemodel1 = 9.188 + 0.768DustTrakvalue (1)
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Table 5. Linear regression.

Variables b (95% CI) t Statistics p Value r2

DustTrak 0.768 (0.684, 0.889) 12.552 * <0.001 0.556
* Simple linear regression.

The p value < 0.001 rejects the null hypothesis.
The PM2.5 sensor had a varied performance with an R2 = 0.556. The PM2.5 increased

from 0.542 to 0.593. As the p-value is greater than 0.05, NO2, CO, temperature, and relative
humidity were not included in the model. The PM2.5 sensors presented a high R2 (>0.5),
which indicates good agreement with the fitted model shown in Figure 18. Due to the
COVID-19 pandemic and financial restrictions, the testing of the prototype in this study
was conducted in a short period of time. Although the collocation is carried out over a
period of 16 days, the outcomes are regarded as reliable. The research was conducted
while Malaysia was under a MCO because of the COVID-19 outbreak at the time of the
study, which also contributed to the research restrictions of time limits for data collection.
It was highly suggested that the prototype should be tested for a longer period (more than
6 months) and that a more detailed analysis should be conducted to provide more evidence
regarding the prototype performance.
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Figure 18. Regression of pollutant concentrations PM2.5 prototype compared to DustTrak reference
monitors. The linear regression equation is issued.

Before conducting any measurements with these low-cost sensors, calibration in the
field is highly recommended [46]. The model can be used as a calibration function as
significant improvements were seen after using them as stated by Karagulian et al. [53].
Since the sensor’s sensitivity varies over time, which we estimate to be ~3 months, the
calibration must be carried out regularly. We conclude that the prototype can achieve
accurate ambient air quality measurements for most of the pollutants examined with
adequate calibration and monitoring of sensor efficiency.

4. Conclusions

The development of a wireless outdoor individual exposure indicator system proto-
type allows for an inexpensive tool to capture real-time data and information that can be
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accessed online using computers and smartphones. As an alternative approach to overcom-
ing the numerous problems faced by the Malaysian traffic police in tracking their exposure
to air pollution, this device is extremely important as such technology is very limited in
Malaysia. In this study, the prototype system was presented to address its field performance
by collocation with reference monitors. It can be used as a portable monitoring unit in real
world scenarios. For this study, the test was performed to simulate the Malaysian traffic
police’s working environment, which involves roadsides with dense traffic.

Although the system was evaluated in a relatively short period of time, and at limited
locations due to the pandemic, this work is the first step in determining the system’s
suitability for different field applications. In conclusion, the advantages of using the system
to evaluate various pollutants have been proven. All the tested data significantly correlated
with each other (PM2.5-rs = 0.207, p = 0.019; NO2-rs = 0.576, p = 0.02 and CO-rs = 0.545,
p = 0.04). The calibration model was obtained from linear regression. The developed proto-
type demonstrates that an individual outdoor exposure indicator using a wireless system is
suitable to ensure a safe and healthy working environment for the Malaysian traffic police.
The system is able to measure PM2.5, NO2, and CO data with sufficient accuracy, so it is a
reliable tool for monitoring the exposure to air pollution, which will benefit traffic police
officers on duty in Malaysia. Nonetheless, for comprehensive monitoring, it is advised
that several important sensors such as sulfur dioxide and carbon dioxide be included in
the system. It is worth noting that adding more sensors will elevate the system’s cost,
which is a critical criterion for the prototype. This study also has limitations because only
a small part of Malaysia—not the entire nation—was examined. Due to the COVID-19
pandemic at the time of the study, Malaysia was under an MCO, which also contributed to
the study’s weakness: inadequate equipment and time constraints for data collection. As
a result, several innovative and trustworthy solutions were created to satisfy the study’s
objectives. The prototype is intended to be an engineering intervention that will assist the
Malaysian traffic police in tracking their workplace outdoor air pollution exposure. There
is a suggestion for advancement to include all the air quality indicators, such as sulfur
dioxide, ozone, and carbon dioxide. Keep in mind that adding all the sensors may result
in an increase in cost; therefore, a thorough assessment of the PDS is suggested for future
research. A cost rise must be avoided because the prototype concept is a low-cost gadget.
In addition, a longer testing period (more than 6 months) for in-depth testing is required
to demonstrate the long-term sensor performance and the sensor reliability, which is not
possible for the present study due to the pandemic and MCO in Malaysia. To enhance the
prototype of the individual outdoor exposure indicator using a wireless system, which is
easier to use and more durable, the design must be improved. One possible enhancement
is to incorporate a wearable concept. Finally, future studies are recommended to validate
additional assessments by using the calibration model. Such data can be used to ensure
that the relevant laws and guidelines protect the safety and health of traffic police officers.
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