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Abstract: Real-world data streams pose a unique challenge to the implementation of machine learning
(ML) models and data analysis. A notable problem that has been introduced by the growth of Internet
of Things (IoT) deployments across the smart city ecosystem is that the statistical properties of data
streams can change over time, resulting in poor prediction performance and ineffective decisions.
While concept drift detection methods aim to patch this problem, emerging communication and
sensing technologies are generating a massive amount of data, requiring distributed environments to
perform computation tasks across smart city administrative domains. In this article, we implement
and test a number of state-of-the-art active concept drift detection algorithms for time series analysis
within a distributed environment. We use real-world data streams and provide critical analysis of
results retrieved. The challenges of implementing concept drift adaptation algorithms, along with
their applications in smart cities, are also discussed.

Keywords: concept drift; machine learning; smart cities; edge computing; time series analysis;
distributed processing; data analysis

1. Introduction

By 2050 it is projected that about 7 billion people will live in urban centres generating
a substantial demand and supply for versatile data services [1]. It is estimated that by 2030,
50 billion Internet of Things (IoT) devices and sensors will be connected to the internet over
high capacity and lower latency networks. Therefore, more and more intelligent systems,
relying on data analysis and ML, will be developed in the future, pushing computing to
the cognitive “edge” of the city. Against the superimposition of traditional ML models
that assume data distribution to be static [2,3], real-world streaming data often drifts away
from the learned distribution, that is, concept drift. Concept drift can be framed as a
change in the latent distribution of a target variable for which predictions are made over a
certain period of time due to unanticipated reasons, like wearing out of the sensor or its
replacement with a differently calibrated one [2–4]. The presence of concept drift can make
prediction results inaccurate and therefore can lead to sub-optimal decisions. Thus, there is
an urgent need to enhance intelligent systems operating on real-world data streams with
concept drift-aware learning methodologies, ensuring the validity of model outcomes [5,6].

The scenario of air quality prediction in a smart city could be used as a real example
of concept drift, where the latent distribution of a target variable (e.g., levels of pollutants)
may change abruptly or gradually over time. For instance, a model that predicts the
impact of air pollution in urban boroughs could have been developed on historical data
and tested to be accurate. However, there are numerous performance metrics that might
affect the predictive accuracy of that model such as weather, seasonality, gentrification,
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hardware changes in smart sensors, and software updates in big data fusion technologies.
Furthermore, everyday social and economic activity can be yet another reason for concept
drift in air quality monitoring, as shopping behaviour and urban mobility patterns change
either because of weather seasonally or because of exogenous urban development policies.
For example, during a winter season with extended wet weather there will be higher sales
(and traffic congestion) in neighbourhoods with enclosed shopping areas compared to the
summer. Finally, sudden lifestyle changes that require a city “reboot”, such as the COVID-
19 lockdown or other disruptive technologies (e.g., gig economy) could dramatically throw
off the model. Finally, demographic and socio-economic changes at the city level could
unintentionally introduce algorithmic biases which are in turn perpetually institutionalised
through public decision making.

The implications of concept drift are observed in various data-intensive smart city
applications and in diverse fields such as health care, management, applied science, eco-
nomics, to name a few [7]. As the volume, variety, and validity of the data continuously
evolves [8], new concepts are being introduced in the data over time, making the knowl-
edge of machine learning models obsolete. Furthermore, with the introduction of the 5th
generation mobile network (5G), handling concept drift is critical in enabling adaptive
decision making applications, that depend heavily on high velocity data generated in
low-latency communication networks. Thus, the challenges involved in data mining for
voluminous data streams and self-adaptive machine learning solutions are expected to play
a pivotal role in future iterations of the smart city. While concept drift can be handled effec-
tively with the incorporation of adaptive learning strategies for big data [7,9], the adaptive
models should be supplied with knowledge of forgetting and learning frequencies (when
to learn and forget). In this study, multiple concept drift detection algorithms have been
implemented considering the ongoing challenges in the field.

The current literature identifies various open challenges for application domains
working with real-world data streams where requirements for prediction of dynamic
non-stationary streams are faced with concept drift [10,11]. The industries covered range
from law enforcement, finance and banking to telecommunications, retails and advertising.
Applications requiring continuous learning and adaptation are generally grouped into the
following categories [11]: (i) monitoring and control, (ii) information management, and (iii)
analytics and diagnostics.

Monitoring and control applications often fit regression and classification models
to data streams, enabling detection of anomalous behaviour and adversary activities [4].
Such solutions either seek to enhance existing management processes in domains like
transportation, production and energy industry, where overseeing sensory throughput in
critical system operations is required, or seek to perform automated control in dynamic
environments, like in autonomous and ubiquitous mobile systems [12].

The information management category of applications, where data streams enable
various personalised services, also requires usage of concept drift methods. Typical exam-
ples in this domain would be the personalised assistance services [4], and recommendation
and information retrieval systems [13]. Finally, analytics and diagnostics application cate-
gory requires concept drift-aware solutions to achieve adequate predictive analytics and
diagnostics tasks like in market dynamics [14], healthcare and well-being [6], and in other
application domains where human actions, behaviours, and personal preferences can
change over time.

As can be seen, handling real-world changes in streaming data is challenging for
traditional ML algorithms that assume data is stationary. Evidently, the development of
sensing and communication technologies enables the generation of massive amount of
data, therefore, distributed processing is required. Moreover, the literature lacks imple-
mentations and benchmarking techniques of the existing concept drift methods for time
series data. Some previous studies have tested drift detection methods [15–17]. However,
these benchmarks use traditional single node computational environments, having their
downsides for computations with large datasets that could resemble a smart city scenario.
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To the best of our knowledge, this article is one of the first efforts to implement concept
drift methods within multi-node distributed processing environment and which focuses
on time series data.

In summary, the article makes the following contributions to the literature on concept
drift in large scale distributed smart cities environments. First, we review the state-of-the-
art of concept drift methods. Second, we implement and test a number of active concept
drift detection algorithms for time series analysis within a distributed environment. Third,
we use both synthetic and real-world data streams for validation and testing. Finally, we
provide critical analysis of results retrieved.

The paper is organised as follows—Section 2 provides the state-of-the-art on smart
cities and concept drift methods. In Section 3, we describe our approach, architecture,
algorithms, and technical specifications. Section 4, focuses on implementation, retrieved
results, and their analysis from implemented concept drift algorithms within a distributed
environment. Lastly, Section 5 discusses the lessons learnt, limitations, and contextualises
our findings in smart cities.

2. Literature Review

In this section, we first provide an overview on smart cities and technological advances
in the context of its ecosystems. Secondly, we briefly detail the applications of concept
drift adaptation in smart cities. Finally, the later sub-section reviews the state-of-the-art on
concept drift detection and adaption approaches.

2.1. Overview on Advances in Smart Cities

Emerging technologies have disrupted the way modern cities are being managed
and defined. From public buildings, utility services, and health care to transportation
networks and public services new technologies have enabled improved connectivity across
previously disjointed spaces and places. Such developments not only make cities smarter,
but also help in improving life quality of its inhabitants for example, well-being through
technology, planning routine with smart applications, e-learning and others. While the
concept of the “smart city” still remains elusive, modern cities are increasingly becoming
dependant on a symbiotic relationship with proliferating technologies such as, IoT, sensors,
distributed cloud, fog/edge computing, smartphones, and others [18,19]. According to
recent estimations, the market for solutions and services created for smart cities around
the globe will approximately grow over 2 trillion USD [20]. Similarly, the extensive use of
sensors, IoTs, economic platforms, and social networks, is expected to improve services for
citizens and to help optimise smart city management through the availability of mission-
critical data [21].

The rapid expansion of the innovation ecosystem for IoT and sensors has provided
many vibrant opportunities in both research and academia. The examples of this trend are
evident in areas of energy management, environment control and monitoring, transporta-
tion, health care, automotive industry, social networks and applications, and public safety
and security [22–24]. With these ongoing developments, there are numerous challenges for
better governance in cities that demand for improved technological solutions [19,21,25].
According to a study by [26], many cities around the globe already have executed smart
city initiatives, however, the enabling technologies in smart cities are still rapidly changing.
Four major technologies have been used in smart city platforms, (i) IoT, cloud computing,
big data, and cyber-physical systems. Furthermore, opportunities and computational
capabilities of edge and fog computing for sustainable smart cities are also explored in a
study by [18].

The aforementioned technologies together are providing vast opportunities in various
urban domains, to better equip administrators and policy makers with useful informa-
tion to anticipate future urban issues, achieve sustainable societal goals, and enact new
urban management policies. Today, many cities are harnessing data from disparate data
sources, aiming to continuously improve citizen’s living standards. For example, the Smart
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London Project [27] focuses on utilizing the city wide collected data to connect different
communities, enhance environment protection, provide improved public security, and en-
able smarter transport network. Another EU funded project called CUTLER provided
evidence-based policy making solution [28] for coastal urban development using big data.
Five pilot cities (Thessaloniki, Antalya, Antwerp, Cork, and Vicenza) [19] were involved
in the project each with different use case scenario. The CUTLER smart city platform
connected heterogeneous data that enabled the users to characterise geographical land-
scapes, parking scans, parking spot income, vehicle emission, user contributed content,
and others. The data from the CUTLER platform was further used by the municipalities
in designing new policies (e.g., controlled parking system), considering various urban
infrastructure limitations [28]. Similarly, Tokyo plans to be the greenest city in Asia by
efficiently managing their transportation, reducing energy consumption, and improving
other sectors of the city [29]. Apart from earlier mentioned smart city projects, several
other countries have at least one existing smart city initiative for example, United Arab
Emirates [30], South Korea [31], and Brazil [32].

The smart city ecosystems are built on top of wide range of sensors, IoTs and many
other technological alternatives, making plethora of data sources available for generating
insights. However, due to availability of diverse data sources and technological alterna-
tives, processing and analysing data from smart city is a great challenge. Additionally,
big data has also contributed in producing such massive amount of data [19]. Initiatives
in both research and industry have been taken to mitigate the challenges of data collec-
tion, data processing, and storage of data. A hybrid cloud infrastructure consisting of
big data technology solutions such as, Apache Hadoop [33], Apache Spark [34], and Elas-
ticsearch [35] was proposed in the CUTLER project [28] to store, process, and analyze
large-scale data from smart cities. Similarly, different architectures have been deployed
for example, Padova Smart city project that uses a server tier to sense environmental and
traffic situations, making the data available for city offices [36]. In addition, projects like
CiDAP [37], OpenIoT [38], BASIS [39] use big data technology solutions to process and
store large scale data. Apart from the cloud based large-scale data infrastructures, with the
adoption of IoT and 5G alternatives like edge and fog based architectures are also being
explored [40].

Over time, it is anticipated that ground truth data in many application domains eventu-
ally become obsolete—from financial forecasting to efficient energy management, and from
intelligent traffic routing to environmental sensing and weather forecasting [23,40,41].
There are various scenarios within a smart city where historical empirical observations can
become outworn (concept drift) for example, outdated configurations of devices, calibra-
tion difference, change in context of text, maintenance of equipment, and environmental
factors [4,42]. In many cases, maintaining the unseen class labels and changes in concepts
of low latency big data becomes difficult, expensive, and unfeasible [42]. The presence of
concept drift is evident in various application areas of smart cities, where artificial intelli-
gence based prediction, ranking, classification, time series forecasting are commonly aimed,
for example, intelligent traffic management in traffic management domain, quality control
in industry, autonomous controls among vehicles and robots, intrusion and fraud detection
in cyber security and communication, and forecasting energy requirements in energy sec-
tor [11,21]. To address this bottleneck, different frameworks for handling concept drift have
been proposed by researchers considering both the data and computational challenges.
For example, a fog computing based concept drift adaption process has been proposed
by [43]. In another study by [44], a Apache Hadoop based concept drift adaption method
was implemented. More information on concept drift are detailed in following sections.

2.2. Concept Drift Detection and Adaption: Active and Passive Approaches

This section focuses on the review of concept drift algorithms which are summarised
in Table 1. Concept drift is a multifaceted problem which is colloquially binarized into
real or virtual drift. Real concept drift is referred as the change in conditional distribu-
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tion of the target variable while the distribution of the input variable may or may not
change, Reference [4]. Virtual drift, also called temporary drift, occurs as a result of an
incomplete representation of the data distribution rather than of a change in the underlying
concept [3,4]. The handling of real concept drift requires feedback-based techniques to eval-
uate learner’s performance, whereas virtual drift can perform without such techniques [4].
Depending on how the changes on data occur during time, concept drift can be categorized
into sudden (or abrupt), gradual, and recurring [4]. In abrupt drift, a drift can happen
suddenly [4]. In gradual drift, concepts in the data are slowly changed over time. In case
of recurring drift, the change in newly arriving data instances disappears temporarily and
returns after a period of time [17].

Concept drift algorithms for adaptive ML are classified in two main categories: passive
and active algorithms. In passive algorithms, learning models are updated with the
assumption that concept drift is present in continuously changing data. Whereas active
approaches are more focused on detecting the concept drift first and then updating the
model at a later stage [3,5].

Table 1. Summary of selected concept drift methods and their properties.

Method Approach Goal Task Support

The Page Hinkley Test (PHT) Active Method was developed to detect change from Gaussian signal
and is suitable for abrupt drift scenarios [4].

classification and
regression [45,46]

Semi-parametric log-likelihood (SPLL) Active Method has been tested with abrupt drift. However, it may not be
as sensitive to progressive changes in the data distribution [47]. classification [47]

Fuzzy competence model drift
detection (FCM) Active

Method uses competence model to identify the change (abrupt
and gradual) in data distribution without any prior
knowledge [48]

classification and
regression [48]

QuantTree Active
Approach uses a recursive binary splitting strategy to define
histograms for change detection; its suitability for drift type that
is, abrupt or gradual, still requires experimentation [49,50].

classification [51]

Drift detection method (DDM) Active The method is suitable for both abrupt and gradual drift [52],
providing increased performance in abrupt drift [53].

classification and
regression [54,55]

Early drift detection method (EDDM) Active It is an extension of DDM to overcome the limitations of
detecting gradual drift in the data [53].

classification and
regression [54]

Adaptive windowing (ADWIN) Active
This method uses a sliding windowing approach with variable
size to detect concept drift [15]. Both abrupt and gradual drift
scenarios have been tested with this method [56].

classification and
regression [57]

Very fast decision tree (VFDT) Passive
The model adapts to changes in streaming data; however, basic
incremental learning is not sufficient to handle concept drift in
the data [16].

classification and
regression [16,58]

Concept drift very fast decision
tree (CVFDT) Passive

CVFDT is extenstion of VFDT that adapts to concept drift in
data [59]. However, it cannot efficiently adapt to sudden
drifts [16,59].

classification and
regression [16,60]

Online information network (OLIN) Passive
The model learns by building a network using window and
detects concept drift through increase in classification error.
However, requires higher computational cost [61]

classification [61]

Streaming ensemble algorithm (SEA) Passive
The method may not efficiently react to sudden drift in data.
As learners generated from outdated data can still be valid,
regardless of their inaccurate weight [16]

classification and
regression [3,62]

Dynamic Adaption to Concept
Changes (DACC) Passive

It follows higher deletion rate strategy to expel bad learners,
entailing higher reactivity to concept drift, and supports sudden
and gradual drift [63]

classification [63]

Online Non-stationary Boosting
(ONSBOOST) Passive

The method can learn in dynamically changing environments,
also it has been tested with hidden contexts (i.e., can be abrupt,
gradual) [64]

classification [64]

Online Sequential Extreme Learning
Machine (OS-ELM) Passive

OS-ELM by [65] has shown superior performance in detecting
different kinds of concept drift (sudden, gradual, etc.). Also it is
capable of notifying when model needs to be updated.

classification and
regression [65]
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2.2.1. Active Approaches

Active approaches are mainly classified into three categories [65]: (i) sequential
analysis-based approach (ii) approaches based on data distribution (iii) learner/model
output-based approach. In sequential analysis-based approaches, newly acquired data
patterns are analyzed sequentially as they become available. Alarms for concept drift
are generated when the likelihood of observing the data sequence under the new data
distribution becomes greater than under the original one [4,65]. For example, the Page
Hinckley Test (PHT) [4] detects the change in data sequentially using cumulative difference
of observations and their mean till the latest observation.

Data distribution-based approaches for concept drift detection, typically use two
different time windows containing distributions of raw data pattern, where a fixed window
contains data from past time period and a sliding/open window contains data from recent
observations. Then, both windows are compared with each other to test the hypothesis
whether the concepts present in the windows are different [65]. Data distribution-based
approaches are further classified into parametric and non-parametric. The parametric
method assumes the probability distributions of data streams are to be known before and
after detection of concept drift [65]. However, their parameters are still considered to be
unknown. The multivariate non-parametric method does not require information about
probability distributions, which are difficult to know in real-time scenarios [66]. Non-
parametric methods are often found useful for categorical data, in cases where individual
scores are not necessary, unlike in parametric methods [66]. A number of methods based on
data-distribution exist, like semi-parametric log-likelihood (SPLL) detector, that utilizes k-
means method to create clusters from available raw data patterns and models the obtained
clusters based on Gaussian distributions [47]. Fuzzy competence model (FCM) method
is used for empirical representation of data distribution to give the level of concept drift
present in data [65]. QuantTree method uses histograms and computing statistics to model
the high-dimensional raw data [51]. The major limitation of these methods is the necessity
to store the windowed data and setting its length [65].

Finally, model output-based drift detection methods are typically built on top of a
learner by tracking the fluctuations in error rate [4]. Many methods have been proposed.
For instance, in drift detection method (DDM) [4] the prediction error is given by random
variable using Bernoulli trials, and concept drift is detected when the error rate exceeds the
set threshold [15]. The early drift detection method (EDDM) [67], an extension of DDM,
instead of the error rate uses distance error rate of base learner to identify whether the
drift exists in data distribution [15]. The Adaptive Windowing (ADWIN) method monitors
the change in distribution of output from learner. It uses partitioned data containing two
different disjoint subsets to conclude the possible statistical differences between them,
where one subset contains the original observations and the other predicted values [15].

To summarise, sequential analysis-based methods are suitable for single time series
with less possibility of tackling real concept drift. Whereas, data distribution-based meth-
ods can cope with complex and multi-variate data, but due to the lack of connection with
output of the learner, such methods can conduct unnecessary update of the learner [65].
Learner-output based algorithms have gained prominence in detecting concept drift com-
pared to the former stated approaches in different application domains, such as weather
prediction, fault-detection, health care [6,65]. In addition, these methods are found to be
suitable in cases where data sources are characterised with complex time series or contain
non-linear relationships, unlike sequential analysis-based and data distribution-based
approaches [65].

2.2.2. Passive Approaches

Passive approaches, when employed continuously, update predictive learner without
requiring prior explicit detection of concept drift [10]. The learner’s parameters in passive
approaches are adapted continuously each time new data arrives [65]. There are generally
two kinds of approaches proposed, (i) single classifier and (ii) Ensemble based [5,10]. Single
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classifier approaches mainly consist of individual classification models utilised to perform
predictive analysis, unlike ensemble-based methods where pool of multiple base models is
used [5].

Single classifier approaches are well-suited for analysing large-scale data streams due
to their low computational costs [10]. The Hoeffding tree based learning system called
very-fast decision tree (VFDT) was specifically developed for data stream classification [5].
Hoeffding bound is utilized to quantify the minimum arriving observations to perform
estimations. It guarantees the performance just like other non-incremental learners [58].
VFDT was further improved with concept drift VFDT (CVFDT), by adding adaptive
windowing to tackle continuously changing data in non-stationary environments [5,61].
Online information network (OLIN), a fuzzy-logic based single classifier approach, also
uses adaptive sliding window to train streaming data [61]. Single classifier approaches
are computationally cost-effective compared to ensemble based approaches, which makes
them suitable candidates for large-scale data stream processing [10].

Ensemble based approaches are a natural fit for learning in non-stationary environ-
ments due to some prominent advantages: (i) they provide much accurate results than
single classifiers due to pool-based approach and reduced variance of the error (ii) they
are flexible for incorporating newly arriving data (data is added to ensemble as new mem-
bers) (iii) if previously learnt knowledge becomes irrelevant, the old classifiers can be
easily discarded based on dynamic selection and voting techniques [10,68]. The streaming
ensemble algorithm (SEA) is one of the very first examples for ensemble based learning
in non-stationary settings [3]. SEA adds new classifiers for newly arriving data. When
the SEA reaches the predefined limit, classifiers are removed by using measure of quality.
For example, a single classifier is examined for the quality of drawn predictions against
the predictions from ensemble, this helps SEA in achieving reduced variance and ability to
retain or learn new knowledge at the same time [10]. Another approach, called Dynamic
Adaption to Concept Changes (DACC), [63] uses Dynamic Weighted Majority (DWM) [63].
In this method, the weakest half of the classifier is removed randomly from the pool after
it is replaced by a new one. However, the newly created classifiers are omitted from this
elimination process using predefined function. The predictions from the DACC are drawn
from the classifier with highest accuracy. Other ensemble based approaches are online
non-stationary boosting algorithm (ONSBOOST) and Learn++.NSE algorithm, and online
coordinate boosting (OCBoost) [5,10]. Apart from the two main passive approaches de-
scribed above, neural networks are also gaining significance in non-stationary learning.
For example, online extreme learning machine (ELM) based method and online sequential
ELM (OS-ELM) methods have been proposed in a recent study [65].

Despite the ability of passive approaches to deal with concept drift in non-stationary
environments, it could be onerous to adjust the adaptation speed of the model. In gradual
and recurring types of concept drift, passive approaches perform well [10], while active
approaches are well-suited for sudden drift scenarios. Furthermore, passive approaches
are in general well-suited for batch learning; however, active approaches perform equally
well also in online environments [10].

3. Approach

We implement and test a number of state-of-the-art active concept drift detection
algorithms for time series analysis in distributed environments. Namely, we test PHT [4],
ADWIN [15], DDM [4], and EDDM [67] algorithms, see Section 3.1. We selected these
four active concept drift algorithms for this study since they allow to detect and study the
existing drifts in data, do not require unnecessary retraining, and have lower computational
costs [5]. Passive approaches, however, are able to adapt to the present concept in the
data with continuous updates, but they require large computational efforts. Furthermore,
the rationale behind selecting these four concept drift method is: (i) they are well studied
algorithms, see Section 2.2.1, (ii) their suitability for adapting to different kinds of concept
drift (gradual, abrupt, etc.), see Table 1, and (iii) both classification and regression problems
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are supported by these algorithms, Table 1. However, not all of them have been tested for
time series regression problems.

Although concept drift is a well-studied research topic, the implications of concept
drift in time series are not well explored, especially for scenarios with larger datasets and
use cases that resemble smart city applications [55,69]. To fill in this gap, we focus on
time series datasets (two artificially created and two real-world datasets), see Section 3.2.
In particular, we experiment with three time series models—the Trigonometric, Box-Cox
transform, ARMA errors, Trend, and Seasonal 276 components model (TBATS), Prophet,
and Long Short-Term Memory model (LSTM). These models were chosen due to their
accuracy, ability to handle complex seasonal patterns, support for long-term forecasts,
and tunable parameters, see Section 3.3.

To tackle the computational cost challenges coming from large real-world data streams,
big data technology solutions are used in this article [19], details are in Section 3.5. The over-
all approach for our experimental setup is as follows:

• Implement selected concept drift methods in distributed environment;
• Test the performance of implemented algorithms with synthetic datasets;
• Implement time series prediction models to real-world datasets;
• Integrate concept drift detection methods with time series prediction models (check

Figure 1);
• Implement time series prediction models integrated with concept drift detection to

real-world datasets (refer to item 4);
• Results analysis.
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Def:T: Training Data, xnew: Streaming data, ynew: Target variable, ŷnew: Predictions
1: Call learner ⊲ e.g., Prophet, TBATS, LSTM
2: train learner with T ⊲ i.e., T as observations to date
3: if Page Hinckley Test then
4: for each new observation xnew do
5: learner receives xnew and generates ŷnew

6: compute the error for (ŷnew, ynew)
7: if No drift is detected then
8: save (xnew, ynew) ⊲ i.e., xnew added to T
9: else if drift is detected then

10: retrain with T
11: reset saved data ⊲ i.e., ŷnew

12: Save the learner
13: else
14: Send the current state of learner
15: end if
16: end for
17: else
18: for each new observation xnew do
19: learner receives xnew and generates ŷnew

20: compute the error for (ŷnew, ynew)
21: if drift detector generates warning alert then
22: save (xnew, ynew) ⊲ i.e., xnew added to T
23: else if drift is detected then
24: retrain with T
25: reset the saved data ⊲ i.e., ŷnew

26: Save the learner
27: else
28: Send the current state of learner
29: end if
30: end for
31: end if

Figure 1. Concept drift adaptation algorithm, modified from [55].

3.1. Concept Drift Detection Methods

The Page Hinckley Test (PHT) [4] is an alteration of CUSUM [4] and it allows to
effectively detect changes in the data, see Section 2.2.1. In this method, a user-defined
threshold (allowed magnitude of change) is passed along with input parameter to detect
the change in the data [70]. When the mean of new observations exceeds the defined
threshold, an alarm is triggered that concept drift has been detected. However, unlike
ADWIN [15], DDM [4], and EDDM [67], it does not detect warning zone (i.e., when new
observations are close to the threshold).

The Adaptive Windowing (ADWIN) algorithm uses sliding window for detecting
the concept drift present in the data [46]. ADWIN requires re-scaling, since the input data
sequence is bound to [0, 1] [4]. ADWIN slides a fixed window for detecting the change
on the newly arriving data. Whenever, two sub-windows show distinct means in the
new observations the older sub-window is dropped. This is done by using Hoeffding
bound [4]. The alarm for the detection of concept drift is triggered through a user-defined
threshold. If the absolute difference between the two means exceeds the pre-defined
threshold, an alarm is generated that concept drift is detected. Furthermore, if the threshold
is not exceeded but the value is close to it, a warning alert is triggered [46].

The Drift Detection Method (DDM) is a concept drift method based on the assump-
tion of Probably approximately correct (PAC) learning model. In PAC learning model,
if the distribution of the samples is stationary, the error rate of the learner will decrease
with the increase in number of the samples [4]. In addition, if the distribution of samples
is infinite, the error will be likely bayes error [4]. The DDM detects increase in the error
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rate, that exceeds the computed threshold, it alerts that concept drift has been detected.
A warning zone is detected if the error rate is not exceeded but it can happen in future [4].
The threshold is computed based on two statistics methods, when sum of recorded error
rate and standard deviation is minimum, that is, (i) if pi+si ≥ pmin+2× smin (ii) if pi+si ≥
pmin+3× smin, where p is the error rate, i instance, s standard deviation [4].

The Early Drift Detection Method (EDDM) has been developed on the premise of
DDM and considers the average distance between two errors instead of keeping track of
only the number of errors [67]. In EDDM, it is essential to follow the running distance and
running standard deviation, maximum distance and maximum standard deviation of the
errors [67]. Just like in DDM, two threshold values are computed to create the borderline
between no concept drift, warning zone, and concept drift detected. The method for
computing warning zone threshold is: if (p′

i+2×s′ i)/(p′
max+2×s′max) < α, where p′

i

is running average distance between two errors and s′ i is running standard deviation.
The examples beyond the defined threshold are stored in advance to tackle the possible
concept drift in future. Whereas, if (p′

i+2×s′ i)/(p′
max+2×s′max) < β, the examples beyond

this condition exhibit that concept drift is detected. In such case, the learner is retrained for
adaptation and p′

max and s′max are reset as well [67].

3.2. Datasets

For testing the implementation of concept drift methods in distributed environment,
two artificial datasets are built: one uses Gaussian Process with Matern kernel 3/2 [71] for
abrupt drift detection and other one with Sinusoidal signal [72] enriched with red noise
for gradual drift detection. Then, we utilize implemented algorithms with two real world
datasets: ELEC2 [73] and Fingrid [74].

The ELEC2 dataset [73] includes scheduled electricity flow between different states
in Australia and is based on real-world readings. This dataset contains 45,312 records,
from 7 May 1996 to 5 December 1998. Each instance of dataset represents a 30 min period,
resulting in 48 data instances for each day. The occurrence of the drift in the data is
unknown [4].

The Fingrid dataset is a real-world streaming dataset about power consumption in
Finland provided by Fingrid company [74], responsible for the electricity transmission in
the high-voltage transmission system in Finland. The data used in this article includes
timestamps and power consumption rate fluctuating based on country wide demand. This
data is updated every 3 min. We have also collected historical data from January 2011 till
December 2017 for training purpose and January 2018 to April 2020 for testing purpose.

3.3. Models

In this work, we use three different time series models: Trigonometric, Box-Cox trans-
form, ARMA errors, Trend, and Seasonal components model (TBATS) [75], Prophet [76],
and Long Short-Term Memory (LSTM) [77].

TBATS is one of the innovations in the state space modeling frameworks, designed
for handling complex time dependent data series [75]. It uses Fourier terms combined
with exponential smoothing and Box-Cox transformation in automated fashion. Due to
the trigonometric functions in TBATS, it provides the capabilities to model non-integer
seasonal frequencies [75].

Some of the main advantages of TBATS are: (i) it can handle non-linearity present
in features using Box-Cox transformation (ii) it detects any auto-correlation present in
the residuals using ARMA and (iii) and it is capable of accommodating both nested and
non-nested seasonal components in time series [75]. Its applications can be seen in some
of recent studies [78], such as modelling electricity load demand [79] or seasonality of
pathogens [78].

Prophet is a forecasting tool developed by Facebook based on Generalized Additive
Models (GAM) [76,80]. It comprehends the provided time series as a curve-fitting task
without explicitly considering the temporal dependency. In addition, decomposable time
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series model is used to characterize the time series with model components trend and
seasonality [76,80,81]. The available options to accommodate multiple seasonality factors
and demand for effective forecasting favoured for considering Prophet for our analysis.

The main advantages of this model include: (i) observations do not need to be interpo-
lated, regularly spaced, and no additional requirement for removing outliers, and (ii) model
fitting is fast and in case of complex time series, different parameters (e.g., seasonality) are
easily interpretable [76,81].

Long Short-Term Memory (LSTM) was proposed to tackle the vanishing gradient
problem in Recurrent Neural Networks (RNNs) [77]. RNNs have long standing in data-
driven based time series prediction approaches [82]. They work on a sequence-based
process to analyse information by capturing each time step for predictions. Despite their
capabilities to understand short-term dependencies, they are not well-suited for data with
long-term dependencies. There are different variations of LSTM available, one of them is
Bidirectional LSTM (BLSTM), where both preceding and succeeding data sequences are
utilized to exploit the input to achieve effective learning process [83].

Among many neural network methods, LSTM and gated recurrent units (GRU) are
the commonly adopted for both regression and classification tasks [84]. Both approaches
allow to model and learn complex information from sequential data.

3.4. Evaluation

In order to evaluate the performed experiments, both artificial and real-world data sets
have been used (refer to Section 3.2). To measure the performance of the selected concept
drift algorithms, we supply these algorithms with data streams from synthetic data sets
which have been injected with concept drifts (abrupt and gradual) at known indices. We use
this as a metric to evaluate whether the algorithms are capable of detecting concept drift in
data. More details are provided in Section 4.1. Subsequently, real-world data is streamed to
concept drift detection algorithms integrated with time series learner. The results from this

method are evaluated using mean absolute percentage error (MAPE) = 100
n ∑

n
t=1

|xt−yt |
xt

%,
where xt are original observations and yt predicted values. Finally, performance of the
method is evaluated by comparing the original observations and predicted values against
each for each method; details are mentioned in Section 4.2.

3.5. Architecture

To accumulate, store, and process large-scale heterogeneous data we utilize the dis-
tributed architecture proposed by [19], see Figure 2. It contains a master node with 32 GBs
of RAM and 3 worker nodes with 16 GBs of RAM and 100 GBs of disk space each. It
relies on Hadoop ecosystem, where the data is collected from APIs and web interfaces
using Python-based libraries Beautifulsoup [85], Selenium [86] and Pandas [87]. In data
collection, Pandas [87] and Beautifulsoup [85] are used to read responses from APIs, HTML
pages, and csv files. However, Selenium is utilized for crawling data when it is available
on child pages of a web page or it requires navigation in between pages, for example, data
from Fingrid [74] can be read from API or can be downloaded directly by interacting
with web page using Selenium [86]).For data storage, Hadoop Distributed File System
(HDFS) is used. Tasks related to data pre-processing, data exploration, and data analysis
are done using Apache Spark with PySpark [34]. Data visualization is performed using
matplotlib [19], also custom application and visualization widgets are supported.
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Figure 2. The distributed architecture utilized to collect, store and analyze the data, adapted from [19].

4. Results

This section focuses on the results obtained. The experiments to detect and implement
the concept drift adaption within distributed architecture were described in Section 3.

4.1. Implementation Evaluation Using Synthetic Datasets

For this evaluation, two different synthetic regression time series datasets were con-
structed, see Section 3.2. Concept drift is induced in both of them up to known indices.
We then test the performance of four different concept drift detection algorithms (see
Section 3.1) implemented in distributed environment using Apache Spark [34].

Abrupt drift detection. Gaussian Proccess with Matern Kernel 3/2 was used to
synthesize a dataset to experiment with abrupt drift [71]. The data stream is induced with
drift at two different sample ranges—from sample 799 to 850; and from sample 1199 to
1250, see Figure 3. All four implemented concept drift detection algorithms are supplied
with this synthetic time series as a data stream. The following settings are used after
performing preliminary tests: the minimum number of instances passed to each method
is n = 100, ∆ = 0.005, threshold for detection (λ = 1), forgetting factor (α = 1–0.0001) for
the PHT. The parameters for ADWIN are set with ∆ = 0.005 and use fixed window setting
within the range where drift is expected. For DDM, warning level is set to w = 0.9 and drift
control level t = 1, whereas for EDDM α and β are set to 0.9 and 1 respectively. For ADWIN,
we first scale the data and then take out the sample indices to be plotted on actual data.
The results, illustrated in Figure 3, show that most of the algorithms were able to detect
the induced drift in the first sample range. However, the ADWIN and DDM performed
better in detecting the drift occurring later, between 1199–1250 sample values. Based on
the results retrieved, we verify the correct implementation of drift detection algorithms in
distributed environment using Apache Spark.
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Figure 3. Results for abrupt drift detection, see Section 3.1, where X axis shows occurrence count and
Y axis the value.

Gradual drift detection. Harmonic sinusoidal signal [72] is used to synthesize the
data for gradual drift detection. The drift induced consists of a steady increase that
starts from index 190 and continues till 1060, and then declines again steadily; after that,
the gradual drift once more starts from sample 1200, see Figure 4. All the four implemented
methods were supplied with this dataset to test if they are able to detect the gradual drift.
Here, the settings for the algorithms after initial testing are as follows: the minimum
number of instances passed to each method is n = 100, ∆ = 0.005, threshold for detection
(λ = 2.5), forgetting factor (α = 1–0.0001) for the PHT. We use ∆ = 0.005 with fixed window
setting within the range where drift is expected for ADWIN. For DDM warning level is
set to w = 1.5 and drift control level t = 2.5, whereas for EDDM α and β are set to 1.5 and
2.5. The data was scaled for ADWIN and the detected sample indices were used to create
a visualization.

The results in Figure 4 show that the PHT and DDM were able to detect the change
between those known change points. However, the last incremental change starting from
1200 was not detectable for DDM. EDDM was also able to capture the gradual drift,
although the change detected in the last changing sample, which was expected between
1200–1300 indices, occurred at 1395 index. ADWIN also seems to perform good; however,
the detection gap between second and third detected change is large, requiring more
optimized window settings. The shortcomings in DDM and EDDM are understandable
due the design essence for typical classification models. Therefore, the result shows that
Apache Spark implementation is able to detect gradual drift in data.
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Figure 4. Results for gradual drift detection, see Section 3.1, where X axis shows occurrence count
and Y axis the value.

4.2. Prediction Evaluation Using Real-World Datasets

We use three time series learners TBATS, Prophet, and LSTM (see Section 3.3) to
forecast electricity supply demand using ELEC2 [73], and power consumption using a
real-time data stream from Fingrid [74]. First we explore the performance of the learners
on provided datasets alone, and then we integrate the concept drift detection algorithms
to the learners, see Figure 1 to address the changes in data. The forecasting accuracy is
evaluated with mean absolute percentage error (MAPE) that is normally used to measure
the accuracy of different forecasting methods [55].

Performance of “pure” learners. Datasets were analysed to set adequate model
parameters, for example, proper seasonality component. Further, we divided the datasets
into training and test sets, for model training and analysis correspondingly.

LSTM was implemented by modifying Filonov et al. [82]. The implementation includes
a single LSTM layer with linear output layer. For LSTM, the data was scaled in the range
of 0–1 and long sequences in the data are transformed to 100 time steps sequences, that are
shifted by a single time step. The training is done with learning rate set to 0.001 which is
decayed every 5 epochs of a total of 15 epochs.

For ELEC2 dataset [73], the following parameters were selected for the models: daily
seasonality = True, yearly seasonality = True were used for both TBATS and Prophet, with an
internal width = 0.70 for Prophet, whereas LSTM settings were same as described above.
The ELEC2 [73] was split to train set containing values till end of year 1997 and the
remaining samples were kept as a test set. Figure 5a demonstrates the performance of the
learners on ELEC2 dataset. As can be seen from the figure, models do not perform perfectly
on this datasets, however, LSTM follows the data better when compared to others. If we
compare mean absolute percentage errors (see Table 2, “pure” learners rows), then actually
Prophet learner demonstrates the best result.

For Fingrid dataset, the following parameters were selected for the models: daily
seasonality = True, yearly seasonality = True were set both TBATS and Prophet, with an
internal width = 0.80 for Prophet, whereas LSTM settings were same as described above.
For Fingrid [74] dataset, data from 2011 till January 2018 were used for training, and from
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January 2018 till April 2020 for testing. Figure 6a shows the performance of learners. We
see that LSTM model shows good compliance with the real data, see also Table 2, “pure”
learners row.

Figure 5. Prediction results from time series learners (see Section 3) for ELEC2 [73], where X axis
shows DateTime and Y axis the value. Figure (a) shows results from pure learners, where figures
(b–d) show results after integrating concept drift methods.

Figure 6. Prediction results from time series learners (see Section 3) for Fingrid [74], where X axis
shows DateTime and Y axis the value in megawatt hour (MWh). Figure (a) shows results from pure
learners, where figures (b–d) show results after integrating concept drift methods.

Performance of learners with integrated concept drift detection. After finalising the
models, we integrate the time series learners with tested concept drift detection methods,
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see Figure 1. Our hypothesis here is that the data may have drifts and, therefore, learners enhanced
with drift detection could show better performance.

The ELEC2 observations are by default in range of [0, 1] and Fingrid observations
are scaled to [0, 1] range for concept drift detection. We use the following settings af-
ter preliminary tests: minimum number of instances passed to each method is n = 100,
∆ = 0.005, threshold for detection (λ = 1), forgetting factor (α = 1–0.0001) for the PHT. We
use ∆ = 0.005 for ADWIN and for DDM warning level is set to w = 0.9 and drift control level
t = 1, whereas for EDDM α and β are set to 0.9 and 1. Learners have the same parameters as
in previous section. The results from Fingrid [74] observations are scaled back to original
values from [0, 1] for visualization.

The results for the detected drifts from both datasets are presented in Figures 7 and 8.
As can be seen, all the methods implemented find the drifts in our real-world datasets.
From Figures 7 and 8 we see that ADWIN and PHT methods stand out when compared
to the rest. Also, change points detected with ADWIN and the PHT are quite close to
each other, and the average count of detection is also similar, which can also be seen as
detection indicator.

Performance results of learners with integrated concept drift adaptation are provided
in Table 2 (“with METHOD_ACRONYM” rows) and Figures 5 and 6. First observation
is that some learners, enhanced with the drift detection algorithms, indeed have better
performance in terms of mean absolute percentage error and in many cases comply better
with the data (e.g., compare Figure 6a,d), when compared to their “pure” versions. How-
ever, in several cases integration of concept drift resulted in unsatisfactory MAPE and
compliance to real data, when compared to pure learners (e.g., compare Figure 5a,b TBATS
with EDDM; compare Figure 5a,d Prophet with ADWIN). The reason of such behaviour
could be static parameters of the learner, which require tuning with newly arriving data.
In such case, techniques for dynamic tuning of learner’s parameters could be utilised, along
with suitability check of certain method for the learner.

Table 2. Computed mean absolute percentage error (MAPE) for time series learners.

Method ELEC2 [73] Fingrid [74]

LSTM

pure LSTM 5.10 0.57
with PHT 0.97 0.24

with ADWIN 5.75 0.45
with DDM 2.28 0.48

with EDDM 3.51 0.83

Prophet

pure Prophet 15.58 6.1
with PHT 9.86 5.68

with ADWIN 20.66 6.48
with DDM 10.06 6.80

with EDDM 9.94 6.92

TBATS

“pure” TBATS 21.35 7.0
with PHT 17.25 6.45

with ADWIN 17.37 7.05
with DDM 16.94 7.08

with EDDM 23.81 7.11
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Figure 7. Concept drift detection for ELEC2 [73] dataset, where the X axis shows DateTime and Y
axis the value.

Figure 8. Concept drift detection for Fingrid [74] , X axis shows DateTime and Y axis the value
(MWh).

5. Discussion

Novel smart city projects and advanced technological initiatives in city management
have over the past years grown in tandem with the global market for smart city solutions,
which is expected to generate over 2 trillion USD by 2025 [20]. The booming innovation
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ecosystem driven by the proliferation of ubiquitous IoT and sensor technology has enabled
citizens, technocrats and city officials to harness and democratise the big data streams
created in cities. In this context, a major bottleneck has been the detection and control
of the shifting ground truths that can throw off predictive models currently being used
in upstream and downstream analytics tasks with smart city applications. This paper
explored handling of concept drift in time-series data with four established algorithms
(PHT, DDM, EDDM, and ADWIN) in a distributed environment. Below we discuss the key
challenges, results, implications, and limitations.

First, smart city initiatives rely increasingly on heterogeneous data sources to per-
form multi-sensor data fusion that require more computing power and fault tolerant data
distribution-based approaches. Implementing concept drift detection methods in a dis-
tributed computing environment brings out certain challenges when compared to the
centralised computing paradigm. For instance, testing these methods requires efforts in
ensuring that data, distributed among multiple cluster nodes, is being read and written by
methods properly, and also in keeping track of memory consumption. If a file or record is
skipped or not fully read during the computations, in some cases it may truncate the avail-
able memory, resulting in task failure. Distributed environments require fault-tolerance
and flexibility from the algorithms for example, re-initiation of discontinued processes,
since failures are common in large clusters. Even though, most distributed computing
frameworks have asynchronous communication possibilities, the rules are to be set care-
fully, that is, whether the entire or a subset of data stream is to be read in case of failure.
Also, checkpoints can be made on an operational data stream that can be traced back to last
failure to restart the process. In our implementation, we save the state of the learner and
concept drift detection algorithm, along with the data, at different time periods to avoid
the re-initiation of the entire process in case of failure, see Figure 1.

Second, with the advent of low-cost and energy efficient IoT and edge devices, smart
city initiatives will rely increasingly on real-time streaming analytics and on patterns
learned from disaggregated continuous data and micro-batches. These are pivotal require-
ments that present a potential bottleneck because the selection and tuning of the best
method for concept drift detection requires prior knowledge of the data. This means that
data patterns should be known a priori, and possible data changes have to be envisioned
as well. Particularly, a number of methods utilize user-set thresholds or time windows,
which are difficult to control. However, a heuristic-based parameter selection can be per-
formed depending upon the change frequency of data streams. Data containing noise or
complex patterns can be hindrance in fine tuning the learners’ pliability. Furthermore,
concept drift detection methods with imperfect settings often yields in false alarms, espe-
cially when data is noisy, which is a prominent downside of active concept drift methods.
However, with some background information, such challenges can be mitigated for exam-
ple, if algorithm detects concept change about electricity consumption in a certain month,
characteristics from this month in previous years could be considered to ensure quality
of predictions.

Third, adaptation strategy selection also requires good knowledge of data patterns
and understanding possible changes. A number of strategies exist for efficient adaption
of algorithms, such as initiation of adaptation after measuring Type I and Type II errors
from the detected changes (True and False alarms can be distinguished), request and
re-verify approach [88]. Furthermore, meta- and statistical information about the data
can help in producing a viable yield from learners. Another challenge in adaptation is
the computational effort, that is, how much retraining should be done and on how much
data it should be done. In this study, we retained the real observations as historical data
for retraining, see Figure 1. Therefore, upon detection of concept change, model retrains
on this data for adaptation. However, the possibility of keeping meta information from
previously updated models and using it in future models, is still an open question and
requires further experimentation. We believe that such approach, if successful, can be
beneficial in designing better adaptive strategies for real-time data streams.
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Fourth, the integration of concept drift detection may provide additional latency due to
additional computations, testing and retraining of the learners. However, if integrated after
excessive testing and adjoined with optimal adaptation strategies, computation overhead
can be tackled. Moreover, proper evaluation methodology to asses the performance of
concept drift solutions must also be in place. MAPE alone cannot be taken as a final metric
for evaluation, as stated earlier false alarms can be possible. Therefore, Type I and Type II
errors can be helpful, while additional evaluation methods have been proposed to ensure
the accuracy of learners [62,88].

The study covers the existing gap in the state-of-the-art for concept drift adaption
with time series data [55,69] and provides a relative use case for smart cities using real-time
power consumption data from Fingrid [74]. Considering the implications, concept drift
can affect use cases with low-latency data streams and applications where the short span
of data makes it difficult to access and store historical data, which limits the processing
accuracy, especially where true autonomous, monitoring and forecasting solutions, self-
aware, and adaptive solutions are in focus. The followed approach in the study mitigates
such challenges using a real-time processing and storage methodology, where data is
processed in real-time, and in case of detected concept drift, the historical data stays
persistent in the respective environment for further usage, see Figure 1. Furthermore,
the used architecture and big data technologies enables to tackle the challenges of big data
and heterogeneity. The work performed in this study provides an approach for integration
of concept drift detection with learning models for real-time and large data streams in
context smart city applications for effective predictions and decision-making.

There are certain limitations in our study. First, our analysis zoomed in on a few
selected concept drift detection methods and time series prediction models. Moreover,
the lack of available or reusable benchmark datasets in the literature did not allow us
to fully compare our results with the related work. Also, it is challenging to provide
general recommendations on the specific settings or application domains that would be
most suitable to deploy the concept drift detection algorithms, since the use case scenarios
would heavily depend on the nature of the data. Possible future work could develop a
taxonomy of available concept drift methods for smart city data. The evaluation metrics
used for the concept drift methods and learners can be enhanced by using more approaches.
To the best of our knowledge, this is the first work implementing concept drift detection
algorithms in multi-node distributed environment, therefore this article focuses on the
implementation and testing of the presented approaches, and algorithm optimization is
left for future work.

6. Conclusions

This article presented the implementation and analysis of selected state-of-the-art
concept drift detection methods for time series analysis in distributed environment. The
methods were verified and analyzed with respect to their behaviour in presence of known
abrupt and gradual drift in synthesized datasets. In addition, time series learners were
applied to real-world datasets, first without integration of concept drift detection method,
and then enhanced with concept drift adaptation. The results indicate that integration
of concept drift detection methods do aid in improving forecasting accuracy. However,
the selection of learner and methods should be done carefully, considering the nature of
data. Also, dynamic tuning of base learners should be considered, as in non-stationary data,
patterns change rapidly and old settings can become obsolete with time. The approach
followed in the study can however be applied to data streams originating from IoT, sensors,
smart cities to develop adequate forecasting solutions, that can assist in evidence-based
decision making for policy-makers, government bodies, industrialist, and others.

As future work, we plan to validate the methods with more advanced evaluation
metrics, and explore and analyse more concept drift methods aiming to automatically
identify drift type. Also, optimisation of algorithms within distributed environment will
be explored for increased performance.
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