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Abstract. Neural networks (NN) are prone to systematic faults which
are hard to detect using the methods recommended by the ISO 26262
automotive functional safety standard. In this paper we propose a unified
approach to two methods for NN safety argumentation: Assignment of
human interpretable concepts to the internal representation of NNs to
enable modularization and formal verification. Feasibility of the required
concept embedding analysis is demonstrated in a minimal example and
important aspects for generalization are investigated. The contribution of
the methods is derived from a proposed generic argumentation structure
for a NN model safety case.
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1 Introduction

The complexity and black-box nature of NNs makes the suggested set of methods
from the ISO 26262 automotive functional safety standard insufficient for plau-
sible safety assurance. This is e.g. the case for autonomous driving perception
functions, or in general computer vision applications solved with convolutional
neural networks (CNN) as a safety critical function, which is the scope of this
paper.

We propose a template for the part of the safety case concerning model as-
sessment in order to identify needed methods. One is modularization of NNs, i.e.
simplification or reduction, e.g. pruning or splitting into environment abstraction
and trajectory planning instead of an end-to-end approach. For a useful split
it is necessary that the interface of the sub-modules as well as their intended
functionality is clear. Instead of using a fixed modular topology as in [25], we
propose to utilize inherent modules of a trained NN by identifying interpretable
intermediate outputs as splitting points.

One source of evidence for a safety case is formal verification, which requires
a formal language on the available input and (intermediate) output of the al-
gorithm in order to define the rules to be verified. A formal language consists
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of words (human interpretable concepts) and valid relations thereon, which are
both seldom available for neural networks. Therefore, we suggest as a second
needed method the dynamic enforcement of a preselected set of interpretable in-
termediate outputs. These can then serve as vocabulary for a formal description
language and should be build up from semantic concepts, i.e. abstract classes of
real world objects (e.g. body parts like “foot”) or attributes (e.g. textures like
“hairy”), which admit real world relations (e.g. spatial or hierarchical) between
them.

The Contributions of this paper are:

– A generic model assessment part for the safety argument of NN based ap-
plications is provided.

– A theory on embeddings of visual semantic concepts into NNs is developed.

– The safety argumentation template is enriched by a unified approach for con-
cept enforcement and modularization which based on the theory of concept
embeddings. For each a workflow is suggested.

– An approach for concept embedding analysis is investigated.

2 A Safety Argumentation Structure for Neural Networks

A template for arguing the safety of the intended functionality of NN based
systems can be found in [12]. Development of functional safety argumentation
started with very basic considerations in [18], revised and more detailed in [24].
Contrary to the latter and inspired by the template suggested in [13, p. 14],
we propose to more concretely split between product based (verification and
validation) and process based argumentation. In the following a template, for
product based safety argumentation of NN based algorithms is suggested with
focus on the product argumentation regarding NN specific properties. As in
the preliminary work, goal structuring notation [13] is used, which is regarded
common practice for safety argumentation [9].

Figure 1 proposes a structure for the NN specific functional safety parts of a
safety argumentation. The idea of decomposition is to split into product (S1) and
process (G2) argumentation. Within the process argumentation (S2) we locate
the need for a modularization strategy for overly complex models (Sn1): Due to
the black-box character and complexity of NNs, the effort for the corresponding
safety argumentation increases exponentially with the size of the network [14].

A NN product argumentation requires special care compared to traditional
software models. Reasons are that the intended functionality might be little un-
derstood, that a high probability of remaining systematic faults requires proper
safety mechanisms (G3), and that the absence of safety relevant systematic
faults introduced by NN specific problems (G4) needs to be proven, but such
are not considered in the ISO 26262 standard so far. Figure 1 concentrates on
an argumentation strategy which can provide reasonable confidence for the last
goal.
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G1 NN based system 
acceptably safe to 

operate

S1 Argument over 
all hazards

S2 Argument over 
each NN fault that 
could lead to hazard 

G3 Remaining faults 
properly prevented, 

detected and mitigated

G4 Probability of NN 
systematic fault low

S3 Argument over 
fault identification 

methods

S4 Argument over 
all sources of test 

cases

G5 NN performs 
safely on a 

representative test set

G6 Correct concepts 
and relations are used

G8 NN uses essential 
concepts

G9 NN applies 
sensible reasoning

G10 Domain 
knowledge 
included

G11 Extracted 
rules sensible

G2 Development 
according to standard

S5 Argument over 
relevant adversarial 

perturbations

G7 NN robust

Sn2 Concept
analysis & 
enforcement

Sn1 Functional 
modularization

Sn4 Sn5 Sn6 Sn7 Sn8

Sn3 Sn4

Shortenings:
Sn3 Feature visualization Sn5 Local rule extraction Sn7 Rule enforcement
Sn4 Attribution analysis Sn6 Global rule extraction Sn8 Formal verification

Fig. 1: Template excerpt from a safety case structure for a NN algorithm, fo-
cusing on product argumentation regarding NN model specifics. Sub-trees where
we see suggest further methods (modularization and concept enforcement) are
colored. Parts: safety (sub-)goals (GX ), argumentation strategies (SX ), meth-
ods to provide evidence (SnX ), and arrows depict dependencies/break downs.
Skipped parts are marked with diamonds.
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We categorize NNs specific failure modes into three categories: Robustness
against small input changes, wrong internal representation or logic of the black-
box which we are dealing with in our method proposal, and bad generalization
performance due to training data representativity. We suggest that faults of NNs
(S3) leading to one of those failure modes can be found by one of the following
verification and validation approaches: One is thorough testing (G5) on system-
atically acquired test cases (S4). Another aspect is robustness assurance (G7)
for all relevant input perturbations (S5). Lastly, due to the complexity of the
considered input space, we claim that evidence for a sensible internal structure
of the algorithm (G6) is required. Sensible here means beneficial or necessary for
the intended functionality according to expert judgment. For example classifying
speed signs requires the ability to detect and distinguish digits.

The internal structure includes the internal representation (G8) and the in-
ternal logic (G9) applied to it. The latter can either be directly assessed (G11)
via local (Sn5, e.g. [20], [16]) or global (Sn6, see [4]) rule extraction, or can
be verified by comparison with given rules (G10), which can be done by for-
mal verification (Sn8, e.g. [7]), or by enforcement of rules (Sn7, e.g. via loss
[21]). Similar to rule extraction for logic assessment, qualitative methods for in-
ner representation assessment are available. Such are analysis of attention (Sn4,
e.g. [17]), or analysis of inherent intermediate features (Sn3, e.g. [19]). However,
we identified a lack of quantitative methods for the analysis and improvement
of domain knowledge usage in the inner representation (Sn2). Method sugges-
tions for analysis were given by [10, 15]. Our quantitative proposal of concept
enforcement builds upon these and fills a gap here.

3 Unified Approach for Concept Enforcement and

Modularization

As will be detailed in the following section, semantic concepts are naturally
embedded into the internal representations of NNs. We suggest to utilize this
property in two directions: Given desirable concepts, assess and enforce their
usage. And, knowing which ones are represented internally, use these as splitting
points for a modularization strategy.

3.1 Background Theory: Concept Embeddings

Consider the following definitions generalized from [15]. The intermediate output
of a NN layer (or, in general, of a set of independent neurons) is a vector within
the space of neuron outputs, here called the space of abstract features of the
layer. Consider a layer, an abstract feature vector w, the projection pw to the
one dimensional sub-vector space spanned by x, and a concept c. The vector
w is said to be a concept embedding of c if the intermediate output of the NN
obtained by concatenation of the layer with pw has a high correlation with the
existence of c (in a certain spatial location). Simply speaking, w is the normal
vector of the hyperplane separating the layer output into c or not-c.
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It was shown that there often are concepts embedded by the unit vectors
(i.e. by single neurons) [6], and that for many task related concepts embeddings
can be identified as investigated in [10, 15]. They furthermore found that similar
concepts are embedded by close vectors, and vector operations yield meaningful
relations on the concepts, and that concept vectors can mostly be chosen sparse
[10], i.e. simple basis vector combinations. Sparsity of concepts possibly gives a
measure of encoding complexity and of alignment of the layer basis to the human
concept base. So, a NN naturally internally represents and uses concepts, and
these can be extracted as additional output. Note that previous literature was
restricted to feature spaces consisting of neuron outputs of exactly one layer, not
general collections of independent neurons, but the definitions and possibly the
properties generalize to such.

The above approach to concept embedding analysis gives rise to valuable
metrics: The correlation value of a concept embedding serves as quality metric
for the embedding. The quality of the best concept embedding for a concept
shows how well the concept is embedded into the network. Given an input, the
additional output by projection to the concept embedding shows how well the

network detected the concept for the given input instance. And directed derivative
along the vector shows the attribution of the concept towards the decision [15].

3.2 Concept Enforcement

The inclusion of task related natural language concepts and outputs has been
shown to improve the performance of NNs: Loss based examples are fuzzy logic
rules on hierarchical concepts [21] and multi-task learning including sub-tasks
[11]. Other ways of rule enforcement are e.g. inclusion it into the data [8], topo-
logically [25], or in the case of reinforcement learning safe learning [2]. A possible
reason for the positive impact is that natural language in general admits highly
efficient abstraction levels for real world tasks [3].

Explainable intermediate output as given by concept embeddings enables one
to formulate and automatically verify requirements on the NN. The above sug-
gests that enforcement of output of preselected concepts can be realized without
negative impact on the performance, thus qualifies as post-training fine-tuning
method. We propose the following workflow:

1. Identification of task relevant concepts and relations: We propose for a start
two criteria to identify relevant concepts and relations: They are used or
needed for synthetic data generators, i.e. are used for the underlying ontology
as in [5]. Or, they are used by NNs in similar tasks. Concepts used by NNs can
be identified using concept embedding analysis on predefined concepts, or
methods like explanatory graph extraction [27] that need manual assignment
of natural language descriptions to the found concepts. Used relations can
be found by inspecting the embedding vectors or rule extraction methods
like [20] which uses inductive logic programming.

2. Definition of a formal description language out of these concepts and rela-
tions: The previous guidance on vocabulary selection should ensure a domain
relevance.



6 G. Schwalbe et al.

3. Formulation of rules using this formal language: This is highly use-case spe-
cific and requires domain knowledge. General aspects to derive rules from can
be plausibility checks, e.g. derived from physical laws (“pedestrians usually
don’t fly”) or hierarchical relations (“children and adults are pedestrians”, “a
head usually belongs to a pedestrian”). Or they can be derived from safety
bounds, e.g. performance guarantees (“pedestrian detection performance in-
dependent of clothing color”) or safe state guarantees (“trajectories keep safe
distance from obstacles”).

4. Verification of these rules (automatically) using available solvers, a nice
overview of which can be found e.g. in [7]: Current approaches differ in
performance, restrictions to the network activation functions, and the rules
that can be checked; notably upper/lower bound rules verifiable via bound-
ary approximation [26] versus general linear constraints that are solved by
satisfiability modulo theory based approaches [7].

5. Enforcement of rules if necessary: Of the methods suggested above retraining
with counterexamples and a modified loss are most promising for the chosen
example use-case discussed later.

3.3 Modularization

Splitting at interpretable intermediate outputs results in several smaller and,
hence, less complex sub-networks respectively functional modules, which can
be iteratively optimized and verified. This is eased by reducing the number of
neurons per sub-network and intersection of such using pruning of the neuron
connections before splitting, i.e. deleting ones with low weight. We suggested the
following recursive workflow to achieve higher modularization:

1. Identification of learned concepts using neuron level analysis, e.g. [6, 10].
2. Radical pruning of connections, e.g. weight decay and thresholding [1, 22].
3. Identification of the abstraction and interpretation networks using topolog-

ical introspection (if possible automatically).
4. Splitting of the NN into the smaller NNs with the identified interfaces.
5. Evaluation and (partly) retraining of the pruned and split NN if necessary.
6. Simplified safety assessment on the smaller parts.

4 Experiment on Concept Embedding Analysis

The idea on how to obtain a concept embedding vector is to train it and its
threshold as parameters for a linear predictor on the model intermediate output.
In [15] they use a support vector machine as predictor, which improves the
uniqueness of results. The approach in [10] uses a convolutional layer for the
prediction introducing translation invariance, easy sparsity analysis, and the
possibility of concept segmentation. We base on this setup, since it can directly
be used for a multi-task training problem to enforce the desired concept. We
tested whether the concept embedding analysis suggested in [10] generalizes to
a minimal example and investigated several proposals for improvement.
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General Setup. The setup is a simple traffic sign classifier on the subset of
15 classes of the German Traffic Sign Recognition dataset [23] with all images
scaled to 48 × 48 px. The visual semantic concepts to analyze were the digits
occurring in the five different speed limit sign classes. A concept training re-
spectively testing set are all images containing the digit together with a random
sampling of others at a ratio of 7:3. Due to the sign uniformity and translation
invariance, the concepts were statically labeled. The pretrained classifier was
realized at accuracy of 98.2 % with a feed-forward NN with four convolutional
blocks, each ReLU-activated 3 × 3-convolution and 2 × 2 max pooling, then
two dense blocks, and a final dense sigmoid layer. Each block is succeeded by
a dropout layer. The intermediate output wherein to find a concept embedding
was chosen to be a window of 3 × 4 pixels (width × height) in the activation
map of the third convolutional layer. This differs from [10] where only one pixel
was considered at a time because it proved to be necessary that the receptive
field of the considered window (when up-scaling the window pixels to the orig-
inal image) covers the complete digit, or, more generally, uniquely identifying
parts of the concept. For example a “3” and “5” cannot be distinguished by their
lower half. Similarly, the training objective we found to generalize best differs
fundamentally from [10]: For a position, we want to predict whether it is the
center of a window containing the desired concept, other than directly creating
a pixel-wise mask. For translation invariance, the window setup was realized
by a 3× 4-convolution with one output filter (the concept output) and sigmoid
activation on the output of the layer. The concept embedding vector to train
is the weight vector of the convolution kernel. For evaluation of the embedding
respectively the associated classifier we used smooth set intersection over union
(siou) as in [6, 10] which is calculated as the sum of intersections of the predicted
mask M(x) with the ground truth mask Mgt(x) for all samples x in the test set
X

siou(X) =

(
∑

x∈X
Mgt(x)M(x)

)

+ 1
(
∑

x∈X
Mgt(x) +M(x)−Mgt(x)M(x)

)

+ 1
. (1)

Proposals for Improvement. As losses we compared the standard losses binary
cross-entropy (bc) and mean squared error (mse) to our new suggestions of neg-
ative smooth set IoU from (1) with M(x) non-binary, and a variant derived
from the source code of [10] (si), which optimizes for large intersections each of
foreground and of background pixels:

si(B) = −
1

#B

∑

x∈B
(1− b)Mgt(x)M(x) + b (1−Mgt(x)) (1−M(x))

where B is a batch and b is the mean number of foreground pixels in the dataset
as a weighting factor. This weighting factor (w) as well as smoothing the objective
by predicting the intersection over union (IoU) value of a window (iou) were
tested for performance benefits. Lastly, we investigated whether convergence
could be improved by pretraining the weight vector in a digit classifier setup: A
balanced set of windows with and without the digit is presented to the network.
Due to the convolution size, this yields one classification output pixel per image.
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Loss pretrained

yes no

si 0.313 0.016

si-w 0.308 0.138

si-iou 0.305 0.011

si-w-iou 0.386 0.200

siou 0.264 0.325

siou 0.047a 0.093a

bc 0.473 0.094

bc-w – –
bc-iou 0.421 0.050

bc-w-iou – 0.198

mse 0.423 0.025

mse-w 0.223 0.099

a

pixels binarized, not bloated

Fig. 2: Top to bottom: Originals, ground truth IoU masks, exem-
plary outputs of the bc model with weight pretraining.

Table 1: Mean smooth set IoU results by setup (〈loss〉-〈modifiers〉)
for concept “3”; gaps are numerically instable.

Results. Table 1 collects the mean set IoU of 10 runs for each setup (variance
each below 0.004). For evaluation, the predicted IoU values were turned into an
estimated concept area by up-scaling, bloating and then adding the IoU pixel
values. For weight pretraining, the mean init model accuracy was 91%. The
weighting w was originally suggested to be applied to bc instead of si loss in [10],
which we found to be numerically instable. In general, w and iou were shown
to only optimize si loss. Pretraining the weights on a concept training set with
equal class distribution generally benefits the performance, supporting the sug-
gestions from [10, 15]. Interestingly, pretraining the weights pushes bc and mse

from no convergence to best results, suggesting that the losses themselves are
weaker aligned with the optimization objective. We claim that this problem is
caused by giving little account to spatial distance to the ground truth center,
also in the iou setting. This well fits the observation that the direct application
of siou loss, where the problem is mitigated, yields best results without any pre-
training. Interestingly, siou will focus on finding pixels strictly inside the concept
area, which can be seen from the comparison of IoU measurement directly on
the output and after bloating the pixels. Finally, we found that all converging
methods produce sparse concept vectors, since more than 50% of the weight
entries can be zeroed without inflicting but even increasing the performance.
Therefore, we suggest that sparsity could be improved or even enforced based
on above methods.

5 Conclusion and Outlook

The two suggested methods and workflows based on concept embedding analysis
promise to substantially support a safety argument (Figure 1). The experiment
results give guidance on generalizing an analysis approach from [10]. Future
work will focus on applying these to the more complex safety relevant use-case of
pedestrian detection. The final goal is to finish the goal structuring notation tree
for the safety argumentation as a template for safety critical NN applications.
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