
Concept Identification in Object-Oriented Domain Analysis:
Why Some Students Just Don’t Get It

Davor Svetinovic, Daniel M. Berry, Michael Godfrey
School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

{dsvetino, dberry, migod}@uwaterloo.ca

Abstract

Anyone who has taught object-oriented domain analysis
or any other software process requiring concept identifica-
tion has undoubtedly observed that some students just don’t
get it. Our evaluation of the work of over 740 University of
Waterloo students on over 135 Software Requirements Spec-
ifications during the last four years supports this same ob-
servation. The students’ task was to specify a telephone ex-
change or a voice-over-IP telephone system and the related
accounts management subsystem, based on models they de-
veloped using object-oriented analysis. A detailed compar-
ative study of three much smaller specifications, all of an
elevator system, suggests that object orientation is poorly
suited to domain analysis, even of small-sized domains, and
that the difficulties we have observed are independent both
of the size of the system under specification and of the over-
all abilities of the students.

1 Introduction

Anyone who has taught object-oriented domain analy-
sis or any other software process requiring concept identi-
fication has undoubtedly observed that some students just
don’t get it. Recently and not so recently, several authors,
including Hatton [11], Kaindl [13], and Kramer [15], have
indicated an urgent need for experimentation aimed at val-
idating the effectiveness of software engineering abstrac-
tion techniques and methods, in particular of object orien-
tation. Experimentation is required, since many of these
methods have proliferated into day-to-day use without sig-
nificant validation. As observed by Sackman, Erickson,
and Grant [24], individual differences among practitioners
tend to dominate the differences in methods. The variation
among the models produced by different practitioners for
the same system calls to question the benefit of applying

these methods and causes us to wonder how we can reduce
this variation.

The motivation for this paper comes from our obser-
vation of students’ work on the requirements analysis and
specification of a system composed of (1) a small telephone
exchange or a voice-over-IP telephone network and (2) the
related accounts management subsystem. Production of the
specification, in the form of a Software Requirements Spec-
ification (SRS) document, is the term-long project carried
out in the first course of a three-course sequence of soft-
ware engineering courses that span the last year and a half
of the software engineering undergraduate degree programs
at the University of Waterloo [4].

Over the last five years, Svetinovic had a wide variety
of roles, being customer, group coordinator, UML and SDL
instructor and lecturer, and project evaluator. Each of Berry
and Godfrey has been the lead instructor, i.e., the profes-
sor, teaching this course. We have personally reviewed over
135 different SRSs, out of over 195 that were developed in
this time interval by over 740 software engineering, com-
puter science, and electrical and computer engineering stu-
dents. Our teaching experience has given us the opportunity
to observe various software analysis and specification issues
from different perspectives.

The projects in the three-course sequence involve using
(1) various techniques for developing software for embed-
ded real-time systems and (2) object-oriented techniques for
developing information systems. The real-time components
of the telephone systems are specified using formal finite-
state modeling with SDL [2]. The information-system com-
ponents of the telephone systems are specified using the
notations of UML [23]. Use cases [e.g., 16] are used for
capturing domain-level requirements, and object-oriented
analysis is used as a bridge towards the later object-oriented
design. In addition, students are responsible for modeling
user interfaces of the information system and for the over-
all management of the specification process. The average



size of the resulting SRS document for the whole system is
about 120 pages, with actual sizes ranging anywhere from
80 to 250 pages.

Through specification reviews, interactions with stu-
dents, and grading preliminary partial and the final full
SRSs, we have observed many difficulties that arise dur-
ing the entire specification process. The most frequently
observed difficulty is that ofperforming object-oriented do-
main analysis (OODA), i.e., of

1. identifying concepts of the system’s domain and

2. ascribing the system’s functionality to these concepts.

For the purposes of this paper, we call this difficulty thefun-
damental difficulty (FD). In addition, we have observed sev-
eral other difficulties, which are deemed beyond the scope
of this paper:

• difficulties in writing high-level use cases as opposed
to writing simple scenarios,

• difficulties in avoiding specifyinghow and staying at
thewhat level,

• difficulties in working with only system-level use cases
and finding appropriate levels of abstraction,

• difficulties arising from the use of different modeling
notations, UML and SDL, and

• difficulties in writing and managing many different
types of UML and SDL diagrams.

We have found that the FD was occurring more fre-
quently than any of the other difficulties, and it tended
to stay unresolved. The effects of the FD were felt also
throughout the specification of the system. The FD seemed
to occur during the analysis of both the more complex and
the less complex parts of the system.

The rest of the paper is organized as follows: Section 2
builds the background and discusses related work relevant
to the students’ task and our case study. Section 3 enun-
ciates the case study’s hypothesis. Section 4 describes our
research method. Section 5 presents the case study results
and the analysis. Section 6 discusses the results. Section
7 compares the case study results to our observations about
the students’ projects. Section 8 presents our conclusions
and suggests future work.

2 Background and Related Work

In the early days of the software engineering, most of
the methodology research and technology transfer efforts
focused on improving programming. Programming was
perceived to be the main difficulty in the development of

software systems. The business systems supported by early
software tended to be relatively small, well understood, and
stable. As programming methods and technology matured
and stabilized, the focus has shifted to automation of other
larger, less understood, and more volatile business systems.
Today, a typical business system is simply so large, is so
complex, and changes so frequently that it is very difficult,
if not impossible, to understand it completely. The inability
to understand a business system and to precisely capture all
of its goals and requirements results in software that does
not fully satisfy all the business needs. This nonsatisfaction
of needs leads, in turn, to dissatisfied customers and users,
frequent changes, and other maintenance difficulties.

The size, complexity, and instability of modern business
systems engendered a need for techniques for effectively
capturing and understanding business needs and require-
ments. Often, the effort to understand a business system
exceeds the effort to build the supporting software system.
This situation is described often in the literature as thewhat
vs. how problem[e.g., 12]. Learningwhat to build is of-
ten more difficult than learninghow to build the system,
i.e., correctly understanding a business is more difficult than
building software to support it [e.g., 10].

To help people understand business domains, researchers
have devised several approaches that can be divided into
two groups. The first group consists of the methods inspired
by different programming paradigms. The second group
consists of methods that have roots in traditional business
analysis.

Programming paradigms have influenced all develop-
ment stages, even the early ones, such as requirements
analysis and design. For example, structured and object-
oriented programming resulted in structured [e.g., 6] and
object-oriented [e.g., 3] analysis and design. This tradi-
tion continues even with the emergence of newer paradigms
such as aspect orientation [e.g., 21] and agent orientation
[e.g., 20].

Other researchers have applied traditional business anal-
ysis techniques during software requirements engineering.
Goal-driven [e.g., 5] requirements engineering has proved
to be promising for dealing with domain-level requirements
for large systems. Goal-driven requirements engineering
has focused on ensuring that software actually fulfills busi-
ness needs and requirements.

Software requirements analysis techniques that origi-
nated from programming paradigms generally do not con-
flict with those that originated from business analysis;
rather, they complement each other. The main difference
between the techniques shows up in the requirement ab-
straction levels for which they are well suited. For example,
goal-driven requirements engineering techniques are con-
sidered well suited to capture domain-level requirements
[17], while object-oriented requirements engineering tech-



niques are considered well suited to capture product-level
requirements [17].

Each of these techniques has its strengths and weak-
nesses. However, the main difficulties arise during the in-
tegration of the domain and product requirements, for ex-
ample, in moving from domain-level requirements, such as
goals, use cases, and features, to object-oriented analysis
artifacts, such as objects, relationships, object features, and
attributes. The need to integrate all these artifacts leads to
the FD that is the subject of this paper. It is difficult but es-
sential to establish meaningful and unambiguous relation-
ships among these artifacts.

3 Case Study Hypothesis

The current trend of software development is towards it-
erative and use-case driven [22, 16] processes. In such pro-
cesses, most domain objects are discovered iteratively, and
the main source for their discovery are use cases and the
domain knowledge acquired during development of the use
cases. The students’ projects were conducted in this man-
ner. Depending on the abstraction level of the use cases, the
degree to which sub use cases are separated out, and on how
many scenarios are abstracted into a use case, a typical SRS
had anywhere between 10 and 30 use cases.

The difficulty of discovering domain concepts does not
appear to be greatly affected by the overall size of the sys-
tem, because the conceptual decomposition was done at the
level of the use cases. Since the conceptual decomposition
was use-case driven, i.e., concepts were discovered as they
came up during the generation of use cases, we have come
to believe that thefundamental difficulty of OODA is mostly
independent of the size of the system under consideration.
In order to validate the correctness of this assumption, we
have decided to perform a comparative case study of three
specifications of a much smaller domain: an elevator sys-
tem. The discussion about these specifications serves also to
illustrate concretely the difficulties of object-oriented con-
cept decomposition.

The hypothesis explored in this case study is that

the FD is present in both small and large systems,

i.e., the difficulties that we have observed in students’ work
are due not to the size of the system they were specifying
but rather to something else, perhaps directly related to the
object-oriented analysis paradigm.

4 Research Method

In order to test our hypothesis, we decided to perform a
comparative study of several independently produced speci-
fications of elevator systems. We have settled down to three
different specifications found using Internet search engines.

Each of the specifications deals with the basic function-
ality of the elevator as seen from a user’s perspective. This
view of the elevator system means that there are two basic
high-level use cases considered:

UC1: request an elevator cab to move to a particular floor,
from outsidethe elevator cab, and

UC2: request an elevator cab to move to a particular floor,
from insidethe elevator cab.

The number of use cases in an elevator system is ap-
proximately one tenth of that of the telephone systems with
which the students were dealing. At the same time, the ele-
vator system is of a non-trivial size, as it consists of a non-
trivial number of concepts in its domain, about forty.

4.1 Choice of the Case Study

To choose the case-study subject systems, we were
guided by following requirements, constraints, and oppor-
tunities:

1. The hypothesis that the FD is independent of the size
of a system required us to look for a domain which
is considerably smaller than that of the telephone sys-
tem used in the students’ projects. The elevator system
domain seems to fit the bill perfectly, especially since
many specifications of it, in a variety of sizes and de-
grees of completeness, are readily available on the In-
ternet. The elevator system domain has been used as
an exemplar for years to demonstrate specification lan-
guages and techniques.

2. The chosen specifications were published on the Inter-
net with no restrictions on their use for research pur-
poses.

3. Each specification was authored by people with formal
computer science education.

4. If we were to choose elevator system specifications
that were composed as pedagogical examples to show
the strengths of object-oriented analysis and design,
we would expect fewer instances of the FD in the cho-
sen specifications.

5. The elevator system domain is familiar enough to most
readers, allowing the discussion here to focus on mod-
eling difficulties rather than on the details of the do-
main.

6. The focus of each specification we found is different;
some are general domain modeling exercises, some are
specifications of elevator management systems, and
some are for simulation purposes. We decided to use



three with different foci for a more robust test of the
hypothesis. However, we expected that, nevertheless,
their complete analysis models would be similar.

7. An elevator system should be easier to analyze than
most business systems, as the services, i.e., function-
ality, that an elevator offers are quite simple, and the
system itself consists mostly of tangible, physical ob-
jects. In contrast, the typical business system provides
many complex interrelated services, and consists of
many abstract, conceptual entities.

5 Analysis

This section first introduces all three case studies and
then presents the results of our analysis.

The viewpoint we took in this analysis is that of anig-
noramus[1]; we intentionally did not attempt to learn the
domain or specify an elevator system ourselves before at-
tempting this analysis. Also, we assumed each specifica-
tion to be correct until it was proved otherwise. Finally, we
assumed that object-oriented analysis is ideal for elevator
systems, and we did not attempt any other kind of analysis.
This viewpoint and these assumptions were required in or-
der to preserve our objectivity in the case study. We pass the
flavor of this objectivity on to the reader by purposely not
naming the authors of the case studies, even though the au-
thors can easily be determined simply by going to the case
studies’ web sites!

5.1 First Case Study

The first case study [7] has the smallest specification of
the three. Its main purpose is to teach the basics of UML. Its
author focused on analyzing the basic elevator functionality
from a passenger’s perspective.

The published analysis consists of

1. a problem description,

2. a use-case diagram,

3. a description of each use case’s basic scenario,

4. a collection of sequence and collaboration diagrams,
one of each for each use case’s basic scenario, and

5. a conceptual diagram.

The author does not provide full use-case descriptions.
Since a problem description was provided, and it was used
as the main source for the concept decomposition, the lack
of full use-case descriptions is not a concern.

The author does not make any attempt to distinguish
among the types of concepts in the conceptual diagram, and

he does not clearly demarcate the system boundary. We
suspect that not distinguishing among the types of concepts
and not defining the boundary impeded his efforts to dis-
cover domain concepts. Nevertheless, we believe that this
impediment had less of an impact in this case study than in
the course projects due to the smaller size of the case-study
domain.

5.2 Second Case Study

The second case study [8] specifies an elevator control
system for a three-story building. The size of this specifi-
cation is close to that of the specification of the first case
study.

The published analysis consists of

1. a problem description,

2. a use-case diagram,

3. a conceptual diagram,

4. a collection of state machine diagrams, one for each
object in the conceptual diagram.

As in the first case study, the author provides no complete
use case description. The specification is based on concept
extraction from the problem description.

A very helpful feature in this system specification is the
names of discovered domain concepts are bold faced in the
problem description. What is bold faced is a good indi-
cation that the author used a noun-extraction technique to
identify the domain concepts.

As in the first case study, the author does not make any
attempt to distinguish among different types of concepts in
the conceptual diagram, and he does not clearly demarcate
the system boundary.

5.3 Third Case Study

The third case study [9] specifies a system for control
of multiple elevators in a high-rise building. The system
is supposed to be able to support from one to eight eleva-
tors, the exact number being a parameter of the specifica-
tion. Each of the buildings has its own number of floors.
Each elevator serves a possibly different set of possibly non-
adjacent floors; the set of floors served by an elevator is
called apart of the building. Each part of the building has
no more than four elevators installed to serve it.

The published analysis consists of

1. a problem description,

2. a use-case diagram,

3. use-case descriptions, one for each use case,



4. a specification in the form of a collection of state ma-
chine diagrams, one for each object mentioned in the
problem description and the use case descriptions.

Unlike in the first two case studies, this case study has
fully developed use-case descriptions in addition to a prob-
lem description that is about the same size as the problem
descriptions of the first two case studies. This case study’s
problem description is focused on the system’s structure
rather than on the system’s functionality and constraints.

The main component of interest for us, the conceptual
diagram, is not provided. Instead, the specification is di-
vided into different sections, one for each concept; and for
each concept, an extensive set of state diagrams is given.

5.4 Comparison

We performed an OODA of each of the case studies to
find all concepts present in any case study. Table 1 shows
the union of all concepts found in the case studies; the unit-
ing was performed on the bases of (1) the names assigned
by the case studies to the concepts, i.e., the same name ap-
pearing in two case studies is assumed to name the same
concept in both studies and (2) the meanings of concepts,
i.e., two concepts in different studies that mean the same
thing are considered the same concept. Each concept has a
row in the table. For each concept and each case study, the
intersection of the concept’s row and the case study’s col-
umn has an entry indicating the origin of the concept within
the case study:

• “D” indicates that the concept was discovered by the
study’s author.

• “I” indicates that the concept was not discovered or
was ignored by the study’s author, even though noun
extraction shows that the concept is clearly in the do-
main, and

• an empty slot indicates that it was not possible to dis-
cover the concept from any domain artifact mentioned
in the case study.

A concept labeled “D” is called a “D concept”, and a con-
cept labeled “I” is called an “I concept”.

The table contains also atype column indicating the
types for its intersecting concepts. Concept types help in
classifying and understanding concepts. The concept types
used in the study are:

• Physical Structural Element (PSE): A PSE is an entity
that has a responsibility to act as a physical boundary,
container, or structural element in a physical system.

• Conceptual Structural Element (CSE): A CSE is an ab-
stract entity that has a responsibility to act as a con-
cept boundary, container, or structural element primar-
ily in an abstract business system, e.g., a department in
a company is a CSE.

• Physical Processor (PP): A PP is a physical device that
performs computations within the system.

• Conceptual Processor (CP): A CP is an abstract entity
that performs computations within the system.

• Actor (A): An A is an external entity that directly com-
municates with the system.

• Intangible Concept (IC): An IC1 is an abstract entity
that exists within the system.

The concept rows of Table 1 are sorted by the concepts’
types.

Physical structural elementsandactorsplay important
roles in the definition of the system boundary and interface.
In our experience, these two types of concepts are the eas-
iest ones to discover in the domain.Physical processors
are important for the system’s interface definition. They are
relatively easy to discover, but often difficult to decompose
into components.Conceptual structural elements, concep-
tual processors, and intangible conceptsare important for
the internal design of the software system. These concepts
are the most difficult to discover primarily due to their ab-
stract nature and their only implicit existence within the sys-
tem.

Finally, the table contains apurposecolumn indicating
the purposes that concepts take on in the specifications in
which they were indicated.

All told, 44 concepts were discovered in the three spec-
ifications. Table 2 shows the numbers of D and I concepts
in the three case study columns of Table 1. It shows also
for each number of D or I concepts, its percentage out of all
concepts found in any case study.

In the first case study, the ratio of discovered to ignored
concepts is 3:2, in the second, the ratio is 2.71:1, and in the
third, the ratio is 1:4.17. Clearly the ratios vary widely over
the case studies with no particular pattern. This observation
is consistent with our experiences with the course projects,
for which we could never predict how many concepts a par-
ticular team would manage to capture.

The concept type with the lowest D-to-I ratio is IC; prob-
ably because people generally have difficulty identifying in-
tangible, abstract concepts. The type with the second low-
est D-to-I ratio is PSE. We surmise that the authors per-
ceived physical structural entities as being less important

1We use the “Intangible Concept” instead of just “Concept” as the
name of the type of an abstract entity in order to avoid confusion with
general term “concept” used to describe arbitrary concepts that appear in
the model.



Concept CS1 Status CS2 Status CS3 Status Type Purpose

elevator system I D I CSE to define the conceptual boundaries of the system
to control and move the elevator cab

passenger I I I A to use the elevator
elevator cab D D D PSE transport passengers
building I PSE physical system boundary
floor I D I PSE to provide building’s structure

to define elevator travel destinations
top floor I I PSE special floor - different user interface

to provide direction reference
bottom floor I I PSE special floor - different user interface

to provide direction reference
button panel I PSE container for buttons
elevator shaft I PSE pathway for the elevator cab

provide elevator access to the floors
button D I PP to unify all buttons
elevator button D D PP unify buttons inside the elevator cab
floor request button D D PP user interface for requesting floors
door button D PP user interface for door opening
open door button D I PP request to open the doors when the elevator is not moving
close door button D I PP request to close the doors when the doors are open
floor button D D D PP user interface for requesting elevator
stop button I PP request immediate elevator stop at the next floor
door D D D PP close the elevator cab
inner door D PP close the elevator cab
outer door D I PP close the floor access to the elevator shaft
door opening device I PP open the doors
floor number display I PP user interface for indicating travel progress
floor sensor D PP detect elevator position with respect to the floors
elevator engine D PP move the elevator cab
elevator controller D CP to delegate interface requests within the system

to delegate internal responsibilities within the system
door timer D I CP constrain door opening time periods
current floor I IC to define current location of the elevator
designated floor I IC final travel destination
request I I IC unify all the request types
requested direction D IC track user’s traveling preference

used for the elevator stopping scheduling purposes
elevator request D IC track user’s request for elevator services

used for the elevator stopping scheduling purposes
elevator-up request D IC same as for elevator request
elevator-down request D IC same as for elevator request
pending queue D IC keep track of unprocessedelevator request button

andfloor request buttonrequests
summon D IC to capture elevator request
stop request I IC capture users request for stopping at a particular floor
time period I I IC constraint time allowed for various operations
stop I IC unify different elevator stopping situations
immediate stop I IC unplanned stop initiated by the passenger
planned stop I IC stop at final travel destination
stop notification I IC user interface for indicating elevator stops
button refusal notification I IC user interface for invalid request notification
direction I IC capture current traveling direction of the elevator
light I IC user interface to indicate button status

Table 1. All Discovered Concepts



Case Study Discovered % Discovered Ignored % Ignored

CS1 6 13.64 4 9.09
CS2 19 43.18 7 15.09
CS3 6 13.64 25 56.82

Table 2. Numbers of Concepts

than other concepts of other types, because physical struc-
tural entities are perceived as being outside the scope of the
system. Nevertheless, these concepts should be captured
because they often constrain the behavior of the internal
system.

6 Evaluation

This section’s subsections contain evaluations of one
case study relative to three specific manifestations of the
FD:

1. Misplaced Responsibilities: determining which D con-
cepts were assigned the responsibilities that really be-
long to the missing, I concepts,

2. Omitted Responsibilities: determining which respon-
sibilities mentioned in a problem description were en-
tirely missed in the corresponding models, and

3. Omitted Passive Concepts: determining which con-
cepts, either D or I, are consumed or produced through
interactions of other concepts.

Due to space limitations, mostly only the evaluation of the
second case study is presented. The full evaluation is found
in Svetinovic’s Ph.D. dissertation proposal [25]. Because
of the focus on one case study, unless otherwise explicitly
stated, from here until Section 7, each “author” means the
second case study’s author, and each published analysis arti-
fact, e.g., the conceptual diagram, is that of the second case
study.

6.1 Misplaced Responsibilities

It appears that emphasizing structure over function in de-
composing a system leads to difficulties assigning responsi-
bilities to concepts. Moreover, when responsibilities are not
clearly observable in a domain description, many activities
remain unidentified.

Table 3 shows for each D concept that appears in the
conceptual diagram the activities assigned by the author to
the concept. The table shows also the purposes of these
concepts as derived by us from all three case studies. Five
of the eight D concepts in the conceptual diagram do not
even have clear definitions of the activities for which they
are responsible.

The main symptom of misplaced responsibilities is the
existence of many I concepts in a conceptual diagram.
When concepts are missing, an activity that is needed to ful-
fill the system’s functionality gets assigned to one of the D
concepts, often to a not fully appropriate concept; the over-
loaded concept gets this additional activity in addition to the
activities for which it should be responsible. This misallo-
cation of responsibilities means that each D concept has to
fulfill a number of responsibilities that really should be ful-
filled by other concepts, often not present in the conceptual
diagram.

Even for the three D concepts that have their activities
clearly indicated, (1)floor button, (2) open door button,
and (3)close door button, we can observe misplaced re-
sponsibilities. For each concept, the purpose field indicates
responsibility for only a subset of the activities that have
been assigned to the concept. According to the author, each
of these concepts is responsible forrequesting the elevator
to perform a particular activity. However, the purpose of
each of these concepts is to serve as a user interface for the
corresponding request. Capturing a user request is only a
partial responsibility of the overall activity of requesting an
elevator to perform an activity.

The reader may wonder why these three concepts cannot
themselves completely fulfill the responsibility of request-
ing the elevator to do a particular activity. It is sufficient
to identify the I concept thatshouldcollaborate with these
three concepts to fulfill the responsibility. That one I con-
cept would berequest. This concept’s purpose is to cap-
ture any request and all of its parameters and to carry out
the actual request by distributing parameters to the concepts
that participate in doing the request. This mode of thinking
is important, because just discovering therequest concept
leads to discovering a request’s parameters. This analysis
propagation is necessary to achieve a complete model.

6.2 Omitted Responsibilities

We assume that the authorwasable to identify responsi-
bilities that were mentioned in the problem description but
were omitted from the conceptual diagram; after all, the au-
thor wrote the problem description! Therefore, this subsec-
tion focuses on only I concepts that were neither indicated
in the domain description (by the author’s having used bold
face in the problem description) nor included in the concep-
tual diagram.

The first I concept to consider istime period. The con-
cepttime period is used in the activity of constraining the
amount of the time the elevator door is open. The con-
cept that directly depends on and usestime period is door
timer. Since time period is not explicitly captured as a
concept, and since thedoor timer concept does not capture
the notion of having to keep track of the amount of time for



Concept Activity Purpose

elevator (cab) none transport passengers
elevator engine none move the elevator cab
floor button request the elevator user interface for

to come to the floor requesting elevator
elevator button none unify buttons inside the elevator cab
open door button request to open the doors user interface for

when the elevator is not moving opening door
close door button request to close user interface for

the doors immediately closing door
door none close elevator cab and shaft access

for the safety purposes
door timer none constrain door opening time periods

Table 3. Second Case Study: Discovered Concept-Activity-Purpose Relationships

which thedoor can stay open, the responsibility of keeping
track of time is omitted.

The second omitted responsibility is that of opening
doors. This responsibility should be be assigned todoor
opening device. It is possible that the author assumed
that this activity is part of a door’s functionality. However,
because this activity is captured neither in the domain de-
scription nor in the diagrams, we assume that it was missed
entirely or purposely omitted. In addition, that this respon-
sibility has to exist is clear from the existence of theopen
door buttons and theclose door buttons. Obviously, the
author had discovered two out of three concepts that partici-
pate in the activity of managingdoor movement but omitted
the concept that would have been responsible for the actual
action of moving the doors.

The light concept’s responsibility to indicate abutton’s
status is missing. This responsibility might have been iden-
tified but purposely omitted if the author assumed that re-
sponsibility is handled by the button’s hardware and thus
does not need to be in the software. However, even when
hardware does discharge a responsibility, the responsibility
needs to be specified so that the responsibility is not lost if
hardware that behaves differently is ever used in the future.

The author usedelevator request button in the con-
ceptual diagram to unify thebuttons andbutton requests.
However, we believe thatrequest should have been a con-
cept in its own right in order to unify all elevator requests.
Thus, request is considered to be a partially omitted re-
sponsibility.

Another group of obvious, but omitted, responsibilities
is those of thepassenger, as the user of the elevator. Since
some argue that actors should not be included in concep-
tual diagrams, it is possible that the author made an explicit
decision to omit thepassenger’s responsibilities.

Finally, the unique responsibilities of thetop floor and
the bottom floor are to deal with the different user inter-
faces that these floors require. Also, the responsibility of
these two floors to provide a direction reference for theel-
evator cab has been omitted.

6.3 Omitted Passive Concepts

The specification has a rich set of passive concepts. The
passive concepts that the author has identified in the domain
descriptions arerequested direction, elevator request,
elevator-up request, and elevator-down request. Al-
though these passive concepts were clearly indicated in the
domain descriptions, the author did not include any of them
in the conceptual diagram, probably because of their passive
nature. None of them is performing active work. Instead
they are produced or consumed by other concepts in achiev-
ing the other concept’s responsibilities. This omission is
consistent with what we have seen in students’ projects.

Note that therequest concept is not really a passive con-
cept but rather an abstract concept since its purpose is to
unify many concrete passive concepts. When considering
the students’ projects, we observed that abstract concepts
need to be discovered because their discovery often facil-
itates the discovery of other passive concepts. This facili-
tation could be regarded as one purpose of identifying in-
heritance during analysis. In the case study, however, the
author did manage to discover several related concrete pas-
sive concepts without discovering this abstract concept.

The third case study is quite similar to the second with
respect to the discovery of passive concepts. The third case
study author discovered and included only one passive con-
cept:summon. We discovered several additional ones:no-
tification, direction, stop, time period, request, stop re-
quest, andstop notification. Overall, in all three case stud-
ies, passive concepts were largely omitted, whether from
ignorance or inability to discover them.

7 Discussion of Results

These case studies suggest that the presence of the FD in
specifications arising from OODA is independent of system
size. Even in a small problem such as an elevator system,
there are many symptoms of the FD, just as there are in the
larger student projects. While our students were inexperi-
enced in OODA, since the case study authors were writ-



ing scientific or pedagogic exemplars of OODA, we assume
that these authors were skilled and experienced in OODA.
Therefore, we believe that thecauseof this FD is neither
the size of the specified system nor the specifier’s lack of
OODA experience. Rather, we believe that the FD arises
from two inherent properties of complex business systems:

1. Each of most concepts fulfills only a sub-activity of a
larger activity by interacting with other concepts, and

2. each of most concepts participates in many different
activities, each for different purposes.

Of course, this belief will have to be confirmed in future
experiments.

These two properties of complex business systems con-
tradict what most students learn in their study of object-
orienteddesign and programming, which tends to empha-
size what we call for the purposes of this discussion “crisp-
ness”, i.e, well-defined classes, each with a single purpose
and a focused set of related responsibilities. Trying to an-
alyze a complex problem domain with OODA leads many
a student to discover a lot of the concepts, responsibilities,
and activities that are there but to bend them so that they
fit the first decomposition arrived at in an attempt to make
a crisp decomposition. In doing so, students, working in
teams, tend to perform the following actions:

1. They assign responsibilities fulfilled through the col-
laboration of multiple concepts to only one concept.
Assigning the responsibilities of multiple concepts to
one concept leads in turn to the following difficulties:

• assigning to a concept indirect responsibilities—
those achieved by collaboration with other con-
cepts—that are larger in scope than the responsi-
bilities for which the concept is directly respon-
sible,

• missing true responsibilities of that concept; the
missing responsibilities are hidden within the
larger responsibilities, and

• missing other concepts that participate in the
overall responsibilities.

2. They do not capture passive concepts, concepts that
are produced or consumed by interaction of other con-
cepts.

We believe that these tendencies are the main cause for
the manifestations the FD that we have observed with the
students’ projects:

• under-specified analysis models: students tend to cap-
ture only a subset of the available concepts even
though many are visible in the domain-level require-
ment artifacts and can be extracted using even the rel-
atively simple noun-extraction technique [16];

• drastically different models of ostensibly the same sys-
tem from different groups, probably from different
groups’ having focused on very different subsets of
concepts; and

• large number of software concepts at different abstrac-
tion levels, made visible through the existence of re-
lationships in the conceptual models among concepts
that do not have such relationships in the problem do-
main.

Notwithstanding that the creators and proponents of
object-oriented methods have touted object orientation as
an excellent way of capturing domain concepts and bridg-
ing the conceptual gap between business systems and soft-
ware [14, 18, 19], our experiences with over 135 projects
has shown that capturing domain concepts and bridging the
conceptual gap remains difficult even when the practitioner
ostensibly knows object orientation.

Please recall that this discussion is about only OODA.
We have not made any claims about object-oriented design,
object-oriented programming, or any other object-oriented
paradigm or technology. Even if our claims about the FD of
OODA are eventually validated, it would still be impossible
to generalize them to other disciplines that happen to share
object orientation.

Our analysis of these results arise from the observation
of only the specification artifacts produced as a result of the
students’ OODA of a business system and of the students’
behavior. We have not have the opportunity to analyze the
designs later produced by the these students. Neverthe-
less, we have never noticed that any of them had any prob-
lems understanding object-oriented programming concepts.
However, whenever it came to discovery and analysis of
concepts in the problem domain, it seemed that this object-
oriented programming background knowledge did not help
much. Therefore, we have come to the conclusion that the
FD lies neither in the students nor in their so-called inability
to understand object orientation, but rather in limitations of
the current OODA techniques, at least as applied in require-
ments engineering.

8 Conclusion

This paper begins with the description of several OODA
difficulties we have observed in a large number of stu-
dents’ software requirements specification projects over the
last five years. This paper classifies these difficulties into
six categories and focused on one of them—the one that
showed up in nearly all the specifications—the difficulty of
discovering concepts in a problem domain. The paper terms
this difficulty thefundamental difficultyof OODA.

This paper has explored one particular hypothesis about
this FD, namely that it is independent of the size of the



system under consideration, and that it is prevalent also in
published—and presumably polished—exemplar specifica-
tions derived from OODAs of small systems. It reports one
part of a thorough examination of three particular specifica-
tions of elevator systems, and offers evidence from the three
specifications to support the hypothesis.

9 Future Work

Our future work will involve completing the analysis de-
scribed in this paper, carrying out similar analyses of the
difficulties declared out of the scope of this paper, and even-
tually to carrying out controlled experiments of OODA car-
ried out on a variety of problems, using a variety of OO
paradigms, expressed in a variety of OO modeling lan-
guages.

In particular, we have already gotten the support of 140
students who have allowed the use of their 30 different com-
plete specifications of a voice-over-IP-telephone system for
research purposes and for eventual publication of the re-
sults. These specifications will be compared with the spec-
ifications produced under constrained conditions. These
empirical results should provide the research community
with the ability to objectively judge the effectiveness of OO
methods for requirements engineering.
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